Raskaan kaluston paineilmajarrujärjestelmät
Tiivistelmä

Tässä opinnäytetyössä oli tarkoitus tutustua raskaan kaluston paineilma- ja jarrujärjestelmiin ja koota saatu tieto yhteen paikkaan niin, että se on helposti saatavissa ja tiiviissä muodossa. Työssä tarkasteltiin jarrujärjestelmiä, missä jarruvaikutus ja sen säätäminen saadaan aikaiseksi paineilman avulla. Opinnäytetyössä on runsaasti kuvia havainnollistamassa erilaisia rakenteita ja niiden toimintaa.

Opinnäytetyö laadittiin niin, että sitä voidaan käyttää oppimateriaalina. Siksi opinnäytetyö laadittiin loogiseen ja informatiiviseen muotoon, mikä tukee ja on osa hyvää opetuskokonaisuutta. Opiskelijat voivat sisäistää oppimaansa tehokkaasti kertaamalla materiaalista tunneilla läpikäydyt asiat. Lisäksi opinnäytetyö tehtiin sähköiseen muotoon, joten sitä on helppo muokata tulevaisuudessa.

Opinnäytetyön loppuun kerättiin Suomen lainsäädännön vaatimusten muuttuminen ajan kulussa raskaan kaluston paineilma-jarrujärjestelmien osalta.

Avainsanat: raskas kalusto, paineilmajarrut, paineilma, jarrut, jarrujärjestelmät
Abstract

The purpose in this thesis was to access heavy-duty road vehicles air brake systems and collect data to one place so that it is easily accessible and concise form. The thesis examined the braking systems, where the braking effect and the adjustment to be achieved with compressed air. The thesis has a lot of pictures. Pictures demonstrate different types systems and components and visualize how they work.

The thesis was made so that it can be used as a teaching resource. Therefore, thesis was made a logical and informative form, which supports and is part of good teaching material. Students can internalize what they have learned effectively by recounting the material. Thesis was made into an electronic format, so it is easy to customize in the future.

In the thesis was collected from the Finnish legislation the requirements change over time in heavy-duty vehicles compressed air brake systems.

Keywords

compressed air, brake, system, heavy-duty road vehicle
Esipuhe

Työn perusteena on ollut tekijän kiinnostus raskaan kaluston jarrujärjestelmiin ja tiedon hyödyntäminen tulevaisuudessa ammatinvalinnassa. Lisäksi toivon, että työlläni olisi oppimateriaalin ominaisuuudessa lisäävää auto- ja kuljetustekniikan ammattikorkeakoululuopiskelijoita ajatellen.

Haluan kiittää työn valmiiksi saattamisesta työn ohjaajaa tekniikan lisensiaatti Tauno Kulojärveä. Haluan myös kiittää perhettäni ja ystäviäni tuesta.

Tampereella 6/2010
Toni Vuorinen
Sisällysluettelo

<table>
<thead>
<tr>
<th>Tiivistelmä</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>3</td>
</tr>
<tr>
<td>Esipuhe</td>
<td>4</td>
</tr>
<tr>
<td>1 Johdanto</td>
<td>7</td>
</tr>
<tr>
<td>2 Raskaan kaluston paineilmajärjestelmien vaatimukset</td>
<td>8</td>
</tr>
<tr>
<td>3 Paineilmajärjestelmät</td>
<td>10</td>
</tr>
<tr>
<td>3.1 Paineilman tuotto</td>
<td>11</td>
</tr>
<tr>
<td>3.2 Paineensäätö</td>
<td>12</td>
</tr>
<tr>
<td>3.3 Paineilman käsittely</td>
<td>12</td>
</tr>
<tr>
<td>3.4 Paineilman siirto</td>
<td>14</td>
</tr>
<tr>
<td>3.5 Äänenvaimennus</td>
<td>15</td>
</tr>
<tr>
<td>3.6 Jarrusylinteri</td>
<td>15</td>
</tr>
<tr>
<td>4 Jarrulaitteet</td>
<td>17</td>
</tr>
<tr>
<td>4.1 Rumpujarrut</td>
<td>17</td>
</tr>
<tr>
<td>4.2 Levyjarrut</td>
<td>18</td>
</tr>
<tr>
<td>4.3 Automaattinen säätö</td>
<td>20</td>
</tr>
<tr>
<td>4.4 Seisontajarru</td>
<td>21</td>
</tr>
<tr>
<td>4.5 Apujarrut</td>
<td>23</td>
</tr>
<tr>
<td>4.5.1 Moottorijarrujärjestelmän</td>
<td>24</td>
</tr>
<tr>
<td>4.5.2 Voimansiirtoon kytkettävät hidastimet</td>
<td>27</td>
</tr>
<tr>
<td>5 Paineilmatoimiset perävaunujarrut</td>
<td>29</td>
</tr>
<tr>
<td>6 Kuormantunteva venttiili</td>
<td>30</td>
</tr>
<tr>
<td>7 ABS - lukkiutumattomat jarrut</td>
<td>31</td>
</tr>
<tr>
<td>8 Sähköisesti ohjattu jarrujärjestelmän</td>
<td>37</td>
</tr>
<tr>
<td>8.1 EBS-järjestelmän komponentit</td>
<td>40</td>
</tr>
<tr>
<td>8.1.1 Sähköinen ohjauslaite</td>
<td>40</td>
</tr>
<tr>
<td>8.1.2 Jalkajarrumoduuli</td>
<td>40</td>
</tr>
<tr>
<td>8.1.3 Paineensääätömoduuli</td>
<td>41</td>
</tr>
<tr>
<td>8.1.4 Perävaunun ohjausmoduuli</td>
<td>41</td>
</tr>
<tr>
<td>8.2 Jarrupalojen kuluneisuus ja niiden hallinta</td>
<td>41</td>
</tr>
<tr>
<td>9 Jarrujen mittaus</td>
<td>42</td>
</tr>
<tr>
<td>9.1 Vierintävästus</td>
<td>43</td>
</tr>
</tbody>
</table>
9.2 Viivetestit

<table>
<thead>
<tr>
<th>Lähteet</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liitteet</td>
<td>46</td>
</tr>
<tr>
<td>9.5 Liite 1: Raskaan kaluston jarrumääräysien voimaantuloajat</td>
<td>46</td>
</tr>
<tr>
<td>9.5.1 Käyttöjarru</td>
<td>46</td>
</tr>
<tr>
<td>9.5.2 Seisontajarru</td>
<td>50</td>
</tr>
<tr>
<td>9.5.3 Muut jarrut</td>
<td>52</td>
</tr>
</tbody>
</table>
1 Johdanto

Tässä opinnäytetyössä on tarkoitus tutkia ja tarkastella raskaassa kalustossa käytössä olevia paineilmalla toimivia jarrujärjestelmiä. Työhön on tarkoitus ottaa mukaan myös erilaiset jarrulaitteet, sähköisesti ohjatut jarrujärjestelmät sekä kertoa miten jarrujen toiminta todetaan mittauksen avulla.

Opinnäytetyön tavoitteena on laatia se niin, että sitä voidaan käyttää oppimateriaalina. Siksi opinnäytetyö pyritään laatimaan loogiseen ja informatiiviseen muotoon, mikä tukee ja on osa hyvää opetuskokonaisuutta.

Tässä opinnäytetyössä ei käsitellä alipainetehostettuja, paineilmatehostettuja tai paineilmakäyttöisiä nestejarrujärjestelmiä.
2 Raskaan kaluston paineilmajarrujärjestelmien vaatimukset

<table>
<thead>
<tr>
<th>Ajoneuvoluokka (luokitus s. 791)</th>
<th>H-auto ja I-auto</th>
<th>M₁</th>
<th>M₂</th>
<th>M₃</th>
<th>N₁</th>
<th>N₂</th>
<th>N₃</th>
<th>K-auto</th>
<th>Perävaunut</th>
</tr>
</thead>
<tbody>
<tr>
<td>Käyttöjarrut</td>
<td>Vaikuttaa kaikkiin pyörin, jarruvoimien joko akselien kesken määrätty</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>ABS EU-dir. tai ECE1 muk.</td>
<td>((v_{\text{max}} \geq 25 \text{ km/h}))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>O-typin koe (vapaalla)</td>
<td>Koenopeus km/h</td>
<td>80</td>
<td>60</td>
<td>60</td>
<td>80</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>Jarrutusmatka m</td>
<td>≤</td>
<td>50,7</td>
<td>36,7</td>
<td>50,7</td>
<td>36,7</td>
<td>61,2</td>
<td>36,7</td>
<td>61,2</td>
</tr>
<tr>
<td></td>
<td>Jarrutusmatkakaava</td>
<td>0,1 (u^2)</td>
<td>+150</td>
<td>0,15 (u^2)</td>
<td>+130</td>
<td>0,15 (u^2)</td>
<td>+130</td>
<td>0,15 (u^2)</td>
<td>+130</td>
</tr>
<tr>
<td></td>
<td>Keskim. max. hidastuvuus m/s²</td>
<td>≥</td>
<td>5,8</td>
<td>5,0</td>
<td>5,0</td>
<td>5,0</td>
<td>5,0</td>
<td>5,0</td>
<td>5,0</td>
</tr>
<tr>
<td></td>
<td>Poljivoinna N</td>
<td>≤</td>
<td>500</td>
<td>700</td>
<td>500</td>
<td>700</td>
<td>500</td>
<td>700</td>
<td>500</td>
</tr>
</tbody>
</table>

Kuvio 1. Ajoneuvojen jarruille asetetut vaatimukset StVZO, EU-ohjeen 71/320 EEC ja ECE-säännön 13 mukaan /1/
Kuvio 2. Ajoneuvojen jarruille asetetut vaatimukset StVZO, EU-ohjeen 71/320 EEC ja ECE-säännön 13 mukaan /1/
3 Paineilmajärjestelmät

Paineilmajarrulla tarkoitetaan jarrujärjestelmää, jossa jarruvaihtos aikaansaadaan ja sitä säädetään paineilman avulla. Kuviossa 3 on esitetty tällaisen järjestelmän periaatekuva.

Kuvio 3. Kuorma-auton kaksipiirinen paineilmajarrujärjestelmä.

Järjestelmän pääosat ja niiden toiminnat ovat:

1. **Kompessori** on jarrujärjestelmään vaadittavan paineen tuottava laite
2. **Paineensäädin** säätlee jarrujärjestelmän painetta ohjaamalla kompressoria
3. **Ilmankuivain** poistaa kondenssiveden kompressorin tuottamasta paineilmalta
4. **Regenerointisäiliö** luovuttaa ilmankuivaimen regeneroimiseen tarvittavan kuivan ilman
5. **Nelipiirisuojaventtiili** varmistaa muiden piirien painetason, jos yksi tai useampi muu piiri vaurioituu
6. **Paineilmasäiliö** on jarrujärjestelmän energiavarasto
7. **Seisontajarruventtiili** vapauttaa käytettäessä jousijarrusylinterin jarrutusjousta kokoon puristavan paineen
8. **Seisontajarrun suojaventtiili** estää käsijarrun tahattoman vapautumisen järjestelmän painesäiliöiden täyttämisen aikana

9. **Poljinventtiili** on käyttöjarrun hallintalaite

10. **Jarrusylinteri (etu-)**

11. **Jarruvaimansäädin (ALB) eli kuormantunteva venttiili**

12. **Jarrusylinteri (taka-)** sekä **jousijarrusylinteri (seisontajarru)**

3.1 Paineilman tuotto

![Kuvio 4](image-url)
**Kuvio 4. Möntäkompressorin poikkileikkaus, missä: 1) sylinterikansi 2) ilman sisääntulo 3) välilevy (imu- ja poistoventtiili) 4) sylinteri 5) möntä 6) kiertokanki 7) kampikammio 8) kampiakseli 9) paineistettu ilma paineilmajärjestelmään /1/
3.2 Paineensäätö

Paineensäätöventtiili huolehtii järjestelmään menevän ilmanpaineen pysymisestä oikeana. Venttiili säätää järjestelmässä olevan paineen avulla kompressorin tuottamaa painetta, jotta kompressor ei tuottaisi järjestelmään liikaa painetta ja näin hukkaisi energiaa. /1/

Paineensäädin avaa kompressorin imuventtiilin erityisen työmaan avulla, kun järjestelmän paine on noussut säädetyn suuruiseksi. Ilma kulkee sen jälkeen edestakaisin kompressorin imukanavassa. Kun paineilmasäiliön paine laskee säätimen alempaan raja-arvoon, palautuu kompressorin imuventtiili normaaliasentoon ja kompressori voi taas tuottaa paineistettua ilmaa säiliöihin. /1/

Raskaassa kalustossa käytetään nykyään järjestelmässä painetta, joka on välillä 7–10 baaria. On olemassa myös järjestelmiä jotka käyttävät paineena 14–20 baaria ja joita kutsutaan korkeapainejärjestelmiksi. Perävaunujen kaksijohtojärjestelmissä on painetta 6–8 baaria. /1/

3.3 Paineilman käsittely

Ennen kuin paineilma päästetään putkistoon ja paineilmasäiliöihin, siitä täytyy poistaa epäpuhtaudet. Tämän takia järjestelmässä on suodatin ja ilmankuivain, jolla saadaan vesi ja epäpuhtaudet pois paineistetusta ilmasta ja estetään eri komponenttien jäätyminen pakkasella.

Ilmankuivain toimii niin, että kun tuuletusventtiili on kiinni, virtaa kompressorilta tuleva ”märkä” ilma kuivusainekammioon ja sieltä edelleen paineilmasäiliölle. Kostean paineilman virratessa kuivusaineen läpi tiivistyy kosteus kuivusaineeseen. Kuviossa 5 on esitetty ilmankuivaimen toimintaperiaate. /1/
3.4 Paineilman siirto

Paineilmansiirron komponenttien tehtävänä on siirtää paineilma paikkaan, missä sitä käytetään, ja varastoida sitä käyttöä varten. Tärkeimpinä komponentteina ovat paineilmasäiliöt ja paineilmaletkut. Paineilmasäiliön tehtävänä on täyttää kaikkien piirien vaatima paineilmatilavuus tapauksessa, jossa kompressorin tuotto loppuu. Tätä varten paineilmasäiliöille on asetettu tiukat rajat niiden ylipaineen kestolle ja ruosteenestolle.
3.5 Äänenvaimennus

Kuvio 7. Paineilman poistokanavaan liitettävä äänenvaimennin

3.6 Jarrusylinteri

Jarrusylinterin toiminta on esitetty seuraavissa kuvioissa. Kuviossa 8 on jarrusylinteri paineeton ja jarrut ovat pois päältä. Kuviossa 9 on jarrusylinteriin ohjattu paine ja jarrut ovat päällä.

Kuvio 8. Jarrusylinteri paineottomana ja välyksensäädin /2/

Kuvio 9. Jarrusylinteriin ohjattu paine ja jarrut päällä /2/
4 Jarrulaitteet

4.1 Rumpujarrut

Rumpurakenteeseen pyöräjarruun kuuluvat jarrurumpu, jarrurummun sisätilan suojaaava jarrukilpi, jarrukengät, kitkapalat, jarrukenkien levitysmekanismi ja jarrusylinterin avulla levitysmekanismin käyttävät automaattisesti säätövät tai käsissäätöiset jarruvivut. Jarrutettaessa jarrukenkä puristetaan jarrurumpuun, jolloin saadaan aikaan tarvittava kitka, joka muuttaa liike-energian lämpöenergiaksi. Jarrukenkä voi olla joko tehostettu tai tehostamaton, riippuen jarrurummun ja -hihnän välisistä kitkavoimien momenttivaikutuksesta.

Erilaisia rumpujarruja on muun muassa Simplex-, Duo-Duplex- ja Duo-Servo rumpujarrut. Näistä yleisemmin käytössä on Simplex-rumpujarru, jotka jakautuvat muutamaan erilaiseen toteutukseen, joissa on eroja kiristyksen (kiinteä ja uiva) ja kenkien tuennan (nivelkenkä ja liukukenkä).

Nykyään käytetään enimmäkseen Simplex-S-nokkarumpujarrua, jossa S-kirjaimen muotoista nokkaa käännetään, jolloin saadaan jarruhihnat työntymään jarrurumpua vasten. Simplex-jarrun sisäinen välistysuhde (C) saadaan etu- ja takakenkien erillisarvojen summana, jolloin se on noin 2 kitkakertoimen ollessa noin 0,38. Kuviossa 10 on esitetty eri Simplex-rumpujarrujen välistyssuhteita.

![Simplex-rumpujarrut](image)

Kuvio 10. Simplex-rumpujarrujen välistyssuhteet /1/
Simplex-rumpujarrun etuja ovat jarrupalojen yhtä suuri kuluminen, yksinkertainen, luotettava ja lämpötiloille tunteeton kiritysmekanismi. Hyvinä puolina voidaan pitää myös sitä, että sisäinen välyssuhde ei vaihde paljoa ja rumpujarruissa on tarkka välyksensääto automaattisella säätövivulla. Simplex-rumpujarrun haittoja ovat puolestaan suuret sisäiset voimat ja siitä seuraava raska rakenne ja suuri kiristysvoiman tarve pienen sisäisien välyssuhteen takia.

Kuva 11. Simplex-S-nokka rumpujarru /2/

4.2 Levyjarrut

Levyjarrun käyttö on yleistynyt ja ne ovat vakiinnuttaneet asemansa uusissa raskaissa ajoneuvoissa. Niiden hyvinä puolina ovat jarrutusvoiman parempi säädettävyys, suhteellisen vakio sisäinen välyssuhde, vähäisempi häipymistaipumus ja jarrupalojen yhtä suuri kuluminen, mikäli jarrujen mitoitus on oikea lämpökuormitusten kannalta. Levyjarrujen huonoihin puoliin kuuluvat korkeamat hankinta- ja huoltokustannukset rumpujarruihin verrattuna ja kitkapintojen lyhyempi kestoikä. Levyjarrut ovat myös arempia lialle, joten esimerkiksi maansiirtoajoneuvoissa käytetään edelleen rumpujarruja. /1/
Aikaisemmin käytettiin kiinteäsatulaista levyjarrua, mutta liukusatulatyypit levyjarrut ovat syrjäyttäneet ne, koska liukusatulatyypit levyjarrut ovat rakenteeltaan kevyempiä, halvempia ja kestävät paremmin lämpökuormitusta. Liukusatula jää myös momenttivapaaksi, joka parantaa jarrutusvoiman tasaisuutta ja säädettävyyttä.

Levyjarrun sisäinen välitys suhde on sama kuin kitkakerroin kertaa kaksi. \[C = 2 \cdot \mu \]
Kitkakertoimen ollessa 0,38 sisäinen välityssuhde on \[C = 0,76. \]

Voima joka välittyy jarrusylinterin kumipalkeelta jarrupaloiille, suuruus on \[F = \frac{b}{a}. \]

Kuvio 12. Levyjarrun toimintaperiaate /3/
4.3 Automaattinen säätö

Kitkapintojen kuluminen suurentaa kitkapinnan ja jarrurummun välistä etäisyyttä, minkä takia jarrukenkien siirtomatka kasvaa. Jos lepoetäisyyttä ei säädetä sopivaksi, tulee jarrumännän liike liian pitkäksi, jolloin se ei pysty enää aikaansaamaan vaadittavaa jarruvaikutusta. Pyöräjarruissa on olemassa erilaisia säätimiä tämän ongelman ratkaisemiseksi.

Välyksensäätimellä tehdään tarvittava säätö automaattisesti. Välyksensäätimessä oleva kierretanko pyörähtää aina seuraavaan loveen, kun välys on kasvanut tarpeeksi suureksi. Automaattista välyksensäädintä voidaan säätää myös manuaalisesti niissä tilanteissa, missä automaattisäätö liian tai muun vastaavan takia jumittuu.

Kuvio 13. Automaattinen välyksensäädin /2/
Jarrutuksessa kalvosylinterin ja jarrumännän liike voidaan jakaa kolmeen osaan:

- rakenteellinen kitkapinnan ja jarrurummun/-levyn välinen ilmaväli
- kitkapintojen kulumisesta aiheutuva ilmavälin kasvaminen
- osien joustamisesta aiheutuva joustovälys, näitä ovat muun muassa:
 - jarrurumpu tai -levy
 - jarruhihnat tai -palat
 - jarrusylinterin ja pyöräjarrun väliset voimaa siirtävät osat.

![Diagram](image.png)

Kuvio 14. Jarruissa esiintyvät välykset. a) osien jousto b) kuluminen c) rakenteellinen välys 1) jarrukenkä 2) kalvosylinteri 3) automaattisäätiöinen jarruvipu /1/

4.4 Seisontajarru

Raskaissa ajoneuvoissa käytetään tavallisesti seisontajarruna jousijarrua. Näin sama jarru toimii sekä seisontajarruna että varajarruna. Paineilmalla toimivassa järjestelmässä käytetään sylintereitä, joissa kalvosylinteri ja jousijarrusylinteri ovat samassa jarrusylinterissä.

Ajon aikana eli silloin, kun seisontajarru ei ole käytössä, pitää jousijarrusylinteriin yhdistetty säiliöpaine jousen kokoonpuristettuna. Jos säiliöstä katoaa paine, kytkeytyy jousijarru päälle ja estää ajoneuvon liikkumisen. Jarruissa on oltava myös jousijarrun
toiminnan osoittavat varoituslaitteet (painemittari ja varoitusvalo/-ääni) sekä hätäirrotusmahdollisuus esimerkiksi hinausta varten (kuva 18).

Seisontajarru vaikuttaa akseleihin, joilla on jousijarrusylinterit. Seisontajarruventtiiliillä ohjataan seisontajarrun releventtiiliä, joka vapauttaa paineen jousijarrusylintereistä ja aiheuttaa jarrun kytkeytymisen. Seisontajarrupiirissä on lisäksi suojaventtiili, joka estää tyhjän järjestelmän täyttyessä seisontajarrun tahattoman vapautumisen. Seisontajarru toimii myös järjestelmän varajarruna.

Seuraavissa kuvoissa 15, 16 ja 17 on esitetty seisontajarrun toiminta yhdessä käyttöjarrun kanssa. Kuviossa 18 on esitetty tilanne, joka on estetty voimien liian suureksi kasvamisen takia. Tilanne estetään ohjaamalla jousijarrusylinterin kumipalkeen vasemmalle puolelle painetta aina, kun käyttöjarrua käytetään.

Kuvio 15. Jarrusylinteri, käyttöjarru ja seisontajarru pois päältä /2/

Kuvio 16. Jarrusylinteri, käyttöjarru päällä ja seisontajarru pois päältä /2/
Kuvio 17. Jarrusylinteri, mistä seisonta-/hätäjarru vapautettu mekaanisesti /2/

Kuvio 18. Jarrusylinteri, missä käyttöjarru ja seisontajarru päällä. Tilanne ei mahdollinen normaali tilanteessa /2/

4.5 Apujarrut

Koska ajoneuvoa ei voida hidastaa pitkäaikaisesti ja yhtäjaksoisesti pyöräjarruilla niiden häipymisilmön takia, asennetaan ajoneuvoihin pitkäaikaiseen jarrutukseen soveltua, pyöräjarruista riippumaton ja kulumaton apujarru eli hidastin. Tällaisia hidastimia asennetaan esimerkiksi ajoneuvoihin, jotka ajavat vuoristoisissa ja mäkisissä olosuhteissa. Nykyään voidaan hidastimia käyttää myös normaalien jarrun korvikkeena hitaissa jarrutuksissa ja näin säästää varsinaisia pyöräjarruja.Tämä lisää myös turvallisuutta ja
taloudellisuutta, koska pyöräjarruja joudutaan kuormittamaan huomattavasti vähemmän ja sen seurauskena jarruhihnat tai -palat kuluvat vähemmän.

Hidastimia on kahta eri päätyyppiä: moottorijarrutukseen perustuvia ja voimansiirron yhteyteen tulevia hidastimia.

4.5.1 Moottorijarrujärjestelmä

Kuvio 20. Pakokaasujarru vakiokuristimella 1) paineilma 2) pakokaasuläppä 3) pakoputki 4) vakiokuristin 5) imusarja 6) mäntä (puristusvaiheessa) /1/

Kuviossa 21 on esitetty suhteellisen moottorin pyörintänopeuden suhteen suhteellinen jarrutusteho käytettäessä pakokaasuläpällä varustettua moottorijarrua, vakiokuristimella varustettua moottorijarrua ja näiden molempien yhdistelmää.
Kuvio 21. Jarrustehon kuvaajat 1) pakokaasuläppä ja vakiokuristin 2) vakiokuristin 3) pakokaasuläppä /1/

4.5.2 Voimansiirtoon kytkettävät hidastimet

Voimansiirtoon kytkettävä hidastin voi olla ennen vaihteistoa (ensiohidastin) tai vaihteiston jälkeen (toisiohidastin). Ensiöhidastimia käytetään vain sellaisissa vaihteistoissa, joissa veto ei keskeydy vaihtamisen ajaksi (automaattivaihteisto). Muutoin jarrutus loppuisi vaihtamisen ajaksi. Ensiöhidastimen asennus ennen vaihteistoa on myös etu jyrkissä alamäissä, joissa käytetään pientä nopeutta. Voimansiirtoon kytkettäviä hidastimia on sekä nesteeseen perustuvia että sähköön perustuvia.

Hydrodynaamisen hidastimen toimintaperiaate on sama kuin nestekytkimellä, jossa roottori muuttaa mekaanisen energian nesteen liike-energiaksi. Tämän jälkeen liike-energia muutetaan staattorissa lämpöenergiaksi, joka johdetaan pois järjestelmästä jäähdyyksen avulla.
Kuvio 22. Hidastin 1) sähköliitin 2) paineilmaliitin 3) proportionaaliventtiili 4) nestekytkin 5) nivelakselin laippa 6) pääakseli 7) välityspyörä 8) vaihteisto /1/

Sähködynaamisessa hidastimessa, eli pyörrevirtahidastimessa, jarrutusta varten johdetaan magnetointikeloille virta akusta tai laturista, jolloin syntyy magneettinen kenttä. Kun roottori pyörii tämän kentän läpi, siihen indusoituu pyörrevirtoja. Ne aiheuttavat jarrumomentin, jonka suuruus riippuu staattorikelojen herätevirran suuruudesta ja roottorin ja staattorin välisestä ilmavälistä.
Kuvio 23. Sähködynaaminen hidastin 1) kiinnityslaippa 2) vaihteiston puoleinen roottori 3) välilevyt (ilmavälin säätö) 4) staattori keloinen 5) välilaippa 6) taka-akselin puoleinen roottori 7) vaihteiston kansi 8) vaihteiston akseli 9) ilmaväli /1/

5 Paineilmatoimiset perävaunujarrut

Kuviossa 24 on kolmiakselisen varsinaisen perävaunun paineilmajarrujärjestelmä. Perävaunun jarrujen ohjaukseen ja energiantuottoon käytetään kaksijohtojärjestelmää. Syöttöjohdossa (1) on aina paine, joka siirtää paineilmaa perävaunun jarrujärjestelmän säiliöihin. Ohjausjohdossa (2) on paine jarrutettaessa. Jarruventtiilin (3) tehtävä on jarruttaa perävaunua vetoautosta tulevan ohjausjohdon paineen perusteella.

Sekä edessä että takana on omat ALB-säätimet (5) ja (6), jotka vähentävät jarruventtiililtä tulevaa painetta perävaunun kuormituksen mukaan. ALB-säätimen yhteyteen rakennetut releventtiilit huolehtivat jarrusylinterien (7) ja (8) jarrupaineen syöttämisestä ja poistamisesta.

6 Kuormantunteva venttiili

Jarruvoiman säätölaitteena käytetään kuormituksen tuntevaa jarruvoimansäädintä (ALB). ALB-säätimen tehtäväna on muun muassa muuttaa jarruvoimanjakaa ajoneuvon kuormituksilla ja siten estää pyöräen ennenaikainen lukkiutuminen. ALB-säädin alentaa poljinventtiililtä tulevaa ohjauspainetta ajoneuvon kuormituksen mukaan (kuviol 25). Säätimen ohjaussuure saadaan lehtijousilla varustetuissa ajoneuvoissa vivuston välyksellä jousien painumasta ja ilmajousilla varustetuissa autoissa jousipalkeen paineesta.

ALB-säädin on pakollinen kuorma-auton taka-akselilla ja perävaunun akseleilla, jos kuormattujen ja kuormaamattomien kokonaismassojen suhde ylittää viisi kolmasosaa lukuun ottamatta lukkiutumattomalla jarrujärjestelmällä varustettuja ajoneuvoja.
Kuvio 25. Kuormantuntevalta venttiililtä lähtevän paineen riippuvuus ohjauspaineesta sekä ajoneuvon kuormituksesta. /4/

Vetoautossa ALB-säädin asennetaan takajarrupiiriin. Paineilmajarrujärjestelmässä etupiirin asennettu suhdeventtiili saa ohjauksen takajarrupiirin ALB-säätimeltä, jolloin myös etujarrupiirin jarrupainetta pienennetään kuormituksen keventyessä.

7 ABS - lukkiutumattomat jarrut

Lukkiutumattoman jarrujärjestelmän (Antiblockiersystem) tehtävänä on estää pyörien lukkiutuminen vähentämällä jarrupainetta silloin, kun pyörät alkavat lukkiutua. Tällöin ajoneuvon suuntavakavuus ja ohjattavuus säilyy myös täysjarrutuksessa liukkaalla ajoradalla. Erityisesti ajoneuvojohdistelmissä lukkiutumaton jarrujärjestelmä estää
perävaunun linkkuun menon. Suomessa muun muassa linja-autot ja sääliöajoneuvot on ollut pakko varustaa lukkiutumatomalla jarrujärjestelmällä 1.10.1991 alkaen.

Raskaan kaluston ABS-järjestelmään kuuluvat pyörimisnopeusanturit pyörissä (kuvio 26 ja 27), sähköinen ohjainlaitte ja jarrupaineen ohjausventtiilit. Järjestelmä ohjaa jokaisen jarrusylinterin painetta lisäten, vakiota pitäen tai vähentäen. /1/

Kuvio 26. Moninapaisen pulssilähettimen räjäytyskuva 1) pyörän napa 2) kuulalaakeri 3) moninaparengas 4) pyörintänopeusanturi /5/
Kuvio 27. Aktiivisen pyörintänopeusanturin leikkauskuva 1) anturielementti 2) moninaparengas, jossa magneettinen pohjois- ja etelänapa vuorottelee /5/

Kuviossa 28 on esitetty jarrutuskitkakerroin ja sivuvoiman kitkakerroin jarrutusluiston funktiona. ABS-järjestelmän tehtävänä on säättää jarrupaineet siten, että pyörien luisto on kitkakertoimen kannalta optimialueella noin 20 %:ssa.

Kuvio 28. Jarrutuskitkakerroin ja sivuvoiman kitkakerroin jarrutusluiston funktiona. /1/
Kuviossa 29 on esitetty jarrujen säätötapahtumaa pidon ollessa hyvä, ja kuviossa 30 on esitetty jarrujen säätö pidon ollessa huono, missä

\[v_F = \text{ajoneuvon nopeus} \]
\[v_{\text{Ref}} = \text{vertailunopeus} \]
\[v_R = \text{pyörän kehän nopeus} \]
\[\lambda_1 = \text{luiston raja-arvo} \]

kytkentäsignaalit:

+\(A \), +\(a \) pyörän kehäkihtyvyyden kytkentäpisteet
-a pyörän kehähidastuvuuden kytkentäpiste
-\(\Delta \rho_{ab} \) jarrupaineen vähennys

Kuvio 29. Jarrujen säätö pidon ollessa hyvä /5/
Kuvio 30. Jarrujen säättö pidon ollessa huono /5/

Akselikohtaisten jarrupaineiden säätötapa voi olla yksilöllinen (molemmilla pyörillä oma paineensäättöventtiili ja jarrupaine), valikoiva säättö (akselilla yksi paineensäättöventtiili ja molemmilla pyörillä sama jarrupaine) tai sopeutettu yksilöllinen.

Lyhin jarrutusmatka saadaan yksilöllisellä säädöllä, jossa jokaiselle pyörälle säädetään erikseen optimaalinen jarrutuspaine. Kun kitka on toisella puolella hyvä ja toisella puolella huono (esimerkiksi asfaltti ja jää), syntyy jarruttaessa suuri kiertomomentti auton pystyakselin suhteen. Tämä vaikeuttaa erityisesti lyhytakselisten ajoneuvojen hallittavuutta. Lisäksi syntyy suuria momentteja ohjauspyörälle. /1/

tilanne kitkan suhteen, muodostuvat jarrutusmatka, ohjattavuus ja suuntavakaus yhtä hyviksi kuin yksilöllisellä säädöllä. /1/

Kuvio 31. ABS-säätövaiheet, missä ajoradan toinen puoli on liukas a) yksilöllinen säätö (taka-akseli) b) sopeutettu yksilöllinen säätö (etuakseli) HV/AV sulkuventtiili/poistoventtiili. FZ) ajoneuvo R/L) oikea(vasen pyörä 0,1,2) vaiheet /1/
8 Sähköisesti ohjattu jarrujärjestelmä

Sähköisesti ohjattu jarrujärjestelmä EBS (Electronically controlled Brake system) on paineilmajarrujärjestelmän sähköinen ohjausjärjestelmä. Sen tehtävänä on nopeuttaa ja optimoida jarrutustapahtumaa lyhyemmän jarrutusmatkan, paremman jarrutustasakaiettimen ja tasaisemman jarrujen kulumisen kannalta. Järjestelmässä on varmistuksena paineilmaohjaus, joka on käytössä myös sähköiseen ohjausjärjestelmään toimiessa. /1/

Kuvio 32. Kitkakerroin luiston funktiona jarrutuksessa ja vedossa. /1/

Sähköpneumaattinen jarrutus toimii stabiilin kitkan alueella. Tällöin järjestelmä optimoi
pyörä- tai akselikohtaiset jarrupaineet jarrujen tasaisen kulumisen ja jarruvoimanjan kannalta. Pienillä hidastuvuksilla järjestelmä vain havahduttaa pyöräjarrut ja pyrkii saavuttamaan halutun hidastuvuuden moottorijarrun tai hidastimen avulla.

Hätäjarrutuksen tapauksessa järjestelmä säätää jarrupaineita maksimaalisen stabiilin jarrutuksen aikaan saamiseksi ABS-säätoalueella. Jarrujärjestelmän toiminta määritään jarrutusalgoritmissa, jonka toteutuksessa on ajoneuvokohtaisia eroja.

Kuvio 33. Ajoneuvoyhdistelmän sähköisesti ohjatun jarrujärjestelmän CAN-väylät. /4/

Kuviossa 33 on esitetty ajoneuvoyhdistelmän sähköisesti ohjatun jarrujärjestelmän väylärakenne. Jarrutustapahtumaa ohjaava keskusyksikkö ECU (Engine Control Unit) (4) on yhteydessä painemodulaattoreihin (6), jotka säättävät pyöräkohtaisesti jarrupaineita CAN-väylän avulla. Perävaunun keskusyksikköön (5) vetoauton keskusyksikkö liittyy perävaunun CAN-väylällä, jossa käytetään ISO 11992-standardin mukaista tiedonsiirtoa. Perävaunun keskusyksikkö on yhteydessä perävaunun painemodulaattoreihin omalla CAN-väylällä. Vetoauton keskusyksikkö liittyy muihin elektroniisiin järjestelmiin, kuten moottorin (1), vaihteiston (2) ja hidastimen (3) ohjausjärjestelmiin, ajoneuvon CAN-väylän avulla. /1/

Kuviossa 34 on esitetty kuorma-auton (4x2) EBS-järjestelmä. Paineilman tuotto, varmistus (nelipiirisuojaventtiili) ja varastointi sekä pyöräjarruvarusteet ovat samanlaisia kuin edellä kuvattussa painemodulaattoreihin. EBS-järjestelmä koostuu keskusyksikköstä (ECU), poljinventtiilion anturista sekä painemodulaattoreista. Jarrutettaessa poljinventtiilion anturi (5) lähettää keskusyksikkölle (6) polkinen painamista vastaavan indeksiarvon. Tämän perusteella keskusyksikkö laskee haluttua hidastuvuutta vastaavat painemodulaattoreille lähettettävät indeksiarvot. Etuakselin jarrutuspaineen säätää yksikanavainen painemodulaattori (8), jolloin jarrutuspaine on molemmillä pyöriillä yhtä suuri. Painemodulaattorin jälkeen on ABS-venttiilit (9), joten etuakselin säätötapa on yksilöllinen. Taka-akselin jarrutuspaineen säätää
kaksikanavainen painemodulaattori (7), joten jarrupaineet ovat yksilölliset. Taka-akselin ABS-säätö on toteutettu painemodulaattorissa. Kaikkien jarrutuspaineiden asettamiseen käytetään painemodulaattoreissa takaisinkytkettyä säätöä, jolloin sylinteripaine saavutetaan tarkasti. /1/

Kuvio 34. Kuorma-auton (4x2) sähköisesti ohjattu paineilmajarrujärjestelmä. /1/

saavutetaan jo pienillä jarrutuspaineilla. EBS-järjestelmä valvoo tunnistimien ja
painemodulaattoreiden toimintaa sekä tiedonsiirtoa CAN-väylillä.
Häiriöistä ilmoitetaan kuljettajalle varoitusvaloin. Vikatapauksessa paineilmajarrut
toimivat, mutta täällöin ABS-toiminto ja jarruvoimanjakoa varten tarvittava luiston
mittaus ja kuormituksen tunnistus eivät toimi. /1/

8.1 EBS-järjestelmän komponentit

Tässä luvussa esitellään tärkeimmät komponentit, jotka eroavat paineilmasäätöisestä
paineilmajarrujärjestelmästä. Näitä ovat muun muassa ohjauslaite, jarrupoljin eli
jalkajarrumoduuli, paineensäätömoduuli ja perävaunun ohjausmoduuli.

8.1.1 Sähköinen ohjauslaite

Keskeisin osa EBS-järjestelmää on yksi tai useampi kappale sähköisiä ohjauslaitteita.
Ohjausjärjestelmiä on kahta erilaista tyyppiä. Keskitetyssä ohjausjärjestelmässä yhden
ohjainlaitteen läpi kulkee kaikki tieto ja toiminnot tapahtuvat tämän laitteen
käskyttäminä. Erillisohjatuissa järjestelmissä on useampia ohjainlaitteita, joilla on
kaikilla oma tehtävänsä.

8.1.2 Jalkajarrumoduuli

Jalkajarrumoduulilla on kaksi eri tehtävää järjestelmässä. Ensimmäinen tehtävä on
kertoa järjestelmälle kuljettajan haluama jarruvoima mitaamalla polkimen liikematka ja
siirtää tieto ohjauskeskukseen. Toinen tehtävä on ohjata analogisesti tavanomaisen
(paineilmaohjatun) paineilmajarrujärjestelmän kanssa yhtä tai kahta varmistus-
eli back-up-painetta kuljettajan painaman polkimen liikkeen perusteella.
8.1.3 Paineensäätömoduuli

8.1.4 Perävaunun ohjausmoduuli

8.2 Jarrupalojen kuluneisuus ja niiden hallinta

Kuvio 35. EBS-järjestelmän kulunissäädon toimintalueet 1) ABS:n toimintalue 2) jarrut toimivat hidastusoptimoituna 3) jarrut toimivat kulumisoptimoituna 4) moottorijarrutus 5) luistonesto toiminnassa /1/

9 Jarrujen mitausa

Mittausten päävaiheet ovat seuraavat:

- vierintävastusmitausa
- viivetestit
- ALB -testi
 - paine-ennakot vetoauto ja perävaunu
- jarruvoiman mittaus nousuvalla paineella
- tasaisen paineen mitausa
 - suurin jarruvoima
 - Jarruvoimapoikkeamat.
9.1 Vierintävastus

Kuvio 36. Mitatut kokonaisjarruvoima-jarrutuspainearvoparit mittausajan funktiona. Kuvioon on määritetty vierintävastuksen ja nousevan jarrutuspaineen mittausalue. /6/

9.2 Viivetestit

Jarrujen havahtumispaineet mitataan pyöräkohtaisesti. Havahtumispaine määritetään vertaamalla tasaisesti nousevalla jarrutuspaineella mitattuja kokonaisjarruvoimia B_{di} mitattuun vierintävastukseen F_{rd}. Vertailu suoritetaan alkaen suurimmasta mittauspaineesta P_{max} jossa kokonaisjarruvoima on B_d ja edetään pienemmän paineen suuntaan, kunnes luettu kokonaisjarruvoima on ensimmäisen kerran pienempi kuin vierintävastuksen keskiarvo.
Kuvio 37. Laskennassa käytetään jarruvoima-jarrutuspainearvopareja, jotka ovat havahtumispaineen ja laskentapaineen välisellä nousevan paineen alueella. /6/

9.3 ALB-testi

ALB-venttiilin toiminta tarkastetaan mittamalla nousevalla jarruvalossa jarrusylinterin painetta. ALB-testi tehdään tasaisella alustalla, kevennettävät akselit ylhäällä tai säätöarvokilven edellyttämässä asennossa. Ajoneuvon valmistajan ohjeita pitää noudattaaksi. Mittaus suoritetaan vähintään säätöarvokilpeen merkittyyn tai valmistajan ilmoittamaan painearvoon asti.

9.4 Tasaisen paineen mittaus

Tasaisen jarrutuspaineen mittauksessa mitataan pyöräjarrun suurin keskimääräinen jarruvoima ja jarruvoimien poikkeamat pyöräkohtaisesti (jarrurummun tai -levyn soikeus) ja pyörien keskinäiset poikkeamat akselilla.
Lähteet

4. Leppälä, Hannu & Rahkola, Pekka 2005. Sähköisesti ohjattuilla paineilmajarrujärjestelmillä varustettujen kuorma-autojen ja perävaunujen katsastusvaatimusten määrittäminen. [online] [viitattu 25.5.2010]. http://www.ake.fi/NR/rdonlyres/1CDAEE9F-BDF7-454E-865E-D99D0DA9FD8/0/AKE12005S%C3%A4hk%C3%B6isestiohjattuillapaineilma jarru%C3%A4rjestelmill%C3%A4luvut15.pdf
Liitteet

9.5 Liite 1: Raskaan kaluston jarrumääräyksien voimaantuloajat

Voimaantuloajat on saatu Katsastajan käsikirjasta (AKE, versio 2.0, 22.10.2008). Alla voimaantuloajat on esitetty erikseen käyttöjarrun, seisontajarrun ja muiden jarrujen (esimerkiksi varajarrun) osalta.

9.5.1 Käyttöjarru

01.01.1923 tai sen jälkeen automobiilin varustukseen piti kuulua kaksi helposti ulottuvissa olevaa toisistaan riippumatonta tehokasta jarrua.
A Automobiiliiliikenteestä 237/22

01.06.1955 tai sen jälkeen käyttöön otetussa autossa jarrut kaikissa pyörissä.
KYMp autoasetuksen täytäntöönpanosta 88/55

01.07.1961 tai sen jälkeen käyttöön otetussa
- puoliperävaunussa, jonka akseli- tai telimassa > 7.2 tonnia oltava jarrut.

30.06.1962 tai sen jälkeen käyttöön otetussa
- linja-autossa oltava 2- piirijarrut
- milloin auton kokonaismassa > 7 tonnia, oltava tehostin
KYM 504/60 21.12.1960

01.01.1967 tai sen jälkeen käyttöön otetussa
- milloin perävaunussa on useampia aksseleita, tulee jarruin varustettuja aksleita olla vähintään kaksi.
- jarruin varustettujen akselien akselimassa tulee olla 75 % akselimassojen summasta
KYM 406/66 15.7.1966. (ennen em. päivämäärää 50 %)

01.01.1981 tai sen jälkeen käyttöön otetussa
- autossa 2- piirijarrut
- kaikissa perävaunuissa oltava jarrut, pl. O1- luokka.
- hidastuvuusvaatimukset määritelty
ANA Tpp 13 ja 157 §, 150/83

01.03.1983 tai sen jälkeen käytöön otetussa
- perävaunussa, jonka kokonaispaino enintään 32 tonnia, tulee olla jarrut kaikissa
pyörissä.
ANA Tpp 157 §, 150/83

01.01.1989 tai sen jälkeen käytöön otetut ajoneuvot
- LMp 509/01/88 31.3.1988, joka kumottu ja korvattu KM:llä 631/90 29.06.90, LM
246/92 18.03.92 ja 111/93 14.1.1993

01.01.1990 tai sen jälkeen käytöön otetuissa ajoneuvoissa
lukkiutumattomat jarrut
- kokonaismassaltaan > 12000 kg VAK-säiliöautossa
- VAK-säiliöperävaunun kokonaismassaltaan > 6000 kg vetoautossa.
- kokonaismassaltaan > 6000 kg säiliöperävaunussa.
- paineilmajarruin varustetussa linja-autossa.
ANA 18 §, 233/82 + 290/88

01.01.1992 tai sen jälkeen käytöön otetuissa ajoneuvoissa
lukkiutumattomat jarrut
- kokonaismassaltaan > 10000 kg perävaunun vetoon tarkoitettu kuorma-autossa,
kokonaismassaltaan > 16000 kg.
- kokonaismassaltaan > 10000 kg perävaunussa.
ANA 18 §, 233/82 + 706/90

01.01.1993 tai sen jälkeen käytöön otetut ajoneuvot
- 71/320/ETY, muutettuna 88/194/ETY
- E 13/05
- FMVSS 105 tai
- LMp paineilmajarruista 631/90, 246/92 ja 111/93.
- lukkiutumattomat jarrut (1. luokan)
- N3- luokan, jonka kokonaismassa > 16000 kg ja joka on tarkoitettu O4- luokan perävaunun vetoon
- O4- luokan perävaunussa.
- M3- luokan autossa, jonka kokonaismassa > 12000 kg.

ARVA 41 ja 218 §, 1256/92

Olennaisimmat vaatimuserot LM:n jarrupäättöksen ja E-säännön 13, sekä vastaavien direktiivien välillä.

- perävaunun paineilmasäiliöiden tilavuuden määritys.
- paineastia-asetuksen noudattaminen (säiliön kilpi).
- varoventtiili (ulkopuolen paineilman syöttö).
- putkiston osien merkintä (SAE, DIN, muovi, kumi).
- kitkapalogen merkintä (valmistajan tunnistetiedot).
- ALB-venttiilin asennusvelvoite.
- ilmankuivain ja pakkassuojalaite.
- etujarruvoiman puolitin (sallittu autoissa).
- seisontajarrun suojaventtiili.
- paine-ennakkoasetuksen enimmäisraja.
- vetoautossa perävaunun jarrujen käsiohjausventtiili (vapaaehtoinen).

LMp:n vaatimukset ovat em. osin eurooppalaista tasoa ankarammat.

01.12.1994 tai sen jälkeen käyttöön otetut ajoneuvot.
- 71/320/ETY muutettuna 91/422/ETY
- E 13/06 ja
- FMVSS 105 tai
- LMp paineilmajarruista 631/90, 246/92 ja 111/93 mukaiset.

ARVA 41 ja 218 §, 1256/92

01.01.1995 kuormantunten vaaran jarruväliin saa poistaa kuorma-autosta käyttöönnoton vuoden 1988 loppuun saakka, milloin se ei ole tarkoitettu (varustettu) perävaunun vetoon. Venttiilin poistaminen edellyttää muutoskatsastusta, LM 1433/94

Vuoden 1995 vuosikatsastukseen mennessä
- kaikki painelmajarrulliset ajoneuvoyhdistelmät, joiden vetoauton kokonaismassa >12000 kg ja perävaunun kokonaismassa yhtä suuri tai suurempi kuin 6000 kggarustetava akseli- tai telikohtaisilla kuormantuntevilla jarruvoiman säätimillä.
LMp 631/90 painelmajarruista 97 § 5. mom, 631/90 + 1433/94
01.01.1997 tai sen jälkeen EY - tyyppihyväksytyssä tai uuteen mallisarjaan kuuluvana tyypikatsastetussa
- autossa ja sen perävaunussa jarrujen tulee vastata 71/320/ETY + 91/422/ETY tai E 13/06 taikka ministeriön painelmajarrupäätöksen vaatimuksia.
- FMVSS 105 ei enää kelpaa
ARVA 41 ja 218 §, 1256/92 + 849/95 + 965/96
01.01.1998 tai sen jälkeen käyttöön otettavan auton ja sen perävaunun jarrujen tulee vastata edellisessä kohdassa mainittuja vaatimuksia.
ARVA 41 ja 218 §, 1256/92 + 849/95
01.10.1999 tai sen jälkeen uuteen mallisarjaan tyypikatsastettavan tai EU-tyyppihyväksyttävän auton ja sen perävaunun jarrujen tulee vastata edellisessä kohdassa mainittujen vaatimusten lisäksi direktiivin 98/12/EY tai E-säännön 13/09 vaatimuksia ja M2-, M3-, N2- ja N3-luokan ajoneuvossa tulee olla edellä mainitussa direktiivissä tai E-säännössä tarkoitetut 1 luokan lukkiutumattomat jarrut.
31.03.2001 tai sen jälkeen käyttöön otettavan auton ja sen perävaunun jarrujen tulee vastata edellisessä kohdassa mainittuja vaatimuksia. M2-, M3-, N2- ja N3-luokan ajoneuvossa tulee olla edellä mainitussa direktiivissä tai E-säännössä tarkoitetut 1 luokan lukkiutumattomat jarrut.
ARVA 41 ja 218 §, 1256/92 + 665/1998
01.01.2003 2002/78/EY (jarrupäällysteiden merkinnät ja pakkaus) direktiivin vaatimukset täyttävät jarrupäällysteet ja niiden pakkaukset tunnustettiin.
9.5.2 Seisontajarru

01.06.1955 tai sen jälkeen käyttöönotetussa autossa tuli olla seisontajarru. Seisontajarrussa tuli olla pidätyslaite. KYMp autoasetuksen täytäntöönpanosta 88/55

01.12.1957 tai sen jälkeen käyttöön otetut ajoneuvot, ANA Tpp 4, 35 ja 40 §.
- auton seisontajarrun tulee 392/57
 - olla varustettu pidätyslaitteella
 - vaikuttaa yhteen tai useampaan akseliin siten, että jarrutettujen akslien massa on vähintään 50 % auton kokonaismassasta.
 - olla varustettu käyttöjarrun laitteista riippumattomilla voimansiirtolaitteilla.
 - voida pitää auto paikallaan sellaisessa mäessä, joka autoa käytettäessä voi tulla kysymykseen.
- perävaunun seisontajarrun tulee
 - olla varustettu pidätyslaitteella.

30.06.1962 tai sen jälkeen rakennekatsastetun linja-auton seisontajarrun tulee
- rakenteeltaan soveltua käyttettäväksi myös hätäjarruna.
- vaikuttaa taka-akselin pyörien jarrukenkiin, kokonaismassaltaan yli 7 tonnia.
- olla varustettu tehostimella, milloin kokonaismassa yli 10 tonnia, kuitenkin siten, että voimansiirto ja pidätys tapahtuu puhtaasti mekaanisin laittein.
LM 504/60 21.12.1960

01.01.1983 tai sen jälkeen käyttöön otetut autot ja perävaunut
- ylä- tai alamäen kaltevuus 16 %, muutoin kuin seuraava kohta, ANA Tpp 13 §, 150/83

01.01.1990 tai sen jälkeen käyttöön otetut ajoneuvot
- auton ja perävaunun seisontajarrun tulee ANA Tpp 13 ja 158 § mukaan vaikuttaa yhteen tai useampaan akseliin
- voida pitää auto ja kuormattu perävaunu ylä- tai alamäessä, jonka kaltevuus on 18 % kitkakertoimen ollessa 0.6.
- olla varustettuna pidätyslaitteella, perävaunussa mekaanisella.
- oltava käyttöjarrun laitteista riippumattomat voimansiirtolaitteet.
- autoissa
- perävaunuissa, joiden kokonaismassa > 3500 kg.
- käsikäyttöisen seisontajarrun käyttölaitteen käyttövoima enintään 400 N
 henkilöautossa ja muussa autossa 600 N.
 150/83 + 291/88

01.01.1993 tai sen jälkeen käyttöön otetut ajoneuvot
- auton ja perävaunun seisontajarrun tulee vastata E- sääntöä 13/05 tai 71/320/ETY
 muutettuna 88/194/ETY tai FMVSS 105 tai LMP 631/90 vaatimuksia, varustettuna
 laitteella, joka saa jarrut toimimaan kytkennän pettäessä, ARVA 41 ja 218 §, 1256/92

01.12.1994 tai sen jälkeen käyttöön otetut ajoneuvot
- auton seisontajarrun tulee vastata E 13/06, 71/320/ETY muutettuna 91/422/ETY tai
 FMVSS 105 tai LMP 631/90 vaatimuksia. ARVA 41 §, 1256/92
- perävaunussa tulee edellä mainittujen vaatimusten lisäksi olla laite, joka saa jarrut
 toimimaan kytkennän pettäessä, ARVA 218 §, 1256/92

01.01.1995 nopeuskilpailuun käytettävä auto, sääntöjenmukaisesti viritetty.
- mekaanisen seisontajarrun saa korvata valmistajan kilpailukäyttöön tarkoittamalla
 hydraulisella seisontajarrulla. Saa soveltaa myös aikaisemmin käyttöön otettuihin
 autoihin.
 ARVA 41 §, 1256/92 + 1122/94 Kumottu (902/30.09.1997)
9.5.3 Muut jarrut

01.12.1957 tai sen jälkeen käyttöön otetut auton perävaunut pl. jarrutomat
- tulee olla " katastrofijarru", joka aiheuttaa itsettoimivan jarrutuksen kytkennän
pettäessä, MaA Tpp 40 §, 392/57

01.01.1975 VAK-säiliöperävaunussa tulee olla siirtelyventtiili, KTM 387/74 42 §.

01.01.1989 tai sen jälkeen käyttöön otetut ajoneuvot
- paineilmajarruin varustetussa M3- luokan autossa, jonka kokonaismassa yli 12 tonnia
ja paineilmajarruin varustetussa linja-autossa tulee olla varajarru. LMp 631/90 54 §
- paineilmajarruin varustetussa perävaunussa, jonka kokonaismassa on vähintään 6
tonnia, tulee olla siirtelyventtiili, LMp 631/90 62 §.

Autoon saa asentaa apujarrun (hydrodynaamisen tai sähkömagneettisen ajohidastimen,
pakokaasujarrun tai sähköisesti ohjatun erityisen venttiilin, jolla käytetään pyöräjarruja)
vain auton valmistajan luvalla, LMp 631/92 56 §.

Perävaunun saa asentaa apujarrun vain katsastustoimipaikan luvalla. LMp 631/90 67 §.