

Huy Phan

Building Application Powered by Web Scraping

Helsinki Metropolia University of Applied Sciences

Information Technology

Bachelor Thesis

01 March 2019

PREFACE

Writing the thesis while working is a tall order. I am thankful for my family, especially

my mom, who were so patient and gave me amazing encouragement to complete the

paper. I want to thank my supportive colleagues at work who provided helpful technical

advice and information during the process. I also appreciate the people who develop

the Scrapy web framework, a wonderful Python library with good documentation and

community support for Web Scraping.

Espoo, 06.03.2019

Huy Phan

Author(s)

Title

Number of Pages

Date

Huy Phan

Building Application Powered by Web Scraping

31 pages

01 March 2019

Degree Bachelor of Engineering

Degree Programme Information Technology

Specialisation option Software Engineering

Instructor(s)

Janne Salonen

Being able to collect and process online contents to help can help businesses to make

informed decisions. With the explosion of data available online this process cannot be

practically accomplished with manual browsing but can be done with Web Scraping, an

automated system that can collect just the necessary data. This paper examines the use of

Web Scraper in building Web Applications, in order to identify the major advantages and

challenges of web scraping. Two applications based on web scrapers are built to study

how scraper can help developers retrieve and analyze data. One has a web scraper

backend to fetch data from web stores as demanded. The other scraps and accumulates

data over time.

A good web scraper requires very robust, multi-component architecture that is fault

tolerant. The retrieval logic can be complicated since the data can be in different format. A

typical application based on web scraper requires regular maintenance in order to function

smoothly. Site owners may not want such a robot scraper to visit and extract data from

their sites so it is important to check the site‟s policy before trying to scrap its contents.

It will be beneficial to look into ways to optimize the scraper traffic. The next step after data

retrieval is to have a well-defined pipeline to process the raw data to get just the

meaningful data that the developer intended to get.

Keywords Scraper, Web, HTML, Python, JavaScript

Table of Contents

1. Introduction 1

2. Theoretical background 2

2.1 Introduction to Web Scraping 2

2.2 Web application components 2

2.3 Web application rendering process 5

2.4 Web Scraping technology 6

2.4.1 Web crawlers 6

2.4.2 Web Scraping parsers 6

2.4.3 Web Scraping policies 6

2.4.4 Web Scraping techniques 7

2.5 Web Scraping architecture 8

2.5.1 Scrapy framework 8

2.5.2 Selenium Web Driver 10

2.6 Web Scraping rulebook 11

2.6.1 Understand what, why and how data is needed 11

2.6.2 Respect Robot Exclusion Standard 11

2.6.3 Avoid scraping website with authentication 12

2.6.4 Detect anti-bot mechanism and stop 12

2.7 Legal issues 13

2.8 Web Scraping as a Service 14

2.9 Scaling Web Scraping 15

2.10 Community support for Web Scraping 16

2.11 Web Scraping challenges 16

3. Web Scraping projects 18

3.1 Electronics e-commerce search results comparison 18

3.1.1 Motivation 18

3.1.2 Application design 18

3.1.3 Scraping targets investigation and planning 19

3.1.3.1 Verkkkokauppa 19

3.1.3.2 Gigantti 21

3.1.3.3 JIMMS 22

3.1.4 Implementation 23

3.2 Simple search engine application 25

3.2.1 Motivation 25

3.2.2 Application design 25

3.2.3 Implementation 26

4. Results discussion 28

5. Conclusion 31

List of Abbreviations

AJAX Asynchronous JavaScript and XML

CAPTCHA Completely Automated Public Turing Test To Tell Computers and

Humans Apart

CSS Cascading Style Sheets

CSSOM Cascading Style Sheets Object Model

CSV Comma Separated Values

DO Document Object Model

GDPR General Data Protection Regulation

HTML Hypertext Markup Language

PDF Portable Document Format

REST Representational State Transfer

SQS Simple Queue Service

UI User Interface

URL Uniform Resource Locator

XML Extensible Markup Language

RFDa Resource Description Framework

JSON-LD JavaScript Object Notation for Linked Data

1

1. Introduction

Information is one of the most valuable assets that can be found anywhere on the

internet. Many web services and applications require a large amount of data to work

properly. Examples of such applications are web search engines (Google,

Duckduckgo), product price and feature comparison (versus.com, pricealarm.net) or

internal tools in many companies for market and competitor analysis. In order to extract

information on the internet and turn them into usable formatted data, those applications

usually leverage Web Scraping.

The best approach to understanding such a complex system as a web scraper is to get

into the practice of making one. Therefore, the scope of this research is to study Web

Scraping and the process to build a data-driven application with data provided by Web

Scraping.

To understand this process, two applications will be created. The first application uses

Web Scraping as a backend service and provides real-time product search results

comparison between three popular online electronics stores in Finland. The second

application is a simplified version of Google‟s web search engine, with data provided by

running Web Scraping daily.

This thesis contains 5 chapters. This section covers chapter one. Chapter two provides

theoretical backgrounds for Web Scraping Technology and Development as well as

potential challenges. Chapter 3 documented a real-life application development using

Web Scraping. Chapter 4 discusses the results of the work done, with some practical

findings during the development process. And chapter 5 is the conclusion, where the

results are compared to what was learned from the theoretical background.

2

2. Theoretical background

This section consists of eleven parts. The first section introduces Web Scraping. Then,

the next two parts look into the overview of web application components and rendering

process. Next, Web Scraping technologies are discussed. Then, Web scraping

framework and architecture design are examined. Furthermore, the focus is on the

analysis of some rules and legal aspect regarding Web Scraping. After that, Web

Scraping Service, Scaling, and Community Support are studied. Last but not least, the

section discusses the challenges and future of Web Scraping.

2.1 Introduction to Web Scraping

Web scraping is a process that automatically collects and extracts data from the

internet. According to Mahto and Singh (2016: 689-693), web scraper is one of the

most efficient tools to extract data from websites. The purpose of web scraping is to

extract a large quantity of data and save to a local environment [9]. In the early days,

the only way to extract data from websites was by copy-pasting what one saw on the

website. Web scraping is becoming a popular technique as it allows new startups to

quickly obtain large amounts of data. Most typical examples of web scraping are price

comparison and review websites. Big corporations also use this technique to rank and

index web pages.

Web scraping process involves crawling and parsing [9]. Crawlers go to the target

URL, download the page content and follow links in the content according to

developer‟s implementation. Parsers parse downloaded contents and extract data. In

order to understand and implement parsers and crawlers, it is important to know the

basic components of web applications and website rendering process.

2.2 Web application components

Websites can have different components and structures. However, in general, there

are 4 components: HTML, CSS, JavaScript and multimedia resources. Additionally,

3

Document Object Model, CSS selector and Xpath provide a way for developer to

control the web content.

Hypertext Markup Language (HTML)

HTML is a markup language that defines the structure of a web application. HTML

elements are the main components of a HTML page. [1]

Cascading Style Sheet (CSS)

CSS describes how an HTML document is presented to end users. [2]

JavaScript

JavaScript is a scripting language which is mostly used on the web. In most web

applications, JavaScript makes it possible for users to interact with application

components, validate input and make API call to the backend server. [3]

Multimedia Resources

File, Video, and Image usually are embedded in the application as links. These links,

especially for videos, are usually hidden by some form of client-side encryption or

encoding.

Multimedia files are usually sensitive data that should not be downloaded and stored in

Web Scraping database. However, storing the links to multimedia files might be

acceptable because that is what a web browser does when the user visits web pages,

and big companies such as Google also store them.

XPath and CSS selectors

Xpath is a powerful query language for fetching nodes from an XML document.

Because HTML is a subset of XML, XPath can also be used to fetch an HTML element.

[4]

Even though XPath is powerful, it is hard to read and write. The CSS selector is a more

human-friendly alternative which allows selecting the HTML element based on the CSS

styles, class name, or id associated with the element. [5]. Figure 1 shows an example

HTML markup of a page in Gigantti website.

4

Figure 1. Simple HTML markup with CSS classes

As seen in Figure 1, to select the div element with header-wrap class name there are at

least 2 ways to select in Xpath:

- /html/body/div[1] : get the first div inside body inside html tag.

- //div[contains(@class,'header-wrap')] : get all div tags that has class header-

wrap

Both return the same result in this case. According to several benchmark

measurements from Elemental Selenium website, in old browsers, XPath selectors

also give a faster performance on getting HTML Elements. However, in modern

browsers, with smart optimization, getting HTML Element speed is almost the same for

both XPath and CSS.[6]

With ”div.header-wrap” CSS selector, it is easier to understand. However, it is more

difficult to create more advanced HTML Element selection criteria.

Document Object Model (DOM)

DOM is an interface for programming languages to access HTML documents. [7] It

describes these documents as tree nodes and objects, which make it possible for

programming languages such as JavaScript to select nodes using XPath or CSS

selectors, to change the web page‟s structure dynamically based on user interaction.

5

2.3 Web application rendering process

Even though web browser rendering knowledge is not required to scrape the web, it is

important to understand on a high level how the browser renders web pages and how it

interacts with any backend server.

There are several steps on how web applications render contents when users enter the

page:

- Firstly, the server processes the request and returns the initial documents with

HTML, JavaScript, CSS. Once static contents are downloaded, the web

browser‟s rendering process begins. HTML and CSS are converted into DOM

and CSSOM trees [8]. Figure 2. Shows an example web page DOM and

CSSOM structures

Figure 2. Diagram showing how HTML DOM combine with CSSOM into Render

Tree [8]

During the rendering process, CSSOM and HTML DOM are combined into a

single render tree. After that, the browser paints the browser view with boxes

based on the render tree.

- Secondly, the browser reads and executes JavaScript in the document, causing

changes to the HTML the document content accordingly

- Finally, when the user interacts with components on the web application, there

are three scenarios:

 The application goes back to step one for the server side to process

another request with different parameters and render another page.

6

 The application triggers a JavaScript function to change the web

content. In this step, JavaScript might make a call to an API (Application

Programming Interface) to get more data.

 Both above-mentioned scenarios happen sequentially.

Depending on when targeted data for scraping are rendered or available from API call,

different scraping techniques need to be applied. Sometimes, a real web browser is

used for web scraping. More detail will be discussed in the next section.

2.4 Web Scraping technology

2.4.1 Web crawlers

In order to extract data from websites, a discovery process is required. Web crawler is

a bot that visits websites and handle such process.

Mahto and Singh (2016) explain that a web crawler works in such a way that it loads a

small list of links. Then it finds further links contained in those pages and adds them to

a new list, called crawl frontier, for further exploration. The crawler needs to identify

whether a URL is relative or absolute. For relative URL the crawler needs to identify

the base of the URL [9]. A good crawler needs to be somewhat smart enough to detect

circular references and slight variations of the same page in order to efficiently extract

and store data.

2.4.2 Web Scraping parsers

In order to extract meaningful data from scraped data, Web Scrapers need to use

parsers. They are usually implemented by programmers to format and extract specific

detail from the data such as CV parser that can extract person name, contact

information from an email content. Most Web Scraping libraries, has simple HTML

parser support. Additionally, there are also parsers for special data stored as PDF,

CSV, QR code or JSON. Real Web Browsers such as Firefox, Chrome have built in

parsers. Web Scraping that is done by controlling real Web Browser can also use the

browser built in parser.

2.4.3 Web Scraping policies

Mahto and Singh (2016) suggest that there are four main policies that a crawler needs

to follow to act efficiently: selection, re-visit, politeness, parallelization.[9] By focusing

on important links first the crawler can prune most of the unnecessary links and greatly

7

reduce its search space. Sometimes pages are dynamic and the crawler needs to

regularly check it for changes. A smart crawler would efficiently process just contents

that had been altered. The crawler should also consider the effect it has on website

performance and avoids causing heavy load on the site. And finally, to enhance the

performance, the crawler utilizes parallel crawling where multiple sites are visited at the

same time. Good inter-process communication is needed in order to avoid repeating

the same work over and over again.

2.4.4 Web Scraping techniques

Upadhyay et al. (2017) outline the mechanism of web crawler in three steps: making a

connection and learned of robot policies for automated operations on the site,

extraction, filtering and processing of data, mapping the data into a structure that is

useful for the intended application. [10]

Because of the way websites are structured, the most common technique to get

relevant data is by utilizing the DOM of the page. This approach, however, has limited

capabilities when dealing with dynamic pages with scripts constantly manipulating the

content of the page. The authors found that for such pages a vision-based approach,

where the crawler would render the page similar to how a human would read it, would

allow the crawler to capture such dynamic contents. The third method is to use a

combination of code and user interaction to visually zone in on interesting elements of

the DOM. Such a method would require a tool that supports the desktop interface.

Lawson (2015) suggests that to avoid loading the page contents multiple times for

different operations the crawler can cache the website somewhere when it first

retrieved that page [11]. This helps a lot to reduce the wait time since accessing data

from the local machine is a lot faster than downloading it over the internet. In order to

do this, a technique called memorization is applied to the scraping function so that it

first checks in memory for the page and only do the request if the page has not been

loaded before. The URl is only downloaded if the cache for it is empty or the previous

attempt to download it has failed. The author also proposes storing static contents on

disk instead of memory so it can be loaded at a later time and not take too much

resource. For disk storage, a compatible naming scheme for the URLs should be

worked out since on most systems the filename cannot contain special characters that

8

appear in the URLs. Some system also has a limit on the length of file names as well

as the total number of files stored on disk. Since most modern websites have dynamic

contents that mutate very often this cached data may become out of sync with the real

online page contents after a while. The author recommends making the cache expired

after some time period. The page is cached together with a timestamp so the program

can determine whether its content is still valid. Another option for caching content is by

using a database where it is easier to scale if the scraper has to deal with a large

number of pages. Some database such as MongoDB has the ability to remove

documents after a certain time interval so this works very well with the expiry of cache

discussed above. Lawson also points out that using a database cache may be a bit

less efficient than disk cache in case the set of pages is small [11]. However as the

number of pages scales up the database approach can provide some advantage,

notably the concurrency of data extraction.

Similar to Lawson, Haque and Singh (2015) also point out that the site itself can also

alter its structure and content in such a way that is hard to extract useful information

[12]. This technique can protect against most scrapers which rely on knowing some

identifiable properties of the element in the DOM tree. The downside is that a frequent

change in the website layout will confuse real users and discourage them from using

the site. Another way to prevent scraper from easily extracting information is to present

the information in an image or HTML5 canvas. However, the scraper can still use

sophisticated OCR technique to extract text from images.

2.5 Web Scraping architecture

2.5.1 Scrapy framework

There are many web scraping frameworks written in different kinds of programming

language. Among them, Scrapy is one of the most mature Web Scraping framework

written in Python. Generally, most Web Scraping systems have similar architecture and

components.

9

Figure 3. Scrapy architecture documentation [13]

Figure 3 introduces important components of Scrapy architecture. Each component is

only responsible for specific task. Thus, writing tests is easier and scraper is more

maintainable.

Engine

The engine is the center of Scrapy framework. It manages the flow between

components of Scrapy. It is also responsible for listening and triggering events to react

to certain actions such as request error, response error, exceptions. [13]

Scheduler

The Scheduler manages when a task should be run and it has a direct connection with

task queues. It can regulate how much delay each request has. [13]

Downloader

10

The Downloader is where HTTP requests are made. It then stores and gives the HTTP

response contents back to the engine in the normal case where real browser is not

used. [13] In case that a real browser is used to make requests, a middleware which

can control the browser will completely replace Downloader.

Spiders

Spiders are classes written by developers to define what actions the Scraper should do

to get and parse specific web contents. [13] This is also where custom configurations

for Downloader and its middlewares can be set. Parsed contents are then passed to

Item Pipeline.

Item Pipeline

Item Pipeline process parsed data return by Spiders and do validation, custom

transformation, cleaning and data persistence to a Data Storage such as Redis,

MongoDB or Postgres. [13]

Downloader middlewares

Downloader middlewares intercept request and response sent to and from

Downloader and enrich request and response data with custom metadata.[13] This is

also where developers can add custom rules such as retry.

Spider middlewares

Spider middlewares function similarly to Downloader middlewares, but they stay

between Spider and Engine.[13] Custom processing for Spider input such as changing

target URL parameters can be done here.

2.5.2 Selenium Web Driver

Selenium is a library that exposes interface to control real Web Browser automatically

[11]. As mentioned in Web application rendering process section, there are several

way a website can load and render its content. Most server side rendered websites can

be scraped by making simple HTTP request and use some XML parsers.

There are some websites that heavily relied on JavaScript and can only be scraped

with real browser. Chaulagain et al. (2017) built their scrapers with Selenium. [16].

Even though Selenium makes it possible to scrape some complicated websites, it does

11

cost a lot more computer resources. Chaulagain et al. (2017) had to use scalable cloud

services to actually support Selenium in their Scraper. [16] Selenium also slows down

the Scraping process considerably because it needs to open the browser and loads the

entire web page. The strategy is to try scraping without Selenium first and only fallback

to it if there is no alternative solution.

2.6 Web Scraping rulebook

2.6.1 Understand what, why and how data is needed

Before doing any Web Scraping, it is essential to know what kind of data is needed and

for what purpose. There are scraping datasets publicly available online that are free to

use and access. Next, it is important to read carefully term of service of the website

that Web Scraping process will be conducted.

2.6.2 Respect Robot Exclusion Standard

Robot Exclusion Standard describes rules that bots should follow when accessing the

website. Each website can have different rules. Those are defined in robots.txt in the

root path of a website domain. [14] However, Web Scrapers might still crawl and

extract data. This action is not recommended and will lead to IP banning and further

serious lawsuits. In order to detect violations of robots.txt, website owners need to

have proper logging, monitoring and alerts.

An example robot file found at https://www.gigantti.fi/robots.txt is showed in Figure 4

https://www.gigantti.fi/robots.txt

12

Figure 4. Gigantti robots.txt file

Figure 4 shows that Gigantti does not allow scraping some of their pages such as

ViewBrandPage, View Cart etc. However /search page is not “Disallowed” so it is still

possible to scrape Gigantti search results.

2.6.3 Avoid scraping website with authentication

Authentication protects website and data from unauthorized access. It is not directly a

mechanism to prevent Web Scraping but Web Scraper will need to implement login

functionality with a real user account to extract data.

Usually, websites with authentication data are not available for public use. General

purpose full-text search engines Web Scraper such as those from Google, Microsoft

Bing usually exclude those websites from scraping. However, a person can still scrape

his/her own personal data on that website if there is no other way to extract it. For

example, scraping the list of his/her own personal favorite books or movies.

2.6.4 Detect anti-bot mechanism and stop

According to Haque and Singh (2015), web scraping uses automated scripts to collect

a large quantity of data that can be then used for some applications. Some website

owners, however, are concerned that web scraper poses a security threat and is

13

intrusive into their business advantages. To protect against such threat, businesses are

interested in building complicated anti-scraping tools.[12] Another reason that causes

concern against web scraping is the limited resources of the website infrastructure. It is

often hard to determine whether a connection is established by a bot or a real human.

The authors explore the challenges that an anti-scraping system has to face in order to

effectively mitigate such threats, without a severe impact on the user‟s experience.

Haque and Singh (2015) emphasize the need to allocate data related operations to

suitable times when the server has a relatively low load. They suggest the use of IP

classifications into three categories in order to combat scrapers: blacklist, graylist, and

whitelist. For the graylist, which is those sources with unusual activities, there would

need to be mechanisms such as CAPTCHA to verify that it is indeed genuine traffic.

The authors also recommend using the robots.txt file to handle traffic from search

engine bots. If a bot does not conform with the site‟s robots.txt file, its IP will be

blacklisted. Another popular method, called browser fingerprinting, can also be applied,

thanks to the fact that most common browser provides much information on its

identities, while scrapers often lack this. To track the frequency of visits a separate

table could be used to store data of hits per IP. When an IP seems to be the source of

significant traffic compared to an average user it can be added to graylist. [12]

Once a website has blocked a web scraper, it is recommended to stop the scraping

process immediately and try to understand what is the problem. Usually, there are

some automatic service protection mechanisms take place as mentioned by Haque

and Singh (2015). Web scraping might be allowed to continue if scraping speed and

the number of concurrent requests is reduced. However, it is always best to contact the

website owner and ask for permission.

2.7 Legal issues

Web scraping itself is not illegal. However, it can easily turn illegal if scraping is done

without understanding the process.

Heydt (2014) claims there are two legal issues with Web Scraping, explained below:

[14]

14

Data ownership: Essentially, whenever a person visits a website, his/her browser

scrape the website and download the data to a local computer. It is similar to how Web

Scraping works. However, downloading the data does not grant ownership of the data.

Most of the time, website users are allowed to read, use and even share the data. It

might be an issue when that scraped data is used to serve and gain profit from other

people. In such a case, the term of service of each website should be read and

reviewed by lawyers.

Denial of service: Making too many requests to a website might cause its server to

crash, or stall the responses to legitimate users. This is also known as a denial of

service. Thus, scraping too intensively will be a problem.

Depending on the website and data these issues can be mitigated. However, there is

one legal issue that Heydt (2014) did not mention. It is the scraping of people personal

data. Recently, Europe introduced the GDPR law regarding the use of personal data

online. It is against the law to process and store people personal data. Personal data is

the data that can be used to identify people. A simple example of personal data are

emails, name, phone number, gender, id, age. Those are data that can be used directly

to identify a person. However, indirect data such as anonymized favorite movies

without real username is also considered personal data. Recently, Netflix released an

anonymous user favorite movies dataset. Even though the user cannot be identified

directly from this dataset, the University of Texas has published an article proving the

real user can still be discovered by matching with IMDB favorite movies database.[15]

2.8 Web Scraping as a Service

Web Scraping scripts can be implemented and run locally. However, in real-world

applications, Web Scraping works in the background with several services and

applications to serve certain use case such as running scraper daily or on certain

events. Thus it is common to build Web Scraping as a Service. There are several

companies such as ScrapingHub.com, WebRobots.io who provide service that only

require users to upload scraping configuration or code.

One of the challenge to build software as a service is to keep the development

environment the same as the production environment. Developers might use machines

15

with different operating systems which require different dependencies. Docker is a

software created to solve this problem.

According to Heydt (2014), in order to run web scraping as a service easily locally and

on the cloud, the scraping script needs to be exposed through a RESTful backend and

package into a Docker container image [14]. A Docker container image is a software

package which contains all the dependencies, runtime, system tools that can be

executed on any machine with any operating system that has Docker support. Docker

also makes it easier to scale Web Scraping service which will be discussed in the next

section.

2.9 Scaling Web Scraping

Scaling Web Scraping require deploying multiple instances of Web Scraper into a

cluster. While such a thing is difficult to do with traditional in house hosted servers, it is

quite simple to do with cloud services from Amazon and Google as long as Web

Scraping service is packaged with Docker.

To utilize the power of cloud computing, Chaulagain et al. (2017) decide to put all their

scraping resources on AWS. The authors acknowledge that for web scraping to

efficiently work with dynamic and interactive web pages, it needs to simulate human

behaviors as much as possible, an assertion that was also mentioned by Upadhyay S.

et al (2017). The authors find that with resources from scalable cloud platform it is

easier to run scraper in parallel. And the resources could be scaled as needed should

the load become too heavy. [16] In addition to getting massive data in parallel with

cloud-based resources Chaulagain et al. (2017) also want to develop a system of

distributed data processing with the same resources. [16] The advantage of using

cloud service is that the scraper can operate in such a way that it is able to scrape

multiple URLs at the same time and occupy just as much resource as needed. The

systems use services from Amazon such as S3 and SQS to schedule tasks, store

retrieved contents, and spawn more resources for the job. [16]

First, the input receives the target URL to be scraped and other configurations that tell

which operations need to be done just as a user would browse the page. The job is put

to an SQS queue with all relevant data for the scraper manager to read. After making

sure that the configuration is valid the scraper manager will call Selenium Renderer to

16

process this job. Because Selenium has a real browser engine that is able to evaluate

Javascript, it can go as far as a user could. After reaching the final page, a python

library is used to transform its content into a DOM. After some stages of filtering the

desired contents are extracted from the DOM and stored in DynamoDB. Due to the fact

that all services including S3 SQS, DynamoDB are running in AWS cloud

infrastructure, resources are optimized and scalable.

2.10 Community support for Web Scraping

Schema.org is a community that tries to build structure schemas for websites to

implement so Web Crawler and Scraper could easily index and parse relevant

data.[17] It would bring benefits to both website owner and web scraper. For example,

e-commerce websites can directly show their “Adidas” products with price and all detail

in Google Search engine when people search for “adidas” keyword. Furthermore,

websites implemented this community schema usually has their result with a higher

rank in search results. Web scraper and crawler will need less resource, show more up

to date data and make fewer requests to websites in order to index them. Popular

websites such as ebay.com, imdb.com also support this schema to show a better result

in search engine.

Schema.org defines several “vocabularies” for website owners to implement such as

event, book, movie, health, etc. It also supports many different kind of format for user

to implement such as Microdata, RDFa, JSON-LD.

2.11 Web Scraping challenges

While implementing web scraper is not a difficult simple task, there are several issues

that need to be addressed.

Firstly, traditional web scrapers can only target certain XPath or CSS selector in HTML

markup but websites can have new features added anytime which cause changes to

the entire website. Thus, web scraper developers need to update their code with new

correct selectors making the cost for maintaining and monitoring web scraper higher

than building one. Guojun et al. (2017) look at a way to improve crawler for data

extraction from dynamic web pages [18]. They have somewhat similar goals to Ujwal et

al (2017) except that the focus in on getting relevant web pages rather than extracting

specific elements from them [19]. In addition to that, they suggest techniques to better

maintain and develop the crawler itself. Like Ujwal et al. (2017), Guojun et al. (2017)

17

attempt to solve the problem of mutating site structure [18]. The crawler has to

intelligently choose which XPath pattern to regulate its data grabbing behavior. This is

similar to the use of CSS-selector in Ujwal et al. (2017) paper.

Chaulagain et al. (2017) try to address the same problem covered in Guojun et al. and

Ujwal et al. papers by building a smart scraper to get data from sources that have

mutating document structure [19]. The use of XPath to extract relevant data is very

similar to that of Guojun et al. (2017). The community schema support for Web Scraper

also tries to solve this problem. However, while it is simple to understand how those

schemas work, it is quite difficult to implement them into the website.

Secondly, as machine learning becoming ubiquitous, it is not unusual for websites to

display personalized content. Web scraper cannot recognize which data is the correct

data that it needs to retrieve. Many websites also check user IP Address to serve

localized content. Web Scraper might extract content completely different from what

normal user would see because their IP addresses are from different countries.

In summary, web scraper is a robust system that involves many technical components.

The scraper needs to be able to understand markup language in the same way a

browser does. It may also require that the scraper has its own browser engine in order

to render the content correctly. Sometimes the wanted content can also be in other text

and binary format so the scraper needs special components to extract data from there.

The architecture of a web scraper is discussed. It is also important to plan on the data

to collect and the pipeline needed to process it.

18

3. Web Scraping projects

To understand the process of building and deploying applications backed by Web

Scraping in real life, two projects with different purposes and architectural approaches

are implemented.

All projects are only used for this study and source code are available in Github public

under MIT license. Projects are built, tested and deployed automatically by CircleCI.

Python Programming Language with Scrapy framework is used to build the backend

services and Web Scraper.

3.1 Electronics e-commerce search results comparison

3.1.1 Motivation

Product comparison is one of the most common types of application that usually uses

Web Scraping. This project will try to scrape three popular online electronics stores in

Finland: Gigantti, Verkkokauppa, and JIMMS. In this case, Web Scraping is built as a

service and provides real-time scraped results to users through a simple web UI.

3.1.2 Application design

Based on the project requirements, the application backend need to be able to handle

real time web scraping. The simplified application architecture is shown in Figure 5.

 Figure 5. Diagram showing product comparison application architecture

19

As seen in Figure 5, the application has a simple UI for users to enter search

keywords. The UI sends search requests to Web Scraping service which then trigger

Web scraper to scrape and return search results from Gigantti, Verkkokauppa, and

JIMMS. This process might take more than one minute to finish which is a long time for

users to wait. To mitigate this problem, a Redis database is used to cache scraping

results. If two users request results for the same keyword, cached data in Redis will be

used. In real life situation, a list of well-known keywords will be run against Web

Scraping service every day to make sure that user experiences faster response time.

3.1.3 Scraping targets investigation and planning

To implement any Web Scraper, it is important to learn about the target website

structure and robots.txt. All information listed below is fetched on the 1st of March

2019. The detail of robots.txt and website structure might change.

3.1.3.1 Verkkkokauppa

Verkkokauppa has a very long robots.txt but the most important part is shown in Figure

6.

Figure 6. A part of robots.txt from Verkkokauppa

Based on information seen in Figure 6, scraping of detailed product page is not allowed

because the product page path is always /fi/product/productname.html. However, this

project only targets search result page (/fi/search?query=keyword) which is not

specified in robots.txt.

During the time this paper is written, Verkkokauppa web structure changes two times.

After recent changes, it is not easy to scrape more than 12 products from the search

results without using a real Web browser with Selenium. Since this is only for research

purposes, 12 first products should be enough.

For Verkkokauppa website, search results for 12 first products are returned in HTML

response whenever user go to /fi/search?query=some-keyword. One trick to find out if

the page content is just HTML returned by the server or JavaScript manipulation is to

https://www.verkkokauppa.com/robots.txt

20

disable JavaScript with a web browser add-on. By going to the next page of the search

result page, developers can find out that the result page can be controlled with

parameter page=number. The results of disabling JavaScript can be seen in Figure 7.

Figure 7. Verkkokauppa search result page after JavaScript is disabled

After 12 results, only “Loading” text is there as shown in Figure 7. This also means that

to get the first 12 results, the scraper only needs to send a request to that URL and

parse HTML response in order to get product details.

Once the URL to request is figured out, it is crucial to know how to parse the content.

Using the Web browser developer tool, developers can find the correct CSS or XPath

selector. A list of CSS selector for typical product detail is shown in Figure 8.

 Figure 8. CSS selector for Verkkokauppa product

21

3.1.3.2 Gigantti

A detail description of robots.txt is shown in Figure 9.

Figure 9. CSS selector for Verkkokauppa product

It can be seen from Figure 9 that Gigantti„s robots.txt seems to disallow scraping

search result at /yritysmyynti/search

After doing some check on the website, it is clear that the search path that Gigantti

uses is a different one at /search?SearchTerm=adidas and it does not seems to be

prohibited in robots.txt and therefore it is safe to proceed.

Interacting with the search result page shows that not all products data are returned

once the user clicks „search‟. Only when the user scrolls down, more results are

loaded. Similar to Verkkokauppa, disabling JavaScript show that only 6 products are

returned as HTML when the browser makes a request to /search?SearchTerm=adidas.

To scrape more than 6 products, the developer needs to figure out how the page

fetches more products when the user scrolls down.

In order to figure out what actually happens in the application when the user scrolls

down, the developer needs to use the browser developer tool. Figure 10 shows the

AJAX request logged in Chrome developer tool when user scrolls down for more

search result.

22

Figure 10. AJAX request sent to load more products when user scrolls down

As shown in Figure 10, an AJAX request is sent to /INTERNAL/web/WFS/store-

gigantti-Site/fi_FI/EUR/ViewParametricSearchBySearchIndex-OfferPaging when the

page need to load more search results. Fortunately, the path in this AJAX request is not

disallowed in robots.txt so it can be used to scrape more than 6 products from Gigantti.

However, it also means that the logic that needs to be implemented for Gigantti scraper

will be more complicated.

Even though /search?SearchTerm=adidas and /INTERNAL/web/WFS/store-gigantti-

Site/fi_FI/EUR/ViewParametricSearchBySearchIndex-OfferPaging paths are different,

both of them return HTML response and the product list HTML structure is similar. CSS

selectors can be found easily. Figure 11 shows the list of CSS selector to extract

product detail from Gigantti.

 Figure 11. CSS selector for Verkkokauppa product

3.1.3.3 JIMMS

Figure 12 shows detail description of JIMMS robots.txt.

23

Figure 12. JIMMS robots.txt file showing prohibition for almost all path

From Figure 12, it can be seen that JIMMS prohibits any scraping activity. Further

research into the website shows that the products search URL is /fi/Product/Search

and that path scraping is indeed restricted. However, the website is a good place to

learn the way to scrape a web application completely rendered by JavaScript. When

JavaScript is disabled, the website stop working completely unlike Verkkokauppa and

Gigantti.

Using Web Browser Developer Tool, it is straightforward to discover that when users

trigger the search button, a request is sent to

https://www.jimms.fi/api/product/searchloop to retrieve the list of products in JSON

format. The web application then renders the page with that data. Even though the web

application is quite complicated, it is much easier to scrape JIMMS through its API

bypassing the application. Due to the fact that search page scraping is forbidden in

robots.txt, JIMMS scraper won‟t be implemented for this project. As discussed in Web

scraping rulebook section, it would be better to be nice and follow what website owner

defined in robots.txt.

3.1.4 Implementation

After the investigation, it was decided that only Verkkokauppa and Gigantti scrapers

will be implemented due to robots.txt.

https://www.jimms.fi/api/product/searchloop

24

One important thing is that robots.txt might change anytime so the implemented

scrapers all need to check robots.txt before doing any scraping to be compliance.

Fortunately, Scrapy framework can be configured to comply with robots.txt

automatically. Furthermore, the framework also allows setting a random interval

between each request to target website to avoid being noisy.

Building Web Scraper with Scrapy is quite simple. The most important is to tell the

scraper how to parse the response and how to request the next page. Figure 13 show

an example parsing function for Gigantti.

Figure 13. Parser function for Gigantti scraper

As described in the application‟s design section, the Web Scraper need to be trigger by

an API call. Because Web Scraping asynchronous nature, the API also needs to return

results asynchronously or a complex task queue system needs to be implemented. The

Twisted Klein Web API framework supports asynchronous response by default and is a

perfect combination for Scrapy Web Framework.

The entire Web API and scrapers are then packaged inside a Docker image. This also

enables easy deployment of multiple instances of the API and scrapers. With the

power of Docker, the application is easy to scale and is more fault tolerant.

25

3.2 Simple search engine application

3.2.1 Motivation

A search engine, especially Google, is an essential part of the Internet. While it is fine

to take it for granted and use what is available, it is quite interesting to create your

personal search engine. In this project, a simple search engine will be created with the

help of Web Scraping. Most data used will be scraped from reddit.com, 4chan.org,

medium.com, quora.com and stackoverflow.com and any websites linking to them and

stored in ElasticSearch database. ElasticSearch is a database engine that supports full

text search on text documents. Since the scope of this paper is not about search

algorithms, the default search algorithm that ElasticSearch support will be used.

3.2.2 Application design

The web UI and API parts are basically the same as the product comparison project. In

fact, in the code stored in Github, they share the same component. The part that

should be the focus is the Web Scraper. Figure 14 shows the architecture design of the

application.

Figure 14. Simple search engine (DSearch) architecture diagram

As shown in Figure 14 and Figure 5, the only difference between this application and

the first one is ElasticSearch and Web Scraper. Implementation detail will be discussed

in the next section.

26

3.2.3 Implementation

Unlike the first comparison project where Web Scraper is implemented as a Service

and return results in real time, the Web Scraper, in this case, is just a CronJob or a Job

that will be triggered to scrape data and push them to ElasticSearch. One major

difference is that this Web Scraper does not know detail about how to parse specific

website but instead try to extract as much useful text as possible. This is where

schema.org common HTML markdown is useful. However, both Reddit and 4chan do

not follow schema.org convention. To extract as much text as possible from any web

pages, it is decided to go with a naive approach that the Web Scraper will extract text

from any <p> HTML tag and set it as content to be pushed to ElasticSearch. All links in

<a> HTML tag inside web pages are also extracted and followed.

Figure 15 shows how web scraper discovers a new website and follows to the next

one.

Figure 15. Web Scraper starts with seed websites and goes to all linked websites

As shown in figure 15, the first few websites that the Web Scraper visits are called

seed websites, they are websites with many external links that Web Scraper can detect

and use to connect to more websites. However, the internet is very big there can be

millions of links. To avoid scraping too many websites, it is advised to limit the following

27

algorithm to two or three consecutive linked websites. Scrapy Scraping Framework

supports the setting out of the box.

Since this Web Scraper does not know details about how to scrape a specific website,

the extracted data could be polluted with JavaScript, CSS or even some malicious

code. It is important to do proper checks to clean and remove codes from text data. For

simple cases, a Python library called w3lib.html can be used.

28

4. Results discussion

To demonstrate the results of Web Scraping from implemented projects, a simple web

UI is created. In the UI the user can choose which application to try out.

The final user interface for product comparison project is shown in Figure 16. Detail

search results from Verkkokauppa and Gigantti are scraped and display based on user

input.

Figure 16. Product comparison interface

Figure 17 shows full text search interface of the second application. The application

interface is similar to Google search interface. A list of search result containing website

title, origin and text matching result is shown based on user input.

29

Figure 17. The full-text search engine interface

For the first application which shows a real-time comparison from Gigantti and

Verkkokauppa, implementation of scrapers has been effortless. However, during the

time this paper is written, several changes happen to target scraping websites including

website structure and robots.txt. The changes to Verkkokauppa cause the current web

scraper to only return the first 12 products. Robots.txt changes in JIMMS website

prevent scrapers from accessing it entirely. It is challenging to guarantee good user

experiences because the application has to show real time results. The application

tends to break if it is not maintained regularly. Due to the requirements to scrape

different types of data product price, images, description, title, Web Scraper need to

know specifically where and how to scrape such data. Any changes in the scraping

target can cause errors in the Scraper.

The second application, on the other hand, requires complicated parsing logic and data

cleaning. Parsed data currently is limited to plain text. Once the data is cleaned up and

pushed to the database, it is difficult to recognize what the text is about and extract

small details such as price from the text. Furthermore, the application tries to store as

much text as possible so it requires much more storage space. Scraped data tends to

be out of date because data is scraped from days or weeks before and not real time.

The application also requires much more resources to be production ready. One

interesting result from this application Web Scraping is that even though the Scraper

only run for a few days with 5 seed websites: stackoverflow.com, medium.com,

4chan.org, quora.com, reddit.com, there are a lot of scraped data on other websites

30

that somehow linked to those 5 websites such as bcc.com, w3school. However, after a

week of scraping, the results became repetitive and not much new data was saved.

This might be because the list of seed websites is too small. The project also has

limited resource running Scraping on a laptop. It is more ideal in the real world to

distribute this kind of scraping to multiple machines.

In the end, the process of building a reliable web scraper is proven to be more difficult

than is initially thought. The maintainer of the scraper system should always be aware

of the changes made to the target site and change the retrieval logic accordingly.

Some site owners are also against web scraping and thus made clear in the policy that

no robot scraper could visit their site in part or completely. Since the volume of data is

sometimes big, it is important to have reasonable rate limit and other smart

mechanisms to optimize the payload over the network. The analysis step of the

application is also complicated. It could be improved by using some AI language

recognition to pick out the relevant information from the raw data. But that is not in the

scope of this paper.

31

5. Conclusion

With the growth of internet usage, the amount of data available online is exploding. To

efficiently extract meaningful data from the vast ocean of web contents, intelligent

systems called scrapers were built to automate the process. Knowing how a scraper

works and how to make an efficient scraper can help not just business but also

individuals who want to get just the right information. As the economy moves towards

hi-tech industry, it is more important to retrieve the necessary data in a reliable and

timely manner. Web scraper has great potential to grow as a tool for navigating the

abundant and unstructured sources of data.

As expected from the theoretical background on web scrapers, there are many

challenges in the process of developing and maintaining a web scraper. The

implementation in this paper indeed had to use a browser engine to be able to reach

certain parts of the target site. Fortunately, there was no need to use any technique for

data extraction from image or binaries. The paper also discusses a simple pipeline for

data analysis, though in practice it is likely to be a lot more challenging. It is also

demonstrated that some website owners are aware and have concerns about web

scrapers looking into their sites. Thus, it is important to make a scraper that complies

with the robots policy of the site.

Web Scraping is a powerful technology that is widely used to automate the data

gathering process around the Internet and powers web applications with data. While

implementing Web Scraping is not a difficult task, there are challenges in using one.

The cost to maintain such Web Scraper systems could be more than buying the data

from a reliable data source. Furthermore, developers can run into legal issues if they

are not careful. This study showed that it is important to write nice and polite Web

Scraper that follows the rules and even ask the owner for permissions if necessary.

References

1. https://en.wikipedia.org/wiki/HTML. Accessed on March 2019

2. https://en.wikipedia.org/wiki/Cascading_Style_Sheets. Accessed on March

2019

3. https://en.wikipedia.org/wiki/JavaScript. Accessed on March 2019

4. https://developer.mozilla.org/en-US/docs/Web/XPath. Accessed on March 2019

5. https://developer.mozilla.org/en-

US/docs/Learn/CSS/Introduction_to_CSS/Selectors. Accessed on March 2019

6. http://elementalselenium.com/tips/34-xpath-vs-css-revisited-2. Accessed on

March 2019

7. https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model.

Accessed on March 2019

8. https://developers.google.com/web/fundamentals/performance/critical-

rendering-path/render-tree-construction. Accessed on March 2019

9. Mahto D, Singh L. A Dive into Web Scraper World. Computing for Sustainable

Global Development (INDIACom), 2016 3rd International Conference on March

2016 : 689-693

10. Upadhyay S, Pant V, Bhasin S, Pattanshetti M. Articulating the Construction of

a Web Scraper for Massive Data Extraction. 2017 Second International

Conference on Electrical, Computer and Communication Technologies

(ICECCT) in February 2017

11. Lawson R. Web Scraping With Python. October 2015

12. Haque A, Singh S. Anti-scraping application development. Advances in

Computing, Communications and Informatics (ICACCI), 2015 International

Conference on August 2015

13. Scrapy documentation. https://doc.scrapy.org/en/latest/ .Accessed on March

2019

14. Heydt M. Python Web Scraping Cookbook. Feb 2018

15. Narayanan A, Shmatikov V. Robust De-anonymization of Large Sparse

Datasets. University of Texas on 2018.

https://en.wikipedia.org/wiki/HTML
https://en.wikipedia.org/wiki/Cascading_Style_Sheets
https://en.wikipedia.org/wiki/JavaScript
https://developer.mozilla.org/en-US/docs/Web/XPath
https://developer.mozilla.org/en-US/docs/Learn/CSS/Introduction_to_CSS/Selectors
https://developer.mozilla.org/en-US/docs/Learn/CSS/Introduction_to_CSS/Selectors
http://elementalselenium.com/tips/34-xpath-vs-css-revisited-2
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model
https://developers.google.com/web/fundamentals/performance/critical-rendering-path/render-tree-construction
https://developers.google.com/web/fundamentals/performance/critical-rendering-path/render-tree-construction
https://doc.scrapy.org/en/latest/

16. Chaulagain RS, Pandey S, Basnet SR. Cloud Based Web Scraping for Big Data

Applications. Smart Cloud (SmartCloud), 2017 IEEE International Conference

on November 2017

17. https://schema.org/. Accessed on March 2019

18. Guojun Z, Wenchao J, Jihui S. Design and application of intelligent dynamic

crawler for web data mining. Automation (YAC), 2017 32nd Youth Academic

Annual Conference of Chinese Association on May 2017

19. Ujwal B V S, Gaind B, Kundu A. Classification-Based Adaptive Web Scraper.

Machine Learning and Applications (ICMLA), 2017 16th IEEE International

Conference on December 2017

https://schema.org/

