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ABSTRACT 
 

The author’s aim in this paper was to understand how deep learning can 
be connected to automation engineering and which solution would be best 
suited for data classification. 
 
Based on the research project concluded here, Convolutional Neural 
Network was chosen as the most suitable solution for the aforementioned 
task. The goal was to create a network, which would be able to classify 

images based on features extracted and memorized by the program. The 
Python programming language and the Anaconda environment were 
chosen as the most user-friendly environment to demonstrate how the 
neural network operates. 
 
In order to write this thesis, the author studied a new programming 
language, examined deep learning and related topics, and was supervised 

by Raine Lehto throughout all the steps in the project. 
 
At the end of this work the author has achieved the desired results in the 
form of program classifying images in two categories with a possibility of 
improving the system for future projects. 
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1 INTRODUCTION 

Since ancient times the humankind has been striving to lessen the 
everyday burden of people. The progress has made a great path from the 
invention of wheel to self-driving cars. As automation is rising, less tasks 
require human labour while opening new possibilities to engineers and 
developers. 
 
Artificial intelligence has been a fascinating topic for science fiction writers 
and directors for decades, we are yet to observe its birth. The results of 
various experiments with AI are just simple imitations of how science 
perceives the work of the human brain. Some of the solutions  are called 
Neural Networks. The field responsible for building Neural Networks is 
called deep learning. 
 
The aim of this thesis work was to study the Convolutional Neural Network 
as a part of deep learning, to build a sample program to represent the 

possibilities of this branch of artificial intelligence. 

2 DEEP LEARNING 

2.1 What is deep learning? 

Before diving into deep learning, it is important to understand its 
relationship with machine learning and artificial intelligence. Figure below 
describes how deep learning is connected to other AI research fields. 
 

 
Figure 1. Relationship between deep learning, machine learning and 
artificial intelligence 
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Deep learning is a machine learning technique that teaches computers to 
do what comes naturally to us, humans: learn by example. Deep learning 
is a key technology behind driverless cars, enabling them to recognize a 
stop sign, or to distinguish a pedestrian from a lamppost. It is the key to 
voice control in consumer devices like phones, tablets, TVs, and hands-free 
speakers. Deep learning is getting lots of attention lately and for good 
reason. It’s achieving results that were not possible before (What Is Deep 
Learning? October 15). 
 
In Deep Learning, a computer model learns to perform classification tasks 
directly from images, text, or sound. Deep learning models can achieve 
state-of-the-art accuracy, sometimes exceeding human-level speed and 
efficiency. Models are trained by using multiple sets of labeled data and 
neural network structures that contain many hidden layers (What Is Deep 
Learning? October 15). 

2.2 Difference between machine Learning and deep learning 

 
Deep Learning is a form of Machine Learning. ML workflow starts with 
extracting manually relevant features from images. These features are 
then used to create a model that categorizes the objects in the image. 
Deep Learning, on the contrary, extracts these features automatically. In 
addition, Deep Learning performs “end-to-end learning”. A neural network 
is given raw data and a task to perform, e.g. classification, and the system 
learns to do it automatically (What Is Deep Learning? October 15). 
 
Another key difference is Deep Learning algorithms scale with data, 
whereas Shallow Learning converges. Shallow Learning is a method of 
Machine Learning that stops at a certain level of performance when user 

adds more examples and training data to the system (What Is Deep 
Learning? October 15). 
 
A key advantage of deep learning networks is that they often continue to 
improve as the size of your data increases (What Is Deep Learning? 

October 15). 

2.3 Brief history of deep learning 

The history of Deep Learning starts in 1943, when a computer model based 
on the neural network was created by Walter Pitts and Warren McCulloch. 
The combination of algorithms and mathematics called “threshold logic” 
was used to mimic the thought process. Since that time, Deep Learning has 
been evolving steadily with two significant events in its development called 

Artificial Intelligence winters (Foote 2017). 
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Henry J. Kelley is famous for developing the basics of a continuous Back 
Propagation Model in 1960. A simpler version based only on the chain rule 
was developed by Stuart Dreyfus in 1962. However, the concept of back 
propagation existed in the early 1960s, it was inefficient and would not 
become beneficial until 1985 (Foote 2017). 
 
The earliest efforts in developing Deep Learning algorithms provided 
Alexey Grigoryevich Ivakhnenko, who developed the Group Method of 
Data Handling, and Valentin Grigoryevich Lapa, author of Cybernetics and 
Forecasting Techniques, in 1965 (Foote 2017). 
 
The first AI winter started during the 1970s, the result of promises that 
could not be kept. This resulted in lack of funding in both Artificial 
Intelligence and Deep Learning research. Fortunately, there were 
individuals who continued the research without funding (Foote 2017). 
 
The first Convolutional Neural Networks were developed by Kunihiko 
Fukushima. Fukushima designed neural networks with multiple pooling 
and convolutional layers. He developed an Artificial Neural Network, called 
Neocognitron, which used a hierarchical, multilayered design in 1979. This 
design allowed the computer the “learn” to recognize visual patterns. The 
networks resembled modern versions, however, were trained with a 
reinforcement strategy of recurring activation in multiple layers, which 
gained strength over time. Additionally, Fukushima’s design allowed 
important features to be adjusted manually by increasing the “weight” of 
certain connections (Foote 2017). 
 
The concepts of Neocognitron continued to be used. The use of top-down 
connections and new learning methods allowed a variety of neural 

networks to be realized. When more than one pattern is presented at the 
same time, the Selective Attention Model can separate and recognize 
individual patterns by shifting its attention from one to the other. A 
modern Neocognitron can identify patterns with missing information as 
well as complete the image by adding the missing information. This could 

be described as “inference” (Foote 2017). 
 

The use of errors in training Deep Learning models called Back propagation 
evolved drastically in 1970. Seppo Linnainmaa wrote his master’s thesis, 
including a FORTRAN code for back propagation. Unfortunately, the 
concept was not applied to neural networks until 1985, when Rumelhart, 
Williams, and Hinton demonstrated back propagation in a neural network 

could provide “interesting” distribution representations. This discovery 
brought to light the question within cognitive psychology of whether 
human understanding relies on symbolic logic (computationalism) or 
distributed representations (connectionism). Yann LeCun provided the 
first practical demonstration of backpropagation at Bell Labs in 1989. He 

combined convolutional neural networks with back propagation, so the 
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system could read “handwritten” digits. This system was eventually used 
to read the numbers of handwritten checks (Foote 2017). 
 
The second Artificial Intelligence winter occurred in the second half of 
1980s. Various overly-optimistic individuals had exaggerated the 
“immediate” potential of Artificial Intelligence, breaking expectations of 
investors. The impact of broken promises was so strong, the phrase 
Artificial Intelligence obtained pseudoscience status. The research still 
continued and significant advances were made. In 1995, Dana Cortes and 
Vladimir Vapnik developed the support vector machine (a system for 
mapping and recognizing similar data). LSTM (long short-term memory) for 
recurrent neural networks was developed in 1997, by Sepp Hochreiter and 
Juergen Schmidhuber (Foote 2017). 
 
The next significant step for Deep Learning occurred in 1999, when 
computers started becoming faster at processing data and GPU (graphics 
processing units) were developed. Faster processing, with GPUs processing 
pictures, increased computational speeds by 1000 times over a decade. 
During this time, neural networks began to compete with support vector 
machines. While a neural network could be slow compared to a support 
vector machine, neural networks offered better results using the same 
data. Neural networks also have the advantage of continuing to improve 
as more training data is added (Foote 2017). 
 
The Vanishing Gradient problem appeared in 2000. It was discovered that 
“features’ which formed in lower layers were not being learned by upper 
layers, because no learning signal reached these layers. This was not a 
fundamental problem for all neural networks, just the ones with gradient-
based learning methods. The source of the problem turned out to be 

certain activation functions. A number of activation functions condensed 
their input, in turn reducing the output range in a somewhat chaotic 
fashion. This produced large areas of input mapped over an extremely 
small range. In these areas of input, a large change will be reduced to a 
small change in the output, resulting in a vanishing gradient. Two solutions 

used to solve this problem were layer-by-layer pre-training and the 
development of long short-term memory (Foote 2017). 

 
In 2001, a research report by META Group (nowadays called Gartner) 
described the challenges and opportunities of data growth as three-
dimensional. The report described the increasing volume of data and the 
increasing speed of data as increasing the range of data sources and types. 

This was a call to prepare for the onslaught of Big Data, which was just 
starting (Foote 2017). 
 
The speed of GPUs had increased rapidly by 2011 making it possible to 
train Convolutional Neural Networks without the layer-by-layer pre-

training. With increased computing speed, it became obvious that Deep 
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Learning had significant advantages in terms of speed and efficiency (Foote 
2017). 
 
Currently the processing of Big Data and the evolution of Artificial 
Intelligence are both dependent on Deep Learning, which is still developing 
and in need of new ideas (Foote 2017). 

2.4 Methods of deep learning 

First of all, Deep Learning consists of the following methods and their 
variations: 

• Unsupervised learning systems such as Boltzman Machines for 
preliminary training, Auto-Encoders, Generative Adversarial 
Network. 

• Supervised learning such as Convolution Neural Networks which 
brought technoogy of pattern recognition to a new level. 

• Recurrent Neural Networks, allowing to train on processes in time. 

• Recursive neural networks, allowing to include feedback between 
circuit elements and chains. 

 
By combining these methods, complex systems are created that 
correspond to different tasks of Artificial Intelligence. 
 
Deep training is an approved sample from a wide range of Machine 
Learning methods for data representations that are most appropriate to 
the nature of the task. The image, for example, can be represented in many 
ways, such as the intensity vector of the values per pixel, or (in a more 
abstract form) as a set of primitives, regions of a certain shape, etc. 
Successful data representations facilitate the solution of specific tasks - for 
example, face recognition and facial expressions. In systems of Deep 

Learning, the process of selecting and adjusting attributes automates 
itself, by training attributes without a teacher or with a partial involvement 
of the teacher, using effective algorithms and hierarchical extraction of 
characteristics 
 
Deep Learning systems have found application in such areas as computer 
vision, speech recognition, natural language processing, audio recognition, 
bioinformatics, where for a number of tasks, much better results were 
demonstrated than previously. 

3 CONVOLUTIONAL NEAURAL NETWORK 
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3.1 Neuron 

An artificial neuron is a representation of how the functions of the human 
brain are recreated in computing.  A neuron is essentially a unit which 
receives signals through multiple junctions named dendrites, also referred 
as synapses which can be seen on figure 2. These synapses serve as the 

inputs of the neuron. Every neuron has a certain threshold value, which if 
exceeded by the sum of the inputs the neuron shall send forward to 

another neuron and so on.  
 

 
Figure 2. Neuron (Neurofantstic 2017) 

3.1.1 An artificial neuron 

An artificial neuron is a structural unit of an artificial neural network and is 
an analog of  a biological neuron. Figure 3 demonstrates graphical 
representation of an artificial neuron. 

 

 
Figure 3. An artificial neuron (Saxena 2017) 
 

From the mathematical point of view, the artificial neuron is the adder of 
all incoming signals, applying to the resulting weighted sum some simple, 
in general, nonlinear function that is continuous throughout the domain of 
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definition. Usually, this function increases steadily. The result is sent to a 
single output (Saxena 2017). 
 
Artificial neurons are combined in a certain way, forming an artificial 
neural network. Each neuron is characterized by its current state by 
analogy with the nerve cells of the brain, which can be excited or hindered. 
It has a group of synapses - unidirectional input links connected to the 
outputs of other neurons, and also has an axon - output connection of a 
given neuron, with which the signal enters the synapses of the following 
neurons (Saxena 2017). 
 
Each synapse is characterized by the magnitude of the synaptic connection 
or its weight wi, which is the equivalent of the electrical conductivity of 
biological neurons (Saxena 2017). 
 
The current state of the neuron (1) is defined as the weighted sum of its 
inputs: 
 

𝑠 = ∑ 𝑥𝑖 ∗

𝑛

𝑖=1

𝑤𝑖 + 𝑤0 
 (1) 

 
where 𝑤0 is the displacement coefficient of the neuron (the weight of a 

single input (Saxena 2017). 
 
The output of a neuron is a function of its state (2): 

 
𝑦 = 𝑓(𝑠)  (2) 

 

Non-linear function 𝑓 is called activation function and can be represented 
in different formulas (Saxena 2017). 

3.2 Activation function 

Although, the range of inputs may be different, the standard model of 
neuron is capable of giving only binary output values depending on 

whether the sum of its inputs exceeded or did not exceed the threshold 
value of the neuron.  The activation function is used to is used to introduce 

non-linearity into the output of a neuron. A neural network without an 
activation function is simply just a linear regression model. The activation 
function does the non-linear transformation to the input making it capable 
to learn and perform more complex tasks (Tiwari November 2). 



8 
 

 
 

3.3 Operating principles of neural networks 

 
Figure 4. A neural network (Albright 2016) 

 
The figure above shows a basic structure of an artificial neural network. 
Each of the circles is called a “node” and it represents a single neuron. On 
the left are input nodes, hidden nodes are located in the middle and output 
nodes are on the right (Albright 2016). 

 
Input nodes accept information from input values, which, for example, 

could be a binary 1 or 0. The purpose of input nodes is to serve the data 
flowing into the network (Albright 2016). 
 
Each input node is connected to a number of nodes in hidden layer 
(sometimes to every node, sometimes to a certain ones). Input nodes take 

the information they have received and pass it along to the hidden layer 
(Albright 2016). 
 
Every connection, the equivalent of a neurons synapse, is given a certain 
weight, which allows the network to place a stronger emphasis on the 
action of specific node (Albright 2016). 
 

Output layer nodes role is the same as hidden layer ones: output nodes 
sum the input from the hidden layer, and if they reach a required value, 
the output nodes fire and send specific signals. At the end of the process, 
the output layer will be transmitting a set of signals that represents the 
result of the input (Albright 2016). 
 
The network shown above is simple, deep neural networks can have many 
hidden layers and hundreds and even thousands of nodes (Albright 2016). 
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3.4 Learning with neural networks 

Comparison to a real-life analogy may be efficient in understanding the 
mechanisms of a neural network. Learning in a neural network is closely 
related to how people learn in their regular lives and activities – they 
perform an action and are either accepted or corrected by a teacher or 

coach to understand how to get better at a specific task. Similarly, neural 
networks require a trainer in order to describe what should have been 

produced as a response to the input. Based on the difference between the 
actual value and the value that was provided by the network, an error 
value is calculated and sent back through the system. The error value is 
analysed for each layer of the network and used to adjust the threshold 
and weights for the next input. This way, the error keeps becoming 

indirectly lesser each run as the network learns how to analyse values 
(Futurism 2015). 
 
The procedure described above is known as backpropagation and is 
applied continuously through a network until the error value reaches a 

satisfactory value. At this point, the neural network no longer requires 
such training process and is allowed to run without adjustments. The 

network may then finally be applied, using the adjusted weights and 
thresholds as guidelines (Futurism 2015). 

3.5 Usage of a neural network while running 

When a neural network is active, no backpropagation takes place as there 
is no way to directly verify the expected response. Instead, the validity of 

output statements is corrected during a new training session or are left as 
is for the network to run. Many adjustments may need to be made as the 

network consists of a great number of variables that must be precise for 
the artificial neural network to function correctly (Futurism 2015). 
 

A simple example of such a process can be researched by teaching a neural 
network to convert text to speech. User could pick multiple different 

articles and paragraphs and use them as inputs for the network and specify 
a desired input before executing the test. The training phase would then 
consist of input data going through the multiple layers of the network and 
using backpropagation to adjust the parameters and threshold value of the 
network in order to minimize the error value for all input examples. The 

network may then be tested on new articles to determine if it could 
correctly convert text to proper speech (Futurism 2015). 

 
Networks like these may be used as models for a great number of 
mathematical and statistical problems, including but not limited to speech 
synthesis and recognition, face recognition and prediction, nonlinear 
system modelling and pattern classification (Futurism 2015). 
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3.6 Convolutional operation 

Convolution is one of the most important operations in signal and image 
processing. It could operate in 1D, 2D or 3D depending on what kind of 
information is processed. This thesis is concentrated on convolution in 2D 
spatial which is mostly used in image processing for feature extraction and 

is also the core block of Convolutional Neural Networks. Generally, an 
image can be considered as a matrix whose elements are numbers 

between 0 and 255. The size of image matrix (3) is: 
 

𝑖𝑚𝑎𝑔𝑒 ℎ𝑒𝑖𝑔ℎ𝑡 ∗ 𝑖𝑚𝑎𝑔𝑒 𝑤𝑖𝑑𝑡ℎ
∗ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑚𝑎𝑔𝑒 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 

 (3) 

 

A grayscale image has 1 channel, where a colour image has 3 channels. 
 
Each convolution operation has a kernel which could be any matrix smaller 
than the original image in height and width as illustrated in figure 5. Each 
kernel is useful for a specific task, such as sharpening, blurring, edge 
detection, and etc. 
 

 
Figure 5. Image filtering 
 

To calculate the convolution, the kernel is swept on the image and at every 
single location the output is calculated. The following equations are used 
to calculate the exact size of convolution output for an input with the size 

of (height = 𝐻, width = 𝑊) and a filter with the size of (height = 𝐹ℎ, width 
= 𝐹𝑤): 

 

𝑂𝑢𝑡𝑝𝑢𝑡 ℎ𝑒𝑖𝑔ℎ𝑡 =
𝐻 − 𝐹ℎ + 2𝑃

𝑆ℎ
+ 1 

 (4) 
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𝑂𝑢𝑡𝑝𝑢𝑡 𝑤𝑖𝑑𝑡ℎ =
𝑊 − 𝐹𝑤 + 2𝑃

𝑆𝑤
+ 1 

 (5) 

 
where 𝑆ℎ and 𝑆𝑤 are vertical and horizontal stride of the convolution and 

𝑃 is the amount of zero-padding added to the border of the image 
(Karpathy 2016). 

3.6.1 Convolutional layer 

A convolution layer is used to perform a convolution operation in neural 
networks. Its parameters consist of a set of learnable filters. Each filter is 

small spatially but extends through the full depth of the input volume. For 
example, one of the filters applied on convolutional layer might have size 

5 ∗ 5 ∗ 3 (5 pixels width and height, 3 colour channels). During the process, 
each filter is convolved across width and height of the input volume and 
dot products are computed between the entries of the filter and input at 
any position. Generally, a 2-dimensional activation map is created allowing 
to give responses to the network when similar features are detected. Each 

filter produces a separate 2D activation map. These maps are stacked 
along the depth dimension and produce the output volume (Karpathy 
2016). 
 
When dealing with high-dimensional inputs such as images, it is impractical 

to connect neurons to all neurons in the previous volume. Instead, each 
neuron is connected to only a local region of the input volume. The spatial 
extent of this connectivity is a hyperparameter called the receptive field of 
the neuron (equivalently this is the filter size). The extent of the 
connectivity along the depth axis is always equal to the depth of the input 
volume (Karpathy 2016). 

3.6.2 Spatial arrangement in convolutional layer 

There are three hyperparameters controlling the size of the output 
volume: the depth, stride and zero-padding (Karpathy 2016). 
 
Depth of the output corresponds to the number of filters the user would 
like to implement, each learning to search for something different in the 

input (Karpathy 2016). 
 
Stride is a parameter that specifies how filter slides on the image. When 
the stride is 1 the filters move one pixel at a time. Increasing stride allows 
to produce smaller output volumes spatially (Karpathy 2016). 
 
Zero-padding is a parameter that adds zeros around the border of input. 
This allows to control the spatial size of the output (Karpathy 2016). 
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3.6.3 Parameter sharing 

Parameter sharing in Convolutional neural networks is used to adjust 
number of parameters (Karpathy 2016). 
 
The user can reduce the number of parameters by making an assumption 

that if one feature can compute at some spatial position (𝑥, 𝑦), then it is 
useful to compute a different place (𝑥2,𝑦2 ). In other words, denoting a 

single 2D slice of depth as a depth slice. For example, during 
backpropagation, every neuron in the network will compute the gradient 
for its weights, but these gradients will be added up across each depth slice 
and only update a single set of weights per slice (Karpathy 2016). 
 

If all neurons in a single depth slice are using the same weight vector, then 
the forward pass of the convolutional layer can be computed in each depth 
slice as a convolution of the neuron’s weights with the input volume  
(Therefore the name: Convolutional layer). This is the reason why it is 
common to refer to the sets of weights as a filter (or a kernel), that is 

convolved with the input (Karpathy 2016). 

3.7 ReLU layer 

The Rectified Linear Unit (6) (also Rectifier) is used to increase non-linearity 
in images. It computes the function: 

 
𝑓(𝑥) = max (0, 𝑥)  (6) 

 
In other words, the activation is thresholded at zero point as seen on figure 
6. 
 

 
Figure 6. ReLU function (Anukarsh Singh 2017) 
 
There are several pros and cons to using ReLUs: 

• Greatly increases the convergence of stochastic gradient descent 

compared to sigmoid/tanh functions. 
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• Compared to sigmoid/tanh neurons that execute expensive 
operations, the ReLU can be used by thresholding a matrix of 

activation at zero point. 

• Unfortunately, ReLU units are fragile during training and can “die”. 
For example, a large gradient flowing through a ReLU neuron could 
cause the weights to update in such a way that the neuron will 
never activate on any datapoint again. If this happens, then the 
gradient flowing through the unit will forever be zero from that 
point on (Karpathy 2016). 

3.7.1 Leaky ReLU 

Leaky ReLU (7) is one attempt to solve the “dying ReLU” problem. Instead 
of the function being zero when 𝑥 < 0, a leaky ReLU has a negative slope. 
 

𝑓(𝑥) = 1(𝑥 < 0)(𝑎𝑥) + 1(𝑥 ≥ 0)(𝑥)  (7) 

 

where 𝑎 is a small constant (Karpathy 2016). 

3.7.2 Maxout  

Maxout is another solution to the “dying ReLU”. The Maxout neuron  (8) 
computes the function: 
 

max (𝑤1
𝑇𝑥 + 𝑏1𝑤2

𝑇𝑥 + 𝑏2)  (8) 

 
Both ReLU and leaky ReLU are a special case of this form. The Maxout 

neuron has all the advantages of a ReLU and has no drawbacks. However, 
the Maxout doubles the number of parameters for every single neuron 

(Karpathy, 2016). 

3.8 Pooling 

It is common to periodically insert a Pooling layer in-between successive 

convolutional layers in a neural network architecture. Its function is to 
progressively reduce the spatial size of the representation, to reduce the 

number of parameters and computation in the network, and therefore to 
also control overfitting. The pooling layer operates independently on every 

depth slice of the input and resizes it spatially, using the MAX operation. 
The most used form is a pooling layer with filters of size 2*2 applied with 
a stride of 2. It down-samples every depth slice in the input by 2 along both 

width and height, discarding 75% of the activations. The depth dimension 
in pooling operation remains unchanged (Karpathy 2016). 
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3.8.1 General pooling 

In addition to max pooling, the pooling layers can also perform other 
functions. Average pooling was often used historically but has recently 
fallen out of favour compared to the max pooling operation, which has 
been shown to be more efficient (Karpathy, 2016). 

3.9 Flattering 

 
Figure 7. Flattening 
 
Flattening layer is a simple layer that is used to prepare data to be the input 
of the final and most important layer – Fully-Connected Layer. Generally, 

neural networks receive data in one dimension in a form of an array of 
values, this layer uses data received from pooling layer or convolutional 
layer and squashed the matrixes into arrays as illustrated in figure 7. 

Obtained values are used as an input to the neural network (Karpathy, 
2016). 

3.10 Full-connection 

After numerous convolution and pooling layers are used in neural network 
Fully connected layer is used in order to access all activation functions in 

previous layer (Karpathy 2016). 

3.10.1 Converting fully connected layer into a convolutional layer 

The only difference between fully connected and convolutional layer is 
that the neurons in latter are connected only to a local area of the input, 
and that neurons in convolutional layer share parameters. However, the 
neurons in both volumes calculate dot products, so their function is exactly 
alike. Thus, conversion between layers is possible: 

• For every convolutional layer there is a fully connected one, that 
uses the same forward function. The weight is a large matrix which 
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is usually zero except for a specific blocks due to a local 
connectivity, where the weights in the blocks are equal because of 
parameter sharing. 

• Fully connected layer can be converted to a convolutional simply 

using a filter, which size is set to be the same as the input (Karpathy, 
2016). 

3.11 Softmax & Cross-Entropy 

To convert the output of convolutional neural network into probability – 
softmax function is used. Cross-Entropy serves the purpose of measuring 
loss and optimization. 

3.11.1 Softmax 

Softmax function (9) is used to transform an N-dimensional vector of real 
numbers into a vector of real number in range (0,1) which adds up to 1 
(Dahal November 15). 
 

𝑝𝑖 =
𝑒𝑎𝑖

∑ 𝑒𝑘
𝑎𝑁

𝑘=1

 
 (9) 

 
As can be seen from the name, softmax function is another interpretation 
of max function. Instead of selecting one maximum value, it breaks the 
whole (1) with maximal element getting the largest portion of the 

distribution with other smaller elements getting some of it as well (Dahal 
November 15). 
 

This property of softmax function that it outputs a probability distribution 
makes it suitable for probabilistic interpretation in classification tasks  
(Dahal November 15). 
 
In python is necessary to remember that the numerical range of floating-

point numbers in numpy is limited. For float64 the upper bound is10308 . 
For exponential function it is not difficult to overcome that limit  (Dahal 

November 15). 
 
To make softmax function numerically stable, the values in the vector are 
simply normalized by multiplying the numerator and denominator with a 
constant 𝐶 (Dahal November 15). 
 

𝑝𝑖 =
𝑒𝑎𝑖

∑ 𝑒𝑎𝑘𝑁
𝑘=1

= 

𝐶 ∗ 𝑒𝑎𝑖

𝐶 ∗ ∑ 𝑒𝑎𝑘𝑁
𝑘=1

= 

𝑒𝑎𝑖 +log(𝐶)

∑ 𝑒𝑎𝑘+log(𝐶)𝑁
𝑘=1

 

 (10) 
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User can choose an arbitrary value for log(𝐶) term, but usually 
log(𝐶) = −max (𝛼) is chosen, as it shifts all elements in the vector from 
negative to zero, and negatives with large exponents saturate to zero 
rather than the infinity, avoiding overshooting (Dahal November 15). 

3.11.2 Derivative of softmax 

Due to the specific property of softmax function to output a probability 
distribution, it used as a final layer in neural networks. For this derivative 
or gradient is calculated and passed back to previous layer during 
backpropagation (Dahal November 15). 
 

𝜕𝑝𝑖

𝜕𝑎𝑗
=

𝜕
𝑒𝑎𝑖

∑ 𝑒𝑎𝑘𝑁
𝑘=1

𝜕𝑎𝑗
 

 (11) 

 

From quotient rule we know that for 𝑓(𝑥) =
𝑔(𝑥)

ℎ(𝑥)
 we have 𝑓(𝑥) =

𝑔′(𝑥)ℎ(𝑥)−ℎ′(𝑥)𝑔(𝑥)

ℎ(𝑥)2 . 

In this situation 𝑔(𝑥) = 𝑒𝑎 and ℎ(𝑥) = ∑ 𝑒𝑎𝑘𝑁
𝑘=1 .In ℎ(𝑥), 

𝜕

𝜕𝑒
𝑎𝑗 will always 

be 𝑒𝑎𝑗. , But it is important to note that in 𝑔(𝑥)
𝜕

𝜕𝑒𝑎 𝑗
 will be 𝑒𝑎𝑗 only if 𝑖 =

𝑗 otherwise is 0 (Dahal November 15). 
 
If 𝑖 = 𝑗 
 

                           
𝜕

𝑒𝑎𝑖

∑ 𝑒𝑎𝑘𝑁
𝑘=1

𝜕𝑎𝑗
= 

𝑒𝑎𝑖 ∑ 𝑒𝑎𝑘 − 𝑒𝑎𝑗𝑒𝑎𝑖𝑁
𝑘=1

(∑ 𝑒𝑎𝑘𝑁
𝑘=1 )2

= 

𝑒𝑎𝑖 (∑ 𝑒𝑎𝑘 − 𝑒𝑎𝑗 )𝑁
𝑘=1

(∑ 𝑒𝑎𝑘𝑁
𝑘=1 )2

= 

𝑒𝑎𝑗

∑ 𝑒𝑎𝑘𝑁
𝑘=1

∗
(∑ 𝑒𝑎𝑘 − 𝑒𝑎𝑗 )𝑁

𝑘 =1

∑ 𝑒𝑎𝑘𝑁
𝑘=1

= 

𝑝𝑖 (1 − 𝑝𝑗 ) 

 (12) 

 
For 𝑖 ≠ 𝑗 
 

𝜕
𝑒𝑎𝑖

∑ 𝑒𝑎𝑘𝑁
𝑘=1

𝜕𝑎𝑗
= 

0 − 𝑒𝑎𝑗 𝑒𝑎𝑖

(∑ 𝑒𝑎𝑘𝑁
𝑘=1 )2

= 

−𝑒𝑎𝑗

∑ 𝑒𝑎𝑘𝑁
𝑘=1

∗
𝑒𝑎𝑖

∑ 𝑒𝑎𝑘𝑁
𝑘=1

= 

 (13) 
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−𝑝𝑗 𝑝𝑖 

 
So the derivative of the softmax (14) function is given as, 

 
𝜕𝑝𝑖

𝜕𝑎𝑗
= {

𝑝𝑖 (1 − 𝑝𝑗 ) 𝑖𝑓 𝑖 ≠ 𝑗

−𝑝𝑗 𝑝𝑖  𝑖𝑓 𝑖 ≠ 𝑗
 

 (14) 

 

Or using Kronecker delta 𝜕𝑖𝑗 = {
1 𝑖𝑓 𝑖 = 1
0 𝑖𝑓 𝑖 ≠ 𝑗

 

 
𝜕𝑝𝑖

𝜕𝑎𝑗
= 𝑝𝑖 (𝜕𝑖𝑗 − 𝑝𝑗 ) 

 (15) 

 

3.11.3 Cross-entropy loss 

Cross entropy indicates the distance between what the model believes the 
output distribution should be, and what the original distribution really is. 
It is defined as, 𝐻(𝑦, 𝑝) = − ∑ 𝑦𝑢 log(𝑝𝑖 )𝑖 . Cross-entropy measure is a 
widely used alternative of squared error. It is used when node activations 
can be understood as representing the probability that each hypothesis 

might be true, i.e. when the output is a probability distribution. Thus, it is 
used as a loss function in neural networks which have softmax activations 
in the output layer (Dahal November 15). 

3.11.4 Derivative of cross-entropy loss with softmax 

Cross-entropy loss with softmax function are used as the output layer 
extensively. Now derivative of softmax (14) that was derived earlier is used 
to derive the derivative of the cross-entropy loss function (16)(17)(18) 
(Dahal November 15). 

𝐿 = ∑ 𝑦𝑖 log(𝑝𝑖 )
𝑖

  (16) 

 
𝜕𝐿

𝜕𝑜𝑖
= 

∑ 𝑦𝑘

𝜕 log(𝑝𝑖 )

𝜕𝑜𝑖
𝑘

= 

− ∑ 𝑦𝑘

𝜕 log(𝑝𝑖 )

𝜕𝑝𝑘
∗

𝜕𝑝𝑘

𝑜𝑖
𝑘

= 

− ∑ 𝑦𝑘

1

𝑝𝑘
∗

𝜕𝑝𝑘

𝜕𝑜𝑖
 

 (17) 

 
From derivative of softmax (14) we derived earlier, 
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𝜕𝐿

𝜕𝑜𝑖
= 

−𝑦𝑖 (1 − 𝑝𝑖 ) − ∑ 𝑦𝑘

𝑘≠𝑖

1

𝑝𝑘

(−𝑝𝑘𝑝𝑖 ) = 

−𝑦𝑖 (1 − 𝑝𝑖 ) + ∑ 𝑦𝑘

𝑘≠1

𝑝𝑖 = 

−𝑦𝑖 + 𝑦𝑖 𝑝𝑖 + ∑ 𝑦𝑘

𝑘≠1

𝑝𝑖 = 

𝑝𝑖 (𝑦𝑖 + ∑ 𝑦𝑘

𝑘≠1

) − 𝑦𝑖  

 (18) 

 
𝑦 is one but encoded vector for the labels, so ∑ 𝑦𝑘𝑘 =1 and 𝑦𝑖 + ∑ 𝑦𝑘𝑘≠1 =1. 
So the formula is, 
 

𝜕𝐿

𝜕𝑜𝑖
= 𝑝𝑖 − 𝑦𝑖 

 (19) 

 
which is a very simple expression (Dahal November 15). 

4 CONSTRUCTING A CONVOLUTIONAL NEURAL NETWORK IN PYTHON 

4.1 Overview of the language 

Python is a high-level general-purpose programming language designed to 

improve developer productivity and code readability. The syntax of the 
Python kernel is minimal. At the same time, the standard library includes 
a large amount of useful functions (Python November 22). 
 
Python supports several programming paradigms, including structural, 
object-oriented, functional, imperative, and aspect-oriented. The main 
architectural features are dynamic typing, automatic memory 

management, complete introspection, exception handling mechanism, 
support for multi-threaded computing and convenient high-level data 
structures. The code in Python is organized into functions and classes that 
can be combined into modules (they in turn can be combined into 
packages) (Python November 22). 
 
The reference implementation of Python is the CPython interpreter, which 
supports the most actively used platforms. It is distributed under the free 
license of the Python Software Foundation License, which allows to use it 
without restrictions in any applications, including proprietary ones. There 

are implementations of interpreters for JVM (with the ability to compile), 
MSIL (with the ability to compile), LLVM and others. The PyPy project 

offers a Python implementation using JIT compilation, which greatly 
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increases the speed of execution of Python programs (Python November 
22). 
 
Python is an actively developing programming language, new versions 
(with the addition / modification of language properties) are published 
approximately every two and a half years. Because of this and some other 
reasons, Python does not have ANSI, ISO or other official standards, and 
CPython does (Python November 22). 

4.2 Anaconda environment 

Anaconda distribution comes with more than 1,000 data packages as well 
as the conda package and virtual environment manager, called Anaconda 
Navigator, so it eliminates the need to learn to install each library 
independently (Conda November 22). 
 
The open source data packages can be individually installed from the 
Anaconda repository with the conda install command or using the pip 
install command that is installed with Anaconda. Pip packages provide 
many of the features of conda packages and in most cases they can work 
together (Conda November 22). 
 
You can also make your own custom packages using the conda build 
command, and you can share them with others by uploading them to 
Anaconda Cloud, PyPI or other repositories (Conda November 22). 
 
The default installation of Anaconda2 includes Python 2.7 and Anaconda3 
includes Python 3.6. However, you can create new environments that 
include any version of Python packaged with conda (Conda November 22). 

4.3 Spyder 

Spyder is an open source cross-platform integrated development 

environment (IDE) for scientific programming in the Python language. 
Spyder integrates with a number of prominent packages in the scientific 
Python stack, including NumPy, SciPy, Matplotlib, pandas, IPython, SymPy 
and Cython, as well as other open source software. It is released under the 
MIT license (Spyder November 22). 

 
Initially created and developed by Pierre Raybaut in 2009, since 2012 

Spyder has been maintained and continuously improved by a team of 
scientific Python developers and the community (Spyder November 22). 
 
Spyder is extensible with first- and third-party plugins, includes support for 
interactive tools for data inspection and embeds Python-specific code 

quality assurance and introspection instruments, such as Pyflakes, Pylint 
and Rope. It is available cross-platform through Anaconda, on Windows 
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with WinPython and Python (x,y), on macOS through MacPorts, and on 
major Linux distributions such as Arch Linux, Debian, Fedora, Gentoo Linux, 
openSUSE and Ubuntu (Spyder November 22). 
 
Spyder uses Qt for its GUI and is designed to use either of the PyQt or 
PySide Python bindings. QtPy, a thin abstraction layer developed by the 
Spyder project and later adopted by multiple other packages, provides the 
flexibility to use either backend (Spyder November 22). 

4.4 Keras  

Keras is an open neural network library written in Python. It is an add-on 
for the Deeplearning4j, TensorFlow and Theano frameworks. It is aimed at 
operational work with deep learning networks, while being designed to be 
compact, modular and expandable. It was created as part of the research 
effort of the ONEIROS project, and its main author and sponsor is François 
Chollet, a Google engineer (Keras November 22). 
 
It was planned that Google will support Keras in the main TensorFlow 
library, however Scholl selected Keras as a separate add-on, as according 
to the concept Keras is more of an interface than a through machine 
learning system. Keras provides a higher-level, more intuitive set of 
abstractions that makes it simple to build neural networks, regardless of 
the library of scientific computing used at the bottom level. Microsoft is 
working on adding to the Keras and lower-level CNTK libraries (Keras 
November 22). 
 
This library contains numerous implementations of widely used building 
blocks of neural networks, such as layers, target and transfer functions, 
optimizers, and many tools for simplifying the work with images and text. 
Her code is hosted on GitHub, and the support forums include the GitHub 

FAQ page, the Gitter channel and the Slack channel (Keras November 22). 

4.5 Creating working environment 

Creating a custom environment is an important step to make convolutional 
neural network work. It is required since Keras library is not officially 
supported by Anaconda. But the latter allows to manage custom 

environments with different settings.  
 

Anaconda prompt or Windows Terminal is used for the following steps: 
 
1. To create custom environment with a specific version of Python: 
conda create --name myenv python=3.5 
myenv is replaced with the environment name. Author uses tensorflow. 

 
2. Activate environment virtual environment: 
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activate tensorflow 
The prompt will be flanked by the name of the environment. 
 
Earlier, the Anaconda installer automatically created a conda environment 
called root that houses the core libraries for data science. Since a different 
environment is used, those libraries cannot be accessed unless they are re-
installed in the new environment. Fortunately, conda allows users to install 
packages that cover everything users need.  
 
3. To install Spyder: 
conda install spyder 
Spyder can be used now. 
 
Finally, Tensorflow and Keras libraries can be installed. Neither library is 
officially available via a conda package so they need to be installed with 
pip. 
 
4. To install Tensorflow and Keras: 
pip install --upgrade tensorflow 
pip install --upgrade keras 
Now all required libraries are installed. 
 
5. To open Spyder: 
spyder 

4.6 Removing conda environment 

In case user missed a step or made a mistake, conda environment can be 
removed: 
conda remove --name tensorflow --all  

4.7 Tensorflow and Keras libraries with GPU support 

By deefault Tensorflow and Keras use CPU to work, but GPU can be used 
instead increasing neural network speed and performance significantly. 

4.7.1 GPU+ Machine 

TensorFlow relies on a technology called CUDA which is developed by 
NVIDIA. The GPU+ machine includes a CUDA enabled GPU and is a great fit 

for TensorFlow and Machine and Deep Learning in general. 

4.7.2 CUDA 

CUDA (Compute Unified Device Architecture) is a software-hardware 
architecture of parallel computing that allows you to significantly increase 
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computational performance through the use of Nvidia graphics processors 
(CUDA November 22). 
 
CUDA SDK allows programmers to implement on a special simplified 
dialect of the C programming language algorithms that can be executed on 
Nvidia graphics processors and include special functions in the text of a C 
program. The CUDA architecture allows the developer, at his discretion, to 
organize access to the set of instructions of the graphics accelerator and 
manage its memory (CUDA November 22). 
 
Recommended version: Cuda Toolkit 8.0 (CUDA November 22). 

4.7.3 cuDDN 

The NVIDIA CUDA Deep Neural Network library (cuDNN) is a GPU-
accelerated library of primitives for deep neural networks. cuDNN provides 
highly tuned implementations for standard routines such as forward and 
backward convolution, pooling, normalization, and activation layers. 
cuDNN is part of the NVIDIA Deep Learning SDK (cuDNN November 22). 
 
 
Recommended version: cuDDN 5.1 
 
On Windows, cuDNN is distributed as a zip archive. Extract it and add the 
Windows path. For example C:\tools\cuda\bin and run: 
set PATH=%PATH%;C:\tools\cuda\bin (cuDNN November 22). 

4.7.4 Instal Tensorflow with GPU support 

1. To create custom environment with a specific version of Python: 
conda create --name myenv-gpu python=3.5 
„myenv“ is replaced with the environment name. Author uses tensorflow. 
 

2. Activate environment virtual environment: 
activate tensorflow 
The prompt will be flanked by the name of the environment. 
 
3. Install Tensorflow and Keras: 

pip install -- tensorflow-gpu 
pip install -- keras 
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4.8 Creating code 

4.8.1 Prerequisites 

To train convolutional neural network user has to prepare labelled images 
in advance. For example, author is using 5000 images of dogs and 5000 
images of cats in total for binary classification. 8000 images are used for 

training the CNN while other 2000 are need for testing it. Training sets can 
be found and downloaded on GitHub and similar portals. 

4.8.2 Setting path to training set folder 

After initializing Spyder software it is important to remember to set a 
console working directory so that future neural network could access 
necessary data to train itself. To set directory in Spyder user has to find the 
required folder in file explorer. For example: 
C:\Users\Aleksandr\Desktop\Thesis\CNN\dataset 
After the working directory is found: 
Options -> Set console working directory. 

4.8.3 Importing the Keras libraries and packages 

The first step in building code is to import all required packages 

beforehand. Following packages were used to create convolutional neural 
network: 
 
from keras.models import Sequential 

from keras.layers import Conv2D 

from keras.layers import MaxPooling2D 

from keras.layers import Flatten 

from keras.layers import Dense 
 

 

A sequential library is used to specify what input shape model should 
expect. This model is based on layers that go in sequence. 
 

The Conv2D or 2D convolution library is needed since this specific program 
is doing image classification. 1D convolution package is used for sound 

signal whereas 3D is required for video. 
 
 A maxPooling2D is necessary for pooling operation for convolved images. 

 
A flatten library is responsible for preparing data to be the input for fully 

connected layer. 
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A dense library allows to create additional layers such as fully-connected 
layer in neural network. 

4.8.4 Core of Convolutional Neural Network 

# Initialising the CNN 

classifier = Sequential() 

 

# Step 1 - Convolution 

classifier.add(Conv2D(32, (3, 3), input_shape = (64, 64, 3), activation = 'relu')) 

 

# Step 2 - Pooling 

classifier.add(MaxPooling2D(pool_size = (2, 2))) 

 
 

 
# Step 4 - Full connection 

classifier.add(Dense(units = 128, activation = 'relu')) 

classifier.add(Dense(units = 1, activation = 'sigmoid')) 

 

# Compiling the CNN 

classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy']) 
 

 
The code above is the neural network itself. First objective is to create an 
object of the sequential class. Since neural network is going to classify 

images, the name of the object is classifier. 
 

The first layer in CNN is a convolutional layer. “classifier.add” is a method 
to implement a specific layer into network. 2D convolutional layer requires 
certain arguments to be specified: number of filters or feature maps, 

number of rows and columns of kernel. Number “32” is the most common 
practice for creating first layer in most CNN projects, but it doesn’t 

necessarily stop there. The higher number of filters allows to get higher 
accuracy in predictions. Common numbers of filters are: 32, 64, 128 and 

etc. Input shape is an argument related to how the system receives the 
image format. First arguments in input shape are width and height 
dimensions, the third one is number of color channels. For colored pictures 

it is 3. The last parameter for convolutional layer is activation function. To 
prevent negative pixel values ReLU function is used. With this 

convolutional layer is ready to be used. 
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The next layer in the sequence is maxpooling layer. It reduces the size of 
feature maps created after convolution operation leaving only important 
features for system to detect. Pool size is 2 by 2 in this model. 
 
The third layer is flattening. It converts pooled feature maps from 2 
dimensional arrays into 1 dimensional preparing it to be used by fully-
connected layer. 
 
As was mentioned above dense functions are used to add hidden layers. In 
this case fully-connected layer is added. Parameter “unit” is representing 
the number of nodes in the layer. There are no rules on what number of 
nodes should be used, but in general practice number of 128 is 
implemented. For this layer to be activated ReLU function is required. 
 
The last layer in CNN is output layer.  Number of output nodes is 1 which 
is the predicted probability of one class. Sigmoid activation function is 
required since the outcome in predictions is binary. For multiple outcomes 
Softmax activation is needed. 
 
When the core of CNN is created the next is to compile it. Compile method 
uses following parameters: optimizer for stochastic descent algorithm, loss 
function and metrics parameter to choose the performance metric. In this 
model ‘adam” algorithm is used.  “Binary cross-entropy” function is 
implemented for binary outcome classifier.  The last argument is metric. 
Accuracy is what required for this CNN. 

4.8.5 Fitting CNN into images 

After the code is compiled the next task is to fit CNN into images. The 
following code can be found on Keras documentation website in the 
preprocessing section. 

 
# Part 2 - Fitting the CNN to the images 

 

from keras.preprocessing.image import ImageDataGenerator 

 

train_datagen = ImageDataGenerator(rescale = 1./255, 

                                   shear_range = 0.2, 

                                   zoom_range = 0.2, 

                                   horizontal_flip = True) 
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test_datagen = ImageDataGenerator(rescale = 1./255) 

 

training_set = train_datagen.flow_from_directory('dataset/training_set', 

                                                 target_size = (64, 64), 

                                                 batch_size = 32, 

                                                 class_mode = 'binary') 

 

test_set = test_datagen.flow_from_directory('dataset/test_set', 

                                            target_size = (64, 64), 

                                            batch_size = 32, 

                                            class_mode = 'binary') 

 

classifier.fit_generator(training_set, 

 

                         steps_per_epoch = 8000, 

                         epochs = 25, 

                         validation_data = test_set, 

                         validation_steps = 2000) 
 

 
Deep networks need a large amount of training data to achieve a good 
performance. To build an efficient image classifier using very little training 
data, image augmentation is required to raise the performance of deep 
networks. Image augmentation artificially creates training images through 
different ways of processing or combination of multiple processing, such 
as random rotation, shifts, shear and flips, etc. Thus, the first section of 
code is adding image generator in future CNN. Since pixels scale between 
values of 1 and 255, rescaling is required. Using 1/255 scale allows pixels 

to achieve values between 0 and 1. Same scale is used for test data 
generator. Default arguments for shear and zoom range as well as 
horizontal flip are used. 
 

After importing an image generator and setting its arguments data 
directories are needed to be specified. As was mentioned before images 
are divided in training and test sets. Both “training_set” and “test_set” 

require the same scaling as has been specified in core section so that 
correct images are seen by the system. 
 
The last code section is responsible for fitting the images into CNN as well 
as testing its performance on the test set. First arguments is the number 
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of images that are expected to be used and how many times the system 
has to run through these images while “learning”. The last arguments are 
for testing the efficiency of training. Number of images for test is to be 
specified. 

4.8.6 Performance results 

At this point the user can receive the first results. He needs to run the code 
and wait. The training process can take from several minutes to several 
hours depending on PC’s capabilities and whether neural network is 
supported by CPU or GPU. The author’s first results came with a 75% 
accuracy in 15 hours of training. 
 

 
Figure 8. Training results 
 
When the program starts working, the user will be able to see information 
on the training process such as the estimated time to finish an epoch, the 
loss that represents errors during training. The most important argument 
is validation accuracy. It presents how efficiently the program recognizes 
images that were not presented in the training set. 
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4.8.7 New predictions 

import numpy as np 

from keras.preprocessing import image 

test_image = image.load_img('dataset/single_prediction/cat_or_dog_1.jpg', target_size = (64, 64)) 

test_image = image.img_to_array(test_image) 

test_image = np.expand_dims(test_image, axis = 0) 

result = classifier.predict(test_image) 

 

training_set.class_indices 

if result[0][0] == 1: 

    prediction = 'dog' 

else: 
 

    prediction = 'cat' 
 

 
Finally, the last part of the code is responsible for providing results based 
on images that are not used during training process. First part is used to 
set a path to an image that is going to be tested by CNN. Following next 
are commands to transform test image into 3D array and adding to that 
array another dimension which represents result for test image, which can 
be either 0 or 1 in binary classification. 
 
To specify which value belongs to which class additional lines of code are 
added. User himself can determine the names of result variables. For 
example, cats equal 0 and dogs equal 1. 
 
When the code is finished, and neural network is trained, user has to 
specify a path to image he wants to test and run the last part of code again. 
The result will be shown in variable explorer. 
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Figure 9. Variable explorer 

4.9 Tuning CNN 

Performance of neural network can be improved by several means: 

• Adding new convolutional layers in sequence. This way the CNN will 
be creating more feature maps and thus receiving more data.  

• Adding another fully-connected layer. The CNN’s analysis will 
become more efficient. 

 
First option is used in general practice. Also, it is important to mention that 
arguments values in layers influence the CNN efficiency as well. 

5 CONCLUSIONS 

The goal of this thesis project was to create a classifier based on a neural 
network using knowledge on deep learning and Python programming. A 
Convolutional Neural Network based on 2-dimensional input data was a 
suitable example of such a system. It is important to note that other types 
of neural networks as well as programming languages could be used to 

achieve the same results. 
 
During the working process the author learnt new programming language 
and understood structure of CNN archetypes. 
 
The author noticed that a vast amount of information connected to the 
thesis topic is discussed in blogs and forums of dedicated websites across 

the internet by developers, programmers and people interested in 
programming.  
 
Convolutional Neural Networks might prove useful in areas, where 
accuracy and attention to minute details are important, such as medical 
field. Determining the slightest changes on medical scans at an early stage 
can help to decide on the best treatment.  
 
In the end, set targets were reached and a suitable Convolutional Neural 
Network program was created to classify data by a binary outcome. 
Further development of this project is possible in the future, with the 
possibilities of creating more complex program for face or voice 
recognition as well as for creating a multi-purpose application. 
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Appendix 1 

Contents of the file “CNN.py” 
 

# Convolutional Neural Network 

 

# Part 1 - Building the CNN 

 

# Importing the Keras libraries and packages 

from keras.models import Sequential 

from keras.layers import Conv2D 

from keras.layers import MaxPooling2D 

from keras.layers import Flatten 

from keras.layers import Dense 

 

# Initialising the CNN 

classifier = Sequential() 

 

# Step 1 - Convolution 

classifier.add(Conv2D(32, (3, 3), input_shape = (64, 64, 3), activation = 'relu')) 

 

# Step 2 - Pooling 

classifier.add(MaxPooling2D(pool_size = (2, 2))) 

 

# Adding a second convolutional layer 

classifier.add(Conv2D(32, (3, 3), activation = 'relu')) 

classifier.add(MaxPooling2D(pool_size = (2, 2))) 

 

# Step 3 - Flattening 

classifier.add(Flatten()) 
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# Step 4 - Full connection 

classifier.add(Dense(units = 128, activation = 'relu')) 

classifier.add(Dense(units = 1, activation = 'sigmoid')) 

 

# Compiling the CNN 

classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy']) 

 

# Part 2 - Fitting the CNN to the images 

 

from keras.preprocessing.image import ImageDataGenerator 

 

train_datagen = ImageDataGenerator(rescale = 1./255, 

                                   shear_range = 0.2, 

                                   zoom_range = 0.2, 

                                   horizontal_flip = True) 

 

test_datagen = ImageDataGenerator(rescale = 1./255) 

 

training_set = train_datagen.flow_from_directory('dataset/training_set', 

                                                 target_size = (64, 64), 

                                                 batch_size = 32, 

                                                 class_mode = 'binary') 

 

test_set = test_datagen.flow_from_directory('dataset/test_set', 

                                            target_size = (64, 64), 

                                            batch_size = 32, 

                                            class_mode = 'binary') 

 

classifier.fit_generator(training_set, 

                         steps_per_epoch = 8000, 

                         epochs = 25, 

                         validation_data = test_set, 
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                         validation_steps = 2000) 

 

# Part 3 - Making new predictions 

 

import numpy as np 

from keras.preprocessing import image 

test_image = image.load_img('dataset/single_prediction/cat_or_dog_1.jpg', target_size = (64, 64)) 

test_image = image.img_to_array(test_image) 

test_image = np.expand_dims(test_image, axis = 0) 

result = classifier.predict(test_image) 

 

training_set.class_indices 

if result[0][0] == 1: 

    prediction = 'dog' 

else: 

    prediction = 'cat' 

     
 


