

Dan Suman

Design and implementation of a
concurrent RingBuffer in Scala

Metropolia University of Applied Sciences

Bachelor of Engineering

Information Technology

Bachelor’s Thesis

6 January 2019

Author
Title

Number of Pages
Date

Dan Suman
Design and implementation of a concurrent RingBuffer in Scala

37 pages
06 January 2019

Degree Bachelor of Engineering

Degree Programme Information Technology

Professional Major Software Engineering

Instructors

Peter Hjort, Senior Lecturer

Queues are a significant algorithmic component to many systems and applications that
enable decoupling of producers and consumers. Some of its real-life applications are
ticketing (as a waiting list), a queue of packets in data communication or a queue of operating
system processes. With the rapid growth of parallel processing and event-driven
applications, concurrent implementations of this data structure have gained significant
importance. Despite the relevance, many available implementations in JVM ecosystem
employ expensive operations such as thread blocking (BlockingQueue) or true
unboundedness (ConcurrentLinkedQueue), a characteristic which discards the usage of the
data structure where consumer backpressure is needed. This thesis is an attempt to address
such concerns, by design and implement a lock-free concurrent bounded queue, or
RingBuffer, in Scala.

The thesis focuses first on exploring the concurrency mechanisms that describe the JVM
ecosystem. Then it proceeds to the lock-free RingBuffer implementations, employing
different concurrency primitives and two different underlying data structures (Scala’s
immutable Queue and Java’s mutable Array). The final section is dedicated to benchmarks
comparing RingBuffer implementations and Java’s concurrent queue implementations.
Measurements done for this section showed a significant improvement in speed over the
available data structure although the API is presenting a few key differences.

Keywords RingBuffer, CAS, synchronized, thread-safe, Queue, Scala

Contents

List of Abbreviations

1 Introduction 1

2 Concurrency in Java 3

2.1 Thread safety 3

2.2 JMM 4

2.2.1 Cache coherence 4

2.2.2 Data-Race Free Guarantee 5

2.3 Locking 6

2.4 Fairness 8

2.5 Concurrency primitives 9

2.6 Java concurrent queue implementations 10

3 Immutable queue-based RingBuffer 12

3.2 Specifications 12

3.3 Interface 12

3.4 Naïve implementation 13

3.5 Concurrent access and modification 16

3.6 A-B-A problem 19

3.7 Thread safety via synchronization 20

4 Mutable array-based RingBuffer 22

4.1 Specifications 22

4.2 Implementation 23

5 Benchmarking 26

5.1 Unit testing 26

5.2 Benchmark test specifications 29

5.3 Results 32

6 Conclusion 35

References 36

List of Abbreviations

CAS Compare-And-Swap represents a concurrency primitive

CPU Central Processing Unit is the computer’s main processor

CSP Communicating Sequential Processes

FAA Fetch-And-Add represents a concurrency primitive

FIFO First-In-First-Out. The terminology used to describe the functionality of a

queue

JLS Java Language Specification

JMM Java Memory Model

JVM Java Virtual Machine

MESI Modified/ exclusive/ shared/ invalid is a cache coherence protocol

MOESI Modified/ owned/ exclusive/ shared/ invalid is a cache coherence protocol

TAS Test-And-Set represents a concurrency primitive

 1

1 Introduction

With the exponential growth of computing power and the consequent work distribution

across several CPU threads, logical or physical, concurrency and parallelism have

become topics of vital importance when developing new applications. Concurrency

patterns, such as Golang’s goroutines based on the theory of Communicating Sequential

Processes proposed by Tony Hoare in 1978 (Hoare, 1978) or the actor model proposed

by Carl Hewitt in 1973 (Hewitt, Bishop and Steiger, 1973), aim to enable parallelism by

proposing different alternatives with regards to task distribution across multiple threads.

The main idea in the CSP solution is that two processes acting independently can share

a channel where one process adds data into, and one consumes. The actor model is

based on the actor entities passing asynchronously data, stored in each other’s mailbox.

A common characteristic of both approaches is that both the channel in the CSP case

and the actor mailbox work as a queue of tasks. One focus for this thesis was the

designing of the data structure mentioned above in terms of features and behavior: data

was placed into the queue by multiple processes and was read by multiple processes as

well.

The above-described behavior is known in computer science as the producer-consumer

problem (Herlihy and Shavit, 2012), or the bounded buffer problem. The buffer stores

the data put by the producer processes until the consumers remove it. If the buffer is

empty, the consumers will pause. Vice versa, if the buffer is full, the producers will pause.

Considered that the bounded buffer, referred to as RingBuffer throughout this thesis, is

a shared resource, all involved processes must cooperate to ensure the data integrity.

In this thesis, the data structure’s exposed API was lock-free. This implies that the

producer and consumer process would have to race for the shared resource, but the

result of the operation in case the RingBuffer was full or empty would be returned

immediately, without blocking any thread. The implementation, however, required careful

considerations to ensure data integrity. Scala and Java have multiple approaches to

solve the concurrency problem in a multithreaded environment, such as using low-level

concurrency primitives that manage access and modifications directly to memory

addresses, as well as high-level synchronization blocks. Chapter 2 of the thesis

describes and compares the different considerations to be done regarding

synchronization and locking.

 2

The RingBuffer was implemented as a queue. A queue represents a linear collection of

objects that are inserted and removed according to the first-in-first-out principle. An

excellent example of a queue is a line of students at the cafeteria. New additions to a

line are made to the back of the queue, while removal (or serving) happens at the front.

The underlying structure for a queue could be an Array, a Vector, an ArrayList, a

LinkedList, or any other collection. Similarly, the RingBuffer was implemented using the

different data structure to analyze the performance gain or loss.

The main goal for this thesis was the implementation of a concurrent RingBuffer, a

bounded queue implementation in Scala. The underlying hypothesis behind this focus is

that it would indeed be possible to design a more performant data structure in the JVM

landscape (Scala in this research) than the available Java concurrent queue

implementations. The main critique for the current solutions is that the majority of

implementations are either blocking the producer/consumer thread

(LinkedBlockingQueue, ArrayBlockingQueue), a quite expensive operation in concurrent

programming or provide true unboundedness (ConcurrentLinkedQueue), which might

imply a penalty cost if the needed implementation requires boundness. Therefore, the

secondary goal was to explore the concurrent aspect of the language and different

techniques available in the JVM landscape and to apply them where it was possible to

boost the different RingBuffer’s implementations’ performance. Finally, different

underlying data structures were tested for the RingBuffer implementation for

performance reasons. As a conclusion, a benchmark against the more performant and

previously mentioned data structures was done to validate the base assumption that

performance could be improved while maintaining reliability under constant high

concurrent load.

 3

2 Concurrency in Java

2.1 Thread safety

The most popular form of structured programming is imperative programming based on

the concept of sequential execution and a mutable state. It is directly derived from the

Von Neumann architectural conceptions. Threads are often seen because of this notion,

which allows multiple control flows at the same time. In addition to more heavy

processes, threads are the main parallel structures provided by operating systems and

hardware architectures. (Erb, 2012) Threads represent the main mechanism for

concurrency in most programming languages. However, the programming model based

on threads shared state and locks poses a series of challenges, which will be described

in the following paragraphs.

In concept, a thread defines a sequential control flow, which is isolated at first glance

from other events. In contrast to processes, however, threads have the same address

space. This means that several separate threads can have access to the same

arguments and states simultaneously. What is considered even worse is that sequential

programming is based on the concept of a mutable state, meaning that multiple threads

can also compete in data writing. Multi-threading is mainly used with pre-emptive

scheduling, with the exact switches and interconnections between threads not known

beforehand. This constitutes a strong indeterminacy and may result in verification of race

conditions. Such a case can be verified when multiple threads compete for the same

resource, whose state is shared across threads. Due to race condition the resource state

may result incoherent. For example, a thread can read the outdated state while another

thread proceeds with updating it. If several threads modify the state at the same time,

with only a subset of the changes being persisted, the outcome will be inconsistent. In

conclusion, mechanisms to sentinel and impose synchronized access to resources are

needed. (Erb, 2012)

Consider the following simple example: Student A has a bank account holding a total

amount of 20 EUR. Student A authorizes both students B and C to request and withdraw

20 EUR each from his bank account. Students B and C concurrently try to withdraw the

money, first by checking the current balance, 20 EUR and consequently setting the new

balance of 0 EUR. Since both students B and C saw the initial balance of 20 EUR, both

were authorized the operation. To put this into perspective, students B and C are two

 4

threads modifying a stateful object concurrently, causing a race condition resulting in an

unexpected and incorrect state in our application.

An implementation can be considered thread safe if, when called from different threads

and without considering the different execution contexts at runtime environment, it can

be accessed and modified correctly without any additional locking or synchronization

mechanism needed. Such classes shall implement any additional synchronization to

ensure thread safety on the client side.

2.2 JMM

In the Java Memory Model objects exist in shared memory, with each thread being in

possession of a cached copy of read and written fields in its private memory. Without

explicit synchronization across threads, a resource state modification from a single

thread might not be immediately propagated to the shared memory. Similarly, the cached

copy of the resource might not be updated for a thread if the resource was updated in

the main memory. Java Virtual Machine often keeps the cached copies in sync, even if

not constrained to do so. Synchronization events (described in chapter 2.3) imply some

form of atomicity or mutual exclusion. In Java, it also means reconciling the cached

memory of a thread with the shared memory. Some synchronization events result in the

thread updating the cached changes to shared memory, broadcasting the changes to

the other threads. Other synchronization events will result in the thread invaliding its

private cached memory, forcing a full update from the shared memory before modifying

the resource. (Herlihy and Shavit, 2012)

2.2.1 Cache coherence

If a system has many processors with each processor having their private cached

memory, if the main memory data is shared with processor’s independent memory, a

high degree of inconsistency might be verified if there are changes in the shared data.

However, if the processors read only from the same memory address, there is no

inconsistency problem. As an example, if a field is modified by a processor in the main

memory, the field needs to be invalidated in all the other processors as well to ensure

that the modified field is not read by other processors. This problem is called cache

 5

coherence. There are multiple cache coherence protocols: MSI, MESI, MOSI, MOESI,

MERSI. This section will focus, however, on two main protocols implemented in modern

hardware: MESI (Modified-Exclusive-Shared-Invalid) and MOESI (Modified-Owned-

Exclusive-Shared-Invalid). (Dey and S. Nair, 2014) In the MESI protocol the cache lines

are described by a state that reflects certain characteristics, which are the following:

• Modified: The field in the main memory has been modified, the current state of

the line is dirty

• Exclusive: The field is present in one cache only, the current state of the line is

clean

• Shared: The field is present in multiple caches, the current state of the line is

clean

• Invalid: The field is invalid, and usage is prohibited

The MOESI protocol has an extra state, namely the Owned state. The cache line is

available for all the other caches. However, only the current cache is entitled to make

changes. Would any changes occur to the cache line, the cache state is set to Owned

before broadcasting the modified cached field with the remaining caches. An additional

advantage of this is that fields labeled as dirty can be shared with other caches without

updating the main memory value. (Dey and S. Nair, 2014)

2.2.2 Data-Race Free Guarantee

The sequential consistency defined by Lamport (1979) provides an ample guarantee.,

by specifying two core properties for any execution result:

• Execution is consistent from a single thread perspective

• Execution trace is ordered and unique from all thread’s perspective

Sequential consistency is particularly strong as it requires all memory operations to be

propagated instantly and visible to all threads atomically: this has a strong impact on

what optimizations can be made and how efficient memory operations are, as it

effectively implies that all threads are synchronized globally. Since each thread is

 6

mapped to a processor on the host, this requirement automatically propagates at the

hardware level. (Cs.umd.edu, 2004)

The need for sequential consistency avoided expensive optimizations that the compiler

and the hardware could make and seriously impeded the performance of any but the

most trivial programmes. The system must be able to reorder the instructions provided

by the program to minimize memory access latency.

The Java Memory Model offers a weaker guarantee called Data-Race Free Guarantee.

If all sequentially consistent executions of a program do not imply data races, all

executions will be sequentially consistent. This guarantee is defined by the happens-

before relationship: if two conflicting accesses (at least one access is writing at the same

memory location) are not ordered from the happens-before perspective, it is a data race.

A program with all sequentially consistent executions without data races should be

synchronized correctly. (Cs.umd.edu, 2004)

2.3 Locking

Java standard library offers a locking mechanism to ensure atomic operations, namely

the synchronized block. A synchronized block consists of two parts: an object reference

acting as the lock and a block of code to be executed safe-guarded by the lock.

synchronized (lock) {

// Access or modify shared state guarded by a lock

}

Listing 1. A synchronized code block in Java.

According to Goetz (2006), “Every Java object can implicitly act as a lock for purposes

of synchronization; these built-in locks are called intrinsic locks or monitor locks. The lock

is automatically acquired by the executing thread before entering a synchronized block

and automatically released when control exits the synchronized block, whether by the

normal control path or by throwing an exception out of the block. The only way to acquire

an intrinsic lock is to enter a synchronized block or method guarded by that lock”.

 7

In Java, intrinsic locks behave as mutual exclusion locks, which means that only a thread

can possess the lock at a time. When the thread A tries to acquire a thread B lock, A

must wait or block until it is released by thread B. A waits forever if B never releases the

lock.

If a thread is holding a lock, by entering a new synchronized block coordinated by the

same lock, the next block will automatically be executed. This property is known as

reentrancy. Java performs this operation by combining the lock acquisition count and

thread ownership with each lock. The thread owning the lock is recorded and the count

is incremented by one and the given thread acquires the lock for the first time. In the

circumstance when the lock is to acquire the same lock again, the count will be

incremented. Similarly, if the thread is to exit the synchronized block, the count is

decremented and the lock is released. The lock’s owning thread details are used for

determining if the thread requesting the locks owns it already. In

java.util.concurrent.locks, there are multiple locking implementations with the same basic

reentrant behavior and semantics as the synchronization implicit monitor lock but with

extended capabilities and control over locking semantics and timing. (Goetz., 2006)

Synchronization offers two features: visibility and mutual exclusion. Mutual exclusion

ensures that only a single thread can have access at a time when several threads

compete for a single resource, as mentioned before. Visibility also provides

synchronization. The guarantee that the resource updated by one thread will be visible

to other threads cannot be provided in the absence of synchronization (or volatility). As

Goetz (2006) mentions “… even see stale values in case of 64-bit primitives like long

and double as the value may be written as two 32-bit values. By synchronizing the write

and read to a variable, the latest value written to a variable by one thread will be visible

to all other threads, and there will not be any stale value”. In addition to mutual exclusion,

synchronization also provides memory visibility. If only visibility is required, and not

mutual exclusions, the resource can be declared as volatile as it provides the identical

advantages as synchronization does without the mutual exclusion, with a performance

benefit over synchronization.

Mutual exclusion lock ensures that only a single thread can enter a critical section at a

time. If a new thread competes for the same resource sentineled by the lock, the

execution is blocked until the thread is notified to try again. A semaphore is a

generalization of blockages of mutual exclusion. Every Semaphore has an initial capacity

 8

provided for the constructor. The semaphore acts as a sentinel for critical sections,

instead of allowing a single thread at a time, it allows as many as the value of the capacity

provided during initialization. The Semaphore class has two methods: a thread calls

acquire() to request authorization to enter the critical block, and release() to notify that

the execution has finished. The Semaphore itself is just a counter: it tracks the number

of threads allowed to enter. If a new acquire() call exceeds the capacity, the calling thread

will be suspended until the room is available. (Herlihy and Shavit, 2012)

2.4 Fairness

The built-in waiting and notification methods in JLS offer no guarantees of fairness. There

is no guarantee for which thread in a waiting set will be notified or which one will be able

to first to acquire the lock and notify the remaining threads of the operation. (Herlihy and

Shavit, 2012)

This flexibility in the JVM implementations allowed by the JLS makes it impossible to

infer the exact thread execution process. However, in most contexts, this is not a

practical problem. Considered for example a concurrent buffer application, it is irrelevant

to point the exact thread from a set will execute the specific code block.

However, it is sensible in the management of a resource pool to ensure that the threads

waiting for necessary resources are not constantly removed by others because they are

unfair in their choice of which threads are to be blocked in the underlying notification

process. Many synchronous channel applications have similar concerns. (Kwiatkowska,

1989)

Guaranteeing that the host system will be executing a specific thread or process exceeds

the JLS minimum requirements. From a pragmatical standpoint, this is unlikely to be an

important issue. Most JVM implementations aim to offer sensible planning policies that

go far beyond the JLS set of minimum requirements. They show weak, limited or

probabilistic fairness regarding the execution of running threads. For a language

specification it is difficult to cover all the possibilities; hence, at least regarding JLS, this

matter is left as a problem of implementation.

 9

2.5 Concurrency primitives

Processors perform synchronization operations to guarantee data integrity and

consistency in the shared memory with the support of hardware implemented

primitives. Synchronization overhead (such as atomic update) represents one of the

problems to be tackled when designing and planning for performance scalability in the

context of shared memory multiprocessors.

Several atomic primitives co-exist on the hardware level to provide atomic

modifications to different memory addresses we distinguish mainly three concurrency

primitive functions, namely Test-And-Set, Fetch-And-Add, Compare-And-Swap.

function TAS(value_pointer:pointer to word, value:word):word

atomic do

old_value=*value_pointer;

*value_pointer=value;

return old_value;

Listing 2. Test-And-Set pseudocode.

As illustrated in Listing 2 the primitive takes effectively two parameters, the destination

pointer, and the value to be set. It returns the old value pointed to by value_pointer and

updates the old value to the new at the same time. The key is that the operation

sequence is carried out atomically. The reason it is called " test and set " is that it

allows " testing " the old value (which is the returned value) while " setting " the

memory location to a new value simultaneously.

procedure FAA(address:pointer to number, number:integer): integer

atomic do

old_value=*value_pointer;

*value_pointer=value + number;

 return old_value;

Listing 3. Fetch-And-Add pseudocode.

In listing 3, we have the pseudocode of the Fetch-And-Add primitive instruction, which

atomically increases value by returning the old value at a certain address.

function CAS(address:pointer to word, oldvalue:word, newvalue:word):boolean

atomic do

if *address = oldvalue then *address := newvalue; return true;

 10

else return false;

Listing 4. Compare-And-Swap pseudocode.

Another primitive hardware that some systems provide is the comparison and swap

instruction or the comparison and exchange instruction. For this single instruction, the

pseudocode is found in Listing 4. Compare-And-Swap atomically compares a memory

location’s content with a certain value, in case they are the same the memory location’s

content gets set to a new value and the instruction returns true, false otherwise.

2.6 Java concurrent queue implementations

A concurrent queue is generally a thread-safe implementation which supports multiple

producers to enqueue items, and multiple consumers to dequeue them. Thread safety

implies that the state of the queue is synchronized across its clients. To better describe

the pattern, let’s go back to the cafeteria example. Student A enqueues in the line, and

both Cashier A and Cashier B try to serve Student A. Cashier A, and Cashier B do not

talk to each other, so they possibly end up charging Student A twice, and that is

something to be avoided.

A blocking queue is a queue that blocks when you try to dequeue from it, and the queue

is empty, or if you try to enqueue items to it and the queue is already full. A thread trying

to dequeue from an empty queue is blocked until some other thread inserts an item into

the queue. A thread trying to enqueue an item in a full queue is blocked until some other

thread makes space in the queue, either by dequeuing one or more items or clearing the

queue completely.

Java Concurrent Linked Queue represents an unbounded thread-safe queue based on

linked nodes (ConcurrentLinkedQueue, 2018). The implementation achieves the

concurrency without using a locking mechanism, by using the Compare-And-Swap

concurrency primitive. This separates the producer queue operations from the consumer

ones, effectively being up to scale the threads without blocking concerns. The

implementation is based on a LinkedList data structure. Hence, size and random access

are operations that require linear time, while enqueuing and dequeuing operations are

done in constant time.

 11

 Java Linked Blocking Queue represents an optionally-bounded blocking queue based

on linked nodes (LinkedBlockingQueue, 2018). The queue will block either the producer

or the consumer when the queue is full or empty, putting the working threads to sleep

until a value is produced. However, the blocking feature is potentially expensive in

scenarios of multiple producers/consumers. Every queue and dequeue operation is lock

contended.

Java Array Blocking Queue represents a bounded blocking queue with an underlying

Array as the primary data structure (ArrayBlockingQueue, 2018). The array has a fixed

size and operates as a “rounded buffer.” Elements are enqueued and dequeued, the

head and the queue tail being determined by two cursors, based on which the queue can

resolve its capacity. Attempting to deque an element from an empty queue will result in

a blocking operation, likewise enqueue operation will block on the full queue. A

substantial difference from the LinkedList implementation is that all operations on this

data structure are constant time.

 12

3 Immutable queue-based RingBuffer

A RingBuffer also referred to as a circular buffer or circular queue, is a circular data

structure, although the implementation is linear. The RingBuffer is a common queue

implementation. While a RingBuffer is represented as a circle, in the underlying code, a

RingBuffer is linear. A RingBuffer exists as a fixed-length collection of objects with two

pointers: the first representing the head of the queue, and the second representing the

tail. In a queue, elements are added to the queue tail in a FIFO type of ordering. In the

order they have been added, the first elements from the top of the queue are removed.

3.2 Specifications

Before deep diving into implementation details of the RingBuffer implementation, we

ought to define a set of specifications that will eventually determine the success or failure

of the implementation. This set of the ground will have to be rigidly followed and will

represent a base case for the testing and benchmarking of the different implementations:

1. The data structure can contain elements of different type

2. The RingBuffer initial size has to be greater than zero

3. The RingBuffer has a fixed limit set upon creation

4. On enqueue operation, an element is added at the end of the list and size is

increased

5. On dequeue operation, an element from the queue head is taken, and size is

decreased

6. If the queue has reached its limit, the enqueue operation will return false

7. If the RingBuffer is empty, a dequeue operation will return a None value

3.3 Interface

The first requirement to be implemented is the type generalization. Hence the RingBuffer

will be implemented using a type parameter. Provided that the implementation of this

data structure will be immutable, the type parameter has to be covariant, specified in

Scala with the + annotation. Covariance regarding an A type parameter permits the

flexibility to pass a queue of subtyped elements to functions allowing [A] type.

 13

(Docs.scala-lang.org, 2019) As an example, a RingBuffer[Apple] could be passed as an

argument to functions requiring a RingBuffer[Fruit] (Listing 5).

class RingBuffer[+A](val size: Int, val capacity: Int)

Listing 5. RingBuffer class definition

The next step would be the definition of the enqueue method. At first glance, a simple

operation would suffice (Listing 6).

def enqueue(a: A): RingBuffer [A]

Listing 6. Simple enqueue method

However, this leads to a compiler error since the input is in a contravariant position. In

other words, the compiler will not be able to completely infer the type of return Ring-

Buffer. To address this issue, we need to define a new type parameter constraint that

will be a supertype of A. The interface will now compile. However, as mentioned in the

specifications, the enqueue method will effectively have to return false if the RingBuffer

is full. Hence, we ought to change our return signature including the Boolean value.

def enqueue[B >: A](element: B): (Boolean, RingBuffer[B]) = ???

Listing 7. RingBuffer enqueue method

To complete our interface definition, we need to define the dequeue operation (Listing

8).

def dequeue: Option[(A, RingBuffer[A])] = ???

Listing 8 RingBuffer dequeue method

3.4 Naïve implementation

RingBuffer, as the Queue data structure, represents only an interface per se, and an

underlying data structure is needed for the implementation. The most straightforward

data structure that would indeed provide the immutability and the FIFO (first in first out)

ordering is the Scala’s standard library immutable queue. Its size method runtime is

 14

indeed O(N), however, in the interface definition, we define size as a class parameter

(Listing 9), which indeed will reduce our size runtime to O(1). Size runtime is important

for our enqueue method implementation considered that RingBuffer is a closed data

structure and therefore size needs to be constantly checked for every enqueue

operation.

case class RingBuffer[+A](val size: Int, val capacity: Int, queue: Queue[A])

Listing 9 RingBuffer implementation class definition

def enqueue[B >: A](element: B): (Boolean, RingBuffer[B]) = {

 if (size < capacity) true -> RingBuffer(capacity, size + 1,

queue.enqueue(element))

 else false -> RingBuffer(capacity, size, queue)

}

Listing 10 RingBuffer enqueue implementation

In the enqueue implementation (Listing 10) the most significant check regards the size

against the capacity of the RingBuffer. If it allows for new elements, it returns a Boolean

flag signaling the success of the operation and the new immutable RingBuffer, a false

and the old reference otherwise

def dequeue: Option[(A, RingBuffer[A])] = {

 queue.dequeueOption.map {

 case (el, newQueue) => el -> RingBuffer (capacity, size - 1, newQueue)

 }

}

Listing 9 RingBuffer dequeue implementation

The pure implementation of our dequeue method is fairly simpler both in reasoning and

actual implementation. Considered that successful implementation of all the required

methods as previously described we can now summarize by providing a full snippet of

the code in addition to the class constructor.

import scala.collection.immutable.Queue

 15

case class RingBuffer[+A] private (val size: Int, val capacity: Int, queue:

Queue[A]) {

def enqueue[B >: A](element: B): (Boolean, RingBuffer[B]) = {

 if (size < capacity) true -> RingBuffer(capacity, size + 1,

queue.enqueue(element))

 else false -> RingBuffer(capacity, size, queue)

}

def dequeue: Option[(A, RingBuffer[A])] = {

queue.dequeueOption.map {

 case (el, newQueue) => el -> RingBuffer (capacity, size - 1, newQueue)

 }

}

}

object RingBuffer {

def empty[A](capacity: Int): RingBuffer [A] = RingBuffer (capacity, 0,

Queue.empty[A])

def apply[A](capacity: Int)(els: A*): RingBuffer [A] = {

 val elements = if (xs.size <= capacity) els else els.takeRight(capacity)

 Ring(capacity, elements.size, Queue(elements: _*))

 }

}

Listing 10 RingBuffer full naïve implementation

From a pure performance analysis, the RingBuffer implementation is quite efficient. The

chosen data structure for the implementation is the Scala standard library immutable

queue which has a set of significant advantages:

• Enqueue and dequeue values in a first-in-first-out (FIFO) manner

• Provides immutability which simplifies concurrency issues

• The queue in its scala immutable implementation consists as a pair of Lists, one

holding the ''in'' elements and the second the ''out'' elements.

• Both the enqueuing and the dequeuing operations have always cost O(1) (except

for the particular scenario where a list pivoting is required, the cost for the

operation in that case being O(n), n being the number of values already added in

the queue)

 16

The main disadvantage of this implementation is the rather complicated user-facing API,

as a matter of fact, both the enqueue and dequeue operations return the new RingBuffer

rather than modifying the current one. This might lead to mutability references in the

client application.

3.5 Concurrent access and modification

In a real-world application a purely immutable queue has limited usages, most of the time

it is used as a backpressure mechanism for a continuous stream of data. Because the

tasks would be incessantly added and taken from the queue, having a unique queue

reference with the mutability reference abstracted from the developer would greatly ease

and improve application code readability and reasoning. To achieve this, the RingBuffer

immutable and the mutable references need to be separated. The immutable class value

that does not need to change is the capacity, being defined during the queue creation

time. Size and the Queue references, however, will need to be extracted into a separate

case class (Listing 11) for clarity reasons.

case class IQueue[A] (size: Int, queue: Queue[A])

Listing 11 IQueue case class

To ensure the atomic reference of the IQueue object whenever it is modified by different

threads at once, the java AtomicReference

(java.util.concurrent.atomic.AtomicReference) will have to be introduced for our IQueue

case class. This will provide the necessary concurrency primitives for correctly resolving

and modification of the mutable references.

import java.util.concurrent.atomic.AtomicReference

import scala.collection.immutable.Queue

case class IQueue[A] (size: Int, queue: Queue[A])

case class RingBufferRef[A] private (capacity: Int, queue:

AtomicReference[IQueue[A]]) {

 def enqueue(element: A): Boolean = {

 val queueReference = queue.get()

 if (queueReference.size < capacity) {

 17

 queue.set(IQueue(

 queueReference.size + 1, queueReference.queue.enqueue(element)))

 true

 }

 else false

 }

 def dequeue: Option[A] = {

 val queueReference = queue.get()

 queueReference.queue.dequeueOption match {

 case Some((el, newQueue)) =>

 queue.set(IQueue(queueReference.size - 1, newQueue))

 Some(el)

 case None =>

 None

 }

 }

}

object RingBufferRef {

 def empty[A](capacity: Int): RingBufferRef[A] = RingBufferRef(capacity, new

AtomicReference[IQueue[A]](

 IQueue(0, Queue.empty[A])

))

 def apply[A](capacity: Int)(els: A*): RingBufferRef[A] = {

 val elements = if (els.size <= capacity) els else els.takeRight(capacity)

 RingBufferRef(capacity, new AtomicReference[IQueue[A]](

 IQueue(elements.size, Queue(elements: _*))))

 }

}

Listing 12 RingBufferRef full implementation

In Listing 12, the initial RingBuffer is reimplemented to use the reference mutability with

regards to IQueue object but introduces atomic operations for modifying the content of

the RingBuffer. In both enqueue and dequeue methods a fresh copy of the queue is

fetched (via queue.get()), and a new queue is set to be referenced in the next iteration

of the different methods. However, this implementation has a major drawback, race

conditions. The queue.set() method will set the new object reference to whatever value

it is given, regardless of what it currently withholds. To put this in perspective, let’s

imagine a current queue with one value. Thread A and Thread B both try to enqueue a

 18

new value. However, since they are accessing the reference concurrently, they are not

aware of the modifications themselves, and both get the queue with one value to modify.

No matter which thread is first to enqueue their value, the resulting queue size will always

have a size of 2 whereas it should have three values, effectively dropping one

accidentally.

The solution to the race condition problem is to introduce a concurrency primitive,

compare and swap, already described in paragraph 2.3. Using this particular instruction,

the operation could be looped over or tail recursed until a successful result.

case class RingBufferCAS[A] private (capacity: Int, queue:

AtomicReference[IQueue[A]]) {

 def enqueue(element: A): Boolean = {

 var compareAndSetResult = false

 var result = false

 while (!compareAndSetResult) {

 val queueReference = queue.get()

 if (queueReference.size < capacity) {

 compareAndSetResult = queue.compareAndSet(queueReference, IQueue(

 queueReference.size + 1, queueReference.queue.enqueue(element)))

 result = true

 } else {

 compareAndSetResult = true

 result = false

 }

 }

 result

 }

 def dequeue: Option[A] = {

 var compareAndSetResult = false

 var result: Option[A] = None

 while (!compareAndSetResult) {

 val queueReference = queue.get()

 queueReference.queue.dequeueOption match {

 case Some((el, newQueue)) => {

 compareAndSetResult = queue.compareAndSet(queueReference,

IQueue(queueReference.size - 1, newQueue))

 result = Some(el)

 }

 case None =>

 {

 19

 compareAndSetResult = true

 result = None

 }

 }

 }

 result

 }

}

Listing 13 RingBufferCAS full implementation

A refactored version of the RingBufferRef (Listing 12) can be seen in Listing 13. Both

enqueue and dequeue methods are implemented using a while loop that withholds as its

main condition the mutable result of the compare_and_swap instruction, always trying to

eventually enqueue the items until a successful reference is solved.

3.6 A-B-A problem

In multi-threaded computing, the ABA problem occurs during synchronization when a

location is read twice; both reads have the same value and " value is the same " indicates

that there was no modification. However, another thread can execute between the two

reads and change the value, do other work and then change the value back, thus fooling

the first thread into thinking that " nothing has changed, " even if the second thread does

not work. The problem with ABA occurs when multiple threads (or processes) have

access to shared data. The following is the sequence of events that lead to the problem

of ABA:

• Process T1 reads value A from shared memory

• T1 is preempted, allowing process T2 to run

• T2 modifies the shared memory value A to value B and back to A before

preemption

• T1 begins execution again, sees that the shared memory value has not changed

and continued.

 20

Although T1 can continue to execute, due to the " hidden " modification of the shared

memory, the behavior may not be right. A common case of ABA problems is found when

a lock-free data structure is implemented. If an item is deleted from the list and a new

item is assigned and added to the list, it is common for the assigned object to be at the

same location as the deleted object due to optimization. A new item pointer is therefore

sometimes the same as an old item pointer, which is an ABA problem. This problem

arises however mostly not garbage collected languages where the CAS comparison is

value based. In Java, every atomically referenced object has a unique stamp updated

during the set() method. To make the stamp comparison and setting explicit

AtomicStampedReference is provided by java.util.concurrent. (Herlihy and Shavit, 2012)

3.7 Thread safety via synchronization

Despite CAS being overall a great concurrency primitive, it does not represent the only

solution for the concurrent access and modification. As previously described in

paragraph 2.2 synchronized block represents an intrinsic lock for safeguarding object

modification from multiple threads.

package immutable

import java.util.concurrent.atomic.AtomicReference

import scala.collection.immutable.Queue

case class IQueue[A] (size: Int, queue: Queue[A])

case class RingBufferSynchronized[A] private (capacity: Int, queue:

AtomicReference[IQueue[A]]) {

 def enqueue(element: A): Boolean = synchronized {

 val queueReference = queue.get()

 if (queueReference.size < capacity) {

 queue.set(IQueue(queueReference.size + 1,

queueReference.queue.enqueue(element)))

 true

 } else {

 false

 }

 }

 def dequeue: Option[A] = synchronized {

 val queueReference = queue.get()

 21

 queueReference.queue.dequeueOption match {

 case Some((el, newQueue)) =>

 queue.set(IQueue(queueReference.size - 1, newQueue))

 Some(el)

 case None => None

 }

 }

}

object RingBufferSynchronized {

 def empty[A](capacity: Int): RingBufferRef[A] = RingBufferRef(capacity, new

AtomicReference[IQueue[A]](

 IQueue(0, Queue.empty[A])

))

 def apply[A](capacity: Int)(els: A*): RingBufferRef[A] = {

 val elements = if (els.size <= capacity) els else els.takeRight(capacity)

 RingBufferRef(capacity, new AtomicReference[IQueue[A]](

 IQueue(elements.size, Queue(elements: _*))))

 }

}

Listing 14 RingBufferSynchronized full implementation

Like the previous implementation (Listing 12) of the RingBuffer with AtomicReference,

the reference is purely updated to the new object while the concurrent thread

modification of the different methods is safeguarded by the synchronization block. By

citing the counterexample mentioned in paragraph 3.3, two different threads will not be

able to access at the same time the resource, making this implementation thread-safe.

 22

4 Mutable array-based RingBuffer

An array-based implementation of the RingBuffer differentiates from the previous

immutable queue implementation in one key aspect, the underlying data structure. To

simulate the previously linked list behavior of enqueuing and dequeening in constant

time, we need to constantly keep track of the head pointer and the tail pointer.

• The front pointer will always denote to the oldest inserted element in the queue

• The rear pointer will always denote to the newest inserted element in the queue

• Every time a new element is inserted into the queue rear is incremented by one

• Every time an element is deleted from the queue front is incremented by one

4.1 Specifications

The set of rules used to insert a new element in a circular queue are similar to the rules

in the case of a linear queue, with some modifications:

1. The first thing to do in the case of inserting a new element is to check if the

circular queue is full or not. This is accomplished by performing the following

equation: Front = (Rear + 1) % Max Size, where max size is the total number

of slots in the circular queue.

2. The user will insert the new element.

3. If the inserted element is the first element in the circular queue, the front, and

rear pointers will denote to the first location which zero. The circular queue is

empty if the front pointer is equal -1.

4. If the newly inserted element is not the first element in the circular queue, the

location of this element will be calculated as follows: Rear = (Rear + 1) % Max

Size.

The deletion method for a circular queue also requires some modification as compared

to a linear queue. The used rules are:

1. Check if the value of the front pointer equals -1 or not. If yes, the circular

queue is empty, and the underflow situation existed.

 23

2. Check if the value of front and rear pointers are the same. If yes, this means

there is only one element in the circular queue, and it is deleted by setting the

value of front and rear pointers to -1.

3. Otherwise, the front pointer value will be modified as follows:

Front = (Front + 1) % Max Size

4.2 Implementation

import java.util.concurrent.atomic.AtomicReference

import scala.reflect.ClassTag

case class RingBufferValues(front: Int, rear: Int)

case class ArrayRingBufferCAS[A](capacity: Int, array: Array[A]) {

 private val ringBufferSettings = new

AtomicReference[RingBufferValues](RingBufferValues(-1, 0))

 def size(ringBufferValues: RingBufferValues): Int = {

 ringBufferValues.rear - ringBufferValues.front

 }

 def enqueue(value: A): Boolean = {

 var compareAndSetResult = false

 var result = false

 while(!compareAndSetResult) {

 val ringBufferValues = ringBufferSettings.get()

 val rearArrayValue = (ringBufferValues.rear + 1) % array.length

 if (!(size(ringBufferValues) >= capacity)) {

 val frontValue =

 if(ringBufferValues.front == -1) 0

 else ringBufferValues.front

 compareAndSetResult = ringBufferSettings

 .compareAndSet(ringBufferValues, RingBufferValues(frontValue,

rearArrayValue))

 if(compareAndSetResult) {

 array.update(ringBufferValues.rear, value)

 24

 }

 result = true

 }

 else {

 compareAndSetResult = true

 result = false

 }

 }

 result

 }

 def dequeue(): Option[A] = {

 var compareAndSetResult = false

 var result: Option[A] = None

 while (!compareAndSetResult) {

 val ringBufferValues = ringBufferSettings.get()

 if (ringBufferValues.front == -1) {

 compareAndSetResult = true

 result = None

 } else if(ringBufferValues.rear == ringBufferValues.front) {

 val tmp = array(ringBufferValues.front % array.length)

 compareAndSetResult = ringBufferSettings

 .compareAndSet(ringBufferValues , RingBufferValues(-1, 0))

 result = Some(tmp)

 } else {

 val tmp = array(ringBufferValues.front % array.length)

 val newFront = ringBufferValues.front + 1

 compareAndSetResult = ringBufferSettings

 .compareAndSet(ringBufferValues ,RingBufferValues(newFront,

ringBufferValues.rear))

 result = Some(tmp)

 }

 }

 result

 }

}

object ArrayRingBufferCAS {

 def empty[A: ClassTag](capacity: Int): ArrayRingBufferCAS[A] = {

 val array = Array.ofDim[A](capacity)

 ArrayRingBufferCAS[A](capacity, array)

 25

 }

 def apply[A: ClassTag](capacity: Int)(els: A*): ArrayRingBufferCAS[A] = {

 val elements = if (els.size <= capacity) els else els.takeRight(capacity)

 val array = Array.ofDim[A](capacity)

 val arrayRingBuffer = ArrayRingBufferCAS[A](capacity, array)

 elements.foreach(el => arrayRingBuffer.enqueue(el))

 arrayRingBuffer

 }

}

Listing 15 ArrayRingBufferCAS full implementation

The array-based RingBuffer implementation defined in Listing 13 is and should be like

our compare and swap immutable implementation defined in Listing 11, with a few key

differences. The underlying data structure is a mutable java array instead of the scala’s

very own immutable queue. In practice, this means that while we have a unique

reference to it, it can undergo modifications at any given moment. The second key

difference is the introduction of the atomic reference for the front and rear pointer. These

two values effectively represent our queue, being the distinctive way of determining if the

queue is full, if it has values or if it is empty. Hence, they need to be atomically modified.

The insertion and deletion rules defined in paragraph 4.1 are implemented in the

enqueue and respectively dequeue method.

 26

5 Benchmarking

To thoroughly test the immutable queue-based and the mutable array-based

RingBuffers, basic unit tests are needed to ensure the correct Queue behavior, be it in a

single or multi-thread parallel environment. Also, benchmarking tests will be performed

comparing the RingBuffer implementations, and the presented Java Concurrent thread-

safe concurrent queues in paragraph 2.4. The unit tests will be performed using

scalatest, the most popular testing tool in the Scala ecosystem. The benchmarking

framework chosen for the testing is ScalaMeter, a regression test, and micro

benchmarking for the JVM platform.

5.1 Unit testing

RingBuffer’s API exposes to methods that modify circular buffer’s internal state, namely

the queue and enqueue methods. To progress with the benchmarking tests, the correct

functionality needs to be validated. For this unit tests, a new list of elements (of type Int)

will be created. The list will be parallelly traversed (to test the concurrency aspect) until

all the elements will be enqueued. For the dequeue operation the auxiliary

JavaConcurrentLinkedQueue will be used to store the taken elements. The initial list will

be once again traversed in parallel and the dequeued items will be added to the auxiliary

data structure. The full snippet of the unit tests is provided below (Listing 16).

import java.util.concurrent.ConcurrentLinkedDeque

import immutable.{RingBufferCAS, RingBufferSynchronized}

import mutable.ArrayRingBufferCAS

import org.scalatest.FunSuite

import org.scalatest.concurrent.Eventually

import org.scalatest.time.{Millis, Seconds, Span}

class MainTest extends FunSuite with Eventually {

 override implicit val patienceConfig: PatienceConfig =

 PatienceConfig(timeout = Span(3, Seconds), interval = Span(5, Millis))

 test("RingBuffer CAS enqueue and dequeue") {

 val list = List(1,2,3,4,5,6,7,8,9,10)

 27

 val queue = RingBufferCAS.empty[Int](20)

 list.par.foreach{

 el =>

 queue.enqueue(el)

 }

 val concurrentLinkedQueue = new ConcurrentLinkedDeque[Int]()

 list.par.foreach{ _ =>

 val el = queue.dequeue

 if (el.isDefined) concurrentLinkedQueue.add(el.get)

 }

 eventually {

 assert(concurrentLinkedQueue.size==10)

 list.foreach{

 el =>

 assert(concurrentLinkedQueue.contains(el))

 }

 }

 }

 test("RingBuffer Synchronized enqueue and dequeue") {

 val list = List(1,2,3,4,5,6,7,8,9,10)

 val queue = RingBufferSynchronized.empty[Int](20)

 list.par.foreach{

 el =>

 queue.enqueue(el)

 }

 val concurrentLinkedQueue = new ConcurrentLinkedDeque[Int]()

 list.par.foreach{ _ =>

 val el = queue.dequeue

 if (el.isDefined) concurrentLinkedQueue.add(el.get)

 }

 eventually {

 assert(concurrentLinkedQueue.size==10)

 list.foreach{

 el =>

 assert(concurrentLinkedQueue.contains(el))

 }

 }

 }

 28

 test("ArrayRingBuffer CAS enqueue and dequeue") {

 val list = List(1,2,3,4,5,6,7,8,9,10)

 val queue = ArrayRingBufferCAS.empty[Int](20)

 list.par.foreach{

 el =>

 queue.enqueue(el)

 }

 val concurrentLinkedQueue = new ConcurrentLinkedDeque[Int]()

 list.par.foreach{ _ =>

 val el = queue.dequeue()

 if (el.isDefined) concurrentLinkedQueue.add(el.get)

 }

 eventually {

 assert(concurrentLinkedQueue.size==10)

 list.foreach{

 el =>

 assert(concurrentLinkedQueue.contains(el))

 }

 }

 }

}

Listing 16 Unit tests code

The assertions done in the unit tests are the following:

• Compare the size of the auxiliary data structure and the size of the initial list of

elements. For the tests to pass, verify that the two sizes are the same value

• Traverse the initial list of elements and assert that each element is contained in

the auxiliary list

Both conditions were satisfied during the unit tests to run, establishing that the

concurrency did not lead to data corruption and the output of the queue is that same that

is to expect from a canonical queue. Considered the parallel aspect of element insertion

the ordering of the elements cannot be guaranteed; hence, this aspect was to be omitted.

Unit tests were run on a MacBook Pro 13’ 2014, with an i5 dual-core CPU, Scala version

2.12.7, scalatest version 3.0.5 and OpenJDK version jdk1.8.0_192.

 29

5.2 Benchmark test specifications

ScalaMeter’s API provides easy specifications for dataset generation. The performance

test run will use a big enough range of data, starting from 300000 elements up to

1500000, by introducing a step of 500000 records between the multiple datasets. The

datatype of the record will be represented by Integers (the elements to be enqueued and

dequeued).

 val sizes = Gen.range("size")(300000, 1500000, 500000)

 val ranges = for {
 size <- sizes
 } yield 0 until size

Listing 17 Benchmarking Specifications

In Listing 17 is represented as a simple generator of records using Scalameter. A set of

sizes is created using the step function, after which the ranges that are going to be used

for the enqueuing/dequeuing are generated.

object PerformanceTest extends Bench.LocalTime {

 val sizes = Gen.range("size")(300000, 1500000, 500000)

 val ranges = for {
 size <- sizes
 } yield 0 until size

 performance of "ArrayRingBufferCAS" in {
 measure method "enqueue" in {
 using(ranges) in {
 r =>
 val arrayRingBuffer = ArrayRingBufferCAS.empty[Int](r.size)
 arrayRingBuffer.map{ i => arrayRingBuffer.enqueue(i)}
 }}}
}

Listing 18 Local Benchmarking test snippet

Listing 18 provides a simple test snippet for a performance test. The performance is

logged directly in the console during the test run. This test, however, has some

limitations:

• Enqueuing and dequeuing is sequential; parallelism is needed to provide

meaning for RingBuffer’s concurrent functionality

• The tests are executed sequentially in the same JVM; this implies for both JVM

warmup period (tests running cold JVM will be less performant) as well as the

cache coherence

 30

ScalaMeter offers various alternatives for the second problem specified in the previous

paragraph. The PerformanceTest Object should extend the Bench trait, which in turn

would allow defining the three main parts of the testing pipeline: the measurer, the

persistor and the executor. The executor decides how the tests will be executed. To

guarantee tests isolation (running a separate JVM for each test), the executor will be

changed to a special SeparateJvmsExecutor. The heap size for new JVM containers has

a default heap size set to 2GB. The Executor used in this test executes a fixed number

of measurements, takes the minimum execution time as the default measure and will

apply the same JVM warming period for each test.

To simulate the multiple producer-multiple consumer scenarios, the source list of records

can be parallelized. Scala’s List interface provides a utility method to specify the

parallelism number for the parallel execution as well as implement a custom

ForkJoinPool where it is possible to specify the desired number of execution threads.

import java.io.File

import java.util.concurrent.{ArrayBlockingQueue, ConcurrentLinkedDeque,

ForkJoinPool, LinkedBlockingQueue}

import mutable.ArrayRingBufferCAS

import immutable.{RingBufferCAS, RingBufferSynchronized}

import org.scalameter.api._

import org.scalameter.picklers.Implicits._

import org.scalameter.Bench.OfflineReport

import scala.collection.parallel.ForkJoinTaskSupport

object PerformanceTest extends OfflineReport {

 override val executor = SeparateJvmsExecutor(

 New Executor.Warmer.Default,

 Aggregator.min,

 new Measurer.Default

)

 override val reporter: Reporter[Double] = Reporter.Composite(

 new RegressionReporter(

 RegressionReporter.Tester.OverlapIntervals(),

 RegressionReporter.Historian.ExponentialBackoff()),

 HtmlReporter(true)

)

 override def persistor: Persistor = JSONSerializationPersistor(new

File("target/benchmarks/sun"))

 val sizes = Gen.range("size")(300000, 1500000, 500000)

 val taskSupport = new ForkJoinTaskSupport(new ForkJoinPool(5))

 val ranges = for {

 size <- sizes

 } yield 0 until the size

 31

 performance of "ArrayRingBufferCAS" in {

 measure method "enqueue" in {

 using(ranges) in {

 r =>

 val arrayRingBuffer = ArrayRingBufferCAS.empty[Int](r.size)

 val parallel = r.par

 parallel.tasksupport = taskSupport

 parallel.map{ i => arrayRingBuffer.enqueue(i)}

 }

 }

 }

 performance of "immutable.RingBufferCAS" in {

 measure method "enqueue" in {

 using(ranges) in {

 r =>

 val ringBuffer = RingBufferCAS.empty[Int](r.size)

 val parallel = r.par

 parallel.tasksupport = taskSupport

 parallel.map{ i => ringBuffer.enqueue(i)}

 }

 }

 }

...

 performance of "ArrayRingBufferCAS" in {

 measure method "dequeue" in {

 using(ranges) in {

 r =>

 val arrayRingBuffer = ArrayRingBufferCAS.empty[Int](r.size)

 val parallel = r.par

 parallel.tasksupport = taskSupport

 parallel.map{ i => arrayRingBuffer.enqueue(i)}

 parallel.map{ i => arrayRingBuffer.dequeueOption()}

 }

 }

 }

...

 performance of "immutable.RingBufferSynchronized" in {

 measure method "dequeue" in {

 using(ranges) in {

 r =>

 val ringBuffer = RingBufferSynchronized.empty[Int](r.size)

 val parallel = r.par

 parallel.tasksupport = taskSupport

 parallel.map{ i => ringBuffer.enqueue(i)}

 parallel.map{ i => ringBuffer.dequeue}

 }

 }

 }

 performance of "ConcurrentLinkedQueue" in {

 measure method "dequeue" in {

 using(ranges) in {

 r =>

 var linkedQueue = new ConcurrentLinkedDeque[Int]()

 val parallel = r.par

 parallel.tasksupport = taskSupport

 parallel.map{ i =>

 linkedQueue.add(i)

 }

 parallel.map{ i =>

 linkedQueue.pop()

 }

 32

 }

 }

 }

 ...

}

Listing 19 Full benchmarking test snippet

Listing 19 provides an almost complete snippet of the benchmarking test. The

RingBufferCAS (mutable and immutable) and RingBufferSynchronized data structures

implemented in paragraphs 4.2, 3.4 and 3.6 will be benchmarked against the already

described Java Concurrent data structures in paragraph 2.6.

The benchmarking tests will be reproduced on a MacBook Pro 13’ 2014, with an i5 dual-

core CPU, Scala version 2.12.7, scalaMeter version 0.10.1 and OpenJDK version

jdk1.8.0_192.

5.3 Results

The results in this section will be presented using two different charts: a linear chart

and a bar chart. The linear chart will help to visualize the slope describing the time

spent (Y-axis) enqueuing a certain number of elements (X-axis). On the other hand, the

bar chart aims to put into perspective the actual performance of the different queue

implementations. The graph’s legend is on the left of the graph

Figure 1 Enqueue performance test - line chart view

 33

Figure 2 Enqueue performance test - bar chart view

The enqueuing process of the performance tests, where the main measurement is done

by timing the parallel offering of elements, is visible in Figure 1 and 2. In the first chart, it

is possible to notice the linearity that describes time spent / elements enqueue

proportion, in the bar chart instead the difference among the different implementations

is more visible. The mutable implementation of the RingBuffer (Array-based) is the worst

performer, the growth rate and the time spent on the operation being much higher than

the remaining choices. The immutable implementations of the RingBuffer, on the other

hand, perform on average better than the java concurrent data structures, with no notable

difference among the CAS and Synchronized implementation.

 34

Figure 3 Dequeue performance test - line chart view

Figure 4 Dequeue performance test - line chart view

In the following test where the dequeuing operation is taking into account as well (Figure

3 and 4) the mutable Array-based RingBuffer’s performance is comparable to the

ArrayBlockingQueue while being faster than LinkedBlockingQueue and

ConcurrentLinkedQueue. The immutable implementations perform similarly to the first

tests, outpacing the mutable RingBuffer and the Java implementations.

Considered that the implemented RingBuffer (both immutable and mutable) is the only

bounded non-blocking implementation among the Java Concurrent queues, the

performance test was designed to only measure the performance while overlooking

memory management and specific API methods derived from blocking operations.

From the preliminary results listed above, however, it emerged that the immutable

RingBuffer implementations can outperform the Java implementations while

maintaining a steady growth time rate under more load. To conclude, in the initial

outline thesis goals (paragraph 1.1), the base hypothesis was that it is possible to

design a faster data structure that would satisfy the concurrent and nonblocking

requirements. The preliminary results obtained in this performance test reinforce that

assumption with concrete results.

 35

6 Conclusion

The main goal of this thesis was to provide a high performing implementation of an

abstract Queue as a RingBuffer, a bounded circular queue. The performance itself is

related to the usage of parallelization of tasks, producing and consuming. Given that

multiple sources are trying to concomitantly modify the resources, the implementation

had to be thread-safe to guarantee the data integrity of the RingBuffer.

In chapter 2, the concurrency peculiarities of JVM and JMM, the available high- and low-

level functionalities, as well as, presenting the implications and the reason they were

introduced were closely studied. In chapter 3 and 4, starting from a naïve RingBuffer

implementation, three different implementations were presented: RingBufferCAS,

RingBufferSynchronized, and ArrayRingBufferCAS. While the difference between the

first two implementations is minimal in design, as they share the common underlying

data structure (Scala’s standard library immutable Queue), the third implementation is

based on a mutable Array with a fixed size that performs as a circular queue. Chapter 5

provides a benchmark of the previously described implementations and Java’s

concurrent queue implementations. The benchmark focuses primarily on tracking the

speed of enqueuing and dequeuing and does not cover other aspects like memory

footprint or API extensibility, which should be taken into consideration when choosing

the data structure for the specific problem on hand.

The contribution of this research is to demonstrate that while sound and well-tested

implementations of concurrent queues in Java are fast enough for most of the tasks,

alternative implementations using underlying immutable data structures and concurrency

primitives for concurrent access can be achieved without sacrificing the performance.

This promises better results according to the preliminary benchmarks (chapter 5). There

are some implied limitations, aimed to be addressed in further research, including

memory management, garbage collection overhead, as well as, a complete API testing,

to reduce the gap between production-ready data structure implementation and the

presented proof of concept in this thesis.

 36

 References

Cs.umd.edu., 2004. JSR-133: JavaTM Memory Model and Thread Specification.

[online] Available at: http://www.cs.umd.edu/~pugh/java/memoryModel/jsr133.pdf

[Accessed 3 Feb. 2019]

Dey, S. and S. Nair, M. , 2014. Design and Implementation of a Simple Cache

Simulator in Java to Investigate MESI and MOESI Coherency Protocols. International

Journal of Computer Applications, 87(11), pp.6-13

Docs.scala-lang.org., 2019. Variances | Scala Documentation. [online] Available at:

https://docs.scala-lang.org/tour/variances.html [Accessed 11 Feb. 2019]

Erb, B., 2012. Concurrent Programming for Scalable Web Architectures. Graduate.

Institute of Distributed Systems Faculty of Engineering and Computer Science Ulm

University

Goetz, 2006. Java Concurrency In Practice. Pearson Education, pp.23-27.

Herlihy, M. and Shavit, N., 2012. The art of multiprocessor programming. Waltham,

MA: Morgan Kaufmann

Hewitt, C., Bishop, P. and Steiger, R., 1973. A Universal Modular ACTOR Formalism

for Artificial Intelligence. [online] p.235. Available at:

http://worrydream.com/refs/Hewitt-ActorModel.pdf [Accessed 11 Feb. 2019]

Hoare, C., 1978. Communicating sequential processes. Communications of the ACM,

[online] 21(8), pp.666-677. Available at:

https://www.cs.cmu.edu/~crary/819-f09/Hoare78.pdf

Java™ Platform, Standard Edition 7 API Specification,

2018. ConcurrentLinkedQueue<E> [online] Available

at: https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ConcurrentLinkedQue

ue.html [Accessed Oct 3, 2017]

http://www.cs.umd.edu/~pugh/java/memoryModel/jsr133.pdf
https://docs.scala-lang.org/tour/variances.html
http://worrydream.com/refs/Hewitt-ActorModel.pdf
https://www.cs.cmu.edu/~crary/819-f09/Hoare78.pdf
https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ConcurrentLinkedQueue.html
https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ConcurrentLinkedQueue.html

 37

Java™ Platform, Standard Edition 7 API Specification, 2018. ArrayBlockingQueue<E>.

[online] Available

at: https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ArrayBlockingQueue.h

tml [Accessed Oct 3, 2017]

Java™ Platform, Standard Edition 7 API Specification,

2018. LinkedBlockingQueue<E>. [online] Available at:

https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/LinkedBlockingQueue.ht

ml [Accessed Oct 3, 2017]

Kwiatkowska, M., 1989. Fairness for Non-Interleaving Concurrency. [online]

Pdfs.semanticscholar.org. Available at:

https://pdfs.semanticscholar.org/a235/214d3d8e8991b19fa842f087d1d723126bd6.pdf

[Accessed 3 Feb. 2019]

Lamport, L., 1979. How to Make a Multiprocessor Computer That Correctly Executes

Multiprocess Programs. [online] Microsoft.com. Available at:

https://www.microsoft.com/en-us/research/uploads/prod/2016/12/How-to-Make-a-

Multiprocessor-Computer-That-Correctly-Executes-Multiprocess-Programs.pdf

[Accessed 3 Feb. 2019]

Sundell, H. and Tsigas, P., 2004. Lock-Free and Practical Deques using Single-Word

Compare-And-Swap. [online] Pdfs.semanticscholar.org. Available at:

https://pdfs.semanticscholar.org/1576/f9175c495fe8ade14ac4c53eb1940107b723.pdf

[Accessed Oct 3, 2017]

https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ArrayBlockingQueue.html
https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ArrayBlockingQueue.html
https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/LinkedBlockingQueue.html
https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/LinkedBlockingQueue.html
https://www.microsoft.com/en-us/research/uploads/prod/2016/12/How-to-Make-a-Multiprocessor-Computer-That-Correctly-Executes-Multiprocess-Programs.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2016/12/How-to-Make-a-Multiprocessor-Computer-That-Correctly-Executes-Multiprocess-Programs.pdf
https://pdfs.semanticscholar.org/1576/f9175c495fe8ade14ac4c53eb1940107b723.pdf

	1 Introduction
	2 Concurrency in Java
	2.1 Thread safety
	2.2 JMM
	2.2.1 Cache coherence
	2.2.2 Data-Race Free Guarantee

	2.3 Locking
	2.4 Fairness
	2.5 Concurrency primitives
	2.6 Java concurrent queue implementations

	3 Immutable queue-based RingBuffer
	3.2 Specifications
	3.3 Interface
	3.4 Naïve implementation
	3.5 Concurrent access and modification
	3.6 A-B-A problem
	3.7 Thread safety via synchronization

	4 Mutable array-based RingBuffer
	4.1 Specifications
	4.2 Implementation

	5 Benchmarking
	5.1 Unit testing
	5.2 Benchmark test specifications
	5.3 Results

	6 Conclusion
	References

