
D C D
M I

Bachelor’s Thesis

Electrical and Automa on Engineering

Valkeakoski

February 2019

Polina Rymshina

ABSTRACT

Electrical and Automa on Engineering
Valkeakoski

Author Polina Rymshina Year 2019
Subject Development of Con nuous Delivery at Mentech Innova on
Supervisor Mika Oinonen

ABSTRACT

The so ware development standards of the modern world require the companies to
respond quickly to new opportuni es and build on top of feedback from customers.
To help the developer teams to adapt to the need of fast so ware produc on new
methods have been created. One of thesemethods is Con nuous Delivery - essen ally
an automatedprocess of building, tes ng and releasing so ware. The aimof this thesis
project was to examine whether the concept of Con nuous Delivery would improve
the process of so ware produc on at the case company - Mentech Innova on, - and
if so, how?

Mentech Innova on is a health care technology startup aiming to improve the quality
of life of people with mental disabili es. The developers at Mentech work on an emo-
on sensing and regula on pla orm HUME, which in the end of 2019 will be turned

into produc on grade so ware. For that, automated quality assurance and reliable
and repeatable releases needed to be set up.

During the thesis project a literature research on the concept of Con nuous Delivery,
its benefits, disadvantages and risks was made. Addi onally, the Con nuous Delivery
so ware deployment pipeline for the HUME website of Mentech Innova on was cre-
ated to assess the feasibility of Con nuous Delivery usage for all so ware at Mentech
Innova on.

As a result of the work, the created deployment pipeline of the HUME website has
proved towork correctly. The benefits of the usage of the Con nuous Delivery concept
have been validated, as the concept improved the process of so ware tes ng and
release by making it fully automated, controlled and therefore reliable. Addi onally,
it saved me for the developers in that instead of manual tes ng and releasing me
can now be spent on developing new features.

In conclusion, by examining literature sources and implemen ng Con nuous Delivery
for the HUME website of Mentech Innova on, it was proved that the concept of Con-
nuous Delivery can benefit the overall process of so ware produc on at Mentech

Innova on by making the process fully automated, fast, repeatable and reliable.

Keywords Con nuous Delivery, pipeline, deployment, tes ng
Pages 49 pages including appendices 2 pages

Contents

Glossary i

1 INTRODUCTION 1

2 ASSIGNMENT 2
2.1 Background . 2
2.2 Descrip on of assignment . 2

2.2.1 Scope . 4
2.3 Problem defini on . 4
2.4 Research ques ons and hypothesis . 5

2.4.1 Literature research ques ons 5
2.4.2 Design ques ons . 6
2.4.3 Hypothesis . 6

3 PROJECT APPROACH 7
3.1 Research methods . 7
3.2 Design and implementa on methods 7

4 LITERATURE RESEARCH 9
4.1 Con nuous Delivery rules . 9
4.2 Advantages and disadvantages . 10
4.3 Value stream map . 13
4.4 Deployment pipeline . 14

4.4.1 Types of tes ng . 16
4.5 Risk management . 16
4.6 Deployment strategies . 19
4.7 Development workflows . 22
4.8 Conclusion . 27

5 DESIGN AND IMPLEMENTATION 29
5.1 HUME website descrip on . 29
5.2 HUME website deployment pipeline . 29
5.3 Selec on of tools . 30

5.3.1 Version control . 30
5.3.2 Ar fact repository . 30
5.3.3 Con nuous Delivery tool . 30
5.3.4 Commit stage . 33
5.3.5 Integra on stage . 33
5.3.6 Acceptance stage . 34
5.3.7 Staging and Produc on . 34
5.3.8 Conclusion . 35

5.4 Se ng up version control . 35
5.5 Se ng up the Con nuous Delivery tool 35
5.6 Se ng up the Commit stage . 37
5.7 Se ng up the Integra on stage . 38

5.8 Se ng up the Acceptance stage . 38
5.9 Se ng up Staging and Produc on environments 39
5.10 Conclusion . 39

6 VALIDATION 40

7 CONCLUSION 44

8 RECOMMENDATIONS 45

Bibliography 46

Appendix 1 HUME website 48

Appendix 2 Codefresh console 49

List of Tables

1 Evalua on of advantages and disadvantages 13
2 Risk analysis . 18
3 Risk calcula on . 19
4 Summary of deployment strategies . 21
5 Selec on matrix for deployment strategies 22
6 Summary of workflows . 26
7 Selec on matrix for workflows . 27
8 Summary of Con nuous Delivery tools 31
9 Selec on matrix for Con nuous Delivery tools 32
10 Comparison of unit test tools . 34

List of Figures

1 Example of a deployment pipeline (Humble & Farley, 2011, 4) 3
2 Ini al deployment pipeline at Mentech Innova on 3
3 Comparison of Con nuous Integra on and Con nuous Delivery 9
4 Value stream map before Con nuous Delivery 13
5 General deployment pipeline for Mentech Innova on 15
6 Blue-green deployment - ini al state . 19
7 Blue-green deployment - final state . 20
8 Canary deployment - ini al state . 20
9 Canary deployment - small user set release 20
10 Gi low branching . 24
11 HUME website deployment pipeline . 30
12 Deployment pipeline steps . 36
13 Maturity Model (Humble & Farley, 2011, 419) 41
14 Value stream map with Con nuous Delivery 42
15 Codefresh console screenshot . 42
16 Hume website screenshot . 48
17 Codefresh console log example . 49
18 Codefresh email example . 49

i

Glossary

ar fact By-product produced during the development of so ware (e.g. project source
code, dependencies, binaries or resources). 2, 14, 15, 27, 30, 35, 39

container Unit of so ware that contains an environment. i, 32, 35

Docker Container technology, allowing the developer to run the applica on inside a cer-
tain environment. 32, 33, 35, 36, 38, 39

environment Libraries, tools, and other files necessary to be able to run the applica on.
i, 3–5, 14, 15, 19–22, 27, 29, 32–40, 42

Git Version control system to track changes in the so ware code. 4, 10, 22, 23, 29, 30

MoSCoWmethod A way of determining the importance of requirements for a project.
MoSCoW stands for Must haves, Should haves, Could haves, Won’t haves. 8

Nginx Web server to serve sta c assets (for example send files to clients). 36

produc on Environment where the so ware is available to the customers. i, 2–4, 10,
11, 15, 19, 20, 27, 29, 34–37, 39

staging Environment made for so ware tes ng. Nearly exactly resembles a produc on
environment. 2–5, 15, 27, 29, 34, 35, 37, 39, 42

web service HTTP server applica on. Used for managing the data from clients and re-
ceiving analy c results from the sensors. 29, 36, 38, 39

web socket Communica ons protocol enabling a two-way communica on session be-
tween the user’s browser and a server. 29

Webpack Webpack bundles web assets (such as images, CSS and JavaScript files) for use
in a browser. 33, 35, 37, 39

In the following text the above men oned terms can be found, and in an electronic ver-
sion of the thesis on click the reader will be redirected to the glossary page for a term
defini on.

1

1 INTRODUCTION

In themodern so ware development world the quality of the so ware product of a com-
pany is as important as the company’s ability to respond quickly to newopportuni es and
issues. For all the so ware development companies, big and small, especially for star-
tups, it is essen al to move fast, building on top of feedback from customers. A er all,
so ware only brings value when it is in the hands of the user (Humble & Farley, 2011,
14).

In the past couple of decades the complexity of wri en so ware as well as used tools has
increased. Newmethods were needed to help the developer teams to adapt to the need
of fast wri ng, tes ng and releasing of so ware. One of these methods is the concept of
Con nuous Delivery - an important and trending idea in so ware produc on.

Con nuous Delivery, essen ally, is an automated process of building, tes ng and releas-
ing of so ware. The teams prac sing Con nuous Delivery produce the so ware in short
cycles and ensure that the so ware can be released on demand of management or a
customer at any me (Chen, 2015, 50), whereas the conven onal methods of tes ng,
packaging and releasing of so ware can take from weeks to months to get the so ware
in the hands of users, and the release process is not repeatable or even reliable (Humble
& Farley, 2011, 14).

The case company for this thesis isMentech Innova on - a health care technology startup
based in Eindhoven, The Netherlands. Mentech Innova on aims to impact the quality of
life and happiness of people with mental disabili es. The developers at Mentech work
on an emo on sensing and regula on pla ormHUME, which reads body parameters and
outputs them in a form of a graph, simultaneously evalua ng the mood of a pa ent.

The aim of this thesis project was to examine the concept of Con nuous Delivery by per-
forming a research on its benefits and drawbacks, workflows, ways for risk management
and strategies of deployment. Addi onally, an implementa on of Con nuous Delivery
for the HUME website was needed to assess the feasibility of Con nuous Delivery usage
in the company. In the end, a conclusion whether the concept of Con nuous Delivery is
beneficial for Mentech Innova on was made.

2

2 ASSIGNMENT

The assignment that was given to the thesis author is presented in this chapter. First,
the background of the assignment is described - the case company (commissioner) and
its products. Secondly, the thesis assignment descrip on is given, with the main require-
ments described shortly. Then, a problem defini on is derived from the assignment de-
scrip on. Finally, the hypothesis and the research and design ques ons are defined.

2.1 Background

Mentech Innova on is a health care technology company crea ng emo on sensing pro-
ducts and services for a be ermental health care. With its products, Mentech Innova on
wants to impact the quality of life and happiness of people with a mental disability or
demen a. Mentech is a young company, a startup, currently in the state of feasibility
and market valida on.

The company develops an emo on sensing and regula ng pla orm called HUME. The
technology is based on the sensing of body parameters with wearables (EmoKit), the de-
tec on of emo onal arousal via smart models and deep learning algorithms (EmoRadar),
as well as the methodologies for emo on regula on.

In the third and fourth quarters of 2018 Mentech Innova on used the first version of
HUME to test the feasibility of general arousal sensing in carehouses. In the second quar-
ter of 2019 it is planned to present the second version of the product iden fying posi ve
and nega ve arousal.

Mentech Innova on consists of three departments: hardware, so ware and data science
teams. For this thesis assignment the student joined the so ware team to work on the
automa on of the delivery process of the so ware created in the department.

2.2 Descrip on of assignment

As men oned before, Mentech Innova on is developing a technology for emo on sen-
sing and recogni on in mentally disabled people and people with demen a. This tech-
nology includes a wearable with sensors, a data streaming pla orm, a website, a web
applica on and a database. In addi on to this, Mentech develops so ware for the com-
pany partner, En-Gager, including a mobile and a web applica on.

During the second half of 2018, Mentech Innova on has developed a prototype of its
product. In the second half of 2019 they want to turn it into a produc on grade so -
ware. For that they needed quality assurance and reliable and repeatable releases. At
the start of this thesis project the so ware at Mentech Innova on was delivered ad-hoc,
without standardisa on, automated tes ng or security. As the tes ng and delivery stages
of so ware releasing were not automated, the so ware and the deployments of it were
prone to human errors.

A possible solu on to the problem of faulty so ware delivery would be the concept of
Con nuous Delivery, which could improve the process of tes ng and deploying the so -
ware through automa ng it.

3

The conven onal way to release so ware is to have a set date release. With this model
there is a concept of cycle me which is the me measured from deciding to make a
change in the so ware ll having it in produc on. In many teams the one cycle can last
for weeks or even months, which can have an impact on the user sa sfac on with the
product and cost the companymoney. Addi onally, having a set date for a releasemeans
that the days before the release are stressful, as the developers try to fix the possible
bugs in the last minute (Humble & Farley, 2011, xxiii). The concept of Con nuous De-
livery allows the company to avoid these problems, as the developers just release the
feature when they are done working on it and it gets automa cally tested. Further in the
document the other benefits of Con nuous Delivery are described and the decision is
made whether the transfer from the conven onal set date release model to Con nuous
Delivery model is beneficial.

The pa ern that is central to Con nuous Delivery is the deployment pipeline. It is, in
essence, an automated implementa on of the build, deploy, test and release process
(Humble & Molesky, 2011, 7). An example of such a pipeline can be seen in Figure 1.

Figure 1: Example of a deployment pipeline (Humble & Farley, 2011, 4)

The deployment pipeline that ini ally was used at Mentech Innova on can be seen in
Figure 2. Compared to the Figure 1 the ini alMentech pipeline lacks all the tes ng stages,
except for unit tes ng. Addi onally, the releasing of so ware using this pipeline was not
automated.

Figure 2: Ini al deployment pipeline at Mentech Innova on

The aim of this assignment was to examine the concept of Con nuous Delivery, eva-
lua ng the benefits and risks of it for Mentech Innova on, as well as looking into the
ways of implemen ng Con nuous Delivery for the Mentech Innova on so ware. Then
the Con nuous Delivery tools and the infrastructure of Con nuous Delivery should have
been configured for the Mentech Innova on HUME website to assess the feasibility of
the Con nuous Delivery usage for all so ware at Mentech Innova on. The exact process
of work, including the work phases and steps, is described in chapter 3.

Addi onally, together with the Mentech Innova on management and the lead engineer,
the thesis author had set up a list of requirements for the so ware and the tool choices.
These requirements were used whenworking on Con nuous Delivery and choosing tools
and methods of implementa on for it.

4

The list of the created requirements can be seen below:

• Repeatability of the deployment process

• Cost of tools - preferably free, otherwise about 100 eur/month

• Preferably open source tools

• Manual code review should be possible

• Rollbacks should be possible

• Deployment should be done to staging environment (con nuously)

• Zero down me for applica ons

• Sta c analysis for code forma ng, common bugs and duplicate code should be set
up

• Tes ng should be possible to do before merging

• The tools and working methods should be compa ble with Git

2.2.1 Scope

By defini on, Con nuous Delivery is a prac ce to automa cally build, test code changes
and release the so ware product to a produc on-like environment (Halonen, 2017, 6).
Therefore this thesis work does not include the other steps of product releasing, such
as management-related decisions (such as opportunity assessments, mee ngs, etc.), de-
ploying to produc on, and post-deployment so ware monitoring. This project focuses
solely on the research and implementa on of Con nuous Delivery: the build, test and
release (to non-produc on) stages, configura ons and tools for them.

2.3 Problem defini on

As men oned before, the so ware at Mentech Innova on was ini ally delivered with-
out automated tes ng, standardisa on or security. The process of deployment was not
repeatable or reliable, which lead to human errors and me spent on fixing them. Ad-
di onally, the deployments were not documented so the informa on about the errors
was not saved. As the deployment processwas not automated, every deployment turned
into a me-consuming process, which was repe ve and hard to test.

The lack of automated build-test-release process is a problem for several addi onal rea-
sons. Teams that do not prac ce Con nuous Delivery have to either spend meonmanu-
ally tes ng the so ware theywrite or hire extra people to perform that job, which wastes
me and money of the company. Manual tes ng increases the me un l the release of

the end product whichmeans the clients do not get new features or bug fixes of the appli-
ca on for a long me. The process of releasing of these new updates is manual as well,
therefore every me it is done, it might be different. The configura on of the system,
the release process, even the so ware update itself - it all might cause errors during the

5

release process, or, even worse, bugs released to the end users. The process of releasing
is not monitored, so the developers team will not be informed immediately when some-
thing goes wrong with the so ware, and even then, the root cause of the problem will
be hard to track down. In addi on, without monitoring it is not possible to see how the
system behaves when the certain changes to the so ware are introduced, or, for exam-
ple, when the amount of users increases or new servers are added. Without that, the
planning of the future improvements of the system to meet the demands of business
and customers is very hard. (Humble & Farley, 2011, 4-10.)

The system thatwould improve the situa onwith the so ware releases atMentech Inno-
va on should have solved the aforemen oned problems. The build-test-release process
should have been automated. So, by one push of a bu on, the developers fromMentech
would be able to commit their changes, have them compiled, unit tested, sta cally anal-
ysed for common bugs and duplicate code, then tested for compa bility with the other
parts of the system and capacity tested and a er that released to a staging environment.
Only then the so ware could be released to the users on demand of the company man-
agement.

2.4 Research ques ons and hypothesis

From the assignment described in chapter 2.2 several ques ons were formulated with
the main one being:

Would the concept of Con nuous Delivery improve the process of wri ng, tes ng
and releasing so ware at Mentech Innova on and if so, how?

From this main ques on several subques ons and a hypothesis were derived. The sub-
ques ons helped to answer the main ques on. They are listed in chapters 2.4.1 and
2.4.2. The hypothesis is presented in chapter 2.4.3.

2.4.1 Literature research ques ons

The ques ons that had to be answered during the literature research phase of the thesis
project were:

• What should the general structure of the deployment pipeline for the Mentech
Innova on so ware be?

• What are the methods of risk management for the pipeline?

• What are the strategies of deployment and which one suits Mentech Innova on
best?

• Which development workflows exist nowadays and are compa ble with Con nu-
ous Delivery?

6

2.4.2 Design ques ons

The ques ons that needed to be answered during the design and implementa on phase
of the thesis project were:

• What is the structure of the deployment pipeline for the HUME website?

• What are the best tools for the implementa on of the deployment pipeline for the
HUME website?

2.4.3 Hypothesis

The hypothesis that was to be proved or disproved during this research:

The concept of Con nuous Delivery will improve the process of so ware releasing
at Mentech Innova on by making it fast, frequent, repeatable and reliable.

7

3 PROJECT APPROACH

In this chapter the methods chosen for the research project are presented including the
me limits set for them. The project was divided into two phases. First, a literature

research was conducted to explore the concept of Con nuous Delivery, compare the de-
velopment workflows, deployment strategies etc. The literature research phase was fol-
lowed by a design and implementa on phase. During this phase the Con nuous Delivery
strategy was applied to the HUME website, which required a choice and configura on of
all the necessary tools.

3.1 Research methods

The literature research phase lasted ten weeks. In this phase the problem and the basic
requirements for the Con nuous Delivery pipeline were defined. Based on this infor-
ma on a literature base was created. Using the found literature the benefits and draw-
backs of Con nuous Delivery were evaluated. Then a general structure of a deployment
pipeline was drawn. A research was conducted on the risk management methods for the
pipeline and the developmentworkflows. The deployment strategieswere described and
had their advantages and disadvantages evaluated. The research phase concluded with
several decisions:

• A decision was made whether the concept of Con nuous Delivery is beneficial for
Mentech Innova on

• A development workflow suitable for theMentech Innova on so ware developers
was chosen

• A deployment strategy for so ware applica ons was chosen

3.2 Design and implementa on methods

The implementa on anddesign phase lasted nineweeks. For theworkmethod Scrumban
was chosen. Scrumban is an agile project management methodology. It is based on the
features of Scrum and Kanban - two other frameworks for managing knowledge work
(Niki na, Kajko-Ma sson, & Stråle, 2012).

In Scrum, thework me is split in short fixed-length cycles called sprints. The deliverables
for each sprint are selected beforehand. The work is sorted by priority and rela ve effort.
Then the sprint is ”locked” - new deliverables cannot be added during the sprint. A er a
couple of weeks - a usual dura on of a sprint - all the work of a sprint should be done.

In Kanban a visualisa on tool (e.g. a whiteboard) is used to illustrate the work phases, for
example ”ToDo”, ”Ongoing” and ”Done” as columns. Then all the deliverables of a project
are placed into these columns and are implemented according to their posi on. For in-
stance, an item can be in the ”To Do” column first when no work has been performed on
it. When the developer decides to implement it the item goes to the ”Ongoing” column.
When it is implemented the item is put to the ”Done” column. Items can be added to the
board if new ideas appear or issues arise. In Kanban the number of items in each column
can be restricted.

8

Scrumban has the features of both Scrum and Kanban. Applied to this project it meant
that a list of requirements and deliverables was made. These requirements and deli-
verables were priori sed using the MoSCoW method. A board was used to visualise the
work phases - ”Open”, ”To Do”, ”Doing”, ”Tes ng” and ”Closed”. ”Open” column featured
all the deliverables and features for the project. ”To Do” included the deliverables that
were worked on in the nearest me. The items that were being worked on were in the
”Doing” column. The items that needed to be tested were in the ”Tes ng” column. The
deliverables that have been implemented were placed in the ”Closed” column. The list
of deliverables and features could be edited (added to) during the project. The thesis
author was working according to the requirements implemen ng them one by one.

With Scrumban the flow of work is con nuous. There are no sprints, no me limits.
The deliverables are just implemented one by one and based on the feedback the new
features or issues can be addressed. Therefore, Scrumban is a good match with the idea
of Con nuous Delivery.

9

4 LITERATURE RESEARCH

In this chapter an analysis of literature informa on is given to answer the research ques-
ons of chapter 2.4.1. For that the concept of Con nuous Delivery was examined, includ-

ing the deployment pipeline structures, ways for risk management, development work-
flows and the strategies of deployment.

Ge ng so ware released to users is o en a painful, risky, and me-consuming process
(Humble & Farley, 2011). A proposed solu on for easing the process is Con nuous De-
livery. The concept of Con nuous Delivery emerged in 2010 when Jez Humble and David
Farley released a book called Con nuous Delivery (Sharma, 2018). It was proposed to be
an extension to an already exis ng Con nuous Integra on development prac ce. The
difference between the two can be seen in Figure 3. Con nuous Integra on takes the
so ware from the phase where it is being wri en to the step where the so ware is be-
ing tested. Con nuous Delivery goes even further and allows the developers to automat-
ically release the new so ware updates.

Figure 3: Comparison of Con nuous Integra on and Con nuous Delivery

Con nuous Delivery is similar to a tradi onal produc on line: just like products, so ware
needs to be assembled, tested, verified and packaged, and delivered to the users. This
should be automated. For example, if the general tests for so ware have been wri en
beforehand, they can be applied automa cally to every release of so ware to ensure it
works. Then the tes ng of so ware will turn into just one push of a bu on.

4.1 Con nuous Delivery rules

There are no strictly defined rules to follow when implemen ng Con nuous Delivery.
However, there are good prac ces and recommenda ons to follow to essen ally achieve
the benefits of Con nuous Delivery within the company (Humble & Farley, 2011, 24-29;
see also Farcic, 2017). These principles are listed and shortly described below.

Automate the deployment pipeline All the steps of the deployment pipeline should be
automated. The only excep on from this rule is the possible manual tes ng stage (show-
cases or exploratory tes ng). All the other tes ng stages as well as the commit and re-
lease stages should be performed automa cally.

Integrate frequentlyWith every implemented feature, integra on should be performed
with the rest of the project. This way the delivery of the new features can be con nuous.

10

Be Agile Agile teams deliver work in small increments, which results in faster value de-
livery. The requirements and feedback are evaluated con nuously to be able to quickly
respond to change.

Keep everything in version control All the code, test scripts, configura ons and docu-
menta on for a project should be kept in version control. This is done to be able to start
up the project on any machine on demand and to be able to fallback to the previous
version if needed.

Fix bugs as soon as they appear The problem will be found and fixed faster while the
code is s ll fresh in the developer’s mind. The developer is not supposed to work on
anything else un l the pipeline is finished.

Prac ce test-driven development Tests need to be present before the new code is com-
mi ed, otherwise the buggy code will go to produc on. Tests can be wri en before the
changes to the code are made and they should be based on the user requirements. It is
also possible to write tests right a er the new code is wri en.

Have a fast deployment pipeline According to Farcic (2017), the average me for the
pipeline to complete should be 15minutes. Following this recommenda on will help the
developers to stay in focus. They are not supposed to work on the new features un l the
run of the pipeline is finished successfully. Otherwise it will not be possible to integrate
the new features frequently.

Commit only tomaster branch or short-lived branchesWhenworkingwith Git, if branch-
ing is abused and merging the feature branches with the master branch happens rarely
(less than once a day), then the integra on is postponed, and the company does not
prac ce Con nuous Delivery. Ideally, if the deployment pipeline is trustworthy, and the
developers run the local version of the pipeline before commi ng, it would be much
be er and faster to commit directly to master. However, it might be challenging as it
requires high discipline of the developers. It is easier to have short-lived branches and
ensure they are merged with the master as soon as work on them is done.

Run commit tests before merging new commits This can be done by either the deve-
loper manually or the Con nuous Integra on server automa cally (as men oned before,
manual local tes ng requires high discipline therefore it is challenging, so automa c run is
preferred). First, the developer should update their copy of a project by pulling from the
version control system. Then, a local build should be ini ated and the tests should be run.
This is done to ensure that the developer has the latest version of the projectwhenhe/she
commits, so that the build will not run into merge issues when the developer pushes the
new updates to the version control system. Addi onally, it reduces the chance that the
developer introduces bugs in the central repository of version control.

4.2 Advantages and disadvantages

Con nuous Delivery advocates claim that, if implemented correctly, the concept can
make the so ware releases a repeatable, reliable and predictable process (Chen, 2015,
50). However, implemen ng and actually following the rules of the Con nuous Delivery
approach can be too challenging. Tomake a decisionwhether Con nuous Delivery is ben-
eficial forMentech Innova on both the advantages and disadvantages of the concept had

11

to be listed and evaluated.

The advantages of Con nuous Delivery according to Chen (2015, 52) are:

+ Saving me and money If the tes ng and releasing is being performed manually
the company has to hire a tes ng (Quality Assurance) and deployment team or the
so ware developers of the company have to spend their me tes ng and releasing.
Automa ng of the test-release process will help the company save money on the
new employees and the so ware developers can spend their me implemen ng
new features and client requests instead.

+ Improved product quality With Con nuous Delivery implemented, a er the de-
veloper commits changes to the code the whole code base undergoes a series of
tests. These tests include checkingwhether all the func ons of an applica onwork
as intended, as well as checking if the app is s ll working well together with the
database or other applica ons, meets the requirements, etc. These tests help to
reduce the risk of bugs appearing because of human errors and manual configu-
ra ons. Addi onally, one of the rules of Con nuous Delivery is that if a test has
failed, the developer has to fix it immediately and not leave it for later. Because of
that, the amount of new features reaching produc on will increase - they will not
anymore be put on a long wai ng list for the items that need to be fixed.

+ Standardisa on The Con nuous Delivery pipeline standardises the procedures of
deploying the so ware. Manual deployment processes are hardly the same be-
tween different updates, because it is very common that the deployment steps
are not well documented or memorised. Using an automa c deployment process
the tests, commands, tools used will be the same for each update to the so ware.
Addi onally, each deployment process is automa cally documentedwith a deploy-
ment script.

+ No applica on down mes With a manual deployment process it is easy to acci-
dentally push a bug to produc on. In the worst case scenario this will break the
whole applica on andwill result in a disappointment and loss of clients. With auto-
ma c tes ng enabled, an accidental push to produc on is very unlikely to happen,
as tests will fail if there are bugs present in the code.

+ Stronger rela onship with the customers With the Con nuous Delivery rule of
commi ng changes whenever a new requirement has been implemented the ap-
plica on will be updated o en. The customer requests for new features can be
taken in account as soon as they arrive. Therefore the applica on can follow the
user requirements as closely as possible. Addi onally the applica on is always in
a running state. As customers can always see the new ideas and requests turn into
working features the rela onship between the company and the clients improves.

+ Lowering stress levelManual releases into produc on are big events. They are usu-
ally surrounded with a lot of stress, because of the bugs that might occur, human
errors that went unno ced and configura on and compa bility problems. Manual
releases require a lot of work of the tes ng and deployment teams. If the release
can be performed automa cally by just one push of a bu on and each release

12

is backed up by version control, then the stress level associated with releasing a
product reduces significantly. (Humble & Farley, 2011, 17-22.)

The disadvantages of Con nuous Delivery according to Chen (2015, 53) are:

- Challenging rules The rules of Con nuous Delivery (listed in chapter 4.1) can be
challenging to adopt. They require a lot of ini al work, team collabora on, disci-
pline and me. However these rules need to be followed as only then can a team
deliver value to the clients con nuously.

- Very good team collabora on needed A very good collabora on and coordina-
on is needed in the team to successfully implement con nuous prac ces (Shahin,

Babar, & Zhu, 2017, 3925). The team members involved in wri ng so ware have
to understand the concept and follow the rules, for instance invest me in wri ng
tests, integra ngwith every new requirement implemented and fixing the code im-
mediately a er any bugs appeared. Addi onally the teammembers need to know
what features have been implemented and what the status of the project is at all
mes. This should be visualised.

- Li le research on problem solving Very li le research has been done on how to
introduce Con nuous Delivery in a team (Chen, 2015, 53). This means that even
though there is a lot of advice on the internet on how to adopt the concept more
smoothly, there is no common strategy to ensure the acceptance and collabora-
on on Con nuous Delivery. If some complica ons arise there are no common

prac ces to tackle them efficiently.

- Complicated implementa on The prac ces associated with Con nuous Delivery
as well as the configura on and usage of the Con nuous Delivery tools require a
set of so and hard skills which are usually not taught in a university. Therefore
the learning curve of implemen ng the con nuous prac ces can be a bo leneck.
The implementa on of Con nuous Delivery takes a lot of me andmoney, because
hiring a person skilled enough is expensive.

To compare the advantages and the disadvantages of the Con nuous Delivery approach a
comparison table was made (Table 1). The table features the benefits of Con nuous De-
livery on the le and the drawbacks of it on the right. Each item in the table has a weight
to it. The weights are given based on the preference of the thesis author and they have
been approved by the lead engineer of Mentech Innova on. Benefits have the weights
ranging from 1 to 5, drawbacks have the nega ve weights from -1 to -5, where 5 is highly
favourable and -5 is highly unfavourable. Under each column the end score for the col-
umn is counted. A er that, the total score is counted by subtrac ng the nega ve value
from the posi ve value. If the resul ng total score is posi ve, then the advantages out-
weigh the disadvantages and the evaluated concept is generally profitable. Otherwise,
the concept is not recommended for use.

As we can see from Table 1 the total score is posi ve, which means that the Con nuous
Delivery approach could theore cally be beneficial to be used at Mentech Innova on.

13

Table 1: Evalua on of advantages and disadvantages

Pros Cons
Saving me and money +3 Challenging rules -4

Improved product quality +4
Very good team collabora on
needed

-4

Standardisa on +3 Li le research on problem solving -2
No applica on down mes +2 Complicated implementa on -3
Stronger rela onship with customers +3
Lowering stress level +2

End score: 17 End score: -13
Total score: 4

4.3 Value stream map

Value stream map is a visualisa on of the so ware delivery process including the stages
the so ware goes through and the me spent on these stages. Crea ng a value stream
map is a low-tech process. It aims to depict the so ware delivery process from a business
point of view star ng with the concept stage and ending with the client stage (Humble &
Farley, 2011, 107-108).

In the case of Mentech Innova on, crea ng a value stream map was useful to visualise
the problem and in the end of this thesis work to compare the new value stream map
with the one created before the project. This helped to prove the hypothesis that the
concept of Con nuous Delivery is beneficial for Mentech Innova on and improves the
process of so ware releasing in the company.

Figure 4: Value stream map before Con nuous Delivery

The Figure 4 presents the value streammap made based on the informa on go en from
the developers ofMentech Innova on responsible for the so ware development, tes ng
and delivery process as well as the business-decision-related informa on go en from
the management of the company. The value stream map has been made to depict the
process of delivery of a new feature to an applica on, with the average rela ve me
it takes for all the stages of delivery. As the whole process of delivery has been taken
as 100% we can clearly see which stages of delivery take the most me. Addi onally,
the me has been separated into value-added me and elapsed me. Value-added me
is the me when the actual work is being done - business mee ngs or programming.

14

Elapsed me is the me spent on wai ng for the next stage of the project to start. The
stages of the feature delivery are on the top of the Figure 4 - business-related in grey
colour and so ware-development-related in white.

As we can see from the Figure 4, the total me spent on the business-related decisions
is much smaller than the me spent on the development of the feature. The biggest
percentage of me (30%) is spent between the business and the so ware stages, but as a
communica on problem it cannot be fixed by Con nuous Delivery. With the Con nuous
Delivery implementa on the author of this thesis aimed to improve the me spent on
the stages related to so ware development. As we can see, due to the fact that Mentech
Innova on is s ll quite a small company and one feature is usually developed, tested and
deployed by the same person, the elapsed me between the development stages is not
so big. However, the system tes ng and release stages take 28% (with the value-added
and elapsed mes included) of the total me. If the me spent on these two stages
could be decreased, the new features to the applica on could be released faster, or the
developer could spend this me on the improvement of the feature or development of
a new one.

4.4 Deployment pipeline

As men oned in chapter 2.2 in Con nuous Delivery the deployment pipeline is a set of
stages that the so ware has to go through automa cally to be released. These stages
include building the so ware, tes ng it and deploying it. For Mentech Innova on such
pipeline had to be drawn to be further implemented later, taking in account the best
prac ces and the requirements go en from the company management and the lead en-
gineer.

The pipeline created for Mentech Innova on can be seen on Figure 5. It is an extended
version of the pipeline that can be seen in chapter 2.2. This pipeline is based on an ex-
ample pipeline from Humble and Farley (2011, 111).

The steps of the pipeline are in the order they are in because the deployment pipelines
are designed to fail fast. In case of failure, the whole pipeline should be terminated as
soon as possible. That is why unit tests, which execute fast are ran first. Longer running
tests come second. (Chang, 2013.)

The flow of work in the pipeline goes as follows:

1. The so ware developer commits the code updates to version control

2. This source code goes from version control to the commit stage, where it gets com-
piled, unit tested, analysed and packaged. The output of this stage gets stored in
the Ar fact repository, which acts like a storage for the package and the documen-
ta on related to it.

3. Next stage is integra on. The environment gets configured with the se ngs from
version control, and the package from the Ar fact repository is performed inte-
gra on tests on. The documenta on from this process is stored in the Ar fact
repository.

15

4. The package is sent to the acceptance stage. Again, the environment gets con-
figured with the se ngs from version control, and the package from the Ar fact
repository is performed acceptance tests on. The documenta on from this process
is stored in the Ar fact repository.

5. A er that the so ware goes to several environments - user acceptance and capac-
ity stages - that can be run in parallel. The func oning of these stages is similar to
the previous two stages.

6. Then the package is sent to the staging environment. This does not have to happen
automa cally, it can also be made as a manual step on demand from the manage-
ment. There the so ware can be tested, possibly manually, in condi ons similar
to produc on.

7. Finally, the so ware can be manually released to produc on. The deployment
method for it is further described in chapter 4.6.

Figure 5: General deployment pipeline for Mentech Innova on

The pipeline created above is a generalised version of a deployment pipeline that can
be used for all the so ware products at Mentech Innova on. However, depending on
an applica on, the pipeline might need to be edited, as some stages of it might not be
necessary or applicable. Addi onally, the tools that are needed to implement the pipeline
and the configura ons for these tools can be reused from this project, however some
addi onal configura ons or tool choices might be needed depending on a project.

16

4.4.1 Types of tes ng

For a full understanding of the methods of so ware tes ng, in this chapter the three
types of tests men oned in chapter 4.4 that are needed to ensure the delivery of a high
quality applica on are described.

Unit tes ng Unit tests test a par cular piece of code, a func on within the applica on
(Humble & Farley, 2011, 89). For example, an applica on may contain a method to
check the validity of a format of a phone number. Then, an example of a unit test would
be to try to automa cally input different values (le ers, numbers which are too short,
etc.) to see whether the aforemen oned method works correctly. Unit tests should run
independently from any outside sources, such as a database, a filesystem, any external
systems, etc.

Integra on tes ngDuring integra on tes ng the so waremodules are tested as a group.
The way the applica on communicates with the database, filesystem or any other exter-
nal systems is tested (Humble & Farley, 2011, 89). An example of an integra on test
would be sending a request from the applica on to the database to retrieve a list of the
company clients and checking whether the received list equals the predefined value.

Acceptance and capacity tes ngAcceptance tests ensure that all the criteria for the func-
onality of the system, its usability and availability, are met (Humble & Farley, 2011, 85).

An example of an acceptance test would be checking whether the items are correctly
loaded on a page or whether the page is loaded within a certain me. Capacity tests are
a subcategory of acceptance tests. Capacity tes ng is targeted at tes ng whether the
applica on can handle the amount of traffic it was designed to handle.

Automated tes ng can provide the confidence for all the people involved in the project
that the so ware product is working as it should. Performing unit tes ng, integra on
tes ng, and acceptance tes ng on a so ware product allows the engineers to thoroughly
check the func onality of the applica on, which results in fewer bugs, reduced support
costs and sa sfac on and trust of clients. (Humble & Farley, 2011, 84.)

4.5 Risk management

Con nuous Delivery as a model of work might be challenging to adopt in a company. As
men oned in chapter 4.2, a lot of team collabora on, discipline and me is needed. In
addi on, Con nuous Delivery has various rules that need to be followed (chapter 4.1). In
this subchapter the main project risks related to Con nuous Delivery are iden fied and
the mi ga ng strategies are described.

A common model of risk management (DeMarco & Lister, 2003) proposes a way to eva-
luate the risks by their impact and their likelihood. This model allows to assess each risk’s
severity. Based on this model Table 2 was created, as an extension of the model not only
accessing the individual risks’ severity but also calcula ng the project’s risk percentage
(Table 3).

In Table 2 all the risks are listed (not in any par cular order). For each risk the chance it
might happen is given (on a scale from 1 to 5). Addi onally, the consequences of risks are
described and the factor of impact on the project is given (on a scale from 1 to 5). From

17

that for each risk a score is given which is the likelihood of happening mul plied with the
factor of impact. This score can serve as an indicator of the risk’s severity of impact on
the project.

In Table 3 the end calcula on for the risks is provided. The actual score for all the risks is
calculated as a sum of the scores of all the risks. Addi onally, as there are 13 risks, the
total maximum score is 325 (calculated as themaximum likelihood (5)mul pliedwith the
maximum impact (5) mul plied with the number of risks). From that the risk percentage
is calculated. As we can see, the resul ng risk percentage - the chance that some risk
might happen during working with Con nuous Delivery - is at a medium level - 35%.

To prevent the risks listed in Table 2 from happening a mi ga ng strategy for the risks
should be put in place. A er an analysis of literature (Shahin et al., 2017, 3929-3930),
the thesis author has determined several rules to follow for risk mi ga on. These rules
are listed below with the risks that they can help mi gate men oned (as a number from
Table 2).

• Improve team communica on and awareness (mi gates risks 1, 2, 3, 4, 6, 7)
– Have regular mee ngs about the project progress and the usage of Con nu-
ous Delivery

– Inform the team members about the outdated branches
– Mee ngs with the management to discuss progress
– Everybody takes responsibility of their code

• Planning and documenta on (mi gates risks 1, 2, 6, 12, 13)
– Implement a status board showing the status of each feature branch and the
person responsible

– Keep metrics of the developers’ integra ons

• Improve team qualifica on (mi gates risk 8)
– Provide the team with necessary literature on the topic of Con nuous Deli-
very

– Organise trainings and talks on the usage of the Con nuous Delivery concept
and tools

• Perform thorough research before choosing tools for usage (mi gates risk 4)
– Whenever a new tool needs to be chosen, a thorough research should be
conducted and well documented, preferably using a selec on matrix (similar
to Tables 4 and 5)

• Pay a en on to the tes ng stage (mi gates risks 5, 8, 9, 10, 11, 13)
– Prac ce test-driven development
– Have a tes ng workshop with the team
– Have a manual (or user) tes ng stage
– Run the tests in parallel

The rules listed above propose a solu on to all the risks shown in Table 2 and it shows
that with proper communica on within the team, control from the management and
lead engineers as well as group effort of the team it is possible to successfully prac ce
Con nuous Delivery.

18

Table 2: Risk analysis

№ Risk
Likeli-
hood

Consequences Impact Score

1
The progress of the team
is slower than expected

2
The features are
released slower

3 6

2
Developers do not
integrate o en enough

4

The team does not
prac ce Con nuous
Delivery, end product
is bad or delayed

4 16

3
It takes a long me
for the bugs to be
closed

3
The delivery of features
is not fast or
con nuous

4 12

4
Developers complain
about the usage of tools

3 Developers work slower 3 9

5 The commit stage breaks 1
The progress slows down,
the commit stage needs
to be fixed

3 3

6
It takes a long me
for the new features
to be deployed

2
The features do not get
to customer and do not
bring value

5 10

7
The team is not
collabora ng sufficiently

3

Possible problems with
the stages of Con nuous
Delivery process,
end product is bad
or delayed

4 12

8
The developers or testers
do not have sufficient
experience developing tests

3
The features are
released slower

3 9

9
The developers are working
without sufficient test
coverage

2
The untested
(possibly buggy)
code can be released

5 10

10
The developers do not
trust tests when they
reveal bugs

1

If the developers rewrite
tests to match the code,
the possibly buggy code
can reach produc on

4 4

11
The tests take too long
to run

3
The developers get
distracted from
programming

2 6

12
Ineffec ve monitoring of
produc on/staging
environment

2
The team does not know
if there are bugs to fix

5 10

13
The feedback of the
customers takes too long
to reach the developers

2
The customers are
not sa sfied

4 8

19

Table 3: Risk calcula on

Score 115
Total score 325
Risk percentage 35%

4.6 Deployment strategies

The deployment stage is where the product is released to the clients. Therefore it is very
important for the best experience of the client to ensure that the applica on they get
is of good quality. And it is essen al to be able to rollback a deployment in case some
problems arise. This will allow the users to get the working version of an applica on back
while the developers are fixing the bugs in the new version.

There are several ways to deploy an applica on. The end choice of the deployment stra-
tegy affects the way system should be configured, as well as the speed of releasing, im-
pact on users in case of bugs andways of fixing these bugs. The strategies for deployment
are listed and described below.

Recrea on deployment The recrea on strategy is one of the easiest ways to deploy an
applica on (Humble & Farley, 2011, 260). During this type of deployment the old version
of the applica on is turned off and then the new version of the applica on is released.
Even though this strategy is easy to set up, the shu ng down and then turning on the
applica on implies down me between the turned off and on states.

Blue-green deployment For the blue-green deployment two iden cal produc on envi-
ronments (called Blue and Green) are run. One of them - for example Green - is live, the
second one is idle (Figure 6). All the user traffic is in the Green environment.

Figure 6: Blue-green deployment - ini al state

The new version of the applica on is released to the Blue environment, where it can be
tested. When the tes ng is done, the router switches the users to the Blue environment
which becomes live. The Green environment becomes idle (Figure 7).
One of the benefits of this method is the absence of down me between the two versions
of the applica on. The users get switched to the new version instantly. Addi onally, if
there are some bugs in the new version the user traffic can easily be switched back to the
old version. However, this strategy is harder to set up (because of database limita ons -
since both environments use the same database, the database needs to be compa ble
with both versions of the so ware) and it is more expensive. (Humble & Farley, 2011,
262.)

20

Figure 7: Blue-green deployment - final state

Canary deployment Similarly to the blue-green deployment, this strategy requires two
produc on environments, one live and one idle (Figure 8). The whole user traffic is di-
rected to the live version.

Figure 8: Canary deployment - ini al state

To release the new applica on the developers turn on the second environment and de-
ploy it there. Then, a small part of the user traffic gets routed to the second environment
(Figure 9). This way the second environment can be tested in the ”real world” condi ons
to perform capacity tests of the applica on and to ensure there are no bugs released
to the majority of users. In case the selected users report some problems with the new
version, these users can just be routed to the old version of the applica on and the de-
velopers will have me to fix the issues.

Figure 9: Canary deployment - small user set release

A er it has been confirmed that the new version does not contain bugs or issues the rest
of the users can be routed to the environment with the new version of the applica on
and the environment with the old version can become idle (the end state will be similar
to Figure 7). This way the risk of releasing of a new version of the applica on can be
significantly reduced. (Humble & Farley, 2011, 262-265.)

A/B deployment This deployment strategy is similar to the canary deployment strategy.
A/B deployment also requires having two environments, onewith the old applica on and
one with the new. While all the users are using the old version of the applica on a small
subset of users gets routed to the new version. Once the user group confirms that the
applica on func ons correctly, the rest of the users get routed to the new version.

21

The difference from the canary release method is that with the A/B deployment strat-
egy the small group of users is chosen based on a certain condi on. Some examples of
such condi ons are geoloca on, language or a used technology type (opera ng system,
browser version, screen size, etc.). (Humble & Farley, 2011, 264.)

ShadowdeploymentWith the shadowdeployment technique two environments are run,
for example A and B. All the user traffic is directed to the environment A. The user re-
quests and ac ons happening in the environment A get copied and sent to the environ-
ment B. This helps to capacity test the environment B. When the environment B passes
the tests and proves to be bug-free the user traffic gets routed from the environment A
to B.(Tremel, 2017.)

To summarise the informa on about the deployment strategies Table 4 was created. The
most le column features the comparison parameters, the list of which has been created
based on the requirements received from Mentech Innova on. These parameters have
been chosen as relevant for the way Mentech Innova on deploys so ware and the im-
pact it has on the end users.

Table 4: Summary of deployment strategies

Recrea on Blue-green Canary A/B Shadow
Zero
down me

No Yes Yes Yes Yes

Capacity
tes ng

No No Yes Yes Yes

Targeted
users

No No No Yes No

Complexity
of setup

Easy, no
change
needed in the
release
configura ons

Hard, two
environments
are needed

Hard, two
environments
are needed

Very hard,
requires two
environments
and a filter
se ng

Very hard,
requires two
environments
and se ngs
to redirect
the requests

Nega ve
impact
on user

Very high Average Low Low Low

User
feedback

Received
late. Cannot
be handled
fast

Received
late. Can be
handled fast

Received
fast. Can
be handled
fast

Received
fast. Can
be handled
fast

Received
fast. Can
be handled
fast

The comparison of the methods of deployment is presented in a form of a selec on ma-
trix (Table 5). The matrix has the same comparison parameters as Table 4. The scores
from 0 to 5 (where a higher figure is be er) are given to each deployment strategy based
on the answers in Table 4. Addi onally all the comparison parameters have a certain
weight (from 0 to 5, where more is more important) based on the importance of them
for Mentech Innova on. In the bo om of the table the end score for each deployment
strategy is calculated as a sum of all the parameters mul plied with their weights.

22

Table 5: Selec on matrix for deployment strategies

Recrea on Blue-green Canary A/B Shadow Weight
Zero down me 0 5 5 5 5 5
Capacity tes ng 0 0 5 5 5 4
Targeted users 0 0 0 5 0 1
Complexity of setup 5 4 3 2 1 4
Nega ve impact
on user

1 3 5 5 5 5

User feedback 1 2 5 5 5 3
Score: 28 62 97 98 89

The weights for the comparison parameters have a reasoning behind them. The user sa-
sfac on with the product is very valuable for Mentech Innova on. Therefore, Mentech

would benefit from a deployment strategy in which the so ware errors or bugs would
impact the user the least and the users would always have a working version of the appli-
ca on. Addi onally, the deployment strategy which allows to test the applica on in the
condi ons close to real environment with users (capacity test) would make the release
of the applica on more reliable. The author of this thesis work did not have much ex-
perience with se ng up a deployment strategy, therefore the setup of it should not be
complex, however this is not a hard requirement because a good deployment strategy is
worth inves ng me in. The feedback from the users a er or during deployment would
be appreciated, however not necessary if the released so ware is properly tested. Fi-
nally, the user targe ng is an interes ng possibility, however for Mentech Innova on it
is not relevant because the product is s ll in its early stages.

As we can see from the end scores the A/B strategy has go en the highest score of 98.
The second best is canary deployment strategy with the score of 97. However Mentech
Innova on does not need the func onality that the A/B method offers - releasing the
new applica on only to the users under a certain condi on. Therefore since the A/B
strategy and the canary strategy scored very close results in the matrix the decision was
made to choose the canary deployment as the most suitable deployment method to use
at Mentech Innova on.

4.7 Development workflows

So far in this document the flow of the development work has only been described from
a business posi on using a value streammap. Addi onally, the development pipeline has
been given depic ng the flow of a so ware update from the commit stage to release. But
what are the actual steps of a developer when he or she wants to update an applica on?

To track the changes that are made to the code a version control system, Git, is needed.
This way the developers collabora ng on the code can see each other’s code updates,
experiment on new ideas without fearing to break the applica on and record a mes-
sage with each change so other collaborators can understand the reason for changing.
(Blischak, Davenport, & Wilson, 2016, 1.) Basically, Git works so that the developer has
a copy of all the files for the applica on on his or her computer in a folder called a local

23

repository. The changes the developer makes to these files are tracked by Git. Once the
changes to the files aremade the developer can commit them - put them to a staging area
(in this context, staging area refers to a file, which contains informa on of what is going
to be commi ed to version control) ready to be sent to the remote (central) repository.
This remote repository is usually accessible through a website (e.g. GitHub or GitLab).
The developer has to send (push) the changes to the remote repository. Only a er that
the other collaborators can see the file updates via one of the aforemen oned websites.

There are several models of workflow based on the way the developer interacts with the
version control system: Centralised workflow, Feature Branch workflow (GitHub flow),
Gi low, Forking workflow and GitLab flow (ComparingWorkflows, n.d.). There is no stan-
dardised process on how to interact with Git, so these workflow models help to ensure
the so ware changes in the version control are handled the same way throughout the
team. Themodels ofworkflowmen oned beforewill be further described and compared
in this subchapter.

Centralised workflow Centralised workflow uses one repository for all the project files
and changes to them. The default development branch is called master, and all the
changes are commi ed to it.

The flow of work goes as follows:

1. Developer clones the central repository

2. Developer makes changes to the files in his/her local repository

3. Developer commits and pushes the changes to the central repository

Feature Branch workflow (GitHub flow) The core idea of the Feature Branch workflow is
that the development of each new feature should happen in a designated branch. This
way themain branch -master - never contains broken code. When the developer finishes
working on an update, he/she can create a pull request so the other developers will be
able to check/test the new code and then the head of the project can integrate it in the
main master branch.

The workflow of this method is described below:

1. Developer clones the master branch

2. Developer locally creates a new branch (based on master) with the name of a fea-
ture he/she is working on

3. Developer makes changes to the files on the feature branch

4. Developer commits and pushes the changes to the central repository and creates
a pull request

5. The updated branch gets tested by other developers and the head of the project
integrates the feature branch into the master branch

24

Gi low This workflow is similar to the Feature Branch workflow - it also involves having a
master branch and feature branches. In addi on to that, Gi low allows having separate
branches for preparing, maintaining and recording releases. In Figure 10 an example of
Gi low branching is presented. The master branch has the main version of the applica-
on and the developers are working on the develop branch, crea ng feature branches

andmerging them back to develop. The feature branches never interact with the master.
When it is me to release a new version of the applica on the release branch is used.

Figure 10: Gi low branching

The flow of work with the Gi low method is as follows:

1. The project leader creates the develop branch from the master branch

2. Developer clones the develop branch

3. Developer locally creates a new branch (based on develop) with the name of a
feature he/she is working on

4. Developer makes changes to the files on the feature branch

5. Developer commits and pushes the changes to the central repository and creates
a pull request

6. The updated branch gets tested by other developers and the head of the project
integrates the feature branch into the develop branch

7. When the features on the develop branch are ready for release, a release branch
is created from develop. It gets tested and merged with master once it is ready

Forking workflow With the Forking workflow instead of using one central repository,
every developer has their own. All the project files are s ll stored in the main project
repository but the development does not happen there. Each developer working on the
project should fork (copy) the main project repository to their own account and develop
the new features there. Once the development of a feature is done, the developer can
file a pull request to themain project repository. A er that the project leader can pull the
changes to the master branch of the main repository. Forking workflow is very common
to use in open source projects.

Below is an example of the Forking workflow:

1. A developer forks the main project repository to his/her own account and clones
the project from there

25

2. Developer makes changes to the files of the project

3. Developer commits and pushes the changes to the repository on his/her account

4. Developer creates a pull request from his repository to the main project repository

5. The project leader checks the changes, approves and merges them into the main
project repository

GitLab workflow GitLab is a code hos ng pla orm for version control, as well as a tool
for project planning, codemanagement, Con nuous Integra on and Delivery. GitLab has
their own workflow model based on Gi low and Feature Branch workflow. Similarly to
these twoworkflowmodels, GitLab workflow proposes to have onemaster branch which
acts as a main releasable version of the applica on and separate branches for all features
that are being worked on.

Addi onally to that, GitLab workflow has a set of rules helping to structure and sim-
plify the development process. For releasing created applica ons or features to public,
separate branch called produc on can be used in addi on to master. All the commits
to all branches should be tested. The deployments of so ware should be automated.
Generally, a lot of the rules of the GitLab workflow are set to incorporate the ideas of
Con nuous Delivery.

To compare the workflows and choose the onemost suitable forMentech Innova on the
comparison parameters have been defined based on the thesis author’s opinion and the
requirements received from Mentech Innova on. The parameters are defined based on
the author’s and company’s choice because to the best knowledge of the thesis author,
there is no academic research on any of the aforemen onedworkflows being be er than
the other workflows. Addi onally, the workflow to use is usually determined by the hu-
man preferences and team needs.

The comparison parameters were chosen as relevant because they would help to see if
a workflow is a good match with Con nuous Delivery. Table 6 has been created to sum-
marise the informa on about the workflowmodels based on the predefined parameters.

The comparison of the workflowmodels is presented in Table 7 as a selec onmatrix with
the same comparison parameters as Table 6. As well as in the comparison of deployment
strategies, scores from0 to 5 (where a higher figure is be er)were given to eachworkflow
based on the answers in Table 6. Addi onally, the comparison parameters have been
given theweights from0 to 5 (wheremore ismore important) based on the importance of
them forMentech Innova on. In the bo omof the table the end score for eachworkflow
is calculated as a sum of all the parameters mul plied with their weights.

The weights have been determined based on the following reasoning. The compa bility
of a workflow with the concept of Con nuous Delivery is the most important, because in
the future Mentech was planning to be using Con nuous Delivery. The parameters that
go hand in hand with Con nuous Delivery - code review, tes ng and fast fixing of errors,
have also been considered important to have in a workflow for Mentech Innova on. Ad-
di onally, the workflow model should be simple to encourage the team to use it and to
reduce the amount of possible errors and misunderstandings. As Mentech team is s ll

26

growing, the workflow should scale with its size. Mentech Innova on so ware develo-
pers are working on several fairly complex applica ons therefore it is important that the
workflow model supports that and is typically used for that. The primary repository will
be used for deployment therefore it is preferable but not necessary to keep it clean and
always in a working state.

The resul ng scores of the selec on matrix (Table 7) show that the most suitable and
beneficial workflow for Mentech Innova on is the GitLab workflow.

Table 6: Summary of workflows

Centralised Feature Branch Gi low Forking GitLab

Simple
Yes, only
one branch

Only the
master branch
and feature
branches

Similar to
Feature
Branch but
with more
branches

Slightly
more work
because of
forking

Only the
master branch
and feature
branches
but more
branches
possible

Typical use

Small
projects
that don’t
change
o en

Large teams
or projects

Large teams
or projects

Open source
projects

Large teams
or projects
deploying
con nuously

Code
review

Not
promoted

Promoted
with merge
requests

Promoted
with merge
requests

Promoted
with merge
requests

Promoted
with merge
requests

Scaling
with
team size

Hard to
manage in
big teams

Easy to
manage, team
size does not
ma er

Easy to
manage, team
size does not
ma er

Easy to
manage, team
size does not
ma er

Easy to
manage, team
size does not
ma er

Tes ng
before
merging

Not
enforced

Promoted
with merge
requests

Promoted
with merge
requests

Promoted
with merge
requests

Promoted
as one of
the rules

Clean
primary
repository

No Yes Yes Yes Yes

Compa ble
with
Con nuous
Delivery

Possible
to set up,
however
lacks support
for some
stages

Possible
to set up,
however
lacks support
for some
stages

Works with
release
and ho ix
stages

Possible
to set up,
however
lacks support
for some
stages

Yes, takes in
account the
con nuous
tes ng and
deploying

27

Table 7: Selec on matrix for workflows

Centralised Feature Branch Gi low Forking GitLab Weight
Simple 5 4 4 3 4 4
Typical use 2 4 4 3 5 3
Code review 0 5 5 5 5 4
Scaling with
team size

1 5 5 5 5 3

Tes ng before
merging

1 4 4 4 5 4

Clean primary
repository

0 5 5 5 5 3

Compa ble with
Con nuous
Delivery

3 3 4 3 5 5

Score: 48 109 114 102 126

4.8 Conclusion

As a result of the Literature Research phase of the thesis project the goals that had been
set in the beginning of the phase were reached and the research ques ons for this phase
could be answered.

The general structure of the deployment pipeline is presented in Figure 5. It features
all the steps a so ware update has to go through to reach the users. The stages chosen
for the deployment pipeline are Commit, Integra on, Acceptance, User Acceptance, Ca-
pacity, Staging and Produc on. Addi onally, the source code and the environment and
applica on configura ons will be stored in version control and the package, reports and
metadata - in an Ar fact repository.

To create a risk mi ga on strategy the main project risks related to Con nuous Delivery
were iden fied. To assess their severity, they were evaluated by their impact and likeli-
hood. Based on that, the risk percentage for the whole project was calculated - 35%. To
prevent the risks from happening a mi ga ng rules were offered to help mi gate each
of the risks. It was found, that, generally, with the proper communica on within the
team, control from the management and lead engineers and group effort it is possible to
successfully prac ce Con nuous Delivery.

Several ways to deploy an applica on have been inves gated during the Literature Re-
search phase: recrea on, blue-green, canary, A/B and shadow deployment strategies.
All of them define a way the product is released to the clients, ensuring the quality of it
and enabling the developers to rollback a deployment in case some problems arise. A er
the comparison of these strategies canary deployment was chosen as the most suitable
deployment method to use at Mentech Innova on.

There are several development workflows nowadays, based on the way the developer
interacts with the version control system: Centralised, Feature Branch, Gi low, Forking
and GitLab workflow. A er a research into these models of work it was found that Git-
Lab flow is the most compa ble with Con nuous Delivery as a lot of its rules are set to

28

incorporate the ideas of Con nuous Delivery. Therefore GitLab flow was chosen as the
most beneficial workflow for Mentech Innova on.

To sum up, during the Literature Research phase of the thesis project the theore cal
basis for an implementa on of Con nuous Delivery at Mentech was formed. During the
next - implementa on - stage the chosen deployment strategy, development workflow,
risk mi ga on strategy and the general pipeline structure were used to implement the
Con nuous Delivery pipeline for the HUME website of Mentech Innova on.

29

5 DESIGN AND IMPLEMENTATION

In this chapter the design and implementa on of Con nuous Delivery for the HUMEweb-
site of Mentech Innova on are presented. First the deployment pipeline structure for
the website was created and the tools were chosen, and the design ques ons of chapter
2.4.2 were answered. Then the actual implementa on of the pipeline for the website
was done. This includes the setup for the Con nuous Delivery tool, version control flow
and the tools for building and tes ng the so ware.

5.1 HUME website descrip on

HUME website is the user interface of the Mentech so ware system (HUME). An image
of the website can be seen in the Appendix 1. HUME website gets the data from sensors
and outputs it in a visual form. On the website the resources like clients (actual clients of
Mentech Innova on) and sessions (measurements taken from the clients) can be man-
aged. To do that, the website has a side menu bar where the lists of clients and running
sessions are displayed. When one of the clients or sessions is clicked, the informa on per
client about the measurement sessions or a graph with the running session is displayed.

The informa on on the HUME website comes from the web service through HTTP re-
quests and web sockets. The website communicates with the web service, which is con-
nected to the database, so for the HUME website to operate both the web service and
the database are needed. Addi onally, the website access is restricted for security pur-
poses using Keycloak (access management tool), so for integra on tests Keycloak needs
to be present.

HUME website is wri en using the following technologies: HTML, SCSS and Vue.js. For
version control Git and GitLab are used.

5.2 HUME website deployment pipeline

Based on the general deployment pipeline for Mentech Innova on (Figure 5) a custom
pipeline for the HUME website had to be made. Compared to the general deployment
pipeline, two of the stages - User Acceptance (manual tests involving users) and Capacity
- were removed. Capacity tests are not possible to perform on a website, because these
tests are server-side, not client-side. User Acceptance stage was found not necessary, as
the pipeline has manual tes ng in the Staging environment as well.

The flow of work in the pipeline is similar to the one described in chapter 4.4 except
for the last steps (due to the removed stages). The changes to the website have to be
commi ed to version control by a developer. Then the rest of the pipeline executes au-
toma cally. The website is built, then various kinds of tests are performed on it, then it
is released to the staging environment and op onally to produc on.

Therefore, the first design ques on of chapter 2.4.2 can now be answered. The structure
of the deployment pipeline can be seen in Figure 11 and the descrip on of the steps of
the pipeline can be found in chapter 4.4.

30

Figure 11: HUME website deployment pipeline

5.3 Selec on of tools

The following sec on lists all the products and tools the author of this thesis chose to
use for the implementa on of Con nuous Delivery for the HUME website of Mentech
Innova on. Addi onally, the reasoning behind the choice of the tools is provided, as well
as the evalua on of the other op ons, where possible.

5.3.1 Version control

For version control Git and GitLab (GitLab, n.d.) were used. These were the technologies
of choice of Mentech Innova on and the developers had good experience with them
therefore they were the tools used for version control for this project as well.

5.3.2 Ar fact repository

For an Ar fact repository several exis ng Ar fact repository solu ons - Cloudsmith, Pack-
agecloud, JFrog Ar factory, Nexus Repository Pro and GitLab - were inves gated. It was
decided to use GitLab, because it was already being used for storing ar facts in the other
projects ofMentech Innova on. Addi onally, the other op ons did not offer any features
that would make the switch from GitLab to the other solu on worth it.

5.3.3 Con nuous Delivery tool

To orchestrate the whole process of Con nuous Delivery, to actually make the so ware
update go through the commit, tes ng and deployment stages (defined in the Figure
11) a Con nuous Delivery tool was needed. To choose the tool that is best suitable for

31

Mentech Innova on the hard and so requirements were defined and the most popular
tools found on the Internet were compared.

Ini ally for the comparison the following tools were chosen: Jenkins, GitLab CI, VSTS,
Bamboo, Codeship, Codefresh, TeamCity, Travis CI, GoCD, CircleCI and Drone. Mentech
Innova on has set as the hard requirements for the Con nuous Deivery tool to be availi-
able as a service (be cloud-hosted) and be compa ble with GitLab. TeamCity, Drone and
Jenkins are not availiable as a service and GoCD, VSTS, Travis CI and CircleCI are not com-
pa ble with GitLab. Addi onally, Bamboo was found to have too li le informa on and
documenta on on the official website to be easy to use. For these reasons themen oned
tools did not par cipate in the further comparison.

GitLab CI (GitLab Con nuous Integra on & Delivery, n.d.), Codeship (Con nuous Integra-
on, Deployment & Delivery with Codeship, n.d.) and Codefresh (Codefresh, n.d.) were

further inves gated and their offered features were compared. The gathered informa-
on as well as the comparison parameters can be seen in Table 8. The comparison pa-

rameters have been defined by the thesis author according to the Mentech Innova on
requirements.

Table 8: Summary of Con nuous Delivery tools

GitLab CI Codeship Codefresh
Price ($/month) 95 75 0
Amount of
repositories

Unlimited Unlimited Unlimited

Amount of
users

5 Unlimited Unlimited

Amount of
concurrent jobs

Unlimited 1 2

Docker support Yes Yes Yes

Local tes ng
Yes with
GitLab-runner

Yes, with Jet Yes

Kubernetes
support

Yes Yes Yes

Configura on
as code

Yes Yes Yes

Open Source Yes No No
Community
support
(according to
stackshare.io on
4 january 2019)

4.44K Reddit
Points, 1.85K Stack
Overflow
Ques ons

1.3K Reddit
Points, 206 Stack
Overflow
Ques ons

1.04K Reddit
Points, 0 Stack
Overflow
Ques ons

GitLab
compa bility

Yes Yes Yes

Cloud hosted Yes Yes Yes

No fica ons
Email, web, Slack,
etc.

Email, Slack,
custom no fica ons

Email, Slack

GitLab OAuth
authorisa on

Yes Yes Yes

https://stackshare.io/stackups/codefresh-vs-codeship-vs-GitLab-ci

32

The selec on matrix - Table 9 - was created based on Table 8. As well as in the other
selec on matrices in this document the scores from 0 to 5 (where more is be er) were
given to each Con nuous Delivery tool based on the informa on in Table 8. Addi onally,
weights from 0 to 5 (where more is more important) have been assigned to the compar-
ison parameters. These weights have been determined by the thesis author based on
importance of them for Mentech and have been approved by the lead engineer of the
company. In the bo om of the table the end score for each Con nuous Delivery tool is
calculated as a sum of all the parameters mul plied with their weights.

Table 9: Selec on matrix for Con nuous Delivery tools

GitLab CI Codeship Codefresh Weight
Price ($/month) 2 3 5 3
Amount of repositories 5 5 5 4
Amount of users 2 5 5 3
Amount of concurrent jobs 5 2 3 2
Docker support 5 5 5 5
Local tes ng 5 5 5 5
Kubernetes support 5 5 5 3
Configura on as code 5 5 5 5
Open Source 5 0 0 3
Community support 5 4 3 4
No fica ons 5 3 2 2
GitLab OAuth authorisa on 5 5 5 2

Score: 187 170 197

The reasoning behind the parameters is as follows: Mentech Innova on uses Docker for
containerisa on for the applica ons to run in which eases the environment configura-
ons. There is prac cally no other as popular tool for this job so it is important for the

Con nuous Delivery tool to be compa ble with Docker. Addi onally it is extra important
for the Con nuous Delivery tool to support local tes ng (for debugging pipelines) and
configura on as code (for version control and reproducibility) as it is one of the rules of
Con nuous Delivery. Mentech Innova on has a lot of projects ongoing so the amount of
repositories offered should be high. Community support of the tool of choice is impor-
tant because it allows to get the feedback to the arising ques ons faster and generally
allows to findmore informa on about the use of the tool on the internet. The price of the
tool per month is not very important (unless its extremely high) but it is of course nicer if
it is lower. The So ware Development team of Mentech Innova on consists of 5 people
so the tool should minimally offer support for 5 users, and more is be er. Kubernetes
is one more tool which at the me of wri ng this (7 January 2019) was considered to be
used to Mentech Innova on, so it is be er if the chosen Con nuous Delivery tool sup-
ports it. Open Source tools are the preferred tools of Mentech Innova on. The amount
of concurrent jobs the tools of choice offers is not very important for Mentech but more
is be er. It is important to get no fica ons when the job is finished or there is an error
with a pipeline, but the way no fica ons are managed is not very important. Together
with the use of GitLab the tool should support authorisa on through it, but other ways
of authorisa on would also be fine.

33

From Table 9 it is visible that Codefresh gained the highest score therefore it should used
for managing Con nuous Delivery at Mentech Innova on.

5.3.4 Commit stage

In the following subsec on the tools chosen for each step of the Commit stage of Con-
nuous Delivery are listed and their choice is mo vated.

Compile and Package Webpack was chosen as the tool to use for compiling and pack-
aging the code for two reasons. First, Mentech Innova on was using Webpack for their
websites so the developers have experience with it and their opinion of it was posi ve.
Second, compared to the other tools for compiling so ware (Grunt, Browserify), Web-
pack has be er features and easier configura ons. Webpack can handle JavaScript, CSS
and image files, it can minify these files which is good for website op misa on and split
resources into bundles to reduce the website loading me. The configura ons of Web-
pack are also shorter than of other similar tools, so the errors are less likely to occur and
less me will be spent on configura on debugging. (Möller, 2018, 11-12.)

Code analysis ESLint and Flowwere used for code analysis. ESLint helps the developers to
make the code more consistent and to avoid bugs by introducing guidelines for the code
wri ng style (Hautaviita, 2018, 17). ESLint was chosen because it is free and open-source
and it is more popular than similar tools - on 6 December 2018 ESLint had 12888 stars on
GitHub, compared to a similar tool, JSHint, which had 8066 stars. Stars on GitHub allow
the users to mark a project as ”favourite”, so these stars can be an indicator of popularity
of a project. ESLint allows the developers to build their own set of rules for code analysis
or to use a predefined set of rules, which also can be adjusted. Therefore ESLint is very
flexible and easy to use as well. (Paulasaari, 2018, 46-48.)

JavaScript language does not have strong data types, which can cause bugs that are hard
to no ce (e.g. possibility of inpu ng a string value in a field for an integer). Flow is
an open-source type checker, that is used to prevent these kind of bugs by allowing the
developers to enable the enforced use of data types. Flow is the only tool for JavaScript
that has this func onality. (Paulasaari, 2018, 50.)

Unit tests In Table 10 the tools for JavaScript unit tes ng are listed and compared. The
tools that were chosen for comparison are Mocha (Mocha, n.d.), Jasmine (Jasmine Doc-
umenta on, n.d.), Jest (Jest, n.d.) and AVA (Ava, n.d.). These are the most widely used
tools for unit tes ng. The parameters for comparison were derived from the features the
tools provided. The features that are present in the frameworks are marked with an X.

From the comparison in Table 10 we can see that the Jest unit tes ng framework is the
most feature complete one. For this reason it was decided to use Jest for JavaScript unit
tes ng at Mentech Innova on.

5.3.5 Integra on stage

Configure environment Docker Compose (Docker Documenta on, n.d.) was used to con-
figure the environment for the website to run in. This tool was used in the company on
other projects and the developers had good experience with it and, addi onally, there
are prac cally no other tools to perform the job that Docker does.

34

Table 10: Comparison of unit test tools

Mocha Jasmine Jest AVA
Provides a tes ng structure x x x
Integrates well with Vue x x x x
Provides asser on func ons x x
Generates and displays test results x x x
Snapshots of components possible x x
Provides mocks, spies and stubs x x
Code coverage reports x
Running tests in parallel x x

Deploy website To deploy the website Codefresh was used as it was the tool generally
used for the whole automa on of the Con nuous Delivery processes.

Integra on tests It was found that it was possible to use the same tool for the integra on
stage as for the unit tes ng stage. Therefore, Jest was used for the integra on tes ng of
the so ware at Mentech Innova on as well.

5.3.6 Acceptance stage

Configure environment, Deploy website For configuring the environment and deploy-
ing of the website in this stage the same tools were used as listed and described in the
Integra on stage sec on.

Acceptance tests For acceptance tests several most popular user interface tes ng frame-
works were evaluated - Puppeteer, WebdriverIO, Cypress, Nightwatch.js, PhantomJS and
TestCafe. For the Mentech Innova on use case it was important to choose a framework
that has good documenta on, is ac vely supported and is preferably free to use. For
this reason, only Puppeteer, WebdriverIO, Cypress and Nightwatch.js have been further
compared via empirical research - the thesis author tried to install and use each of them
for wri ng tests for the HUME website. During the research it was found that the tests
in Nightwatch.js were the most readable and easy to write. Addi onally, Nightwatch.js
has good documenta on (unlike Cypress), is easy to install (unlike WebdriverIO) and has
cross-browser support (unlike Puppeteer) (Nightwatch.js, n.d.). Therefore, Nightwatch.js
was used for acceptance tes ng of the HUME website.

5.3.7 Staging and Produc on

Configure environment, Deploy website The environment that is used to run the HUME
website in the cloud is AmazonWeb Services Simple Storage Service (S3) and CloudFront.
These tools were chosen by the lead engineer of Mentech Innova on, as the choice of
them is out of scope of this project. Amazon S3 is a storage service used to store the files
of the website in the cloud and CloudFront delivers these files to the customers.

To configure the environment and deploy the website, similarly to the previous stages,
Codefresh was used.

35

5.3.8 Conclusion

In the previous chapters the tools that were used for the Con nuous Delivery pipeline
of the HUME website were described and the choice was given a reasoning. Therefore,
the second ques on of chapter 2.4.2 can now be answered. The tools that are used for
the deployment pipeline are as follows: GitLab for version control and ar fact repository,
Codefresh for running the pipeline, Webpack for compiling and packaging the code, ES-
Lint and Flow for code analysis, Docker to configure the environments, Jest for unit and
integra on tests and Nightwatch.js for acceptance tests. The website is deployed to the
cloud which works with the Amazon Web Services tools.

5.4 Se ng up version control

The GitLab repository has been set up and used atMentech Innova on before the start of
this project. However the new flow of work - GitLabworkflow - needed to be established.
At the beginning of the project Mentech had several branches on GitLab that were not
used, aswell as themaster branch and the feature branches. The obsolete brancheswere
deleted. With the master branch and the feature branches the GitLab workflow was set
up.

GitLab is also used as an ar fact repository. It did not need to be set up, as it worked out
of the box, no configura on was necessary.

5.5 Se ng up the Con nuous Delivery tool

To set up the Con nuous Delivery tool a configura on file (codefresh.yml) was created in
the HUME website project. This file contains all the se ngs for the Codefresh pipeline.
The codefresh.yml file lists the stages that the so ware has to go through to be released
(such as building, unit tes ng, etc.) and the setup for these stages.

As it canbe seen in Figure 11 there are 5 stages in theHUMEwebsite deployment pipeline.
However generally they can be divided into four - build (commit), test (code analysis, unit,
integra on and acceptance), staging and produc on. Therefore the resul ng Codefresh
pipeline consists of four stages, and these stages have substages to represent all the steps
of the HUME website deployment pipeline. The image of the resul ng pipeline steps can
be seen in Figure 12. The stages on the image are represented in colours - steps of the
build stage are grey, test steps are blue, staging is purple and produc on is green. Each
of the steps of the pipeline is described in this chapter.

For each step of the pipeline several parameters can be specified. For most of the steps
the parameters that had to be setwere an image, stage and commands. The image se ng
refers to a Docker image - a file containing libraries, tools, and other files necessary to be
able to run the applica on in a specific environment. The pre-made images can be found
on the Docker Hub (library for container images). Addi onally, it is possible to create
a custom image. In the steps of the pipeline described further a pre-made image was
used everywhere where it is not stated otherwise. The stage refers to one of the three
stages men oned before and is needed to visually separate the files into categories. The
commands list all the bash scripts to perform the ac ons that have to happen in the step.

36

Figure 12: Deployment pipeline steps

The first step of the pipeline is build-test. This step belongs to the build stage. The com-
mands set up the access to GitLab for the project, download all the necessary libraries
and build the website ready for tes ng.

The second step is test-analysis. This step belongs to the test stage. During this step
ESLint is set to check the project files, the se ng up and the func onality of ESLint is
described further on in chapter 5.6.

The following step is test-unit. This step belongs to the test stage. During this step a script
is run to execute the unit tests.

Next step is launch-environment. It is needed to launch the database, web service, Key-
cloak, browser for acceptance tests, and the Nginx tool as a server for the website. These
things have to be launched in order for the website to be tested to run in a similar envi-
ronment as it runs in produc on.

To launch the database an image of it had to bemade first as the aforemen oned Docker
Hub did not have the database image that could be used for this project. This image
specifies the management system of the database (PostgresSQL) and lists the data that
has to be in this database (columns, rows, en es, etc). Similar image had to bemade for
Nginx, as an extension of an exis ng image from Docker Hub, specifying the Nginx image
from Docker Hub to be used and the files of the website to be used with it.

The launch-environment step uses these images as well as the images from Docker Hub

37

to create the environment for the HUMEwebsite to run and be tested in. Due to that the
tests of the so ware will be run during this step and therefore this step belongs to the
test stage. This step has two substeps: test-acceptance and test-integra on. During each
of them, the scripts for running the tests are executed. The setup of the tes ng tools and
func onality of tests are described further in chapters 5.7 and 5.8.

A er the launch-environment step, an image had to bemade for the deployment to Ama-
zon S3, as an exis ng pre-made image used different parameters from the ones that were
needed. The newly created image was an extension of the pre-made one. Then the web-
site had to be rebuilt with the se ngs for the staging environment. Next step is deploy-
staging. It belongs to the staging stage. During this step the website files are pushed to
the staging environment in the cloud.

As it is men oned in the scope of the thesis (chapter 2.2.1), the website should be re-
leased to the produc on-like environment, which is staging in this case. However, for the
ease of the future deployments to produc on, it was decided to add one more step to
the codefresh.yml file. A condi onal step deploy-prod was added. This step is executed
only a er the manual approval of the management/lead engineer of Mentech Innova-
on. The configura ons of this step are essen ally the same as the configura ons of the

deploy-staging step. However during this step the website files are pushed to the pro-
duc on environment in the cloud. Staging and produc on environments are the same
in configura on, the difference is that the produc on version of the website can be used
by clients and the staging version can be used by the developers of Mentech for tes ng.

A er crea ng the codefresh.yml file, an account on the Codefresh website was made by
the thesis author. Codefresh prompted the user to connect a GitLab repository for which
the deployment pipeline should be run, in this case it is the HUME website repository.
Then the setupmethod for the pipelinemust be chosen, in this case it is the codefresh.yml
filewhichwas described earlier. The file is presented for review and then the deployment
pipeline is automa cally created. A er that, with every push of an update to the HUME
website to GitLab the pipeline will be automa cally run and the developers will be no -
fied by email about the status of it (success or fail). It is also possible to see in real- me
on the website of Codefresh how the pipeline is running and view the console log for the
status of the pipeline and whether any errors occur and where.

5.6 Se ng up the Commit stage

For the Commit stage to be set up for the so ware of Mentech Innova on all the tools
listed in chapter 5.3.4 had to be configured.

Compile and Package For compiling and packaging the website Webpack was added to
the website project. For the se ng up of it a configura on file was made in the root of
the project. The configura on included the informa on about the project files that need
to be exported, the rules for loading the files, etc. Addi onally, the script for star ng up
Webpack was added to the scripts sec on of the package.json file.

Code analysis For configuring the ESLint tool the packages needed for it were added to
the package.json file of the project (Configuring ESLint, n.d.). The configura on file for
ESLint was automa cally generated. This file defines the rules for ESLint to check the

38

code, such as the amount of spacings, posi oning of brackets or variable naming. Two
plugins - for the support of Flow and Vue - were added to the file, and some pre-made
rules were overwri en.

Unit tests To set up Jest, its package and configura ons were added to the package.json
file of the project (Jest: Ge ng Started, n.d.). The configura ons were copied from an
already exis ng project of Mentech Innova on and edited to fit the case. The config-
ura on file enables Jest to be used together with Vue.js, it specifies the tools used to
transform the files (for example vue-jest tool transforms Vue.js files into HTML, CSS and
JavaScript), and lists the directory for the setup file used for ge ng informa on from the
web service. Unit tests were wri en to check the func ons of the website components.
For instance, one of the tests ensures that the component default data is being set cor-
rectly when the component loads. The test creates a component instance and expects
the value of a certain text field in a component to be equal to the preset value.

5.7 Se ng up the Integra on stage

In the following chapter the setup of tools listed in chapter 5.3.5 will be described.

Configure environment, Deploy website The setup of the Docker images and the config-
ura on of Codefresh are described in chapter 5.5.

Integra on tests As Jest was used for the integra on tests as well as for the unit tests,
no se ng up of the tool was needed. Several tests were wri en to ensure the website’s
compa bility with the other elements of the Mentech Innova on system. For instance,
the connec on to a web service from which the informa on about the clients and ses-
sions gets delivered to the website was tested. During the test the connec on to the web
service was established, and the exis ng website func ons were used to try to get the
list of clients from the database or to stop a running session for a client.

5.8 Se ng up the Acceptance stage

To set up the Acceptance stage the tools described in chapter 5.3.6 had to be configured.

Configure environment, Deploy website The setup of Docker images and the configura-
on of Codefresh are described in chapter 5.5.

Acceptance tests For the acceptance tests the Nightwatch.js package was added to the
HUMEwebsite project (Nightwatch.js, n.d.). Addi onally, a web driver (driver for a brow-
ser to be able to run tests in it) had to be installed. The op ons for web drivers were
listed on the Nightwatch.js website. GeckoDriver was chosen for use, as it is the driver
for Firefox, which is the browser of choice of the thesis author.

The configura on file for Nightwatch.js had to be created. It specifies the path to the
folder, in which the test files are, and the se ngs for the web driver (e.g. on which port
the browser should run). A script for running the acceptance tests was wri en in the
package.json file.

With Nightwatch.js it was possible to automa cally test the ac ons of all the items on
the HUME website, programming the browser to click on bu ons, fill in the input fields

39

in forms and check if the elements of the page loaded correctly. For example, during
one of the automated tests the website would be opened, the username and password
would be filled in to login and the access to the website would be obtained. Then the
func oning of the website would be checked - whether the page has loaded correctly
(e.g. all the images and texts on it), whether the lists of clients and sessions have been
loaded from the web service correctly and whether the page loads at a reasonable me.

5.9 Se ng up Staging and Produc on environments

The setup of both environments was out of the scope of the project, as the setup of the
cloud environment was needed for the whole so ware system, not only for the website.
The setup of the Docker image for Amazon S3 and the configura on of Codefresh are
described in chapter 5.5.

5.10 Conclusion

As a result of theDesign and Implementa onphase the design of the deployment pipeline
for the HUME website was made, the research ques ons for this phase were answered
and the Con nuous Delivery pipeline was set up.

The structure of the HUME website pipeline is presented in Figure 11. This pipeline is
similar to the general one (Figure 5) created during the literature research phase, ex-
cept for the User Acceptance and Capacity stages that were removed. According to the
pipeline structure, a er an update to the code of the project is pushed to version con-
trol, the website should automa cally be built, the code should be analysed, tested (unit,
integra on and acceptance) and released into a staging environment.

During the Design and Implementa on phase the tools to implement the deployment
pipeline were chosen. The selected tools are: GitLab for version control and as an ar fact
repository, Codefresh to run the deployment pipelines, Webpack to compile and package
the code, ESLint and Flow for sta c code analysis, Docker for environment configura ons,
Jest for unit and integra on tests and Nightwatch.js for acceptance tests. The staging
and produc on environments of the website are running in the cloud which works with
Amazon Web Service tools.

The tools men oned above have been configured to work together. A working deploy-
ment pipeline was created according to the planned structure of it. The running of the
pipeline, including all the stages and the console log prin ng out the state of the pipeline,
can be seen by the developers of Mentech Innova on on the Codefresh website.

40

6 VALIDATION

The aim of this project was to examine the concept of Con nuous Delivery, evaluate its
risks and benefits and, if the concept proves to be theore cally beneficial, to implement
Con nuous Delivery for the HUME website of Mentech Innova on. The implementa on
phase included the configura ons of the tools and infrastructure of Con nuous Delivery.
This chapter will demonstrate the valida on of the Con nuous Delivery concept and its
implementa on. It includes the theore cal assessment of the concept benefits as of the
end of the project, a comparison of the old way of deploying so ware with the new de-
ployment pipeline and a screenshot and descrip on of the resul ng Codefresh pipeline.

For the theore cal assessment the Maturity Model is used. This model can be used to
classify the releasemanagementmaturity of a company, in this caseMentech Innova on.
The model uses several parameters, defining the so ware development processes and
prac ces. These parameters have different levels of maturity, so the company can see
how their working prac ces can improve. (Humble & Farley, 2011, 419.)

The model is presented on the Figure 13. In red the level per each parameter on which
the so ware of the HUME website of Mentech Innova on was before the implementa-
on of Con nuous Delivery is marked. The so ware build was automated, however the

tests were not. The environments for each build were created manually. Releases were
reliable, however very me consuming. Tests were not wri en. Data migra ons were
manual. Version control was set up well, however there was no defined way of how to
work with branches, which resulted in a lot of unused branches.

In green the levels per each parameter on which the so ware of the HUME website of
Mentech Innova on was a er the implementa on of Con nuous Delivery are marked.
The build-test-release process is automated and is repeatable and reliable. The visual
board and the console log of the Codefreshwebsite allow the developers to see the status
of the deployment pipeline clearly and act on it. Addi onally, all the team members
receive emails with the status of the deployment pipeline (success/fail), so any errors can
be proac vely managed. All the tes ng is automated as well as the database changes.
The Codefresh website displays the me in which the pipeline runs - on average it is 10
mi-nutes. To sum up the level per each parameter moved two levels up on average, and
in general the so ware deployment process can be considered quan ta vely managed
or consistent.

To visualise the benefit of using Con nuous Delivery for the HUME website so ware re-
leases, a value stream map was created and it is displayed on Figure 14. This map is an
updated version of the one that can be seen in the Chapter 4.3. The new value stream
map has been approved by the lead engineer of Mentech. Compared to the old version,
this value streammap shows a clear improvement in the development & con nuous tes-
ng, system tes ng and release stages. The system tes ng and release value-added me

has decreased, as well as the elapsed me between stages. We can see that there is no
elapsed me between the development & con nuous tes ng and system tes ng stages
anymore, because the developers can now system test the so ware by one click of a but-
ton whenever they are ready. The only period of elapsed me of the so ware delivery
part of the value stream map (between the system tes ng and release stages) depends
now on a management decision when to release the HUME website to the clients.

41

Figure 13: Maturity Model (Humble & Farley, 2011, 419)

In the old version of the value stream map, the system tes ng and release stages would
in total take 28% of the total me, whereas with the Con nuous Delivery enabled these
stages take 9% of the total me, and the le over me can now be spent on the develop-
ment and con nuous tes ng of the HUME website. Therefore, the enabling of Con nu-
ous Delivery has clearly benefited the whole process of so ware release.

42

Figure 14: Value stream map with Con nuous Delivery

The resul ng deployment pipeline created for the HUME website of Mentech Innova on
is working correctly as it can be seen on the Figure 15. More images of the Codefresh
console can be found in the Appendix 2.

The pipeline is started when any of the developers working on the HUME website push
their work to GitLab. If the so ware has no bugs, all the 13 steps of the pipeline complete
without errors, taking in total 10 minutes 14 seconds to run (this me can vary, but on
average, it is about 10 minutes). As a result, the so ware of the HUMEwebsite is pushed
to the staging environment in the cloud, and, when the management of Mentech wants
to release it to their clients, it can be done by just one push of a bu on.

Figure 15: Codefresh console screenshot

A er the valida on of the project and the system themain research ques on of this thesis
can now be answered and the hypothesis can be proved. The concept of Con nuous
Delivery has improved the process of wri ng, tes ng and releasing so ware at Mentech
Innova on. As can be seen from the Figures 13 and 14, Con nuous Delivery allows the
process of so ware development and release to be controlled be er, as the state of the
so ware being tested and deployed can be seen at all mes and if any errors occur the
developers are no fied of it. As the whole deployment pipeline for the HUME website
is automated, the developers can deploy updates to so ware just by pushing their code

43

to version control, which saves the me on manual tes ng and deployment, and any
human errors while releasing are just not possible. The process of so ware releasing
for the HUME website has become repeatable and reliable, and since the tes ng and
deployment can be now done by just a push of a bu on, the developers can create and
release new features faster, which will benefit Mentech Innova on.

44

7 CONCLUSION

During this thesis project a research project was conducted on the usage of Con nuous
Delivery for the so ware at Mentech Innova on. This topic was important for the com-
pany, as in the end of 2019 the company is aiming to turn their emo on sensing pla orm
HUME into produc on grade so ware. The so ware lacked quality assurance and re-
peatable and reliable releases, and the concept of Con nuous Delivery was proposed as
a solu on to this problem.

The aim of the project was to validate whether the concept of Con nuous Delivery would
improve the process of wri ng, tes ng and releasing so ware at Mentech Innova on
and if so, how? To perform this valida on a literature research and an implementa on
of Con nuous Delivery for the HUME website of Mentech Innova on was to be made. A
hypothesis to beprovedor disprovedduring the researchwas: The concept of Con nuous
Delivery will improve the process of so ware releasing at Mentech Innova on bymaking
it fast, frequent, repeatable and reliable.

During the literature research the concept of Con nuous Delivery, its benefits and dis-
advantages were evaluated and the general structure of the deployment pipeline for the
Mentech so ware was created. The poten al risks when working with Con nuous Deli-
very were listed andmi ga ng strategies for themwere proposed. It was found that with
proper communica on and planning it is possible to successfully prac ce Con nuous De-
livery. Addi onally, the deployment strategies for the so ware were examined and the
strategy that was found to suit Mentech the best was canary deployment. The so ware
development workflowswere compared. It was found that GitLab workflowwas the best
compa ble with Con nuous Delivery as a lot of its rules were set to incorporate the ideas
of Con nuous Delivery, therefore it was chosen for use at Mentech Innova on.

During the implementa on phase of the project the structure of the deployment pipeline
for the HUME website of Mentech Innova on was created and the tools for its imple-
menta on were chosen. Then, the pipeline was implemented using Codefresh. Using
this pipeline, a developer commits their code to version control (GitLab), the code gets
automa cally compiled and packaged (with Webpack), unit tested (with Jest), analysed
(with ESLint and Flow), integra on (Jest) and acceptance (Nightwatch.js) tested and re-
leased to the staging and produc on environments (running in the cloud working with
Amazon AWS tools).

The deployment pipeline of the HUME website has proved to work correctly. The vali-
da on of the implemented concept was conducted in two ways: using a maturity model
and using a value stream map. Both of these methods proved that the concept of Con-
nuous Delivery was beneficial to be used with the Mentech Innova on so ware as it

improved the process of so ware tes ng and release by making it fully automated, mea-
sured, controlled and therefore reliable. Addi onally, it saved me for the developers so
that instead of manual tes ng and releasing me can now be spent on developing new
features. Thus, the usage of the Con nuous Delivery concept was validated and the hy-
pothesis presented at the beginning of the work was proved. It can be concluded that
Con nuous Delivery has improved the process of wri ng, tes ng and releasing so ware
at Mentech Innova on.

45

8 RECOMMENDATIONS

In this thesis work the implementa on and valida on of Con nuous Delivery on the so -
ware of Mentech Innova on has been described. However, for the further successful
func oning of Con nuous Delivery several recommenda ons can be given. This chapter
lists the work that can be done to support or improve the created system.

As men oned in chapter 4.5, the Con nuous Delivery model can be a challenge to truly
adopt in a company due to a big amount of team collabora on, discipline and me that
is needed. Therefore, to keep the team commi ed to the usage of the Con nuous Deli-
very method, the rules listed in chapter 4.5 should be followed. In general, everybody
in the team should be informed of the prac ce and encouraged to con nuously deliver
the results at the regular mee ngs. The team members should take responsibility for
their code and write tests for it. Addi onally, the management of all the teams prac sing
Con nuous Delivery should regularly check the status board of the so ware integra ons
to see the status of each feature branch and the person responsible for it. With a good
collabora on of the team members the highest level of company deployment maturity
can be achieved.

In regards to the created deployment pipeline, the Ar fact repository in GitLab is set up
to store the external libraries needed for the project. To store the package between the
stages of the deployment pipeline cache is used. However, as men oned in chapter 4.4,
the package should be stored in the Ar fact repository, as well as the documenta on
from every step of the deployment pipeline execu on. This needs to be set up.

The Con nuous Delivery system is yet to be implemented on the other elements of the
Mentech Innova on system. A lot of the already wri en code can be reused (for example
the configura on files for the deployment tools), however depending on the applica on
different tools might need to be chosen. Since this thesis document has proven Con-
nuous Delivery to be beneficial to be used, both theore cally and prac cally, Mentech

Innova on engineers have to set it up for the code they are working on.

During work with the Con nuous Delivery tool - Codefresh - it was no ced that it runs
out of memory when running the pipeline. This can lead to failed deployments because
the Codefreshmemory just cannot handle the amount of code it has to process. The free
Codefresh plan that was used only offers 2GB of pipeline memory. Addi onally, this plan
offers 120 builds/month (so the pipeline can be ran only 120 mes/month), which is not
an issue when running the pipelines only for the HUME website, but it might be too li le
if Con nuous Delivery with Codefresh will be enabled for all the parts of the Mentech
Innova on system. Therefore, to prac ce Con nuous Delivery effec vely, it would be
beneficial to get the Basic paid Codefresh plan, which enables more pipeline memory
(3GB) and more builds/month (220).

46

Bibliography

Ava. (n.d.). Retrieved 25 January 2019, from https://github.com/avajs/ava
Blischak, J. D., Davenport, E. R., & Wilson, G. (2016). A quick introduc on to version

control with Git and Github. PLoS computa onal biology, 12(1), 1–18.
Chang, M. (2013). Model everything to fail fast. Retrieved 22 February 2019,

from https://www.thoughtworks.com/insights/blog/model-everything
-fail-fast

Chen, L. (2015). Con nuous delivery: Huge benefits, but challenges too. IEEE So ware,
32(2), 50–54.

Codefresh. (n.d.). Retrieved 5 February 2019, from https://codefresh.io/
Comparing workflows. (n.d.). Retrieved 19 February 2019, from https://www

.atlassian.com/git/tutorials/comparing-workflows
Configuring ESLint. (n.d.). Retrieved 25 January 2019, from https://eslint.org/

docs/user-guide/configuring
Con nuous integra on, deployment & delivery with Codeship. (n.d.). Retrieved 5 Febru-

ary 2019, from https://codeship.com/
DeMarco, T., & Lister, T. (2003). Waltzing with bears: Managing risk on so ware projects.

New York: Dorset House.
Docker documenta on. (n.d.). Retrieved 19 February 2019, from https://docs.docker

.com/
Farcic, V. (2017). The ten commandments of con nuous delivery. Retrieved 7 November

2018, from https://technologyconversations.com/2017/03/06/the-ten
-commandments-of-continuous-delivery/

GitLab. (n.d.). Retrieved 25 January 2019, from https://about.gitlab.com/stages
-devops-lifecycle/

GitLab con nuous integra on & delivery. (n.d.). Retrieved 5 February 2019, from
https://about.gitlab.com/product/continuous-integration/

Halonen, R. (2017). Improving visibility of test results for con nuous integra on and deliv-
ery pipeline (Master’s Thesis, Degree Programme in Informa on Technology, Tam-
pere University of Applied Sciences). Retrieved 12 February 2019, from http://
urn.fi/URN:NBN:fi:amk-2017112518145

Hautaviita, A. (2018). Developing a web applica on on the MEVN stack (Thesis,
Degree Programme in Informa on Technology, Turku University of Applied Sci-
ences). Retrieved 6 December 2018, from http://urn.fi/URN:NBN:fi:amk
-2018120319693

Humble, J., & Farley, D. (2011). Con nuous delivery: Reliable so ware releases through
build, test, and deployment automa on. Boston: Addison-Wesley.

Humble, J., & Molesky, J. (2011). Why enterprises must adopt devops to enable con n-
uous delivery. Cu er IT Journal, 24(8), 6–12.

Jasmine documenta on. (n.d.). Retrieved 25 January 2019, from https://jasmine
.github.io/

Jest. (n.d.). Retrieved 25 January 2019, from https://jestjs.io/
Jest: Ge ng Started. (n.d.). Retrieved 25 January 2019, from https://jestjs.io/

docs/en/getting-started
Mocha. (n.d.). Retrieved 25 January 2019, from https://mochajs.org/

https://github.com/avajs/ava
https://www.thoughtworks.com/insights/blog/model-everything-fail-fast
https://www.thoughtworks.com/insights/blog/model-everything-fail-fast
https://codefresh.io/
https://www.atlassian.com/git/tutorials/comparing-workflows
https://www.atlassian.com/git/tutorials/comparing-workflows
https://eslint.org/docs/user-guide/configuring
https://eslint.org/docs/user-guide/configuring
https://codeship.com/
https://docs.docker.com/
https://docs.docker.com/
https://technologyconversations.com/2017/03/06/the-ten-commandments-of-continuous-delivery/
https://technologyconversations.com/2017/03/06/the-ten-commandments-of-continuous-delivery/
https://about.gitlab.com/stages-devops-lifecycle/
https://about.gitlab.com/stages-devops-lifecycle/
https://about.gitlab.com/product/continuous-integration/
http://urn.fi/URN:NBN:fi:amk-2017112518145
http://urn.fi/URN:NBN:fi:amk-2017112518145
http://urn.fi/URN:NBN:fi:amk-2018120319693
http://urn.fi/URN:NBN:fi:amk-2018120319693
https://jasmine.github.io/
https://jasmine.github.io/
https://jestjs.io/
https://jestjs.io/docs/en/getting-started
https://jestjs.io/docs/en/getting-started
https://mochajs.org/

47

Möller, K. (2018). Developing a graphical user interface for modifying chatbot configu-
ra ons (Thesis, Degree Programme in Informa on and Communica ons Technol-
ogy, Metropolia University of Applied Sciences). Retrieved 6 December 2018, from
http://urn.fi/URN:NBN:fi:amk-2018052510356

Nightwatch.js. (n.d.). Retrieved 19 February 2019, from http://nightwatchjs.org/
Niki na, N., Kajko-Ma sson, M., & Stråle, M. (2012, June). From scrum to scrumban:

A case study of a process transi on. In 2012 interna onal conference on so ware
and system process (ICSSP) (pp. 140-149). IEEE.

Paulasaari, M. (2018). Tools for code quality in front-end so ware development (Mas-
ter’s Thesis, Degree Programme in Informa on Technology, Metropolia University
of Applied Sciences). Retrieved 6 December 2018, from http://urn.fi/URN:
NBN:fi:amk-201804134642

Shahin, M., Babar, M. A., & Zhu, L. (2017). Con nuous integra on, delivery and deploy-
ment: A systema c review on approaches, tools, challenges and prac ces. IEEE
Access, 5, 3909–3943.

Sharma, A. (2018). A brief history of devops, part IV: Con nuous deliv-
ery and con nuous deployment. Retrieved 6 November 2018, from
https://circleci.com/blog/a-brief-history-of-devops-part-iv
-continuous-delivery-and-continuous-deployment/

Tremel, E. (2017). Six strategies for applica on deployment. Retrieved 8 November 2018,
from https://thenewstack.io/deployment-strategies/

http://urn.fi/URN:NBN:fi:amk-2018052510356
http://nightwatchjs.org/
http://urn.fi/URN:NBN:fi:amk-201804134642
http://urn.fi/URN:NBN:fi:amk-201804134642
https://circleci.com/blog/a-brief-history-of-devops-part-iv-continuous-delivery-and-continuous-deployment/
https://circleci.com/blog/a-brief-history-of-devops-part-iv-continuous-delivery-and-continuous-deployment/
https://thenewstack.io/deployment-strategies/

48

Appendix 1 HUME website

Below a screenshot from one of the pages of the HUMEwebsite is presented. The clients
field that can be visible in the side menu of the website is filled with clients (such as
”David Hume”) go en from the database through the web service. Similarly to this, the
sessions field (not visible on the screenshot) is filledwith running sessions go en from the
wearable sensor devices through the web service. The items in the clients and sec ons
fields can be clicked, causing a calendar of measurements to appear per client or a graph
with a running session to appear per session.

Figure 16: Hume website screenshot

49

Appendix 2 Codefresh console

Below on the Figure 17 the log output from running the Codefresh pipeline is shown.
When the pipeline is running, it is possible to see for every step of the pipeline what is
going on at themoment. All the possible pipeline errors are logged too, so it is convenient
for debugging.

Figure 17: Codefresh console log example

On the Figure 18 the screenshot of the email that is automa cally sent by Codefresh
when a pipeline completes is presented. It ensures that the developers are aware of any
failed pipelines or know when the pipeline built succeeded. The email is sent to all the
developers that are using the Codefresh account of Mentech.

Figure 18: Codefresh email example

	Glossary
	INTRODUCTION
	ASSIGNMENT
	Background
	Description of assignment
	Scope

	Problem definition
	Research questions and hypothesis
	Literature research questions
	Design questions
	Hypothesis

	PROJECT APPROACH
	Research methods
	Design and implementation methods

	LITERATURE RESEARCH
	Continuous Delivery rules
	Advantages and disadvantages
	Value stream map
	Deployment pipeline
	Types of testing

	Risk management
	Deployment strategies
	Development workflows
	Conclusion

	DESIGN AND IMPLEMENTATION
	HUME website description
	HUME website deployment pipeline
	Selection of tools
	Version control
	artifact repository
	Continuous Delivery tool
	Commit stage
	Integration stage
	Acceptance stage
	staging and production
	Conclusion

	Setting up version control
	Setting up the Continuous Delivery tool
	Setting up the Commit stage
	Setting up the Integration stage
	Setting up the Acceptance stage
	Setting up staging and production environment
	Conclusion

	VALIDATION
	CONCLUSION
	RECOMMENDATIONS
	Bibliography
	Appendix HUME website
	Appendix Codefresh console

