

JIMOH MORUFU OLAIDE

MySQL DATABASE

Bachelor’s Thesis
Information Technology

 JUNE 2010

Date of the bachelor's thesis

June 2010

Author(s)

Morufu Jimoh

Degree programme and option

Information Technology

Name of the bachelor's thesis

MySQL Database
Abstract

Objectives

The main objectives of this thesis were to show how it is much easier and faster to find required

information from computer database than from other data storage systems or old fashioned way. We

will be able to add, retrieve and update data in a computer database easily.

Using computer database for company to keep the information for their customer is the objective of

my thesis. It is faster which makes it economically a better solution. The project has six tables which

are branch, staff, customer, car, type and hirecontract.

It shows how six tables that contain information were connected with the help of primary and foreign

keys. The new system can reduce the time it takes to find a specific piece of information. The system

will allow all the staff within the company get access to the data.

Subject headings, (keywords)

MySQL Database

Pages Language

URN

35 English http://www.urn.fi/URN:NB
N:fi:amk-2010060811776

Remarks, notes on appendices

Tutor

Reijo Vuohelainen

Employer of the bachelor's thesis

CONTENTS

1 INTRODUCTIONS ..1

2 INTRODUCTION TO MYSQL ..2

2.1 DEFINING DATABASES...2
2.2 DATABASE DESIGN CONSIDERATION...3
2.3 COMPARING DATABASE MODELS...4

3 DATA TYPE..4

3.1 CHARACTER STRING ...5
3.2 CHARACTER DATA TYPES..5
3.3 INTEGER DATA TYPE ...6
3.4 DATE AND TIME ..6
3.5 NUMERICAL AND DECIMAL ...6

4 TABLE...7

4.1 CREATING TABLES ..7
4.2 ENTITY INTEGRITY ..8
4.3 PRIMARY KEY ..9
4.4 FOREIGN KEY ..9
4.5 REFERENTIAL INTEGRITY..10

5 JOINING TABLES...14

6 NORMALIZATION...14

6.1 FIRST NORMAL FORM..15
6.2 SECOND NORMAL FORM..16
6.3 THIRD NORMAL FORM ...17

7 MANIPULATING DATABASE DATA ...17

7.1 RETRIEVING DATA...17
7.1.1 Query...18
7.1.2 Select command ..18

7.2 AVERAGE..19
7.3 VIEW ...19
7.4 UPDATING VIEWS..19
7.5 ADDING NEW DATA ...19

8 PROVIDING DATABASE SECURITY...20

8.1 DATABASE ADMINISTRATOR ...21
8.2 DATABASE OBJECT OWNERS..22
8.3 GRANTING PRIVILEGE TO USERS..22

9 PROJECT..22

10 CONCLUSIONS ...32

11 REFERENCES..34

1

1 INTRODUCTIONS

The idea of this thesis is to create a database for a hypothetical company that has five

branches located in different countries. It is a car rental company. This will allow each

branch to be able to add, update and retrieve data in database. This database will be

based on the relational model. In many industries today relational model is widely

used. The benefits of a computerised database for the company are various. It is faster

to retrieve information from a database on a computer than to search it from an old

fashioned card or other filing system. Also adding new data is faster, making it an

economically better solution. A computer database is also more reliable. Chances of

making mistakes, for example double entries, are smaller. It is more secure, because it

can be used only by the people who are authorized and have the correct password. A

database is accessible from anywhere, any branch of the company, as far as you have

the necessary applications. Microsoft Access, Oracle and visual FoxPro are the main

relational products used to create a database.

The aim of this thesis is to show how it is much faster and easier to find required

information from a database than from other data storage systems. How can we

calculate the average sales within the company by using the database? How can we

find a member of staff by the letter with which their name either begins or ends? How

can we find out which contracts have a cost more than a certain amount? These

questions will be later solved with the MySQL language.

SQL (Structured Query Language) is an industry standard language particularly

designed to enable people to create databases, add new data to databases, insertion,

updating and deletion of data. SQL was initially developed to operate on data in

databases that follow the relational model. SQL is a programming language for

querying and modifying data and managing data. [3]

A database management system also includes management and administrative

functions, which use a command-line interface that allows the entry and execution of

language commands. A database is a structure made to keep information that is

2

valuable to the user. A database management system is the tool used to build the

structure of the database and in operating on the data contained within it.

The project will have 6 tables. Which contain staff, branch, customer, car, type and

hire contract data. I will also give examples of some useful queries that can be done

with the database.

2 INTRODUCTION TO MySQL

MySQL is a relational database management system (RDBMS) that runs as a server

providing multi-user access to a number of databases. In MySQL the beginning My of

the name comes from the daughter of the Finnish developer[9]. SQL was initially

developed to operate on data in databases that follow the relational model. It is a

programming language for querying, modifying and managing data.

MySQL is the most common open source database tool. It is considered an easy and

reliable program compared to other database software. MySQL offers various

different programs that are database related. The most famous one is MySQL

Enterprise.

2.1 Defining databases

Database is a set of tables that can be manipulated in accordance with the relational

model of data. It is a collection of integrated records. A record is a representation of

some conceptual object that has multiple attributes like name, address and telephone

number of a customer.

A database consists of both data and metadata. Metadata is data that describes the

structure of the data within a database. They store metadata in an area called the data

dictionary, which describes the tables, columns, index constraints, and other items that

3

make up the database. [1] Databases come in all sizes, from a simple collection of a

few records to millions of records.

2.2 Database design consideration

A database is a representation of a physical or conceptual structure, such as an

organization, an automobile assembly, or the performance statistics of all the major-

league baseball clubs. The accuracy of the representation depends on the level of

detail of the database design. The amount of effort that you put into database design

should depend on the type of information you want to get out of the database. It is

always good to make a database plan and to be able to estimate the size of the

database you need. A plan can vary from a single paper drawing to a hundred page

document describing every possible thing to do with the database, usually when the

plan is bigger a more complex database is needed. Decide how much detail you need

now and how much you may need in future and then provide exactly that level of

detail in your design. Databases are perfect for applications that have many users

because coordination between all users is easy.

Maintenance and security questions should also be properly thought before designing

anything. Database should be designed to be as small as possible and to avoid not

useful information. It might be not so easy to do bigger changes in your database later.

Normalization rules should always be followed and different kind of applications

might have different performance needs. Database can also be over normalized, this

means that before normalization it has lots of small tables that form a complicated

network of relations which can affect performance and should be avoided if possible.

Performance also depends on the amount of users so you should consider what

changes might happen to the amount of users of your database in future and what are

the effects. Data integrity is in danger if you do not correctly limit the values entered

to fields, it reduces the quality of data.

4

2.3 Comparing database models

The relational model, as expressed through relational calculus and relational algebra,

does not distinguish between primary keys and other kinds of keys. Primary keys

were added to the SQL standard mainly as a convenience to the application

programmer.

Hierarchical database model uses parent/child way of representing data, if drawn it

would be tree shaped. Each parent record can have more than one child records.

Entity types are all in one-to-many form. Probably the most well known example of a

hierarchical database is the windows registry.

Network model is more flexible than the hierarchical structure because it allows each

record to have one or more parent and/or child records. The relational model allows

whole tables of records to be related to each others. There is also an object oriented

database model which is not that commonly used but it works well in some specific

uses for example with molecular biology.

All these database models are in use but the relative model is most common because it

is most flexible of these. In this thesis I have decided to use the relational database

model because it allows the user to make queries and retrieve information more freely

and gives more possibilities for detailed searches.

3 DATA TYPE

Different SQL implementations support a variety of data types. Some SQL recognizes

only six general types; exact numerics, approximate numerics, character strings, bit

strings, datetime, and intervals.

5

There are SQL implementations that support one or more data types that SQL-92

specification doesn’t describe, by avoiding these un-described data types your

database can be kept more portable.

3.1 Character String

Databases store many different types of data, including graphic images, sound and

animation. A series of characters manipulated as a group. A character string differs

from a name in that it does not represent anything, a name stands for some other

object. A character string is often specified by enclosing the characters in single or

double quotes. For example, MIKKELI would be a name, but 'MIKKELI' and

"MIKKELI" would be character strings. The length of a character string is usually the

number of characters in it. For example, the character string "MIKKELI" has a length

of 7 (the quote marks are not included). Some programs, however, mark the beginning

or end of a character string with an invisible character, so the length might actually be

one greater than the number of intended characters.

There are two main types of character data: fixed character data (CHARACTER or

CHAR) and varying character data (CHARACTER VARYING or VARCHAR). We

also have two variants of these types of character data: NATIONAL CHARACTER

and NATIONAL CHARACTER VARYING.

3.2 Character data types

Character data as the name says can be data of any kind of characters. It includes

capital and small alphabet, number digits and punctuation marks (.,?/@ and many

more). These different kinds of characters can be in any order, for example numbers

mixed with capital letters. The number of characters in a column can be specified by

using the syntax character (X), where x is the number of characters. If we specify a

column’s data type as CHARACTER (40), the maximum length of any data you can

enter in the column is 40 characters.

6

3.3 Integer Data type

Data of the integer type has no fraction part, and its precision depends on the specific

SQL implementation. This data type is basically whole numbers (1,2,3…), the values

jump, meaning that there is nothing between 1 and 2. This type of data in a database

can’t have negative values. It is good to have this integer data type although it is

restrictive. There are lots of things that can be counted only in whole numbers, for

example you can’t rent half a car.

3.4 Date and Time

The date type stores year, month, and day values of a date, in that order. The year

value is four digits long and the month and day values are both two digits long. A date

value can represent any date from the year 0001 to 9999. So the length of a date is ten

positions as in 2009-05-29. The time data type stores hour, minute, and second values

of time. The hours and minutes occupy exactly two digits. The second value may be

only two digits but may also expand to include an optional fraction part. Wrong date

information can also be added on some occasions, for example if you do not know an

exact birth date it is possible to put it with zeros instead of months or days, for

example 2005-00-00.

3.5 Numerical and decimal

Numerical data can have a fraction component in addition to its integer component.

We can specify both the precision and the scale of numerical data. The scale of a

number is the number of digits in its fraction part. The scale of a number can’t be

negative or larger than that number’s precision. Specifications such as how many

digits the fraction part can have vary in different versions of programs. Numericals

7

can be signed or unsigned which means they have either + or – in front of them or

nothing. If they are unsigned they are always positive.

4 TABLE

All databases are made of one or more tables. They are the structure of database that

holds the information, the very foundation of any relational database. Tables are

divided in rows and columns (also often called fields). Rows contain the actual data

while columns describe and limit the quality and form of data put there. Each table

must have its own unique name and so do every column of the table. When viewing a

table the first row usually shows the names of all columns. Each column has its own

pre-defined data type, meaning that the data entry is limited by certain requirements,

for example character, text, date or timestamp. There are also other conditions to what

kind of data the fields can accept such as not null or unique.

4.1 Creating tables

Table is a two dimensional array made up of rows and columns. It can be created by

using SQL’s CREATE TABLE command. Within the command, you specify the

name and data type of each column. After creating a table, next thing to do is to start

loading the table with data. Loading data is a DML (Data manipulation language), not

a DDL (Data definition language), function. The table’s structure can be changed after

you have created it by using the ALTER TABLE command but in MYSQL you can

just click change button to change what ever you want. In some circumstances you

might want to delete the whole table by using DROP command or click DROP button

in MYSQL. Create, Alter and Drop commands they all make up SQL’s DDL. [1]

When building tables for the database it is desirable that you do not leave any

mistakes, because when you make updates over time this could lead to problems.

Each table created contains columns that correspond to attributes that are tightly

linked to each other.

8

Below is the table needed for this database which shows the number of records and

their sizes.

 Table Action Records

 Type Collation Size Overhead

 Branch 5 MyISAM latin1_swedish_ci 2.3 KB -

 car 21 MyISAM latin1_swedish_ci 3.7 KB -

 customer 15 MyISAM latin1_swedish_ci 3.2 KB -

 hirecontract 33 MyISAM latin1_swedish_ci 8.8 KB -

 Staff 18 MyISAM latin1_swedish_ci 4.0 KB -

 type 5 MyISAM latin1_swedish_ci 2.1 KB -

 6 table(s) Sum 97 -- latin1_swedish_ci 24.1 KB 0 Bytes

Check All / Uncheck All

 4.2 Entity integrity

All the tables in a database correspond to an entity in the real world. That entity can

be physical or conceptual, but in some sense, the entity’s existence is independent of

the database. A table has entity integrity if the table is entirely consistent with the

entity that it models. To have entity integrity, a table must have a primary key. The

primary key uniquely identifies each row in a table. Without a primary key, you can

not be sure that the row retrieved is the one you want. So in order to maintain entity

integrity, we need to specify that the column or group of columns that compromise the

primary key are NOT NULL. It should be UNIQUE. [1]

9

A key is a specialized type of index that might be used for referential integrity. An

index is just like a key in all respects, other than referential integrity and in that index

can’t be constructed at the same time as a table is created. Index can be created on any

field or combination of fields. The exception to this rule applied in most database

engines is that an index can’t be created on a field or combination of fields, for which

an index already exists.

4.3 Primary key

A unique key is nearly the same as primary key. It is a candidate key to uniquely

identify each row in a table. A unique key or primary key comprises a single column

or set of columns. No two distinct rows in a table can have the same value or

combination of values in those columns. Depending on its design, a table may have

arbitrarily many unique keys but at most one primary key. A unique key must

uniquely identify all possible rows that exist in a table and not only the currently

existing rows. Examples of unique keys are Social Security numbers associated with a

specific person or ISBNs associated with a specific book. Telephone books and

dictionaries cannot use names or words or Dewey Decimal system numbers as

primary keys because they do not uniquely identify telephone numbers or words.

A primary key is a special case of unique keys. The major difference is that for unique

keys the implicit NOT NULL constraint is not automatically enforced, while for

primary keys it is. Thus, the values in a unique key column may or may not be NULL.

Another difference is that primary keys must be defined using another syntax. Unique

keys as well as primary keys can be referenced by foreign keys. [10]

4.4 Foreign key

A foreign key is linking two tables together, it must be a primary key in one table. It

identifies a column or a set of them in one table that refers to a column or columns in

10

another referenced table. The key should uniquely identify a column or columns in the

referenced table but it is not necessary for it to be unique itself.

The values in one row of the referencing columns must occur in a single row in the

referenced table. Thus, a row in the referencing table can’t contain values that don't

exist in the referenced table (except potentially NULL). This way references can be

made to link information together and it is an essential part of database normalization.

Multiple rows in the referencing table may refer to the same row in the referenced

table. Most of the time, it reflects the one (master table, or referenced table) to many

(child table, or referencing table) relationship. The referencing and referenced table

may be the same table, i.e. the foreign key refers back to the same table. Such a

foreign key is known in SQL:2003 as a self-referencing or recursive foreign key. [11]

A table can have more than one foreign keys, which then can have a different

referenced table. Foreign key depends on the primary key in the referential table,

that’s why cascading links between tables can be made with foreign keys. If these

relationships are not used correctly it can lead to serious problems in the database.

4.5 Referential integrity

Referential integrity requires that the values of a column or columns in one table

match the values of a column or columns in another table. We refer to the columns in

the first table as the foreign key and the columns in the second table as the primary

key or unique key. For example we may declare that the column branchno in staff

table is a foreign key that references the branchno column of a branch table. This

matchup ensures that if we record a staff in the staff table as working in branch 2, a

row appears in the branch table where branchno is 2. Tables 1-6 are the tables I have

created for my example database.

11

Database THESIS has been created. SQL-query:
CREATE DATABASE `THESIS` ;

Table 1. Branch Table

Table 2. Staff Table

 Field Type Collation Attributes Null Default Extra Action

 Branchno int(3) No 0

 Branchname varchar(20) latin1_swedish_ci No

 Branchadd varchar(40) latin1_swedish_ci No

 Conutry_&_ city varchar(25) latin1_swedish_ci No

 B_Ttel_no varchar(15) latin1_swedish_ci No

 Field Type Collation Attributes Null Default Extra Action

 Staffid int(3) No 0

 Staffname varchar(20) latin1_swedish_ci No

 Branchno int(3) No 0

 Jobtitle varchar(10) latin1_swedish_ci No

 S_address varchar(30) latin1_swedish_ci No

12

Table 3. Customer Table

Table 4. Car Table

 Field Type Collation Attributes Null Default Extra Action

 Customerno int(3) No 0

 Customername varchar(25) latin1_swedish_ci No

 Customeradd varchar(40) latin1_swedish_ci No

 Customertel varchar(15) latin1_swedish_ci No

 Field Type Collation Attributes Null Default Extra Action

 Carregno varchar(10) latin1_swedish_ci No

 cartypeno varchar(6) latin1_swedish_ci No

 carmodel varchar(20) latin1_swedish_ci No

 Colour varchar(10) latin1_swedish_ci No

 Mileageno int(10) No 0

13

Table 5. Type Table

Table 6. Hirecontract Table

 Field Type Collation Attribu
tes

Nu
ll

Default Ext
ra

Action

 Hirecontract
no

int(4)
No

0

 Carregno

varchar(
10)

latin1_swedi
sh_ci

No

 Customerno int(3)

No

0

 Staffid int(3)

No

0

 Cartypeno

varchar(
5)

latin1_swedi
sh_ci

No

 Issuedate date

No

0000-00-
00

 Duereturnda
te

date
No

0000-00-
00

 Actualreturn
date

date
No

0000-00-
00

 Carcost float

No

0

Check All / Uncheck All With selected:

 Field Type Collation Attributes Null Default Extra Action

 Cartypeno varchar(10) latin1_swedish_ci No

 Typedescripion varchar(25) latin1_swedish_ci No

 Dailyrate int(4) No 0

14

5 JOINING TABLES

This is a way by which two or more table records can be combined together in a

database if there is a need to retrieve information from more than one table. This new

combined table can either be saved as a new table or used as it is. If there is no

possibility to join tables together some data would be repeated many times without

any purpose. If there are no common values in the join attributes it is not possible to

join the tables. If you want to join more than two tables you need more than one join

conditions, one will only specify the link between two tables. There are various

different kinds of joins but the most common is the inner join. This kind of query

returns rows in which there is at least one match in both tables.

6 NORMALIZATION

Is a way of systematically ensuring that database structure is well suitable for normal

querying and free of most common anomalies in undesirable characteristics insertion,

update and deletion, which could lead to a loss of data integrity.

When an attempt is made to modify (update, insert into, or delete from) a table,

undesired side-effects may follow. Not all tables can suffer from these side-effects;

rather, the side-effects can only arise in tables that have not been sufficiently

normalized.

There are up to six different normal forms but mainly the first three of these are in

use. This level is usually enough to ensure the database is well normalized and doesn’t

have any anomalies. If the database adheres to the 3rd normal form it is common for it

to automatically be in 4th and 5th normal form too.

15

6.1 First normal form

Is to permit data to be queried and manipulated using a "universal data sub-language"

grounded in first-order logic. Querying and manipulating the data within an un-

normalized data structure, involves more complexity than is really necessary [12] and

the same data might be repeated often. There are no commonly agreed exact rules as

to what the first normal form should or shouldn’t contain but there are certain things

that are desired. For example if you want to put more than one phone number in a

database for a person it can be done in many ways, by adding two values in the same

field or by creating two separate columns for first and second numbers, but the best

way to do it is to create a separate table for them, this is the only way the

normalization can be kept. Having two values in the same field means these two

values can’t be separately found which affects the accuracy of data.

Table must have the following attributes to be in first normal form

 Make sure that the table is a two-dimensional table, with rows and columns.

� Each column contains data for a single attribute of the thing it’s describing.

� Each row contains data that pertains to some thing or portion of a thing

� Each column must have a unique name.

� Entries in any column must all be of the same kind

� No two rows may be identical.

� Each cell of the table must have only a single value. [1]

16

6.2 Second normal form

Is a higher than the first form used in database normalization. Second normal form

(2NF) was defined by E.F. Codd in 1971[12], he also introduced the first normal form

a year earlier. A table normalized according to the criteria of first normal form (1NF)

must maintain all that is required of 1NF and meet some additional criteria to qualify

for 2NF. In order to deal with second normal form we must understand the idea of

functional dependency. The definition in Wikipedia for 2NF is “A 1NF table is in

2NF if and only if, given any candidate key K and any attribute A that is not a

constituent of a candidate key, A depends upon the whole of K rather than just a part

of it[12].” This means that the candidate key should identify all the attributes related

to it. For example basic personal data held in a database about a person has a

candidate key which is their social security number. No one can have the same social

security number as this person and all other information about him can be verified

with this candidate key. There can not be any duplicate of the candidate key.

A functional dependency is a relationship between or among attributes. One attribute

is functionally dependent on another if the value of the second attribute determines the

value of the first attribute. [1]

Every table in the first normal form must have a unique primary key. That key may

consist of one or more than one column. A key consisting of more than one column is

called a composite key. To be in second normal form, all non-key attributes (columns)

must depend on the entire key. Thus, every relation that is in first normal form with

single attribute key is automatically in second normal form. If a relation has a

composite key, all non-key attributes must depend on all components of the key. If we

have a table where some non-key attributes don’t depend on all components of the

key. [1]

17

6.3 Third normal form

Third normal form is the same as second normal form except that it only refers to

tables that have a single field as their primary key. In other words, each non-key field

in the table should be a fact about the primary key. Either of the preceding two tables

act as an example of third normal form since all the fields in each table are necessary

to describe the primary key. Once all the tables in a database have been taken through

the third normal form, we can begin to set up relationships

7 MANIPULATING DATABASE DATA

Database manipulation is really simple and very fast compared to old fashioned ways

of storing data. Understanding how to add data to a table is not difficult. We can add

data either one row at a time or in a batch. Deleting, changing and retrieving table

rows are also easy in practice. The only challenge lies in selecting the rows that you

want to change, delete or retrieve. We can specify which rows we want to change by

using SELECT statement command. The computer will do all the searching.

7.1 Retrieving data

In many databases the task that people perform frequently is retrieving selected

information. Whether we want to retrieve the contents of one specific row out of

thousands in a table, retrieve all the rows that satisfy a condition or want to retrieve all

rows in the table, one simple SQL statement, the SELECT statement, performs all

these tasks. The retrieved data that you get is called query object or record set.

18

7.1.1 Query

A database query is a request for information from a database. In SQL, you can use a

database query from the console to find information in the database or to target a job

to SQL with particular characteristics. All queries are intended to return a list of

information arranged in data rows.

You can query the database by selecting a saved query or by creating a new query

using search criteria provided by SQL. Each query you create and save is registered in

the database. Unlike searches, you can name and save queries in the database as

registered queries and then use them in the future.

Named queries are used to obtain a list of rows that match search criteria. The

resulting list of information is used for targeting jobs, filtering the display of rows and

other tasks. It is limited to obtaining a list of information that matches the search

criteria and nothing more.

From the list of queries you can also submit a job based on a selected query and

display rows associated with a query. The management tasks you can perform on a

registered query include displaying query properties and deleting a query from the

database.

7.1.2 Select command

The SQL SELECT statement returns a result set of records from one or more tables. It

retrieves zero or more rows from one or more base tables, temporary tables, or views

in a database. In most applications SELECT is the most commonly used Data

Manipulation Language (DML) command. As SQL is a non-procedural language,

SELECT queries specify a result set, but do not specify how to calculate it. SELECT

can also have some subqueries or UNION statements include. WHERE clause

identifies the conditions wanted in selecting the correct data from database. If there

19

are no conditions about the kind of data the SELECT statement should return it will

show all of it.

7.2 Average

The AVG(Average) function calculates and returns the average of the values in the

specific column. We can use the AVG function only on columns that contain numeric

data. In chapter 9 query number 11 is the example of how to use AVG function. With

this query I wanted to find out the average cost of hire contracts for each branch.

7.3 View

A view is a virtual table. In most implementations a view has no independent physical

existence. View retrieves some specific information from the tables in which you

don’t want to look at everything, only some specific columns and rows. We need view

to be able to mix the information from one or more tables and create it into a new

single temporary table.

7.4 Updating views

After we have created a table, that table is automatically capable of accommodating

insertions, deletions and updates. Views, on the other hand, don’t necessarily exhibit

the same capability. If we update a view, we are actually updating its underlying table,

not the temporary view table alone.

7.5 Adding new data

Every database table starts out empty. After creating a table, either by using SQL’s

DDL or a RAD (Rapid application development) tool, that table is nothing but a

20

structured shell, containing no data. To make the table useful, you must put some data

into it. You may or may not have that data already stored in digital form. You might

have to use keyboard to enter the data one record at a time

8 PROVIDING DATABASE SECURITY

When dealing with databases it is necessary to protect them from harm or misuse. If

unauthorized person gets access to a database and deletes or changes information

there it will be permanently lost to everyone. The person in charge of a database has

the power to determine who can access that database and also the level of access a

user receives. That person can selectively grant and revoke access to certain aspects of

the system and can even grant to and revoke from someone else the right to grant and

revoke such access privileges. If you use them correctly, the security tools that SQL

provides are powerful protectors of important data.

With databases you should also remember all the basic security tips and rules that

apply to all computer users. Passwords shouldn’t be easy to break and you should

have a proper firewall. There are also many security issues that concern only

databases. For example you should never give anyone else access to the user table. If

a person gets more access than they need they could for example accidentally or by

purpose delete a whole table with the drop command. All data types entered in the

database should be protected. Even if data in the database is meant for all the public to

view it needs to be protected against attacks that could stop other users from using it,

another type of attack this kind of database could face is someone trying to change the

data in it.

There are various ways to check and test whether the security of your database is good

enough. It is also possible to check if the data sent by MySQL through internet is

unencrypted, if this is the case it is visible for anyone who has the ability and time to

use it in their own purposes.

21

Used incorrectly security measures can also be frustrating impediments to the effort of

legitimate users trying to do their work. For example If you as a database

administrator don’t remember to give access to all users that need it for all the

database tables they require it will make their work difficult. MySQL has its own

security based on Access Control Lists for all operations the users do.

8.1 Database administrator

The highest authority for a database is the database administrator. The database

administrator has all right and permission to all aspects of the database. Being a

database administrator can give you real power, but the position is also a great

responsibility. With all that power you can easily mess up your database and destroy

hundreds of hours of work. Database administrators must think clearly and carefully

about the consequences of every action they perform.

The best way to become a database administrator is to install the database

management system yourself. If you do, the installation manual gives you an account

or login, and a password. That password identifies you as a specially privileged user.

Sometimes the system calls this privileged user the database administrator, sometimes

system administrator. As your first official act after logging in, you should change

your password. If you don’t change the password, anyone who reads the manual can

also log in with full database administrator authority. After you have changed the

password only people who know the new password can log in as a database

administrator.

It is advisable that we log in as database administrator if we have database

administrator permission only if there is a need to perform a specific task that requires

database administrator permission. After you have done it log out. For a specific

limited task, log in by using your own personal login id and password. This method

can save us from making mistakes that may have serious consequences for other

users’ tables and for your own as well.

22

8.2 Database object owners

Another class of permitted users, along with the DBA, is the database object owner.

Tables and views are examples of database objects. Any user who creates such an

object can specify its owner. A table owner enjoys every possible access associated

with that table, including the privilege to grant access of that table to other people. But

these object owners have no automatic right to manipulate or enter to objects owned

by other people unless they’ve especially been given permission to do so. Database

administrator has greater rights than the object owner.

8.3 Granting privilege to users

Database administrator has all privileges on all objects in the database. The person

who creates an object definitely has all privileges to that object. No one else has any

privileges with respect to any object, unless someone who already has those privileges

and the authority to pass them on specially grants those privileges to another person.

We give permission to someone else to access the databases by using the GRANT

statement. REVOKE statement can remove any privileges given to someone. SHOW

GRANTS statement will show which users have privileges to parts or all of the

database. You can also limit the operations a user does with the database, for example

you can limit the amount of queries someone does in an hour.

9 PROJECT

In this project chapter I will show some example queries for all the tables at the

database and show the data they contain. Queries 1-6 retrieve all the rows in each of

the six tables I have created. Queries 7-10 are more complicated queries from the

database. In some of them I have shortened the names of the tables to just their first

letters. In query 7. I have retrieved details about the structure of hirecontract table.

Query 8. shows all the staff that have “staffname” beginning with an S that work in

the Liverpool branch. Query 9. is a list of all the staff that have a name ending in an S.

23

Query 10. retrieves all the hirecontracts where the overall cost is higher than a certain

amount. This number could be any, I have chosen 118,13 as an example.

Query 1. All the rows from branch table.

Showing rows 0 - 4 (5 total, Query took 0.0008 sec)

SQL-query:
SELECT *
FROM `branch`
LIMIT 0 , 30

 [Edit] [Explain SQL] [Create PHP Code] [Refresh

 Branchno Branchname Branchadd
Conutry_&_

city

B_Ttel_no

 1 BEST HIRE 36, RAVIRADANTIE FINLAND, MIKKELI 0235474948

 2 COMFORT
HIRE

23, JIM ROAD NIGERIA, LAGOS 38497679292

 3 LOWRATE
HIRE

78, BOOM STREET UK, LONDON 73658837

 4 LUCKY HIRE 67, NOKIA STREET USA, NEW YORK 326826738

 5 EASY HIRE 45, OLOWO RAOD SPAIN, BARCELONA 63674883929

Query 2. All the rows from staff table.

Showing rows 0 - 17 (18 total, Query took 0.0287
sec)

SQL-query:
SELECT *
FROM `staff`
LIMIT 0 , 30

 [Edit] [Explain SQL] [Create PHP Code] [Refresh]

 Staffid Staffname Branchno Jobtitle S_address

 330 SMITH 2 MANAGER 78, WALLASEY STREET
LAGOS

24

 331 BRIAN 1 SALESMAN 102, BRENT STREET MIKKELI

 332 ADAMS 4 SALEMAN 4, BRISTOL ROAD NEW YORK

 333 FORD 3 SALEMAN 11, COMPTON ROAD LONDON

 334 HARRIS 1 SUPERVISOR BARNET STREET MIKKELI

 335 BECKHAM 5 SALEMAN 21, BRIDGE STREET
BARCELONA

 336 JONES 5 SALEMAN 77, WATER STREET
BAECELONA

 337 PARKER 2 SALEMAN 78, HOYLAKE STREETLAGOS

 338 WILD 3 MANAGER 34, OXELY LANE LONDON

 339 HENRY 4 SUPERVISOR 4, CONVENTRY ROAD NEW
YORK

 340 JIMOH 1 MANAGER 100, HARROW STREET
MIKKELI

 341 PEKKO 1 SALEMAN 45, MERTON LAND MIKKELI

 342 WILLAMS 5 MANAGER 79, PETER STREET
BARCELONA

 343 KIKG 2 CLERK 78, SEAFORTH ROAD LAGOS

 344 MURF 4 SALEMAN 67, SANWELL LANE NEW
YORK

 345 SCOOT 2 SALEMAN 12, HALEWOOD ROAD LAGOS

 346 SHERIF 4 MANAGER 22, WALLSALL LANE NEW
YORK

 347 SUNDDAY 3 SALEMAN 88, CANNOCK ROAD LONDON

25

Query 3. All the rows from customer table.

Showing rows 0 - 14 (15 total, Query took 0.0007 sec)

SQL-query:
SELECT *
FROM `customer`
LIMIT 0 , 30

 [Edit] [Explain SQL] [Create PHP Code] [Refresh]

 Customerno Customername Customeradd Customertel

 11 E ELENIYAN 11, VICTORIA LANE LONDON 576674654760

 12 M
MAFOLUKU

84, PARK STREET
WOLVERHAMPTON

7655333426657

 13 R SAW 283, COMPTON LANE
WOLVERHAMPTON

24356876890

 14 S SENIOR 29, SNOW HILL LIVERPOOL 643658875886

 15 P PETER 4, MAPLE LIVERPOOL 6444217899090

 16 L KAI 6, FLAT8 RIVER ROAD
MANCHESTER

546546765875

 17 Y PEKKO 50, LEE ROAD NORWICH 235676557758

 18 A OLALEYE 19 CLERK LANE LONDON 445765476657

 19 M BEN 65 OLOWODE NEW YORK 33576544644

 20 J OKOCHA 40, OAK STREET
WOLVERHAMPTON

455687654537

 21 F PIN 89, MAIN ROAD WALSALL 546778890001

 22 W COLE 95, LEAH LANE LIVERPO 657546554767

 23 N NOKIA 20, NEW STREET
BIRMINGHAM

546546587655

 24 G LEKE 120, ALCORN AVENUE
BIRMINGHAM

1232475769866

 25 D EMANUEL 55, PENHILL MANCHESTER 354565664846

26

Query 4. All the rows from car table.

Showing rows 0 - 20 (21 total, Query took 0.0006 sec)

SQL-query:
SELECT *
FROM `car`
LIMIT 0 , 30

 [Edit] [Explain SQL] [Create PHP Code] [Refresh]

 Carregno cartypeno carmodel Colour Mileageno

 WA7 BOP 30 FOCUS SILVER 57367

 N34 SAV 20 HUMMER WHITE 127587

 Z72 ONK 20 HUMMER BLUE 475739

 K77 BLS 50 ASTAL BLUE 675946

 HH33 HKJ 10 TRANSIT BLUE 647836

 JI56 SJY 10 TRANSIT RED 778773

 MO5 SOE 30 FOCUS BLACK 684763

 SQ78 JUR 50 ASTRA RED 348637

 L98 DTQ 40 L200 YELLOW 66746

 M89 HYT 30 PUMA BLACK 43537

 OR45 SSP 10 BRAVO RED 65775

 AC34 UUT 30 CROMER WHITE 57469

 E57 BLT 40 OMEGA GREEN 63638

 PT23 RIS 40 OMEGA RED 647944

 Y19 TDD 10 GALAXY BLACK 225735

 PT2 RIS 40 OMEGA RED 118848

 OI9 TDD 10 GALAXY BLACK 43683

 WW99 EST 50 ASTRA BLUE 257847

 EE60 TTR 30 PUMA RED 123768

27

 Z34 SOK 40 L200 BLUE 87262

 S77 AAI 30 FOCUS RED 54674

Query 5. All the rows from type table.

Showing rows 0 - 4 (5 total, Query took 0.0005 sec)

SQL-query:
SELECT *
FROM `type`
LIMIT 0 , 30

 [Edit] [Explain SQL] [Create PHP Code] [Refresh]

 Cartypeno Typedescription Dailyrate

 10 VAN 99.99

 20 LIMOUSINE 90.78

 30 CAR 50.6

 40 PICK UP 60.98

 50 LORRY 70.7

Query 6. All the rows from hirecontract table.

SQL-query:
SELECT *
FROM `hirecontract`
LIMIT 0 , 30

 [Edit] [Explain SQL] [Create PHP Code] [Refresh]

Hirecont
ractno

Carre
gno

Custom
erno

Staf
fid

Carty
peno

Issued
ate

Dueretur
ndate

Actualretu
rndate

Carc
ost

211 SQ78

JUR
14 345 50 2009-

04-06
2009-04-
07

2009-04-07 60.9
9

 111 OI9 25 341 10 2008- 2008-01- 2008-01-18 299.

28

 TDD 01-15 18 97

511 L98

DTQ
12 336 40 2008-

08-27
2008-08-
28

2008-08-28 60.9
8

411 OR45

SSP
18 332 10 2008-

05-30
2008-06-
07

2008-06-07 799.
92

412 N34

SAV
21 332 20 2008-

05-18
2008-05-
20

2008-05-20 181.
56

311 K77

BLS
22 333 50 2008-

10-01
2008-10-
05

2008-10-05 282.
8

112 M89

HYT
11 341 30 2008-

09-10
2008-09-
11

2008-09-11 50.6

413 MO5

SOE
15 332 30 2008-

05-08
2008-05-
13

2008-05-13 253

212 E57

BLT
23 345 40 2008-

05-13
2008-05-
17

2008-05-17 243.
92

201 PT2

RIS
23 330 40 2008-

10-13
2008-10-
15

2008-10-15 121.
96

209 E57

BLT
25 343 40 2008-

05-27
2008-05-
28

2008-05-29 121.
96

208 AC34

UTT
14 330 30 2008-

05-02
2008-05-
03

2008-05-03 50.6

207 SQ78

JUR
23 337 50 2008-

04-18
2008-04-
21

2008-04-21 212.
1

206 JI56

SJY
14 337 10 2008-

05-30
2008-05-
31

2008-05-31 99.9
9

205 Z72

ONK
25 337 20 2008-

12-22
2008-12-
23

2008-12-23 90.7
8

310 HH33

HKJ
22 333 10 2008-

08-13
2008-08-
20

2008-08-20 699.
93

309 K77

BLS
22 338 50 2008-

01-08
2008-01-
09

2008-01-09 70.7

308 WA7

BOP
13 333 30 2008-

07-03
2008-07-
13

2008-07-13 506

307 K77

BLS
19 333 50 2008-

09-13
2008-09-
14

2008-09-15 141.
4

306 WA7

BOP
13 338 30 2008-

05-03
2008-05-
04

2008-05-04 50.6

305 HH33 13 347 10 2008- 2008-05- 2008-05-13 299.

29

 HKJ 05-10 13 97

410 N34

SAV
16 346 20 2008-

11-15
2008-11-
16

2008-11-16 90.7
8

409 OR45

SSP
18 339 10 2008-

05-12
2008-05-
13

2008-05-13 99.9
9

408 MO5

SOE
16 346 30 2008-

05-26
2008-05-
29

2008-05-30 202.
4

407 MO5

SOE
21 344 30 2008-

05-08
2008-08-
13

2008-08-13 253

406 N34

SAV
18 339 20 2008-

10-10
2008-10-
11

2008-10-11 90.7
8

405 OR45

SSP
15 344 10 2008-

01-03
2008-01-
04

2008-01-04 99.9
9

510 L98

DTQ
12 336 40 2008-

05-03
2008-05-
05

2008-05-05 121.
96

509 Y19

TDD
17 342 10 2008-

05-18
2008-05-
19

2008-05-19 99.9
9

508 WW9

9 EST
24 336 50 2008-

04-23
2008-04-
28

2008-04-28 353.
5

Query 7. Structure of hirecontract table.

SQL-query:
DESC HIRECONTRACT

 [Edit] [Create PHP Code]

Field Type Null Key Default Extra

Hirecontractno int(4) PRI 0

Carregno varchar(10) MUL

Customerno int(3) MUL 0

Staffid int(3) MUL 0

Cartypeno varchar(5) MUL

Issuedate date 0000-00-00

Duereturndate date 0000-00-00

Actualreturndate date 0000-00-00

Carcost float 0

30

Query 8. Staff whose name begins with an S that work in the Liverpool branch.

SQL-query:
SELECT staffid, staffname, jobtitle, city
FROM staff, branch
WHERE staff.branchno = branch.branchno
AND staffname LIKE 'S%'
AND city = 'NIGERIA, LAGOS'
LIMIT 0 , 30

 [Edit] [Explain SQL] [Create PHP Code] [Refresh]

staffid staffname jobtitle city

330 SMITH MANAGER NIGERIA, LAGOS

345 SCOOT SALEMAN NIGERIA, LAGOS

Query 9. A list of staff with “staffname” ending in an ‘S’ in all departments.

SQL-query:
SELECT staffid, staffname, jobtitle, city
FROM staff s, branch b
WHERE s.branchno = b.branchno
AND staffname LIKE '%S'
LIMIT 0 , 30

 [Edit] [Explain SQL] [Create PHP Code] [Refresh]

staffid staffname jobtitle city

334 HARRIS SUPERVISOR FINLAND, MIKKELI

332 ADAMS SALEMAN USA, NEW YORK

336 JONES SALEMAN SPAIN, BARCELONA

342 WILLAMS MANAGER SPAIN, BARCELONA

31

Query 10. List of all hire agreements where the overall cost is more than £118.13.

SQL-query:
SELECT Hirecontractno, Issuedate, Staffid, Carcost AS OVERALL_COST
FROM hirecontract
WHERE Carcost > 118.13
LIMIT 0 , 30

 [Edit] [Explain SQL] [Create PHP Code] [Refresh]

 Hirecontractno Issuedate Staffid OVERALL_COST

 111 2008-01-15 341 299.97

 411 2008-05-30 332 799.92

 412 2008-05-18 332 181.56

 311 2008-10-01 333 282.8

 413 2008-05-08 332 253

 212 2008-05-13 345 243.92

 201 2008-10-13 330 121.96

 209 2008-05-27 343 121.96

 207 2008-04-18 337 212.1

 310 2008-08-13 333 699.93

 308 2008-07-03 333 506

 307 2008-09-13 333 141.4

 305 2008-05-10 347 299.97

 408 2008-05-26 346 202.4

 407 2008-05-08 344 253

 510 2008-05-03 336 121.96

 508 2008-04-23 336 353.5

32

Query 11. Counts the average cost of contracts in each branch.

SQL-query:
SELECT CITY, AVG(Carcost) AS AVGCOST_OF_HIRECONTRACT
FROM hirecontract H, staff S, branch B
WHERE H.Staffid = S.Staffid
AND S.branchno = B.branchno
GROUP BY City
LIMIT 0 , 30

 [Edit] [Explain SQL] [Create PHP Code] [Refresh]

CITY AVGCOST_OF_HIRECONTRACT

FINLAND, MIKKELI 87.642499923706

NIGERIA, LAGOS 125.28749990463

SPAIN, BARCELONA 127.2859992981

UK, LONDON 293.05713871547

USA, NEW YORK 230.15777418349

10 CONCLUSIONS

I supposed that this is a work for an automobile dealership. I wanted to create an

easier way to keep their data and to get it more accessible for all the staff. This

included an inventory of all the vehicles they have in stock. They want to track such

facts as registration, colour, model, and options on each vehicle so that they can know

what there is available for rent. The database I created works well for the purposes of

this company. I worked hard to create all the necessary tables and to put all the data in

them. I connected all the six tables together with suitable primary keys. Once this

creation of database was done it is easy to add and change information there. Before

they had all their important information in old fashioned folders in paper form, the

new system can reduce greatly the time it takes to find a specific piece of information

or documentation. Once staff learns to use the database correctly they make less

mistakes than before. Because this is a global company they could share information

about each branch faster and it can reduce the cost of the business.

33

This project might have been done better if I had had the opportunity to use Oracle

11g which is the newest version of the language. There are some statements which

MySQL does not understand but if used in Oracle would have made my work better.

34

11 REFERENCES

(1) Taylor, Allen, SQL For Dummies, 3rd edition, IDG Books Worldwide, 1998

(2) Powell, Gavin, Beginning Database Design, Wiley Publishing, Inc. 2006.

(3) SQL, [Web page], <http://en.wikipedia.org/wiki/SQL/>, 12.06.2009

(4) SQL Introduction, [Web page],

<http://www.w3schools.com/SQL/sql_intro.asp/>, 30.06.2009

(5) Databasics: A Database Dictionary, [Web page], 2008,

<http://www.geekgirls.com/database_dictionary.htm/>, 01.02.2010

(6) SQL Tutorial , [Web page], 2004, <http://www.sql-tutorial.net/sql-database-

table.asp/>, 01.02.2010

(7) Integer data type, [Web page], <http://cnx.org/content/m18654/latest/>,

09.03.2010

(8) MySql reference manual, [Online],

<http://dev.mysql.com/doc/refman/5.5/en/index.html>, 11.04.2010

(9) Wikipedia – MySQL , [Web page], <http://en.wikipedia.org/wiki/Mysql>,

01.06.2010

(10) Wikipedia – Primary Key , [Web page],

<http://en.wikipedia.org/wiki/Primary_key>, 16.04.2010

(11) Wikipedia – Foreign Key, [Web page],

<http://en.wikipedia.org/wiki/Foreign_key>, 16.04.2010

35

(12) Wikipedia – Normalization, [Web page],

<http://en.wikipedia.org/wiki/Database_normalization>, 16.04.2010

(13) MySQL, [Web page], <http://www.mysql.com/about/>, 20.05.2010

Unpublished source

(14) Study guide 2006 - 2007. University of Wolverhampton England.

