

Damien Morizur

ENHANCING MAGENTO FRONTEND PERFORMANCE WITH

REACTJS AND COMPARING IT TO KNOCKOUT

ENHANCING MAGENTO FRONTEND PERFORMANCE WITH

REACTJS AND COMPARING IT TO KNOCKOUT

 Damien Morizur
 Bachelor’s Thesis
 Spring 2019

Degree Programme in Information
Technology

 Oulu University of Applied Sciences

 3

ABSTRACT

Oulu University of Applied Sciences
Degree Programme in Information Technology

Author: Damien Morizur
Title of the bachelor’s thesis: Enhancing Magento Frontend Performance with
ReactJS and Comparing It to Knockout
Supervisor: Veijo Väisänen
Term and year of completion: Spring 2019 Number of pages: 50 + 8
appendices

Magento 2 is a PHP-based framework used for building e-commerce solutions.
It enables developers to easily extend, customize and create pages and
features in order to build the best possible e-commerce solutions. This thesis
was commissioned by Vaimo Finland Oy. The company previously developed a
module for Magento 2 that replaced the product search functionality with a new
user interface using KnockoutJS. While providing with a better and more
efficient solution than the default Magento search, it still lacked in performance,
particularly in older browsers such as Internet Explorer. The implementation
done for this thesis aimed at replacing this solution with a new module using
ReactJS as the framework for the search user interface.

For this thesis, a new module for Magento 2 was built. It fetches search results
asynchronously and uses ReactJS as the library for rendering the user
interface. Performance testing was conducted to assert whether the new user
interface had more performant rendering than the previous one created with
Knockout.

The implementation resulted in a proof of concept that in the future will undergo
further development and replace the user interface from the current module.
The testing done showed that the new user interface had improved rendering
performance compared to the previously created solution.

Keywords: ReactJS, Magento 2, Frontend, Search

 4

CONTENTS

ABSTRACT 3

VOCABULARY 6

1 INTRODUCTION 7

2 MAGENTO 10

2.1 General overview 10

2.2 Product searching 11

2.2.1 Elasticsearch 12

2.2.2 Search API 12

3 REACT 14

3.1 React as a tool 14

3.1.1 React’s virtual DOM 16

3.1.2 State management library 17

3.2 React and Magento 17

3.3 React and Vaimo 18

4 IMPLEMENTATION 19

4.1 Creation of the module 19

4.2 Store component 21

4.3 UI components 22

4.3.1 First React component 23

4.3.2 Product Items 24

4.3.3 Quantity change and add-to-cart 25

4.3.4 Search input and opening the search popup 25

4.3.5 Loader 26

4.3.6 Search Toolbar 27

4.3.7 ErrorBoundary 28

4.3.8 Multi-option filters 29

4.3.9 Filter tags 30

4.3.10 Search state in URL 30

4.4 Optimizations 31

4.5 Extendibility and generic-ness of the new module 32

5 PERFORMANCE TESTING 34

 5

5.1 Preliminary testing 34

5.2 Gathering metrics 36

6 CONCLUSION 47

REFERENCES 48

APPENDICES 50

 6

VOCABULARY

API: Application Programming Interface.

CSS: Cascading Style Sheets

DOM: Document Object Model

Less: Preprocessor used for compiling CSS

REST: Representational State Transfer

SKU: Stock keeping unit

UI: User Interface

URL: Uniform Resource Locator

XML: Extensible Markup Language

 7

1 INTRODUCTION

I have been studying in Oulu University of Applied Sciences for nearly 4 years,

learning the basis of working as a web developer. Now working for a company

named Vaimo, I started this project eager to apply all I have learned both during

studies and working life.

Background

Vaimo was founded in 2008 and it is the global leader in delivering award-

winning digital storefronts. With 400 employees over 12 different countries

around the globe, Vaimo’s focus is to drive digital commerce success for its

brand, retail and manufacturer clients. (12)

Vaimo uses the Magento platform to build most of its e-commerce solutions,

which allows developers to easily expand on an extensive array of features to

build unique stores for visitors to browse and buy products from.

Always looking for the best possible solutions for businesses, the company has

also created many new features that either expand on, or replace, existing

features from the Magento platform, with the goal of added value for the stores.

One such feature, which was the base for this project is the product search

functionality. Searching products on a webstore needs to be as seamless an

experience as possible so that customers can quickly find the products they

want. This is the reason why Vaimo has previously created a module for

Magento that aimed at improving how quick and easily users can find products

that they want.

By default, the Magento search works so that when performing a search, as can

be shown in the figure 1, it will load a dedicated page where results matching

the search will be rendered. Every new search requires the user to navigate to

this page, thus leaving the one they were on.

 8

FIGURE 1. An example of typing a search with Magento’s default search

In comparison, the module previously created by Vaimo creates a brand-new

user interface for the product search functionality in the form of a popup that

opens when performing a search on any page and that asynchronously fetches

results with Ajax and render them using Knockout. Provided with advanced

multi-option filtering, the user interface allows the user to search, sort and filter

products without the need for page loads. (figure 2)

FIGURE 2. A screenshot of the module’s search UI.

While being a great solution, it appeared that rendering performance of the

module was not the best it could be when dealing with many products to render

on the page, particularly with older browsers such as Internet Explorer. These

performance bottlenecks were attributed to the use of Knockout JavaScript

library for rendering the user interface, as it seemed not optimal for handling

large amounts of dynamic content changes.

 9

Aim

The aim of this thesis project was to implement a new module for the Magento

platform. It would aim at replacing the current user interface of the module with

a new solution made with ReactJS. ReactJS was chosen for its known great

performance and the fact that future versions of Magento will also use that

popular library, making it the next big thing for Magento frontend developers.

The aim of the implementation was to be more performant in comparison to the

previous one, meaning performance tests would be required at the end.

This thesis report will focus on setting the background of the implementation,

with the use of Magento and React, then go through the implementation of the

new module created and finally the testing done to assert whether the new

implementation using React was a more performant solution than the current

one using Knockout.

 10

2 MAGENTO

Magento is an open-source PHP-based platform for building e-commerce

solutions. Built by the Magento company (now part of Adobe), it is used by over

350,000 developers all over the world. (1) It enables the creation of highly

customizable digital storefronts for Business-to-Customer and Business-to-

Business purposes.

2.1 General overview

Magento’s platform is built upon PHP and MySQL. During its lifetime of 10

years (the version 1.0 released in March 2008 and the version 2.0 in November

2015 (2)), it has undergone changes in terms of structure and development

patterns, and is now in its second major version, Magento 2.

As the Magento version 2.2 was used for this thesis, the development flow

talked upon in this document will be of Magento 2 when referred-to as Magento.

Magento’s structure is comprised of two main parts, one being the back-end,

with the database and MySQL, and Model, Data and Service interfaces, as can

be seen in the figure 3. These are directly connected and used in Magento’s

Blocks, Layouts and Templates, which would be defined as the front-end of the

application.

 11

FIGURE 3. Representation of Magento’s layered architecture. (3)

When installing Magento for a brand-new project, a basic webstore is created

that the developers can then modify to fit the needs of the client to create a

customized user experience.

2.2 Product searching

One of the prominent features on any webstore, and the focus of this thesis

work, is the product search feature, which allows users to type in terms to

search products by. Once search results are gathered, the user can usually sort

or filter through those by categories or product attributes.

In Magento, the search usually uses either MySQL, Solr or Elasticsearch for

indexing the catalog. Catalog indexing determines what results are returned to

the storefront when entering a new search term or changing filtering options

from already gathered results.

While not directly tied to this thesis work, it was important to understand the

technologies involved on the backend. For this thesis, the catalog indexing

solution used on the backend was Elasticsearch.

 12

2.2.1 Elasticsearch

Elasticsearch is a free and open-source search-engine built on Apache Lucene.

It is particularly used when dealing with large amounts of data and when

needing to quickly retrieve that data. When using MySQL, querying for data can

take very long when having a lot of data. Thus, the main selling point of

Elasticsearch, is to multiply querying speeds by the hundreds. It works by

indexing data into documents that have keys and values and it comes with an

API that allows for retrieving these indexed documents. (4)

When used on a Magento store, the catalog is indexed in an Elasticsearch

node. It is easily configurable by just enabling it and specifying from the admin

panel of the store, the IP address and port of the host where the Elasticsearch

node is located.

2.2.2 Search API

Magento has a fair amount of REST API endpoints, of which one that can be

used for searching products. This search API endpoint takes as data sent an

array called searchCriteria, which has the following structure (figure 4):

FIGURE 4. The structure of the searchCriteria array. (5)

To make a request, the client must send a GET request to a specific path

appended to the base URL of the store. The path is /rest/V1/search/? to which

the search criteria are appended.

While returning all matching products given to these search criteria, the search

API does not return products information such as product name, SKU, price.

Another request to a different API then should be done to retrieve such product

data by providing product IDs. This means that to retrieve full products

information (such as name or price) for a specific search, several requests to

 13

the API are necessary. This is not efficient as making several API requests

takes time.

This limitation was addressed in the module previously created by Vaimo. It

customized this search API to make it return all the data needed rather than just

product IDs, thus making the search more time efficient.

The new module created for this thesis, while creating a brand-new user

interface (UI), made use of this custom API when fetching search results using

Ajax, and rendering them with React Components.

 14

3 REACT

For this thesis, the author used React as the primary tool for implementing the

new search interface that will replace the one from the previously made module,

which used Knockout as the JavaScript library. In this section, the author will

clarify what React is and why it was chosen for the implementation based on

how it works, its relationship with Magento framework and Vaimo as a

company.

3.1 React as a tool

React is a JavaScript library created by Facebook and designed for building

user interfaces. It relies on the use of components and states for rendering

dynamic content on web pages without the need for page loads. It is one of the

most popular and supported JavaScript libraries for UI interfaces these days, as

is shown with NPM downloads data in the figure 6. This means a better overall

support, which is a great help for development.

FIGURE 5. JavaScript frameworks popularity. (7)

 15

Unlike older JavaScript solutions, which involved manually triggering changes

on the page, React “knows” when the UI needs to be updated and re-rendered

on the page when the states of the components change.

FIGURE 6. An example of a React component (15)

The figure 6 shows an example of a simple React component. It is a JavaScript

class that extends the React.Component class. The render function inside the

component returns a description of what the component will show on the page

and is most of the time written using the JSX syntax. Such component can be

added as a child to other components, i.e. in their render methods by declaring

it as: <ExampleComponent />. When doing so, props can be passed to it. They

are accessible from within that component (as can be seen in the figure 6),

allowing for the component to be used several times with different values for

those props.

In addition to props, components can also have states, which are specific to

them, and which can be used and modified to update components with new

data. These states can also be passed to child components as props.

Going further with using such libraries as React for building complex Uis, where

components can be dependent on each other, usually involves the use of a

state management library alongside React, of which the two main choices are

Redux and MobX. They help to manage the states of the app in the scope of

the app rather than the component itself.

 16

The main idea that differentiates React from other libraries or frameworks (e.g.

AngularJS, Knockout) is the use of a “virtual DOM”, which enhances

performance by reducing the amount of changes happening on the DOM.

3.1.1 React’s virtual DOM

React’s virtual DOM is technically what it sounds like. It is a DOM that is created

when components render and when states change. The approach used is to

create a new virtual DOM when some element needs re-rendering and compare

it to another virtual DOM representation of the previous state of the app, making

the “diff” using an algorithm and re-rendering in the DOM only the elements that

need changing (Figure 7). (6)

FIGURE 7. Representation of how React changes the DOM (6)

The virtual DOM is a full representation of the DOM without being an actual

DOM, meaning that the process of creating a new virtual DOM is much faster

than creating the DOM of the actual page. Consequently, since React creates a

new virtual DOM every time something needs re-rendering, it does not actually

need to know what has changed. This means that the developers do not need

to control the rendering process, since React will then change the DOM of the

 17

page only when an actual change is needed. Performance wise, it is one of the

best and smartest methods to re-render part of the DOM that needs changing.

3.1.2 State management library

When using a JavaScript library, such as React, developers create components

which in most cases are stateful, meaning that each component has states that

can change and that trigger component updates. When the application

becomes large with many interconnected components, it can become

cumbersome and states may need to be passed from parents to children and

vice versa. To go around this issue, state management libraries exist. They

allow to keep the states of the application in one place for ease of state

management. The two most popular libraries used alongside React are Redux

and MobX.

Although they both achieve the same goals, differences exist between the two.

For this thesis project, it became quickly clear that using a state management

library would make a difference, notably to handle all states and data into one

place, so that the components react to changes in the data.

MobX was chosen as the state management library for the following reasons:

 It makes use of observables, meaning that the app would keep track of the

changes in the data without the need to manually track the changes. (8)

 The author of the thesis was familiar with KnockoutJS, which also makes

the use of observables for UI changes, meaning that the mindset for

development was easier to attain.

 MobX has a steady learning curve. (8)

 MobX was previously used in Vaimo for another project (Redux was not

used at the time), meaning a better support during the development.

3.2 React and Magento

Magento is developing a new tool called PWA Studio. It is a Progressive Web

Application tool that will allow developers to work with Magento in a “headless”

way, meaning that the frontend is not directly tied to the backend and

 18

communication is done through APIs.

Up until now, Magento user interface was created by using what are called

“blocks” which have a template (phtml file) and a PHP block. Data is often

rendered on the page load through these blocks and models and interfaces

coming from the backend.

PWA Studio uses React, Redux and webpack, meaning that developers

working on solutions using PWA Studio will need to be familiar with these

technologies.

3.3 React and Vaimo

Although most current Vaimo projects will not be using PWA Studio, new

projects will likely make use of it in the future. This is the reason why early on,

Vaimo has set its eyes on React in a development perspective. A few features

from current projects have also recently been implemented with React, mostly

for performance reasons.

This thesis project started at a time when the company decided to start

proposing these kinds of solutions.

 19

4 IMPLEMENTATION

The implementation phase of the project concentrated on the creation of a new

module for the Magento platform. It should effectively replace the built-in search

functionality by a custom search interface for searching, browsing and filtering

products, while making use of the custom API implemented in the module

previously created.

The main aim of this implementation was to re-create most of the UI elements

and features present in this module and to assert whether the rendering

performance was improved by using ReactJS instead of KnockoutJS.

Therefore, while recreating most of the features present in the current module,

the author had to keep performance in mind.

Since the main aim of the creation of the new module was to replace the front-

end from the currently used module, one of the very first steps was to find out

how the front-end from that module worked in order to have a good base for

starting, especially since the backend from that module was to be kept and

used for the new module.

4.1 Creation of the module

Prior to starting to create the Store and UI components, a few things needed to

be done:

 Installing a new Magento project that has the current module installed as

dependency. This was important so that the backend from that module

could be used from within the project. This project was used all

throughout the Thesis for development and testing.

 Disabling the UI from the current module but keeping the backend

working to be able to use the custom search API.

 Creating the skeleton of the new module.

 Creating a new Magento block and template that would be present on

every page of the webstore.

 20

 Adding React, React-dom, MobX-react and MobX dependencies (figure

8). React and MobX-react are added as dependencies to the React

components, while MobX is added to the Store component.

FIGURE 8. Screenshot of React and MobX dependency files and folders added.

 Creating a JavaScript file that creates a jQuery widget which is

instantiated on the template. It defines the MainApp React component

which will be the parent for all other React components. It also requires

the store component and passes it as a prop to the MainApp. (Figure 9)

FIGURE 9. Instantiating the MainApp component.

 Adding and setting up compiling dependencies. React files are not directly

usable by web browsers. They need to be compiled into valid JavaScript

files. The workflow used for this thesis was to use Babel as the compiler

and Gulp as the task runner that runs the compiler.

 Creating a Less file where components styles can be added. For each

component, during their implementation, styles were added to give each

component, and therefore the UI, a basic appearance.

 21

The structure of the UI of the new module can be divided into two parts, as

shown in the figure 10:

 The UI components, which are all the React components and are for the

most part stateless, meaning that their states are handled by the Store

component.

 The Store component, containing all the observables and functions that

modify the states, as well as the functions that both prepare the data for

the API calls and parse the data received back to be in a usable format for

the UI components.

FIGURE 10. Structure of the new module.

4.2 Store component

The Store component could be defined as the “brain” of the module. It is a

JavaScript Class which uses MobX as dependency.

It contains:

 Variables and arrays used within the Store

 Observables. These are variables, arrays or objects that have the

@observable tag in front of the name when being declared (as shown in

the figure 11). They contain the data that will dynamically change in the

app and, when used in React components, that will trigger updates when

the data is changed. For React components to react to changes in these

observables, an @observer tag is added before their class declarations.

Consequently, MobX will track the changes in these observables and

 22

relevant React components will update when data is changed, thus

handling the states of the app.

 Functions that either directly or indirectly affect the state of the App and

update UI components by changing observable values.

 Functions that handle creating the search criteria and sending the search

requests in a format usable by the API, as well as recovering and parsing

the search results to a format usable by the React components.

FIGURE 11. An example of observable variables from Store class.

4.3 UI components

FIGURE 12. An overview of UI components of the new module.

The figure 12 shows the components implemented during this thesis project.

The UI components created for this thesis are a total of 22, structured in groups

and hierarchy. The main component of the app (MainApp) is parent to the four

main components, which consequently are parents to the remaining 17

components. Those four main components are:

 23

Toolbar

Contains different tools for the search, such as closing the search, going to the

next/previous results page, viewing products amounts and sorting results as

well as changing the number of products per page.

Filters

All the options that products can be filtered by, with values grouped by filters

and filters grouped by filter groups (if any). They can be selected to add search

criteria to a new search request.

Product Items

Contains all the product “cards” of the search results as well as add-to-cart /

remove-from-cart actions.

Filter tags

Currently active filters that contain options to remove a filter from active filters.

4.3.1 First React component

To test a preliminary rendering of React components for search items, the

author initially setup a function in the Store component that triggered an Ajax

request using the customized Magento search API to fetch search results, given

a fixed search term as an argument. The aim was to use the response to map

and display product names one after the other using a React component.

An observable was created in the Store component to receive the items once

fetched. The MainApp component would render an initial ProductsList

component that mapped the items from the observable.

The first setup and working component was crucial as getting started can be

daunting, especially when using React with Magento. Once the first React

component was working, and the Store component was set and ready to have

observables and functions added, it was easier to then just start implementing

the UI components one by one.

 24

4.3.2 Product Items

After successfully creating the first “test” component, the logical next step was

to flesh out the product items components to display all necessary product

information in what is called a product card.

Following the logic of component hierarchy, in which everything that is reusable

or repeatable should most likely be its own component, the initial component

that mapped and rendered product names was changed to map product items

from the search results and render a ProductItem component for each product

(figure 13).

This component would in turn render five different components:

 ProductImage: Product image.

 ProductInfo: Product name and SKU.

 ProductPrice: Product price (or prices).

 ProductQuantity: Product quantity input and incremental and decremental

selectors.

 ProductAddToCart: Adding a product to the cart and removing it from the

cart actions handling.

FIGURE 13. Product items from the search results

This compartmenting of components became relevant for two main reasons:

 25

 Performance in terms of rendering. If some data inside a component needs

to change on the page, only this component should be updated to speed

up rendering.

 Extendibility. Components can be either re-used or moved to different

places, adding a level of customization to the implementation.

4.3.3 Quantity change and add-to-cart

FIGURE 14. Quantity input and an Add to the cart button.

The figure 14 shows the quantity change and add-to-cart components. These

components are children of the product item component. They were particularly

interesting to create in that they are the only components inside the product

item component that have actions associated to them, and therefore they were

the first dynamic actions implemented.

The ProductQuantity component is composed of an input field for the quantity of

that item to add to the cart along with selectors that increment or decrement the

quantity value.

ProductAddToCart component has a button that either adds or removes the

item from the cart depending if the item is present in the shopping cart.

4.3.4 Search input and opening the search popup

To behave as a single-page feature that can be used on any page of the

webstore, the new search UI needed to open when a user performs a search.

To achieve this, a listener to a typing event from the search input (present

usually on the top of Magento store’s header) was added. It opened the search

UI when typing more than 3 letters on the input and used the value as a search

term.

 26

4.3.5 Loader

FIGURE 15. A loader showing when adding product to the shopping cart.

This component was crucial to the application since whenever a user performs

an action that takes some time to execute, a loader should be shown on the UI

to inform the user that the application is processing the request.

React really shined in this case since it allowed to create one component for all

the loaders to use on the page, that would be rendered in different places, on

different conditions:

 On top of item list, when fetching new items.

 On top of one item, as shown in the figure 15, when adding it to / removing

it from the shopping cart.

In terms of performance, using a CSS animation seemed the best choice,

particularly if using the CSS transform property, since it does not trigger any

repainting on the page when running (9). Paintings can be expensive,

particularly on older browsers.

Since CPU power is in use when the loader is running (to fetch and process the

data), there is a trick to force the CSS animation to use GPU instead, by adding

a 3D property to the animation styles. In this case translateZ(0) is added. It

does not affect the actual animation but forces the use of GPU to process it,

thus removing the need for extra CPU power. (10)

 27

4.3.6 Search Toolbar

FIGURE 16. Search results Toolbar components.

The toolbar is a component that renders several smaller components which are

the different options related to results paging and sorting.

In this case the components are (in order from the figure 16):

 Products amount (per page / total)

Shows the current range of products showing on the page and how many

products in total exist for the current search. It changes when new results come

and calculates the range of products using the page size and the current page

values.

 Page size selector

Added late in the project to help with testing. Allows a user to change the page

size, meaning the number of products showing on the page. It was implemented

so that the value is saved to the localStorage of the browser and it would be

kept between different browsing sessions.

Available values were defined in the Store component.

 Pager (next / previous page)

Allows the user to go to the next page or the previous page depending on the

current page. The last page is defined by calculating using the page size,

current page and total amount of products found. The current page number is

saved and when changing the page, a new value is saved before triggering a

new search.

 Products sorting

Allows the user to sort the results by different sort orders. Changing the value

triggers a new search with that value as search criteria.

Available values are defined and saved in the Store component.

 28

 Search close

Closes (hides) the search popup and allows the user to get back to browsing

the page they were on before performing a search.

Each of these ‘tool’ components are all within one parent React component to

allow for customizations such as moving the toolbar to different positions or

duplicating it to the bottom of the page (without having to re-do the whole UI

element). It is one of the four main components on the page, along with the

Multi-option filters component, the product items component and filters tags

component.

The figures 17 and 18 below respectively show the previous and next page

buttons, and the sort order select input with its different options.

FIGURE 17. Pager action buttons

FIGURE 18. Sort order select input.

4.3.7 ErrorBoundary

The use of an Error Boundary component is mainly to be able to catch errors

when they occur within their child components without crashing the whole app,

allowing for displaying a fallback UI. (14) This means that, i.e. if the ProductItem

component has an error, ordinarily the whole app would crash, but now the

fallback UI would be showing within the product items list component, while not

breaking other components.

 29

FIGURE 19. A fallback UI when having an error in the ProductItem component.

The ErrorBoundary component created for this implementation contained a

user-friendly error message along with a link that allows the user to reload the

search, as can be shown in the figure 19.

4.3.8 Multi-option filters

FIGURE 20. Multi-option filters.

The component for filters list was quite obviously an important feature to

implement. It lists, grouped by type, all the options that search results can be

filtered with. The list of filters and filter options available is provided with the

search results fetched through the search API. (Figure 20)

 30

Like the products list component, the filters list is composed of child

components, coming all the way down to selectable filter items:

 FiltersContainer: Maps and renders filter groups if any.

 FilterGroup: Maps and renders filter options (e.g. Price or Brand).

 FilterOption: Maps and renders filter items.

 FilterItem: One filter item that is selectable.

When selected, filter items are added to active filters and to the search criteria,

before triggering a new search API call with the added filters as arguments.

4.3.9 Filter tags

Filter tags are closely related to filters so that they show on the search results

page the currently active filters. (Figure 21)

FIGURE 21. Filter tags.

Although the filters were implemented in such a way that it is visible whether

they are active, the filter tags were important to implement so that all active

filters could be seen in one place, with the possibility to quickly remove filters by

clicking on said tags.

Filter tags are saved in an observable array in the Store component and are

appended or removed from the array when a filter is selected from the filters list

or when clicking on a filter tag to remove it. Doing so removes the tags and

performs the same action that clicking a selected filter from the filters list would,

thus removing the filter from active filters and triggering a new search.

4.3.10 Search state in URL

This feature works in two ways:

 31

 Updating the URL of the page to contain the current state of a search in

the form of the current search term and the active filters. (Figure 22)

 Retrieving the search term and filters from the URL (if any) and loading the

search UI as well as fetch products using those criteria.

When typing on the search bar, the text is also copied to the URL of the page.

FIGURE 22. An example of search term and filter values appended to URL

This was an important feature since when the user goes to a product page from

the search, they need to be able to go back to the search in the same state as it

was before leaving. Product pages are different pages so the best way to keep

the previous search is to save them in the URL, after the base address, in a

format that is easily retrievable and can be parsed.

4.4 Optimizations

For this implementation, some optimizations were done to get the best possible

performance out of the new module. While many optimizations were seamlessly

made during the implementation of the components, by trying different ways of

doing things, some optimizations were done afterwards, when the module was

ready for performance testing.

Two such optimizations were done, all of which had rendering performance in

mind:

 Grouping all data that is updated in the UI into one single observable

object.

After receiving the data from the API when performing a search, both filters and

products are handled separately, getting the respective data ready for being

assigned to observable arrays that are used in the React components.

Early on, both filters and products were in separate observables that were

updated at separate times, meaning that MobX and React needed to process

 32

and make DOM changes twice in a row, increasing the time it took to render

new data to the user interface.

The solution found was to save both products and filters to two temporary

arrays. When both were ready to be rendered, they were added to one single

observable object which is then used on both filters and products related

components, effectively lowering the time taken for rendering search results.

(Figure 23)

FIGURE 23. A screenshot of saving products and filters into one object.

 Using React’s “production” build as dependency

During development, the added React dependencies were the ones that can be

used for development and they allow added functionalities that can be used for

debugging React applications during development.

React also has a “production” build that has minified code and does not have

those extra features, making it more performant and thus adding more

performance to the application.

4.5 Extendibility and generic-ness of the new module

Modules created for Magento can be project specific, meaning that they will

customize, modify and/or add a new feature that is likely to be needed only for

that specific project. If the new feature can or should be used for different

projects, the module then needs to be created as a separate dependency which

can have its own repository and is added to the composer dependencies of the

projects.

In the case of this thesis project, the module needed to be as generic as

possible so that it could be installed on different projects and different clients

 33

could benefit from it, while allowing developers to customize the user interface

as easily as possible.

There are several ways to address generic-ness and extendibility when

implementing the new module:

 Small React components. Each component can be declared and used in

any other component, making it easy to change components positions if

need be.

 Generic CSS styles and added HTML classes, which allow most

elements to either inherit styles from the project where the module is

added (e.g. buttons or inputs), while enabling the developers to easily

modify or add styles by selected HTML classes.

 The Store component has many configurable variables and arrays, all

grouped at the beginning of the file, to help with modifying certain

configurations (e.g. sort order values or amounts of products per page).

In most Magento modules, components or blocks can easily be configured by

changing certain values in their layout configurations (in xml files), making it

easy to extend at a project level. This was not easily possible with the new

module. Since React is not integrated into Magento, React components cannot

be declared using xml declarations. This was a big drawback when comparing

the extendibility between the new module and the current one, making the latter

better in that regard.

 34

5 PERFORMANCE TESTING

Once the implementation reached a state of “proof of concept”, and most

features present in the currently used module were functional in the new

module, it was ready for extensive performance testing and comparisons.

Although some testing was conducted during the implementation process to

make some optimizations and to insure that the module was working properly

on multiple browsers, the core of the testing had to occur when all performance

heavy features were ready, so that the new module could be fairly compared to

the current one in terms of rendering performance.

Additionally, since the new module changes the UI without affecting the fetching

of the data, the performance improvements were expected to be mostly for

rendering the UI elements, thus performance testing and comparison was

limited to rendering. To be able to test both modules on the same webstore, a

test environment was used where the new module would be used on all pages

apart from one where the current module would be used and the new one

disabled. Since that page was otherwise empty, another similar page was

created on which the new module could be tested, so that both modules would

have the same testing conditions.

5.1 Preliminary testing

One of the key components of this thesis was to create the new module so that

it would eventually replace the frontend from the previous module done with

Knockout. Logically, the idea of the project came from the fact that Knockout

was not performing well for a large amount of dynamic content to render on the

page, particularly for older browsers, and that using React would be more

performant.

While the first observations during and after the implementation of the new

module were showing very promising results, it was crucial to be able to prove

that the new module was indeed more performant. That could be done once the

implementation was in a state of possessing the same number of features and

components than the previous implementation.

 35

The first logical step was to manually test performance with the tools at hand, in

this case the developer tools from Chrome browser, particularly the

Performance tab, that allows for recording and analyzing runtime performance.

(Figure 24)

FIGURE 24. An overview of the Performance Tab from Chrome Dev Tools.

When pressing the record button, it starts recording what happens on the page.

And once stopping the recording, it will display a timeline showing all kind of

data relating to performance.

FIGURE 25. The timeline and summary from the run-time analysis.

 36

The first and second rows in the figure 25 show the frames per second, and the

CPU usage, which both are good indications for performance and are the first

things that were looked at. The color code used helps to identity what is being

processed, and the summary at the bottom shows, for a selected timeframe, the

amount of time used for each type of process.

One of the first steps for measuring performance was to pinpoint the rendering

part of the timeline (after products are loaded and are going to be displayed on

the page) and see how long it took. While this is a good indication of

performance, it was going to be inefficient to gather meaningful metrics for both

modules and multiple browsers by recording and analyzing the runtime

manually for every case.

5.2 Gathering metrics

To be able to gather metrics on rendering performance, it was important to be

able to define what constitutes rendering, as well as what can and cannot be

measured in an automated way.

In the case of this project, when a search is performed it goes through the

following steps:

 Creating the API request

 Making the API call

 Waiting for the response

 Processing response data

 Updating observables

After this, MobX and React libraries take care of updating the components on

the page with the new data that the observables have, updating the DOM tree

and finally painting the new tree to the page for the user to see. Logically,

rendering is then everything that relates to updating the components on the

page with the new data. It is the part that interested the author during this

project because of the differences between Knockout and React in how

component changes are handled.

 37

Following this thought, it seemed logical that rendering performance should be

measured from the moment the observables are updated, up until the page is

visually changed before the eyes of the viewer.

When using the Chrome dev tools, it could be observed that the results were

visually present on the page after:

 The DOM tree changed

 The browser processes the layout and styles of the page

 The browser paints the new DOM changes.

FIGURE 26. The timeline of the rendering of products on the page.

The figure 26 shows the timeline from the moment the observable is changed

until the results show on the page. As can be seen, a large portion of the time is

used for scripting, which in this case revolves around MobX and React

processing changes to the DOM and updating the DOM tree. This is followed by

the browser recalculating layout and styles (in purple color), then painting the

changes (green color).

To be able to mark and measure different moments in the timeline of the

loading and rendering of the search results, the Performance API of the browser

was used. This allowed e.g., to mark “moments” in the execution of the code.

An example of how to use the performance API in JavaScript is shown below:

performance.mark(‘first_example_mark’);

…

performance.mark(‘second_example_mark’);

 38

performance.measure(‘Name of the measurement’, ‘first_example_mark’,

‘second_example_mark’);

This will measure the exact time that passed between the two marks and it will

also be accessible from the browser console as well as being visible from the

runtime analysis User Timings section.

In the case of measuring rendering performance for the new module (and the

current one, for comparison), the first mark was added right before the line that

sets the new value(s) for the observable(s).

The difficult part was to be able to mark the end of rendering, as the author

wanted to record the DOM tree changes as well as the layout and styles

calculations, and the painting, since the page visually changes only after the

painting is done. After researching on the topic, no way was found that would

programmatically detect the end of the painting that follows the DOM changes,

leaving a possible rendering performance measurement to the time it takes for

the DOM to be updated.

Initially, the way found to detect the end of DOM changes was to record the

“componentDidUpdate” event from the React component (i.e. ProductItemsList

component), but a more accurate way was found by using mutationObserver

and recording the very next time a “mutation” occurred after the

ProductItemsList component was updated. The Mutation observer is a web

browser API that allows to detect when changes are made to the DOM tree.

(13) The same markings and measurements were added to the Knockout

module to have exactly the same way of measuring on both modules.

FIGURE 27. Different measures of rendering in the new module.

 39

The figure 27 shows the difference between measures made with marking the

componentDidUpdate event of the components compared with marking with the

mutation observer (marked “Full rendering”). It measured right up to the end of

the browser DOM tree changes.

The advantage of using the performance API to make the measurements is that

markings and measures are accessible from the browser’s console at any time

after measures are done, without the need to have the developer tools opened

during the measurements. This way, measurements are truer to the reality,

since using developer tools may temper with page performance (particularly

observed on Internet Explorer).

The next step was to perform tests on multiple browsers and gather metrics for

performance. As relevant metrics involve testing on multiple browsers, for a

different amount of search results and for two different modules, it was

suggested to use an automated testing framework to gather metrics without too

much hassle.

After looking at different options, WebdriverIO for Selenium was chosen, mostly

since it makes use of nodeJS, which the author thought would feel mode

familiar to use.

Setting up the automated testing framework

Here are the steps that were taken to create and run the test scripts:

 Downloading and installing webdriverIO as instructed in the official

documentation (13)

 Running the test runner configuration script with default parameters except

when asked if the user wants to add a service, then Selenium Standalone

is picked.

This was practical because Selenium Standalone is a Selenium server that is

ran and shutdown when running tests, and it already has most browser drivers

included.

 Defining browser capabilities in the configuration file.

 40

 Writing the test scripts as JavaScript files under the /test/specs folder

 Running the scripts

As can be seen in the figure 28, the rendering measurement done using the

Performance API can be read from the script by executing JavaScript on the

browser during the test. Similarly, the number of products per page can be

changed by modifying the localStorage value that the new module saves and

uses for fetching products, and that was added to the current module for testing

purposes.

FIGURE 28. A snippet of the script for test case 1.

When tests are running, the scripts make the browsers open and perform the

actions that the script defines (i.e. loading a page, selecting an element, waiting

for some condition) and take the measures using the previously shown method.

At the end the script instructs the console to give the measures as output (figure

29) the values of which (in milliseconds) are saved in tables as shown in

appendices 1 & 2.

FIGURE 29. A screenshot of an example test result for Test case 2 on Microsoft

Edge

 41

Each test was performed 10 times for each browser. The average rendering

time from compiled results (see appendices) was calculated and used as a test

result to create the following charts:

Test case 1: The search is made on a page load with a search term loaded

from the URL. (Figures 30, 31, 32, 33 and 34 shown below)

A lower value means faster rendering and better performance.

FIGURE 30. Rendering performance comparison on Chrome 71 / Windows 10

FIGURE 31. Rendering performance comparison on Internet Explorer 11 /

Windows 10

0 50 100 150 200 250 300 350 400

16

32

64

128

Rendering (ms)

Am
ou

nt
 o

f s
ea

rc
h

re
su

lts

Chrome 71 (Windows 10)

Currently used module with KnockoutJS New module with React

0 200 400 600 800 1000 1200 1400

16

32

64

128

Rendering (ms)

Am
ou

nt
 o

f s
ea

rc
h

re
su

lts

Internet Explorer 11 (Windows 10)

Currently used module with KnockoutJS New module with React

 42

FIGURE 32. Rendering performance comparison on Firefox / Windows 10

FIGURE 33. Rendering performance comparison on Microsoft Edge / Windows

10

0 100 200 300 400 500 600 700

16

32

64

128

Rendering (ms)

Am
ou

nt
 o

f s
ea

rc
h

re
su

lts
Firefox (Windows 10)

Currently used module with KnockoutJS New module with React

0 100 200 300 400 500 600 700 800

16

32

64

128

Rendering (ms)

Am
ou

nt
 o

f s
ea

rc
h

re
su

lts

Edge (Windows 10)

Currently used module with KnockoutJS New module with React

 43

FIGURE 34. Rendering performance comparison on Safari / MacOS X

Results from the figures 30 to 34 show that, for the same testing conditions, the

time it takes for the new module to render the components and products on the

search interface is shorter than for the current module.

Test case 2: The search is opened and search results are showing. The user

changes the sort order from “relevance” to “price (cheaper first)”. (Figures 35,

36, 37, 38 and 39 shown below)

FIGURE 35. Rendering performance comparison on Chrome 71 / Windows 10

0 50 100 150 200 250 300 350 400 450 500

16

32

64

128

Rendering (ms)

Am
ou

nt
 o

f s
ea

rc
h

re
su

lts
Safari (Mac OS X)

Currently used module with KnockoutJS New module with React

0 50 100 150 200 250 300 350 400 450 500

16

32

64

128

Rendering (ms)

Am
ou

nt
 o

f s
ea

rc
h

re
su

lts

Chrome 71 (Win10)

Currently used module with KnockoutJS New module with React

 44

FIGURE 36. Rendering performance comparison on Internet Explorer 11 /

Windows 10

FIGURE 37. Rendering performance comparison on Firefox / Windows 10

0 200 400 600 800 1000 1200 1400 1600 1800 2000

16

32

64

128

Rendering (ms)

Am
ou

nt
 o

f s
ea

rc
h

re
su

lts
Internet Explorer 11 (Win10)

Currently used module with KnockoutJS New module with React

0 100 200 300 400 500 600 700

16

32

64

128

Rendering (ms)

Am
ou

nt
 o

f s
ea

rc
h

re
su

lts

Firefox (Win10)

Currently used module with KnockoutJS New module with React

 45

FIGURE 38. Rendering performance comparison on Microsoft Edge / Windows

10

FIGURE 39. Rendering performance comparison on Safari / Mac OS X

The figures 35 to 39 show that for this test case, the difference is even more

visible. This is a case where React really shines, since it effectively updates the

parts of the DOM that need changing, which in this case is only product

information, such as the name, SKU and price on the product cards.

Overall these tests helped to assert that this implementation using React and

MobX had better rendering performance than the currently used module which

was done using Knockout. This can be explained both by the fact that React

has overall more performant rendering than Knockout, but also by having

0 200 400 600 800 1000 1200

16

32

64

128

Rendering (ms)

Am
ou

nt
 o

f s
ea

rc
h

re
su

lts

Edge (Windows 10)

Currently used module with KnockoutJS New module with React

0 100 200 300 400 500 600

16

32

64

128

Rendering (ms)

Am
ou

nt
 o

f s
ea

rc
h

re
su

lts

Safari (Mac OS X)

Currently used module with KnockoutJS New module with React

 46

performance in mind during the implementation, as well as the optimizations

made to the components.

 47

6 CONCLUSION

The main aim of this thesis was to create a brand-new module for Magento 2. It

would replace a previously made module which was using Knockout as the

library for the dynamic user interface. The module was asynchronously fetching

product search results using a modified Magento search API.

Prior to starting this project, the observation was made that the module, while

functional, was not very performant in older browsers such as Internet Explorer.

React was assumed to be more performant and a perfect replacement for the

frontend part of the module, to be made into a new module.

With performance in mind, a new user interface was implemented, making use

of the backend and custom API from the current module but creating a brand-

new user interface. Currently in a state of proof of concept, the new module

implements most of the current module’s UI functionalities into new React

components.

Although it became quickly clear that the new module felt “faster”, it was

important for this thesis to be able to prove that the new module had more

performant rendering, which the tests performed showed clearly.

The proof of greater performance will also be important in the future for showing

to potential clients that would be interested in adding this new module to their

website.

The module will undergo further development in the future, and it was an

invaluable project for the author, in that it allowed to view the implementation of

a user interface from the performance point of view and to learn about testing

rendering performance of a website.

 48

REFERENCES

1. Magento - The Magento Advantage. Date of Retrieval 21.10.2018

https://magento.com/advantage

2. Wikipedia - Magento. Date of Retrieval 21.10.2018

https://en.wikipedia.org/wiki/Magento

3. Magento DevDocs - Architecture. Date of Retrieval 21.10.2018

https://devdocs.magento.com/guides/v2.1/architecture/archi_perspective

s/arch_diagrams.html

4. QBOX - What is Elasticsearch. Date of Retrieval 2.12.2018

https://qbox.io/blog/what-is-elasticsearch

5. Magento DevDocs - Performing Searches. Date of Retrieval 13.8.2018

https://devdocs.magento.com/guides/v2.1/rest/performing-searches.html

6. Tero Parviainen - Change and its detection in JavaScript frameworks.

Date of Retrieval 14.12.2018

https://teropa.info/blog/2015/03/02/change-and-its-detection-in-

javascript-frameworks.html

7. NPM - State of JavaScript frameworks 2017. Date of Retrieval

15.12.2018

https://www.npmjs.com/npm/state-of-javascript-frameworks-2017-part-1#

8. Codeburst - MobX vs Redux with React: A noob’s comparison and

questions. Date of Retrieval 15.12.2018

https://codeburst.io/mobx-vs-redux-with-react-a-noobs-comparison-and-

questions-382ba340be09

 49

9. CSS Tricks - Browser painting and considerations for web performance.

Date of Retrieval 3.12.2018

https://css-tricks.com/browser-painting-and-considerations-for-web-

performance/

10. Treehouse - Increase your site’s performance with hardware accelerated

CSS. Date of Retrieval 4.12.2018

https://blog.teamtreehouse.com/increase-your-sites-performance-with-

hardware-accelerated-css

11. WebdriverIO – Getting started. Date of Retrieval 13.2.2019

https://webdriver.io/docs/gettingstarted.html

12. Vaimo.com – About Us. Date of Retrieval 14.2.2019

https://www.vaimo.com/about-us/

13. MDN Web docs - Mutation observer. Date of Retrieval 14.2.2019

https://developer.mozilla.org/en-US/docs/Web/API/MutationObserver

14. ReactJS - Error Boundaries. Date of Retrieval 16.2.2019

https://reactjs.org/docs/error-boundaries.html

15. ReactJS – Tutorial: Intro to React. Date of Retrieval 28.2.2019

https://reactjs.org/tutorial/tutorial.html

 50

APPENDICES

Appendix 1 Metrics from Test Case 1 rendering performance testing

Appendix 2 Metrics from Test Case 2 rendering performance testing

METRICS FROM TEST CASE 1 RENDERING PERFORMANCE TESTING APPENDIX 1/1

OS: Browser

Knockout

Win10 Chrome 71

Amount of
products 1 2 3 4 5 6 7 8 9 10 Average

16 85 87 83 88 85 87 84 92 82 79 85.2

32 115 115 119 118 119 126 120 119 117 117 118.5

64 194 197 194 191 194 193 218 194 211 192 197.8

128 326 333 334 331 329 334 332 347 332 338 333.6

OS: Browser

React

Win 10 Chrome 71

Amount of
products 1 2 3 4 5 6 7 8 9 10 Average

16 55 54 63 53 54 54 54 53 53 54 54.7

32 89 90 93 83 86 91 85 86 84 87 87.4

64 131 126 142 130 128 126 125 129 123 127 128.7

128 188 191 184 194 189 189 193 184 180 197 188.9

OS: Browser

Knockout

Win10
Internet
Explorer 11

Amount of
products 1 2 3 4 5 6 7 8 9 10 Average

16 230 236 233 235 231 248 257 235 253 248 240.6

32 361 367 369 371 366 372 396 381 382 383 376.3

64 669 656 649 649 657 663 670 644 670 649 657.6

128 1286 1303 1266 1310 1267 1268 1235 1254 1289 1248 1272.6

METRICS FROM TEST CASE 1 RENDERING PERFORMANCE TESTING APPENDIX 1/2

OS: Browser

React

Win10
Internet
Explorer 11

Amount of
products 1 2 3 4 5 6 7 8 9 10 Average

16 142 141 155 189 177 143 142 134 141 140 150.4

32 205 204 240 239 240 201 206 202 198 202 213.7

64 381 394 348 384 387 338 372 359 341 333 363.7

128 606 620 560 600 614 599 558 567 563 562 584.9

OS: Browser

Knockout

Win10 Firefox

Amount of
products 1 2 3 4 5 6 7 8 9 10 Average

16 170 165 160 163 163 167 166 165 157 170 164.6

32 241 244 233 236 244 233 241 253 247 242 241.4

64 375 365 365 376 375 364 360 366 366 371 368.3

128 573 557 577 575 571 589 565 633 576 588 580.4

OS: Browser

React

Win10 Firefox

Amount of
products 1 2 3 4 5 6 7 8 9 10 Average

16 115 121 120 112 125 109 111 105 125 112 115.5

32 142 147 145 138 152 150 148 150 147 148 146.7

64 198 192 187 188 189 186 194 196 208 201 193.9

128 261 265 252 317 468 263 261 259 268 264 287.8

METRICS FROM TEST CASE 1 RENDERING PERFORMANCE TESTING APPENDIX 1/3

OS: Browser

Knockout

Win10
Microsoft
Edge

Amount of
products 1 2 3 4 5 6 7 8 9 10 Average

16 164 163 165 159 164 163 161 166 161 165 163.1

32 253 238 239 245 255 249 242 246 240 240 244.7

64 429 403 403 419 411 421 412 413 411 402 412.4

128 767 762 738 730 754 747 728 759 755 766 750.6

OS: Browser

React

Win10
Microsoft
Edge

Amount of
products 1 2 3 4 5 6 7 8 9 10 Average

16 102 144 143 153 149 98 121 108 95 130 124.3

32 136 152 128 170 139 149 146 147 182 200 154.9

64 200 201 204 209 203 225 218 214 220 212 210.6

128 321 328 312 320 307 316 334 339 343 339 325.9

OS: Browser

Knockout

Mac OS X Safari

Amount of
products 1 2 3 4 5 6 7 8 9 10 Average

16 90 82 192 169 155 95 177 166 87 166 137.9

32 229 225 122 197 140 134 181 199 213 127 176.7

64 296 296 208 293 299 300 289 309 259 277 282.6

128 468 439 459 446 469 450 456 439 462 440 452.8

METRICS FROM TEST CASE 1 RENDERING PERFORMANCE TESTING APPENDIX 1/4

OS: Browser

React

Mac OS X Safari

Amount of
products 1 2 3 4 5 6 7 8 9 10 Average

16 50 50 54 49 49 49 57 57 49 48 51.2

32 63 62 62 62 64 60 58 77 59 63 63

64 84 88 113 82 83 81 82 83 100 88 88.4

128 131 135 129 133 129 132 120 132 129 156 132.6

METRICS FROM TEST CASE 2 RENDERING PERFORMANCE TESTING APPENDIX 2/1

OS: Browser

Knockout

Win10 Chrome 71

Amount of
products 1 2 3 4 5 6 7 8 9 10 Average

16 112 99 101 95 101 103 96 93 101 96 99.7

32 136 136 146 134 136 139 137 141 134 132 137.1

64 239 246 235 229 223 245 225 234 222 234 233.2

128 447 457 475 442 451 445 420 451 457 469 451.4

OS: Browser

React

Win 10 Chrome 71

Amount of
products 1 2 3 4 5 6 7 8 9 10 Average

16 41 35 39 35 37 35 36 36 36 37 36.7

32 54 54 57 56 51 53 57 55 52 62 55.1

64 76 85 81 86 78 83 77 84 69 86 80.5

128 102 108 105 88 100 103 86 97 82 105 97.6

OS: Browser

Knockout

Win10
Internet
Explorer

Amount of
products 1 2 3 4 5 6 7 8 9 10 Average

16 274 280 284 278 277 280 284 287 298 278 282

32 476 474 491 472 476 464 464 470 464 472 472.3

64 946 1017 890 933 957 875 880 956 878 879 921.1

128 1736 1770 1812 1746 1739 1749 1809 1779 1822 1785 1774.7

METRICS FROM TEST CASE 2 RENDERING PERFORMANCE TESTING APPENDIX 2/2

OS: Browser

React

Win10
Internet
Explorer

Amount of
products 1 2 3 4 5 6 7 8 9 10 Average

16 69 49 69 73 70 47 49 47 48 49 57

32 92 92 76 93 68 72 73 69 70 100 80.5

64 119 178 118 120 117 115 118 135 135 118 127.3

128 286 205 215 212 207 208 247 286 295 282 244.3

OS: Browser

Knockout

Win10 Firefox

Amount of
products 1 2 3 4 5 6 7 8 9 10 Average

16 189 175 175 174 180 172 150 170 168 170 172.3

32 213 269 213 212 288 225 216 215 214 224 228.9

64 342 332 420 411 339 424 343 416 350 419 379.6

128 682 669 579 560 684 600 669 578 573 575 616.9

OS: Browser

React

Win10 Firefox

Amount of
products 1 2 3 4 5 6 7 8 9 10 Average

16 66 68 69 69 59 68 59 70 75 69 67.2

32 87 74 66 74 91 77 90 84 68 81 79.2

64 98 115 124 116 114 93 129 92 119 120 112

128 169 162 176 160 164 173 172 152 120 163 161.1

METRICS FROM TEST CASE 2 RENDERING PERFORMANCE TESTING APPENDIX 2/3

OS: Browser

Knockout

Win10 Edge

Amount of
products 1 2 3 4 5 6 7 8 9 10 Average

16 205 199 195 195 193 197 198 196 189 189 195.6

32 301 354 297 310 317 311 300 301 301 304 309.6

64 507 536 547 546 523 525 523 540 523 534 530.4

128 1074 1095 1102 1070 1106 1137 1102 1060 1066 1088 1090

OS: Browser

React

Win10 Edge

Amount of
products 1 2 3 4 5 6 7 8 9 10 Average

16 47 45 49 45 64 69 76 72 60 61 58.8

32 84 78 91 61 79 65 87 75 62 73 75.5

64 95 95 98 90 93 111 93 103 93 105 97.6

128 148 149 146 151 147 150 153 154 146 147 149.1

OS: Browser

Knockout

Mac OS X Safari

Amount of
products 1 2 3 4 5 6 7 8 9 10 Average

16 119 397 128 125 115 133 124 126 116 117 150

32 169 181 185 173 165 191 170 164 178 171 174.7

64 282 277 285 285 286 288 297 288 274 251 281.3

128 484 494 501 495 493 538 500 495 480 486 496.6

METRICS FROM TEST CASE 2 RENDERING PERFORMANCE TESTING APPENDIX 2/4

OS: Browser

React

Mac OS X Safari

Amount of
products 1 2 3 4 5 6 7 8 9 10 Average

16 22 20 21 25 30 21 18 21 20 23 22.1

32 30 30 76 27 27 31 27 29 34 29 34

64 40 44 41 43 42 35 46 44 41 45 42.1

128 76 77 75 75 70 77 70 72 102 65 75.9

