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Queues are a significant algorithmic component to many systems and applications that 
enable decoupling of producers and consumers. Some of its real-life applications are 
ticketing (as a waiting list), a queue of packets in data communication or a queue of operating 
system processes. With the rapid growth of parallel processing and event-driven 
applications, concurrent implementations of this data structure have gained significant 
importance. Despite the relevance, many available implementations in JVM ecosystem 
employ expensive operations such as thread blocking (BlockingQueue) or true 
unboundedness (ConcurrentLinkedQueue), a characteristic which discards the usage of the 
data structure where consumer backpressure is needed. This thesis is an attempt to address 
such concerns, by design and implement a lock-free concurrent bounded queue, or 
RingBuffer, in Scala.  
 
The thesis focuses first on exploring the concurrency mechanisms that describe the JVM 
ecosystem. Then it proceeds to the lock-free RingBuffer implementations, employing 
different concurrency primitives and two different underlying data structures (Scala’s 
immutable Queue and Java’s mutable Array). The final section is dedicated to benchmarks 
comparing RingBuffer implementations and Java’s concurrent queue implementations. 
Measurements done for this section showed a significant improvement in speed over the 
available data structure although the API is presenting a few key differences.  
 
 
 
 
 
 
  

Keywords RingBuffer, CAS, synchronized, thread-safe, Queue, Scala 



 

 

Contents 

List of Abbreviations 

1 Introduction 1 

2 Concurrency in Java 3 

2.1 Thread safety 3 

2.2 JMM 4 

2.2.1 Cache coherence 4 

2.2.2 Data-Race Free Guarantee 5 

2.3 Locking 6 

2.4 Fairness 8 

2.5 Concurrency primitives 9 

2.6 Java concurrent queue implementations 10 

3 Immutable queue-based RingBuffer 12 

3.2 Specifications 12 

3.3 Interface 12 

3.4 Naïve implementation 13 

3.5 Concurrent access and modification 16 

3.6 A-B-A problem 19 

3.7 Thread safety via synchronization 20 

4 Mutable array-based RingBuffer 22 

4.1 Specifications 22 

4.2 Implementation 23 

5 Benchmarking 26 

5.1 Unit testing 26 

5.2 Benchmark test specifications 29 

5.3 Results 32 

6 Conclusion 35 

References 36 

 



 

 

List of Abbreviations 

CAS Compare-And-Swap represents a concurrency primitive 

CPU Central Processing Unit is the computer’s main processor 

CSP Communicating Sequential Processes 

FAA Fetch-And-Add represents a concurrency primitive 

FIFO First-In-First-Out. The terminology used to describe the functionality of a 

queue 

JLS  Java Language Specification 

JMM Java Memory Model 

JVM Java Virtual Machine 

MESI Modified/ exclusive/ shared/ invalid is a cache coherence protocol 

MOESI  Modified/ owned/ exclusive/ shared/ invalid is a cache coherence protocol 

TAS Test-And-Set represents a concurrency primitive



  1 

 

 

1 Introduction 

With the exponential growth of computing power and the consequent work distribution 

across several CPU threads, logical or physical, concurrency and parallelism have 

become topics of vital importance when developing new applications. Concurrency 

patterns, such as Golang’s goroutines based on the theory of Communicating Sequential 

Processes proposed by Tony Hoare in 1978 (Hoare, 1978) or the actor model proposed 

by Carl Hewitt in 1973 (Hewitt, Bishop and Steiger, 1973), aim to enable parallelism by 

proposing different alternatives with regards to task distribution across multiple threads. 

The main idea in the CSP solution is that two processes acting independently can share 

a channel where one process adds data into, and one consumes. The actor model is 

based on the actor entities passing asynchronously data, stored in each other’s mailbox.  

A common characteristic of both approaches is that both the channel in the CSP case 

and the actor mailbox work as a queue of tasks. One focus for this thesis was the 

designing of the data structure mentioned above in terms of features and behavior: data 

was placed into the queue by multiple processes and was read by multiple processes as 

well.  

 

The above-described behavior is known in computer science as the producer-consumer 

problem (Herlihy and Shavit, 2012), or the bounded buffer problem. The buffer stores 

the data put by the producer processes until the consumers remove it. If the buffer is 

empty, the consumers will pause. Vice versa, if the buffer is full, the producers will pause. 

Considered that the bounded buffer, referred to as RingBuffer throughout this thesis, is 

a shared resource, all involved processes must cooperate to ensure the data integrity. 

In this thesis, the data structure’s exposed API was lock-free. This implies that the 

producer and consumer process would have to race for the shared resource, but the 

result of the operation in case the RingBuffer was full or empty would be returned 

immediately, without blocking any thread. The implementation, however, required careful 

considerations to ensure data integrity. Scala and Java have multiple approaches to 

solve the concurrency problem in a multithreaded environment, such as using low-level 

concurrency primitives that manage access and modifications directly to memory 

addresses, as well as high-level synchronization blocks. Chapter 2 of the thesis 

describes and compares the different considerations to be done regarding 

synchronization and locking.  
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The RingBuffer was implemented as a queue. A queue represents a linear collection of 

objects that are inserted and removed according to the first-in-first-out principle. An 

excellent example of a queue is a line of students at the cafeteria. New additions to a 

line are made to the back of the queue, while removal (or serving) happens at the front. 

The underlying structure for a queue could be an Array, a Vector, an ArrayList, a 

LinkedList, or any other collection. Similarly, the RingBuffer was implemented using the 

different data structure to analyze the performance gain or loss.  

 

The main goal for this thesis was the implementation of a concurrent RingBuffer, a 

bounded queue implementation in Scala. The underlying hypothesis behind this focus is 

that it would indeed be possible to design a more performant data structure in the JVM 

landscape (Scala in this research) than the available Java concurrent queue 

implementations. The main critique for the current solutions is that the majority of 

implementations are either blocking the producer/consumer thread 

(LinkedBlockingQueue, ArrayBlockingQueue), a quite expensive operation in concurrent 

programming or provide true unboundedness (ConcurrentLinkedQueue), which might 

imply a penalty cost if the needed implementation requires boundness. Therefore, the 

secondary goal was to explore the concurrent aspect of the language and different 

techniques available in the JVM landscape and to apply them where it was possible to 

boost the different RingBuffer’s implementations’ performance. Finally, different 

underlying data structures were tested for the RingBuffer implementation for 

performance reasons. As a conclusion, a benchmark against the more performant and 

previously mentioned data structures was done to validate the base assumption that 

performance could be improved while maintaining reliability under constant high 

concurrent load.  
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2 Concurrency in Java 

2.1 Thread safety 

The most popular form of structured programming is imperative programming based on 

the concept of sequential execution and a mutable state. It is directly derived from the 

Von Neumann architectural conceptions. Threads are often seen because of this notion, 

which allows multiple control flows at the same time. In addition to more heavy 

processes, threads are the main parallel structures provided by operating systems and 

hardware architectures. (Erb, 2012) Threads represent the main mechanism for 

concurrency in most programming languages. However, the programming model based 

on threads shared state and locks poses a series of challenges, which will be described 

in the following paragraphs.  

In concept, a thread defines a sequential control flow, which is isolated at first glance 

from other events. In contrast to processes, however, threads have the same address 

space. This means that several separate threads can have access to the same 

arguments and states simultaneously. What is considered even worse is that sequential 

programming is based on the concept of a mutable state, meaning that multiple threads 

can also compete in data writing. Multi-threading is mainly used with pre-emptive 

scheduling, with the exact switches and interconnections between threads not known 

beforehand. This constitutes a strong indeterminacy and may result in verification of race 

conditions. Such a case can be verified when multiple threads compete for the same 

resource, whose state is shared across threads. Due to race condition the resource state 

may result incoherent. For example, a thread can read the outdated state while another 

thread proceeds with updating it. If several threads modify the state at the same time, 

with only a subset of the changes being persisted, the outcome will be inconsistent. In 

conclusion, mechanisms to sentinel and impose synchronized access to resources are 

needed. (Erb, 2012) 

Consider the following simple example: Student A has a bank account holding a total 

amount of 20 EUR. Student A authorizes both students B and C to request and withdraw 

20 EUR each from his bank account. Students B and C concurrently try to withdraw the 

money, first by checking the current balance, 20 EUR and consequently setting the new 

balance of 0 EUR. Since both students B and C saw the initial balance of 20 EUR, both 

were authorized the operation. To put this into perspective, students B and C are two 
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threads modifying a stateful object concurrently, causing a race condition resulting in an 

unexpected and incorrect state in our application. 

An implementation can be considered thread safe if, when called from different threads 

and without considering the different execution contexts at runtime environment, it can 

be accessed and modified correctly without any additional locking or synchronization 

mechanism needed. Such classes shall implement any additional synchronization to 

ensure thread safety on the client side.  

 

2.2 JMM 

In the Java Memory Model objects exist in shared memory, with each thread being in 

possession of a cached copy of read and written fields in its private memory. Without 

explicit synchronization across threads, a resource state modification from a single 

thread might not be immediately propagated to the shared memory. Similarly, the cached 

copy of the resource might not be updated for a thread if the resource was updated in 

the main memory. Java Virtual Machine often keeps the cached copies in sync, even if 

not constrained to do so. Synchronization events (described in chapter 2.3) imply some 

form of atomicity or mutual exclusion. In Java, it also means reconciling the cached 

memory of a thread with the shared memory. Some synchronization events result in the 

thread updating the cached changes to shared memory, broadcasting the changes to 

the other threads. Other synchronization events will result in the thread invaliding its 

private cached memory, forcing a full update from the shared memory before modifying 

the resource. (Herlihy and Shavit, 2012) 

2.2.1 Cache coherence  

If a system has many processors with each processor having their private cached 

memory, if the main memory data is shared with processor’s independent memory, a 

high degree of inconsistency might be verified if there are changes in the shared data. 

However, if the processors read only from the same memory address, there is no 

inconsistency problem. As an example, if a field is modified by a processor in the main 

memory, the field needs to be invalidated in all the other processors as well to ensure 

that the modified field is not read by other processors. This problem is called cache 
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coherence. There are multiple cache coherence protocols: MSI, MESI, MOSI, MOESI, 

MERSI. This section will focus, however, on two main protocols implemented in modern 

hardware: MESI (Modified-Exclusive-Shared-Invalid) and MOESI (Modified-Owned-

Exclusive-Shared-Invalid). (Dey and S. Nair, 2014) In the MESI protocol the cache lines 

are described by a state that reflects certain characteristics, which are the following:  

• Modified: The field in the main memory has been modified, the current state of 

the line is dirty 

• Exclusive: The field is present in one cache only, the current state of the line is 

clean 

• Shared: The field is present in multiple caches, the current state of the line is 

clean 

• Invalid: The field is invalid, and usage is prohibited 

The MOESI protocol has an extra state, namely the Owned state. The cache line is 

available for all the other caches. However, only the current cache is entitled to make 

changes. Would any changes occur to the cache line, the cache state is set to Owned 

before broadcasting the modified cached field with the remaining caches. An additional 

advantage of this is that fields labeled as dirty can be shared with other caches without 

updating the main memory value. (Dey and S. Nair, 2014) 

2.2.2 Data-Race Free Guarantee 

The sequential consistency defined by Lamport (1979) provides an ample guarantee., 

by specifying two core properties for any execution result:  

 

• Execution is consistent from a single thread perspective 

• Execution trace is ordered and unique from all thread’s perspective 

 

Sequential consistency is particularly strong as it requires all memory operations to be 

propagated instantly and visible to all threads atomically: this has a strong impact on 

what optimizations can be made and how efficient memory operations are, as it 

effectively implies that all threads are synchronized globally. Since each thread is 
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mapped to a processor on the host, this requirement automatically propagates at the 

hardware level. (Cs.umd.edu, 2004) 

 

The need for sequential consistency avoided expensive optimizations that the compiler 

and the hardware could make and seriously impeded the performance of any but the 

most trivial programmes. The system must be able to reorder the instructions provided 

by the program to minimize memory access latency. 

 

The Java Memory Model offers a weaker guarantee called Data-Race Free Guarantee. 

If all sequentially consistent executions of a program do not imply data races, all 

executions will be sequentially consistent. This guarantee is defined by the happens-

before relationship: if two conflicting accesses (at least one access is writing at the same 

memory location) are not ordered from the happens-before perspective, it is a data race. 

A program with all sequentially consistent executions without data races should be 

synchronized correctly. (Cs.umd.edu, 2004) 

 

2.3 Locking 

Java standard library offers a locking mechanism to ensure atomic operations, namely 

the synchronized block. A synchronized block consists of two parts: an object reference 

acting as the lock and a block of code to be executed safe-guarded by the lock.   

synchronized (lock) {   

// Access or modify shared state guarded by a lock   

} 

Listing 1. A synchronized code block in Java. 

According to Goetz (2006), “Every Java object can implicitly act as a lock for purposes 

of synchronization; these built-in locks are called intrinsic locks or monitor locks. The lock 

is automatically acquired by the executing thread before entering a synchronized block 

and automatically released when control exits the synchronized block, whether by the 

normal control path or by throwing an exception out of the block. The only way to acquire 

an intrinsic lock is to enter a synchronized block or method guarded by that lock”. 



  7 

 

 

In Java, intrinsic locks behave as mutual exclusion locks, which means that only a thread 

can possess the lock at a time. When the thread A tries to acquire a thread B lock, A 

must wait or block until it is released by thread B. A waits forever if B never releases the 

lock.  

If a thread is holding a lock, by entering a new synchronized block coordinated by the 

same lock, the next block will automatically be executed. This property is known as 

reentrancy. Java performs this operation by combining the lock acquisition count and 

thread ownership with each lock. The thread owning the lock is recorded and the count 

is incremented by one and the given thread acquires the lock for the first time. In the 

circumstance when the lock is to acquire the same lock again, the count will be 

incremented. Similarly, if the thread is to exit the synchronized block, the count is 

decremented and the lock is released. The lock’s owning thread details are used for 

determining if the thread requesting the locks owns it already. In 

java.util.concurrent.locks, there are multiple locking implementations with the same basic 

reentrant behavior and semantics as the synchronization implicit monitor lock but with 

extended capabilities and control over locking semantics and timing. (Goetz., 2006) 

Synchronization offers two features: visibility and mutual exclusion. Mutual exclusion 

ensures that only a single thread can have access at a time when several threads 

compete for a single resource, as mentioned before. Visibility also provides 

synchronization. The guarantee that the resource updated by one thread will be visible 

to other threads cannot be provided in the absence of synchronization (or volatility). As 

Goetz (2006) mentions “… even see stale values in case of 64-bit primitives like long 

and double as the value may be written as two 32-bit values. By synchronizing the write 

and read to a variable, the latest value written to a variable by one thread will be visible 

to all other threads, and there will not be any stale value”. In addition to mutual exclusion, 

synchronization also provides memory visibility. If only visibility is required, and not 

mutual exclusions, the resource can be declared as volatile as it provides the identical 

advantages as synchronization does without the mutual exclusion, with a performance 

benefit over synchronization. 

Mutual exclusion lock ensures that only a single thread can enter a critical section at a 

time. If a new thread competes for the same resource sentineled by the lock, the 

execution is blocked until the thread is notified to try again. A semaphore is a 

generalization of blockages of mutual exclusion. Every Semaphore has an initial capacity 
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provided for the constructor. The semaphore acts as a sentinel for critical sections, 

instead of allowing a single thread at a time, it allows as many as the value of the capacity 

provided during initialization. The Semaphore class has two methods: a thread calls 

acquire() to request authorization to enter the critical block, and release() to notify that 

the execution has finished. The Semaphore itself is just a counter: it tracks the number 

of threads allowed to enter. If a new acquire() call exceeds the capacity, the calling thread 

will be suspended until the room is available. (Herlihy and Shavit, 2012) 

2.4 Fairness 

The built-in waiting and notification methods in JLS offer no guarantees of fairness. There 

is no guarantee for which thread in a waiting set will be notified or which one will be able 

to first to acquire the lock and notify the remaining threads of the operation. (Herlihy and 

Shavit, 2012) 

This flexibility in the JVM implementations allowed by the JLS makes it impossible to 

infer the exact thread execution process. However, in most contexts, this is not a 

practical problem. Considered for example a concurrent buffer application, it is irrelevant 

to point the exact thread from a set will execute the specific code block. 

However, it is sensible in the management of a resource pool to ensure that the threads 

waiting for necessary resources are not constantly removed by others because they are 

unfair in their choice of which threads are to be blocked in the underlying notification 

process. Many synchronous channel applications have similar concerns. (Kwiatkowska, 

1989)  

Guaranteeing that the host system will be executing a specific thread or process exceeds 

the JLS minimum requirements. From a pragmatical standpoint, this is unlikely to be an 

important issue. Most JVM implementations aim to offer sensible planning policies that 

go far beyond the JLS set of minimum requirements. They show weak, limited or 

probabilistic fairness regarding the execution of running threads. For a language 

specification it is difficult to cover all the possibilities; hence, at least regarding JLS, this 

matter is left as a problem of implementation. 
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2.5 Concurrency primitives 

Processors perform synchronization operations to guarantee data integrity and 

consistency in the shared memory with the support of hardware implemented 

primitives. Synchronization overhead (such as atomic update) represents one of the 

problems to be tackled when designing and planning for performance scalability in the 

context of shared memory multiprocessors.  

Several atomic primitives co-exist on the hardware level to provide atomic 

modifications to different memory addresses we distinguish mainly three concurrency 

primitive functions, namely Test-And-Set, Fetch-And-Add, Compare-And-Swap.  

  

function TAS(value_pointer:pointer to word, value:word):word   

atomic do   

old_value=*value_pointer; 

*value_pointer=value;  

return old_value;  

Listing 2.   Test-And-Set pseudocode. 

As illustrated in Listing 2 the primitive takes effectively two parameters, the destination 

pointer, and the value to be set. It returns the old value pointed to by value_pointer and 

updates the old value to the new at the same time. The key is that the operation 

sequence is carried out atomically.  The reason it is called " test and set " is that it 

allows " testing " the old value (which is the returned value) while " setting " the 

memory location to a new value simultaneously. 

  

procedure FAA(address:pointer to number, number:integer): integer   

atomic do  

old_value=*value_pointer; 

*value_pointer=value + number;  

  return old_value; 

Listing 3.   Fetch-And-Add pseudocode.  

In listing 3, we have the pseudocode of the Fetch-And-Add primitive instruction, which 

atomically increases value by returning the old value at a certain address. 

  

function CAS(address:pointer to word, oldvalue:word, newvalue:word):boolean   

atomic do   

if *address = oldvalue then *address := newvalue; return true;   



  10 

 

 

else return false;  

Listing 4.   Compare-And-Swap pseudocode. 

Another primitive hardware that some systems provide is the comparison and swap 

instruction or the comparison and exchange instruction. For this single instruction, the 

pseudocode is found in Listing 4. Compare-And-Swap atomically compares a memory 

location’s content with a certain value, in case they are the same the memory location’s 

content gets set to a new value and the instruction returns true, false otherwise. 

2.6 Java concurrent queue implementations 

A concurrent queue is generally a thread-safe implementation which supports multiple 

producers to enqueue items, and multiple consumers to dequeue them. Thread safety 

implies that the state of the queue is synchronized across its clients. To better describe 

the pattern, let’s go back to the cafeteria example. Student A enqueues in the line, and 

both Cashier A and Cashier B try to serve Student A. Cashier A, and Cashier B do not 

talk to each other, so they possibly end up charging Student A twice, and that is 

something to be avoided.  

 

A blocking queue is a queue that blocks when you try to dequeue from it, and the queue 

is empty, or if you try to enqueue items to it and the queue is already full. A thread trying 

to dequeue from an empty queue is blocked until some other thread inserts an item into 

the queue. A thread trying to enqueue an item in a full queue is blocked until some other 

thread makes space in the queue, either by dequeuing one or more items or clearing the 

queue completely.  

 

Java Concurrent Linked Queue represents an unbounded thread-safe queue based on 

linked nodes (ConcurrentLinkedQueue, 2018). The implementation achieves the 

concurrency without using a locking mechanism, by using the Compare-And-Swap 

concurrency primitive. This separates the producer queue operations from the consumer 

ones, effectively being up to scale the threads without blocking concerns. The 

implementation is based on a LinkedList data structure. Hence, size and random access 

are operations that require linear time, while enqueuing and dequeuing operations are 

done in constant time. 
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 Java Linked Blocking Queue represents an optionally-bounded blocking queue based 

on linked nodes (LinkedBlockingQueue, 2018). The queue will block either the producer 

or the consumer when the queue is full or empty, putting the working threads to sleep 

until a value is produced. However, the blocking feature is potentially expensive in 

scenarios of multiple producers/consumers. Every queue and dequeue operation is lock 

contended.  

 

Java Array Blocking Queue represents a bounded blocking queue with an underlying 

Array as the primary data structure (ArrayBlockingQueue, 2018). The array has a fixed 

size and operates as a “rounded buffer.” Elements are enqueued and dequeued, the 

head and the queue tail being determined by two cursors, based on which the queue can 

resolve its capacity. Attempting to deque an element from an empty queue will result in 

a blocking operation, likewise enqueue operation will block on the full queue. A 

substantial difference from the LinkedList implementation is that all operations on this 

data structure are constant time. 
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3 Immutable queue-based RingBuffer 

A RingBuffer also referred to as a circular buffer or circular queue, is a circular data 

structure, although the implementation is linear. The RingBuffer is a common queue 

implementation. While a RingBuffer is represented as a circle, in the underlying code, a 

RingBuffer is linear. A RingBuffer exists as a fixed-length collection of objects with two 

pointers: the first representing the head of the queue, and the second representing the 

tail. In a queue, elements are added to the queue tail in a FIFO type of ordering. In the 

order they have been added, the first elements from the top of the queue are removed.  

3.2 Specifications 

Before deep diving into implementation details of the RingBuffer implementation, we 

ought to define a set of specifications that will eventually determine the success or failure 

of the implementation. This set of the ground will have to be rigidly followed and will 

represent a base case for the testing and benchmarking of the different implementations: 

 

1. The data structure can contain elements of different type 

2. The RingBuffer initial size has to be greater than zero 

3. The RingBuffer has a fixed limit set upon creation 

4. On enqueue operation, an element is added at the end of the list and size is 

increased 

5. On dequeue operation, an element from the queue head is taken, and size is 

decreased 

6. If the queue has reached its limit, the enqueue operation will return false 

7. If the RingBuffer is empty, a dequeue operation will return a None value 

 

3.3 Interface 

The first requirement to be implemented is the type generalization. Hence the RingBuffer 

will be implemented using a type parameter. Provided that the implementation of this 

data structure will be immutable, the type parameter has to be covariant, specified in 

Scala with the + annotation. Covariance regarding an A type parameter permits the 

flexibility to pass a queue of subtyped elements to functions allowing [A] type. 
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(Docs.scala-lang.org, 2019) As an example, a RingBuffer[Apple] could be passed as an 

argument to functions requiring a RingBuffer[Fruit] (Listing 5). 

 

class RingBuffer[+A](val size: Int, val capacity: Int) 

 

Listing 5.  RingBuffer class definition 

 

The next step would be the definition of the enqueue method. At first glance, a simple 

operation would suffice (Listing 6).  

 

def enqueue(a: A): RingBuffer [A] 

 

Listing 6.  Simple enqueue method 

 

However, this leads to a compiler error since the input is in a contravariant position. In 

other words, the compiler will not be able to completely infer the type of return Ring-

Buffer. To address this issue, we need to define a new type parameter constraint that 

will be a supertype of A. The interface will now compile. However, as mentioned in the 

specifications, the enqueue method will effectively have to return false if the RingBuffer 

is full. Hence, we ought to change our return signature including the Boolean value.  

 

def enqueue[B >: A](element: B): (Boolean, RingBuffer[B]) = ???  

 

Listing 7.   RingBuffer enqueue method 

 

To complete our interface definition, we need to define the dequeue operation (Listing 

8). 

 

def dequeue: Option[(A, RingBuffer[A])] = ??? 

 

Listing 8  RingBuffer dequeue method 

3.4 Naïve implementation 

RingBuffer, as the Queue data structure, represents only an interface per se, and an 

underlying data structure is needed for the implementation. The most straightforward 

data structure that would indeed provide the immutability and the FIFO (first in first out) 

ordering is the Scala’s standard library immutable queue. Its size method runtime is 
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indeed O(N), however, in the interface definition, we define size as a class parameter 

(Listing 9), which indeed will reduce our size runtime to O(1). Size runtime is important 

for our enqueue method implementation considered that RingBuffer is a closed data 

structure and therefore size needs to be constantly checked for every enqueue 

operation. 

 

case class RingBuffer[+A](val size: Int, val capacity: Int, queue: Queue[A]) 

 

Listing 9  RingBuffer implementation class definition  

 

def enqueue[B >: A](element: B): (Boolean, RingBuffer[B]) = { 

 if (size < capacity) true -> RingBuffer(capacity, size + 1, 

queue.enqueue(element)) 

 else false -> RingBuffer(capacity, size, queue) 

  

} 

 

Listing 10  RingBuffer enqueue implementation  

 

In the enqueue implementation (Listing 10) the most significant check regards the size 

against the capacity of the RingBuffer. If it allows for new elements, it returns a Boolean 

flag signaling the success of the operation and the new immutable RingBuffer, a false 

and the old reference otherwise 

 

def dequeue: Option[(A, RingBuffer[A])] = { 

 queue.dequeueOption.map { 

    case (el, newQueue) => el -> RingBuffer (capacity, size - 1, newQueue) 

  } 

} 

 

Listing 9 RingBuffer dequeue implementation 

 

The pure implementation of our dequeue method is fairly simpler both in reasoning and 

actual implementation. Considered that successful implementation of all the required 

methods as previously described we can now summarize by providing a full snippet of 

the code in addition to the class constructor. 

 

import scala.collection.immutable.Queue 

 



  15 

 

 

case class RingBuffer[+A] private (val size: Int, val capacity: Int, queue: 

Queue[A]) { 

def enqueue[B >: A](element: B): (Boolean, RingBuffer[B]) = { 

 if (size < capacity) true -> RingBuffer(capacity, size + 1, 

queue.enqueue(element)) 

 else false -> RingBuffer(capacity, size, queue) 

  

} 

 

def dequeue: Option[(A, RingBuffer[A])] = { 

queue.dequeueOption.map { 

    case (el, newQueue) => el -> RingBuffer (capacity, size - 1, newQueue) 

    } 

} 

} 

 

object RingBuffer { 

def empty[A](capacity: Int): RingBuffer [A] = RingBuffer (capacity, 0, 

Queue.empty[A]) 

 

def apply[A](capacity: Int)(els: A*): RingBuffer [A] = { 

    val elements = if (xs.size <= capacity) els else els.takeRight(capacity) 

    Ring(capacity, elements.size, Queue(elements: _*)) 

  } 

} 

 

Listing 10 RingBuffer full naïve implementation 

 

From a pure performance analysis, the RingBuffer implementation is quite efficient. The 

chosen data structure for the implementation is the Scala standard library immutable 

queue which has a set of significant advantages:  

 

• Enqueue and dequeue values in a first-in-first-out (FIFO) manner 

• Provides immutability which simplifies concurrency issues 

• The queue in its scala immutable implementation consists as a pair of Lists, one 

holding the ''in'' elements and the second the ''out'' elements. 

• Both the enqueuing and the dequeuing operations have always cost O(1) (except 

for the particular scenario where a list pivoting is required, the cost for the 

operation in that case being O(n), n being the number of values already added in 

the queue) 
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The main disadvantage of this implementation is the rather complicated user-facing API, 

as a matter of fact, both the enqueue and dequeue operations return the new RingBuffer 

rather than modifying the current one. This might lead to mutability references in the 

client application.  

3.5 Concurrent access and modification 

In a real-world application a purely immutable queue has limited usages, most of the time 

it is used as a backpressure mechanism for a continuous stream of data. Because the 

tasks would be incessantly added and taken from the queue, having a unique queue 

reference with the mutability reference abstracted from the developer would greatly ease 

and improve application code readability and reasoning. To achieve this, the RingBuffer 

immutable and the mutable references need to be separated. The immutable class value 

that does not need to change is the capacity, being defined during the queue creation 

time. Size and the Queue references, however, will need to be extracted into a separate 

case class (Listing 11) for clarity reasons.  

 

case class IQueue[A] (size: Int, queue: Queue[A]) 

 

Listing 11 IQueue case class 

 

To ensure the atomic reference of the IQueue object whenever it is modified by different 

threads at once, the java AtomicReference 

(java.util.concurrent.atomic.AtomicReference) will have to be introduced for our IQueue 

case class. This will provide the necessary concurrency primitives for correctly resolving 

and modification of the mutable references.   

 

import java.util.concurrent.atomic.AtomicReference 

import scala.collection.immutable.Queue 

 

case class IQueue[A] (size: Int, queue: Queue[A]) 

 

case class RingBufferRef[A] private (capacity: Int, queue: 

AtomicReference[IQueue[A]]) { 

 

  def enqueue(element: A): Boolean = { 

    val queueReference = queue.get() 

    if (queueReference.size < capacity) { 
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      queue.set(IQueue( 

        queueReference.size + 1, queueReference.queue.enqueue(element))) 

      true 

    } 

    else false 

  } 

 

  def dequeue: Option[A] = { 

    val queueReference = queue.get() 

    queueReference.queue.dequeueOption match { 

      case Some((el, newQueue)) => 

        queue.set(IQueue(queueReference.size - 1, newQueue)) 

        Some(el) 

      case None => 

        None 

    } 

  } 

} 

 

object RingBufferRef { 

 

  def empty[A](capacity: Int): RingBufferRef[A] = RingBufferRef(capacity, new 

AtomicReference[IQueue[A]]( 

    IQueue(0, Queue.empty[A]) 

  )) 

 

  def apply[A](capacity: Int)(els: A*): RingBufferRef[A] = { 

    val elements = if (els.size <= capacity) els else els.takeRight(capacity) 

    RingBufferRef(capacity, new AtomicReference[IQueue[A]]( 

      IQueue(elements.size, Queue(elements: _*)))) 

  } 

} 

 

Listing 12 RingBufferRef full implementation 

 

In Listing 12, the initial RingBuffer is reimplemented to use the reference mutability with 

regards to IQueue object but introduces atomic operations for modifying the content of 

the RingBuffer. In both enqueue and dequeue methods a fresh copy of the queue is 

fetched (via queue.get() ), and a new queue is set to be referenced in the next iteration 

of the different methods. However, this implementation has a major drawback, race 

conditions. The queue.set() method will set the new object reference to whatever value 

it is given, regardless of what it currently withholds. To put this in perspective, let’s 

imagine a current queue with one value. Thread A and Thread B both try to enqueue a 
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new value. However, since they are accessing the reference concurrently, they are not 

aware of the modifications themselves, and both get the queue with one value to modify. 

No matter which thread is first to enqueue their value, the resulting queue size will always 

have a size of 2 whereas it should have three values, effectively dropping one 

accidentally.  

 

The solution to the race condition problem is to introduce a concurrency primitive, 

compare and swap, already described in paragraph 2.3. Using this particular instruction, 

the operation could be looped over or tail recursed until a successful result.  

 

case class RingBufferCAS[A] private (capacity: Int, queue: 

AtomicReference[IQueue[A]]) { 

 

  def enqueue(element: A): Boolean = { 

    var compareAndSetResult = false 

    var result = false 

    while (!compareAndSetResult) { 

      val queueReference = queue.get() 

      if (queueReference.size < capacity) { 

        compareAndSetResult = queue.compareAndSet(queueReference, IQueue( 

          queueReference.size + 1, queueReference.queue.enqueue(element))) 

        result = true 

      } else { 

        compareAndSetResult = true 

        result = false 

      } 

    } 

    result 

  } 

 

  def dequeue: Option[A] = { 

    var compareAndSetResult = false 

    var result: Option[A] = None 

    while (!compareAndSetResult) { 

      val queueReference = queue.get() 

      queueReference.queue.dequeueOption match { 

        case Some((el, newQueue)) => { 

          compareAndSetResult = queue.compareAndSet(queueReference, 

IQueue(queueReference.size - 1, newQueue)) 

          result = Some(el) 

        } 

        case None => 

          { 
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            compareAndSetResult = true 

            result = None 

          } 

      } 

    } 

    result 

  } 

} 

 

Listing 13 RingBufferCAS full implementation 

 

A refactored version of the RingBufferRef (Listing 12) can be seen in Listing 13. Both 

enqueue and dequeue methods are implemented using a while loop that withholds as its 

main condition the mutable result of the compare_and_swap instruction, always trying to 

eventually enqueue the items until a successful reference is solved.  

 

3.6 A-B-A problem 

In multi-threaded computing, the ABA problem occurs during synchronization when a 

location is read twice; both reads have the same value and " value is the same " indicates 

that there was no modification. However, another thread can execute between the two 

reads and change the value, do other work and then change the value back, thus fooling 

the first thread into thinking that " nothing has changed, " even if the second thread does 

not work. The problem with ABA occurs when multiple threads (or processes) have 

access to shared data. The following is the sequence of events that lead to the problem 

of ABA:  

• Process T1 reads value A from shared memory 

• T1 is preempted, allowing process T2 to run 

• T2 modifies the shared memory value A to value B and back to A before 

preemption 

• T1 begins execution again, sees that the shared memory value has not changed 

and continued. 
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Although T1 can continue to execute, due to the " hidden " modification of the shared 

memory, the behavior may not be right. A common case of ABA problems is found when 

a lock-free data structure is implemented. If an item is deleted from the list and a new 

item is assigned and added to the list, it is common for the assigned object to be at the 

same location as the deleted object due to optimization. A new item pointer is therefore 

sometimes the same as an old item pointer, which is an ABA problem. This problem 

arises however mostly not garbage collected languages where the CAS comparison is 

value based. In Java, every atomically referenced object has a unique stamp updated 

during the set() method. To make the stamp comparison and setting explicit 

AtomicStampedReference is provided by java.util.concurrent. (Herlihy and Shavit, 2012) 

3.7 Thread safety via synchronization 

Despite CAS being overall a great concurrency primitive, it does not represent the only 

solution for the concurrent access and modification. As previously described in 

paragraph 2.2 synchronized block represents an intrinsic lock for safeguarding object 

modification from multiple threads.  

 

package immutable 

import java.util.concurrent.atomic.AtomicReference 

import scala.collection.immutable.Queue 

 

case class IQueue[A] (size: Int, queue: Queue[A]) 

 

case class RingBufferSynchronized[A] private (capacity: Int, queue: 

AtomicReference[IQueue[A]]) { 

 

  def enqueue(element: A): Boolean = synchronized { 

    val queueReference = queue.get() 

    if (queueReference.size < capacity) { 

      queue.set(IQueue(queueReference.size + 1, 

queueReference.queue.enqueue(element))) 

      true 

    } else { 

      false 

    } 

  } 

 

  def dequeue: Option[A] = synchronized { 

    val queueReference = queue.get() 
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    queueReference.queue.dequeueOption match { 

      case Some((el, newQueue)) => 

        queue.set(IQueue(queueReference.size - 1, newQueue)) 

        Some(el) 

      case None => None 

    } 

  } 

} 

 

object RingBufferSynchronized { 

 

  def empty[A](capacity: Int): RingBufferRef[A] = RingBufferRef(capacity, new 

AtomicReference[IQueue[A]]( 

    IQueue(0, Queue.empty[A]) 

  )) 

 

  def apply[A](capacity: Int)(els: A*): RingBufferRef[A] = { 

    val elements = if (els.size <= capacity) els else els.takeRight(capacity) 

    RingBufferRef(capacity, new AtomicReference[IQueue[A]]( 

      IQueue(elements.size, Queue(elements: _*)))) 

  } 

} 

 

Listing 14 RingBufferSynchronized full implementation 

 

Like the previous implementation (Listing 12) of the RingBuffer with AtomicReference, 

the reference is purely updated to the new object while the concurrent thread 

modification of the different methods is safeguarded by the synchronization block. By 

citing the counterexample mentioned in paragraph 3.3, two different threads will not be 

able to access at the same time the resource, making this implementation thread-safe. 
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4 Mutable array-based RingBuffer 

 

An array-based implementation of the RingBuffer differentiates from the previous 

immutable queue implementation in one key aspect, the underlying data structure. To 

simulate the previously linked list behavior of enqueuing and dequeening in constant 

time, we need to constantly keep track of the head pointer and the tail pointer.  

• The front pointer will always denote to the oldest inserted element in the queue 

• The rear pointer will always denote to the newest inserted element in the queue 

• Every time a new element is inserted into the queue rear is incremented by one 

• Every time an element is deleted from the queue front is incremented by one 

 

4.1 Specifications 

 

The set of rules used to insert a new element in a circular queue are similar to the rules 

in the case of a linear queue, with some modifications:  

1. The first thing to do in the case of inserting a new element is to check if the 

circular queue is full or not. This is accomplished by performing the following 

equation: Front = (Rear + 1) % Max Size,  where max size is the total number 

of slots in the circular queue.  

2. The user will insert the new element.  

3. If the inserted element is the first element in the circular queue, the front, and 

rear pointers will denote to the first location which zero. The circular queue is 

empty if the front pointer is equal -1. 

4. If the newly inserted element is not the first element in the circular queue, the 

location of this element will be calculated as follows: Rear = (Rear + 1) % Max 

Size. 

 

 

The deletion method for a circular queue also requires some modification as compared 

to a linear queue. The used rules are:  

1. Check if the value of the front pointer equals -1 or not. If yes, the circular 

queue is empty, and the underflow situation existed.  
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2. Check if the value of front and rear pointers are the same. If yes, this means 

there is only one element in the circular queue, and it is deleted by setting the 

value of front and rear pointers to -1.  

3. Otherwise, the front pointer value will be modified as follows:  

Front = (Front + 1) % Max Size 

 

4.2 Implementation 

 

import java.util.concurrent.atomic.AtomicReference 

import scala.reflect.ClassTag 

 

case class RingBufferValues(front: Int, rear: Int) 

 

case class ArrayRingBufferCAS[A](capacity: Int, array: Array[A]) { 

 

  private val ringBufferSettings = new 

AtomicReference[RingBufferValues](RingBufferValues(-1, 0)) 

 

  def size(ringBufferValues: RingBufferValues): Int = { 

    ringBufferValues.rear - ringBufferValues.front 

  } 

 

  def enqueue(value: A): Boolean = { 

 

    var compareAndSetResult = false 

    var result = false 

 

    while(!compareAndSetResult) { 

      val ringBufferValues = ringBufferSettings.get() 

      val rearArrayValue = (ringBufferValues.rear + 1) % array.length 

      if (!(size(ringBufferValues) >= capacity)) { 

        val frontValue = 

          if(ringBufferValues.front == -1) 0 

          else ringBufferValues.front 

        compareAndSetResult = ringBufferSettings 

          .compareAndSet(ringBufferValues, RingBufferValues(frontValue, 

rearArrayValue)) 

        if(compareAndSetResult) { 

 

          array.update(ringBufferValues.rear, value) 
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        } 

        result = true 

      } 

      else { 

        compareAndSetResult = true 

        result = false 

      } 

    } 

 

    result 

  } 

 

  def dequeue(): Option[A] = { 

    var compareAndSetResult = false 

    var result: Option[A] = None 

    while (!compareAndSetResult) { 

 

      val ringBufferValues = ringBufferSettings.get() 

      if (ringBufferValues.front == -1) { 

        compareAndSetResult = true 

        result = None 

      } else if(ringBufferValues.rear == ringBufferValues.front) { 

        val tmp = array(ringBufferValues.front % array.length) 

        compareAndSetResult = ringBufferSettings 

          .compareAndSet(ringBufferValues , RingBufferValues(-1, 0)) 

        result = Some(tmp) 

      } else { 

        val tmp = array(ringBufferValues.front % array.length) 

        val newFront = ringBufferValues.front + 1 

        compareAndSetResult = ringBufferSettings 

          .compareAndSet(ringBufferValues ,RingBufferValues(newFront, 

ringBufferValues.rear)) 

        result = Some(tmp) 

      } 

    } 

    result 

  } 

 

} 

 

object ArrayRingBufferCAS { 

 

  def empty[A: ClassTag](capacity: Int): ArrayRingBufferCAS[A] = { 

    val array = Array.ofDim[A](capacity) 

    ArrayRingBufferCAS[A](capacity, array) 
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  } 

 

  def apply[A: ClassTag](capacity: Int)(els: A*): ArrayRingBufferCAS[A] = { 

    val elements = if (els.size <= capacity) els else els.takeRight(capacity) 

    val array = Array.ofDim[A](capacity) 

    val arrayRingBuffer = ArrayRingBufferCAS[A](capacity, array) 

    elements.foreach(el => arrayRingBuffer.enqueue(el)) 

    arrayRingBuffer 

  } 

 

} 

 

Listing 15 ArrayRingBufferCAS full implementation 

 

The array-based RingBuffer implementation defined in Listing 13 is and should be like 

our compare and swap immutable implementation defined in Listing 11, with a few key 

differences. The underlying data structure is a mutable java array instead of the scala’s 

very own immutable queue. In practice, this means that while we have a unique 

reference to it, it can undergo modifications at any given moment. The second key 

difference is the introduction of the atomic reference for the front and rear pointer. These 

two values effectively represent our queue, being the distinctive way of determining if the 

queue is full, if it has values or if it is empty. Hence, they need to be atomically modified. 

The insertion and deletion rules defined in paragraph 4.1 are implemented in the 

enqueue and respectively dequeue method. 
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5 Benchmarking 

To thoroughly test the immutable queue-based and the mutable array-based 

RingBuffers, basic unit tests are needed to ensure the correct Queue behavior, be it in a 

single or multi-thread parallel environment. Also, benchmarking tests will be performed 

comparing the RingBuffer implementations, and the presented Java Concurrent thread-

safe concurrent queues in paragraph 2.4. The unit tests will be performed using 

scalatest, the most popular testing tool in the Scala ecosystem. The benchmarking 

framework chosen for the testing is ScalaMeter, a regression test, and micro 

benchmarking for the JVM platform. 

5.1 Unit testing 

RingBuffer’s API exposes to methods that modify circular buffer’s internal state, namely 

the queue and enqueue methods. To progress with the benchmarking tests, the correct 

functionality needs to be validated. For this unit tests, a new list of elements (of type Int) 

will be created. The list will be parallelly traversed (to test the concurrency aspect) until 

all the elements will be enqueued. For the dequeue operation the auxiliary  

JavaConcurrentLinkedQueue will be used to store the taken elements. The initial list will 

be once again traversed in parallel and the dequeued items will be added to the auxiliary 

data structure. The full snippet of the unit tests is provided below (Listing 16).  

 

import java.util.concurrent.ConcurrentLinkedDeque 

 

import immutable.{RingBufferCAS, RingBufferSynchronized} 

import mutable.ArrayRingBufferCAS 

import org.scalatest.FunSuite 

import org.scalatest.concurrent.Eventually 

import org.scalatest.time.{Millis, Seconds, Span} 

 

class MainTest extends FunSuite with Eventually { 

 

  override implicit val patienceConfig: PatienceConfig = 

    PatienceConfig(timeout =  Span(3, Seconds), interval = Span(5, Millis)) 

 

  test("RingBuffer CAS enqueue and dequeue") { 

 

    val list = List(1,2,3,4,5,6,7,8,9,10) 
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    val queue = RingBufferCAS.empty[Int](20) 

    list.par.foreach{ 

      el => 

        queue.enqueue(el) 

    } 

 

    val concurrentLinkedQueue = new ConcurrentLinkedDeque[Int]() 

    list.par.foreach{ _ => 

      val el = queue.dequeue 

      if (el.isDefined) concurrentLinkedQueue.add(el.get) 

    } 

 

    eventually { 

      assert(concurrentLinkedQueue.size==10) 

      list.foreach{ 

        el => 

          assert(concurrentLinkedQueue.contains(el)) 

      } 

    } 

  } 

 

  test("RingBuffer Synchronized enqueue and dequeue") { 

 

    val list = List(1,2,3,4,5,6,7,8,9,10) 

 

    val queue = RingBufferSynchronized.empty[Int](20) 

    list.par.foreach{ 

      el => 

        queue.enqueue(el) 

    } 

 

    val concurrentLinkedQueue = new ConcurrentLinkedDeque[Int]() 

    list.par.foreach{ _ => 

      val el = queue.dequeue 

      if (el.isDefined) concurrentLinkedQueue.add(el.get) 

    } 

 

    eventually { 

      assert(concurrentLinkedQueue.size==10) 

      list.foreach{ 

        el => 

          assert(concurrentLinkedQueue.contains(el)) 

      } 

    } 

  } 
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  test("ArrayRingBuffer CAS enqueue and dequeue") { 

 

    val list = List(1,2,3,4,5,6,7,8,9,10) 

 

    val queue = ArrayRingBufferCAS.empty[Int](20) 

    list.par.foreach{ 

      el => 

        queue.enqueue(el) 

    } 

 

    val concurrentLinkedQueue = new ConcurrentLinkedDeque[Int]() 

    list.par.foreach{ _ => 

      val el = queue.dequeue() 

      if (el.isDefined) concurrentLinkedQueue.add(el.get) 

    } 

 

    eventually { 

      assert(concurrentLinkedQueue.size==10) 

      list.foreach{ 

        el => 

          assert(concurrentLinkedQueue.contains(el)) 

      } 

    } 

  } 

} 

 

Listing 16       Unit tests code 
 

The assertions done in the unit tests are the following: 

 

• Compare the size of the auxiliary data structure and the size of the initial list of 

elements. For the tests to pass, verify that the two sizes are the same value 

• Traverse the initial list of elements and assert that each element is contained in 

the auxiliary list 

 

Both conditions were satisfied during the unit tests to run, establishing that the 

concurrency did not lead to data corruption and the output of the queue is that same that 

is to expect from a canonical queue. Considered the parallel aspect of element insertion 

the ordering of the elements cannot be guaranteed; hence, this aspect was to be omitted. 

Unit tests were run on a MacBook Pro 13’ 2014, with an i5 dual-core CPU, Scala version 

2.12.7, scalatest version 3.0.5 and OpenJDK version jdk1.8.0_192. 
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5.2 Benchmark test specifications 

ScalaMeter’s API provides easy specifications for dataset generation. The performance 

test run will use a big enough range of data, starting from 300000 elements up to 

1500000, by introducing a step of 500000 records between the multiple datasets. The 

datatype of the record will be represented by Integers (the elements to be enqueued and 

dequeued). 

  
  val sizes = Gen.range("size")(300000, 1500000, 500000) 

  
  val ranges = for { 
 size <- sizes 
  } yield 0 until size 

 
Listing 17       Benchmarking Specifications 
  
In Listing 17 is represented as a simple generator of records using Scalameter. A set of 

sizes is created using the step function, after which the ranges that are going to be used 

for the enqueuing/dequeuing are generated. 

 
object PerformanceTest extends Bench.LocalTime { 

  
  val sizes = Gen.range("size")(300000, 1500000, 500000) 

  
  val ranges = for { 
 size <- sizes 
  } yield 0 until size 

  
  performance of "ArrayRingBufferCAS" in { 
 measure method "enqueue" in { 
   using(ranges) in { 
     r => 
       val arrayRingBuffer = ArrayRingBufferCAS.empty[Int](r.size) 
       arrayRingBuffer.map{ i => arrayRingBuffer.enqueue(i)} 
   }}} 
} 
 
Listing 18       Local Benchmarking test snippet 
  
Listing 18 provides a simple test snippet for a performance test. The performance is 

logged directly in the console during the test run. This test, however, has some 

limitations:  

 

• Enqueuing and dequeuing is sequential; parallelism is needed to provide 

meaning for RingBuffer’s concurrent functionality 

• The tests are executed sequentially in the same JVM; this implies for both JVM 

warmup period (tests running cold JVM will be less performant) as well as the 

cache coherence 
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ScalaMeter offers various alternatives for the second problem specified in the previous 

paragraph. The PerformanceTest Object should extend the Bench trait, which in turn 

would allow defining the three main parts of the testing pipeline: the measurer, the 

persistor and the executor. The executor decides how the tests will be executed. To 

guarantee tests isolation (running a separate JVM for each test),  the executor will be 

changed to a special SeparateJvmsExecutor. The heap size for new JVM containers has 

a default heap size set to 2GB. The Executor used in this test executes a fixed number 

of measurements, takes the minimum execution time as the default measure and will 

apply the same JVM warming period for each test.  

 

To simulate the multiple producer-multiple consumer scenarios, the source list of records 

can be parallelized. Scala’s List interface provides a utility method to specify the 

parallelism number for the parallel execution as well as implement a custom 

ForkJoinPool where it is possible to specify the desired number of execution threads.   

 
import java.io.File 

import java.util.concurrent.{ArrayBlockingQueue, ConcurrentLinkedDeque, 

ForkJoinPool, LinkedBlockingQueue} 

 

import mutable.ArrayRingBufferCAS 

import immutable.{RingBufferCAS, RingBufferSynchronized} 

import org.scalameter.api._ 

import org.scalameter.picklers.Implicits._ 

import org.scalameter.Bench.OfflineReport 

 

import scala.collection.parallel.ForkJoinTaskSupport  

 

 

object PerformanceTest extends OfflineReport { 

 

  override val executor = SeparateJvmsExecutor( 

    New Executor.Warmer.Default, 

    Aggregator.min, 

    new Measurer.Default 

  ) 

 

  override val reporter: Reporter[Double] = Reporter.Composite( 

    new RegressionReporter( 

      RegressionReporter.Tester.OverlapIntervals(), 

      RegressionReporter.Historian.ExponentialBackoff() ), 

    HtmlReporter(true) 

  ) 

 

  override def persistor: Persistor = JSONSerializationPersistor(new 

File("target/benchmarks/sun")) 

 

  val sizes = Gen.range("size")(300000, 1500000, 500000) 

  val taskSupport = new ForkJoinTaskSupport(new ForkJoinPool(5)) 

 

  val ranges = for { 

    size <- sizes 

  } yield 0 until the size 
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  performance of "ArrayRingBufferCAS" in { 

    measure method "enqueue" in { 

      using(ranges) in { 

        r => 

          val arrayRingBuffer = ArrayRingBufferCAS.empty[Int](r.size) 

          val parallel = r.par 

          parallel.tasksupport = taskSupport 

          parallel.map{ i => arrayRingBuffer.enqueue(i)} 

      } 

    } 

  } 

 

  performance of "immutable.RingBufferCAS" in { 

    measure method "enqueue" in { 

      using(ranges) in { 

        r => 

          val ringBuffer = RingBufferCAS.empty[Int](r.size) 

          val parallel = r.par 

          parallel.tasksupport = taskSupport 

          parallel.map{ i => ringBuffer.enqueue(i)} 

      } 

    } 

  } 

 

... 

 

  performance of "ArrayRingBufferCAS" in { 

    measure method "dequeue" in { 

      using(ranges) in { 

        r => 

          val arrayRingBuffer = ArrayRingBufferCAS.empty[Int](r.size) 

          val parallel = r.par 

          parallel.tasksupport = taskSupport 

          parallel.map{ i => arrayRingBuffer.enqueue(i)} 

          parallel.map{ i => arrayRingBuffer.dequeueOption()} 

      } 

    } 

  } 

 

... 

 

  performance of "immutable.RingBufferSynchronized" in { 

    measure method "dequeue" in { 

      using(ranges) in { 

        r => 

          val ringBuffer = RingBufferSynchronized.empty[Int](r.size) 

          val parallel = r.par 

          parallel.tasksupport = taskSupport 

          parallel.map{ i => ringBuffer.enqueue(i)} 

          parallel.map{ i => ringBuffer.dequeue} 

      } 

    } 

  } 

 

  performance of "ConcurrentLinkedQueue" in { 

    measure method "dequeue" in { 

      using(ranges) in { 

        r => 

          var linkedQueue = new ConcurrentLinkedDeque[Int]() 

          val parallel = r.par 

          parallel.tasksupport = taskSupport 

          parallel.map{ i => 

            linkedQueue.add(i) 

          } 

          parallel.map{ i => 

            linkedQueue.pop() 

          } 
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      } 

    } 

  } 

 

 ... 

 

} 

 
Listing 19       Full benchmarking test snippet 
  
Listing 19 provides an almost complete snippet of the benchmarking test. The 

RingBufferCAS (mutable and immutable) and RingBufferSynchronized data structures 

implemented in paragraphs 4.2, 3.4 and 3.6 will be benchmarked against the already 

described Java Concurrent data structures in paragraph 2.6. 

The benchmarking tests will be reproduced on a MacBook Pro 13’ 2014, with an i5 dual-

core CPU, Scala version 2.12.7, scalaMeter version 0.10.1 and OpenJDK version 

jdk1.8.0_192. 

5.3 Results 

The results in this section will be presented using two different charts: a linear chart 

and a bar chart. The linear chart will help to visualize the slope describing the time 

spent (Y-axis) enqueuing a certain number of elements (X-axis). On the other hand, the 

bar chart aims to put into perspective the actual performance of the different queue 

implementations. The graph’s legend is on the left of the graph 

 

 
 
Figure 1       Enqueue performance test - line chart view 
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Figure 2       Enqueue performance test - bar chart view 

 
The enqueuing process of the performance tests, where the main measurement is done 

by timing the parallel offering of elements, is visible in Figure 1 and 2. In the first chart, it 

is possible to notice the linearity that describes time spent / elements enqueue 

proportion, in the bar chart instead the difference among the different implementations 

is more visible. The mutable implementation of the RingBuffer (Array-based) is the worst 

performer, the growth rate and the time spent on the operation being much higher than 

the remaining choices. The immutable implementations of the RingBuffer, on the other 

hand, perform on average better than the java concurrent data structures, with no notable 

difference among the CAS and Synchronized implementation.   
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Figure 3       Dequeue performance test - line chart view 
 

 
 
Figure 4       Dequeue performance test - line chart view 
  
 

In the following test where the dequeuing operation is taking into account as well (Figure 

3 and 4) the mutable Array-based RingBuffer’s performance is comparable to the 

ArrayBlockingQueue while being faster than LinkedBlockingQueue and 

ConcurrentLinkedQueue. The immutable implementations perform similarly to the first 

tests, outpacing the mutable RingBuffer and the Java implementations.  

 
Considered that the implemented RingBuffer (both immutable and mutable) is the only 

bounded non-blocking implementation among the Java Concurrent queues, the 

performance test was designed to only measure the performance while overlooking 

memory management and specific API methods derived from blocking operations. 

From the preliminary results listed above, however, it emerged that the immutable 

RingBuffer implementations can outperform the Java implementations while 

maintaining a steady growth time rate under more load. To conclude, in the initial 

outline thesis goals (paragraph 1.1), the base hypothesis was that it is possible to 

design a faster data structure that would satisfy the concurrent and nonblocking 

requirements. The preliminary results obtained in this performance test reinforce that 

assumption with concrete results. 
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6 Conclusion 

The main goal of this thesis was to provide a high performing implementation of an 

abstract Queue as a RingBuffer, a bounded circular queue. The performance itself is 

related to the usage of parallelization of tasks, producing and consuming. Given that 

multiple sources are trying to concomitantly modify the resources, the implementation 

had to be thread-safe to guarantee the data integrity of the RingBuffer. 

In chapter 2, the concurrency peculiarities of JVM and JMM, the available high- and low-

level functionalities, as well as, presenting the implications and the reason they were 

introduced were closely studied. In chapter 3 and 4, starting from a naïve RingBuffer 

implementation, three different implementations were presented: RingBufferCAS, 

RingBufferSynchronized, and ArrayRingBufferCAS. While the difference between the 

first two implementations is minimal in design, as they share the common underlying 

data structure (Scala’s standard library immutable Queue), the third implementation is 

based on a mutable Array with a fixed size that performs as a circular queue. Chapter 5 

provides a benchmark of the previously described implementations and Java’s 

concurrent queue implementations. The benchmark focuses primarily on tracking the 

speed of enqueuing and dequeuing and does not cover other aspects like memory 

footprint or API extensibility, which should be taken into consideration when choosing 

the data structure for the specific problem on hand. 

The contribution of this research is to demonstrate that while sound and well-tested 

implementations of concurrent queues in Java are fast enough for most of the tasks, 

alternative implementations using underlying immutable data structures and concurrency 

primitives for concurrent access can be achieved without sacrificing the performance. 

This promises better results according to the preliminary benchmarks (chapter 5). There 

are some implied limitations, aimed to be addressed in further research, including 

memory management, garbage collection overhead, as well as, a complete API testing, 

to reduce the gap between production-ready data structure implementation and the 

presented proof of concept in this thesis. 
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