

DATA CLASSIFICATION USING CONVOLUTIONAL NEURAL

NETWORK

Bachelor’s thesis

Degree Programme in Automation Engineering

Valkeakoski, Winter 2019

Aleksandr Bukatoi

ABSTRACT

Name of degree programme
Campus

Author Aleksandr Bukatoi Year 2019

Subject Data classification using Convolutional Neural Network

Supervisor(s) Raine Lehto

ABSTRACT

The author’s aim in this paper was to understand how deep learning can
be connected to automation engineering and which solution would be best
suited for data classification.

Based on the research project concluded here, Convolutional Neural
Network was chosen as the most suitable solution for the aforementioned
task. The goal was to create a network, which would be able to classify

images based on features extracted and memorized by the program. The
Python programming language and the Anaconda environment were
chosen as the most user-friendly environment to demonstrate how the
neural network operates.

In order to write this thesis, the author studied a new programming
language, examined deep learning and related topics, and was supervised

by Raine Lehto throughout all the steps in the project.

At the end of this work the author has achieved the desired results in the
form of program classifying images in two categories with a possibility of
improving the system for future projects.

Keywords Convolutional Neural Network, deep learning, Python.

Pages 34 pages including appendices 3 pages

CONTENTS

1 INTRODUCTION...1

2 DEEP LEARNING ..1

2.1 What is deep learning? ..1

2.2 Difference between machine Learning and deep learning..................................2

2.3 Brief history of deep learning...2

2.4 Methods of deep learning ..5

3 CONVOLUTIONAL NEAURAL NETWORK ...5

3.1 Neuron..6

3.1.1 An artificial neuron ...6

3.2 Activation function ...7

3.3 Operating principles of neural networks ...8

3.4 Learning with neural networks ..9

3.5 Usage of a neural network while running ..9

3.6 Convolutional operation ..10

3.6.1 Convolutional layer...11

3.6.2 Spatial arrangement in convolutional layer ...11

3.6.3 Parameter sharing ..12

3.7 ReLU layer ..12

3.7.1 Leaky ReLU..13

3.7.2 Maxout..13

3.8 Pooling..13

3.8.1 General pooling ..14

3.9 Flattering ..14

3.10 Full-connection...14

3.10.1 Converting fully connected layer into a convolutional layer14

3.11 Softmax & Cross-Entropy ...15

3.11.1 Softmax ...15

3.11.2 Derivative of softmax ...16

3.11.3 Cross-entropy loss ..17

3.11.4 Derivative of cross-entropy loss with softmax17

4 CONSTRUCTING A CONVOLUTIONAL NEURAL NETWORK IN PYTHON18

4.1 Overview of the language ..18

4.2 Anaconda environment..19

4.3 Spyder...19

4.4 Keras ...20

4.5 Creating working environment ..20

4.6 Removing conda environment ...21

4.7 Tensorflow and Keras libraries with GPU support ...21

4.7.1 GPU+ Machine ..21

4.7.2 CUDA ...21

4.7.3 cuDDN ...22

4.7.4 Instal Tensorflow with GPU support ..22

4.8 Creating code ...23

4.8.1 Prerequisites ...23

4.8.2 Setting path to training set folder ..23

4.8.3 Importing the Keras libraries and packages ...23

4.8.4 Core of Convolutional Neural Network ..24

4.8.5 Fitting CNN into images ..25

4.8.6 Performance results ...27

4.8.7 New predictions..28

4.9 Tuning CNN...29

5 CONCLUSIONS...29

REFERENCES...30

Appendices
Appendix 1 Contents of the file “CNN.py”

LIST OF ABBREVIATIONS

AI
ANN
ANSI
CNN

CNTK
CPU
DL
GUI
GPU
ISO
JIT

JVM
LLVM
Matplotlib
MIT
ML
MSIL
NumPy

PyPI
PyPy

PyQt

QtPy

SciPy

Artificial intelligence
Artificial neural network
American national standards institute
Convolutional neural network

Microsoft cognitive toolkit
Central processing unit
Deep learning
Graphical user interface
Graphics processing unit
International organization for standardization
Just-in-time compilation

Java virtual machine
The LLVM compiler infrastructure project
A plotting library for the Python programming language
Massachusetts institute of technology
Machine Learning
Microsoft intermediate language
The fundamental package for scientific computing with
Python
The Python package index
An alternative implementation of the Python
programming language to CPython
One of the most popular Python bindings for the Qt

cross-platform C++ framework
A small abstraction layer that lets user write applications
using a single api call to either PyQt or PySide
A free and open-source Python library used for scientific
computing and technical computing

1

1 INTRODUCTION

Since ancient times the humankind has been striving to lessen the
everyday burden of people. The progress has made a great path from the
invention of wheel to self-driving cars. As automation is rising, less tasks
require human labour while opening new possibilities to engineers and
developers.

Artificial intelligence has been a fascinating topic for science fiction writers
and directors for decades, we are yet to observe its birth. The results of
various experiments with AI are just simple imitations of how science
perceives the work of the human brain. Some of the solutions are called
Neural Networks. The field responsible for building Neural Networks is
called deep learning.

The aim of this thesis work was to study the Convolutional Neural Network
as a part of deep learning, to build a sample program to represent the

possibilities of this branch of artificial intelligence.

2 DEEP LEARNING

2.1 What is deep learning?

Before diving into deep learning, it is important to understand its
relationship with machine learning and artificial intelligence. Figure below
describes how deep learning is connected to other AI research fields.

Figure 1. Relationship between deep learning, machine learning and
artificial intelligence

2

Deep learning is a machine learning technique that teaches computers to
do what comes naturally to us, humans: learn by example. Deep learning
is a key technology behind driverless cars, enabling them to recognize a
stop sign, or to distinguish a pedestrian from a lamppost. It is the key to
voice control in consumer devices like phones, tablets, TVs, and hands-free
speakers. Deep learning is getting lots of attention lately and for good
reason. It’s achieving results that were not possible before (What Is Deep
Learning? October 15).

In Deep Learning, a computer model learns to perform classification tasks
directly from images, text, or sound. Deep learning models can achieve
state-of-the-art accuracy, sometimes exceeding human-level speed and
efficiency. Models are trained by using multiple sets of labeled data and
neural network structures that contain many hidden layers (What Is Deep
Learning? October 15).

2.2 Difference between machine Learning and deep learning

Deep Learning is a form of Machine Learning. ML workflow starts with
extracting manually relevant features from images. These features are
then used to create a model that categorizes the objects in the image.
Deep Learning, on the contrary, extracts these features automatically. In
addition, Deep Learning performs “end-to-end learning”. A neural network
is given raw data and a task to perform, e.g. classification, and the system
learns to do it automatically (What Is Deep Learning? October 15).

Another key difference is Deep Learning algorithms scale with data,
whereas Shallow Learning converges. Shallow Learning is a method of
Machine Learning that stops at a certain level of performance when user

adds more examples and training data to the system (What Is Deep
Learning? October 15).

A key advantage of deep learning networks is that they often continue to
improve as the size of your data increases (What Is Deep Learning?

October 15).

2.3 Brief history of deep learning

The history of Deep Learning starts in 1943, when a computer model based
on the neural network was created by Walter Pitts and Warren McCulloch.
The combination of algorithms and mathematics called “threshold logic”
was used to mimic the thought process. Since that time, Deep Learning has
been evolving steadily with two significant events in its development called

Artificial Intelligence winters (Foote 2017).

3

Henry J. Kelley is famous for developing the basics of a continuous Back
Propagation Model in 1960. A simpler version based only on the chain rule
was developed by Stuart Dreyfus in 1962. However, the concept of back
propagation existed in the early 1960s, it was inefficient and would not
become beneficial until 1985 (Foote 2017).

The earliest efforts in developing Deep Learning algorithms provided
Alexey Grigoryevich Ivakhnenko, who developed the Group Method of
Data Handling, and Valentin Grigoryevich Lapa, author of Cybernetics and
Forecasting Techniques, in 1965 (Foote 2017).

The first AI winter started during the 1970s, the result of promises that
could not be kept. This resulted in lack of funding in both Artificial
Intelligence and Deep Learning research. Fortunately, there were
individuals who continued the research without funding (Foote 2017).

The first Convolutional Neural Networks were developed by Kunihiko
Fukushima. Fukushima designed neural networks with multiple pooling
and convolutional layers. He developed an Artificial Neural Network, called
Neocognitron, which used a hierarchical, multilayered design in 1979. This
design allowed the computer the “learn” to recognize visual patterns. The
networks resembled modern versions, however, were trained with a
reinforcement strategy of recurring activation in multiple layers, which
gained strength over time. Additionally, Fukushima’s design allowed
important features to be adjusted manually by increasing the “weight” of
certain connections (Foote 2017).

The concepts of Neocognitron continued to be used. The use of top-down
connections and new learning methods allowed a variety of neural

networks to be realized. When more than one pattern is presented at the
same time, the Selective Attention Model can separate and recognize
individual patterns by shifting its attention from one to the other. A
modern Neocognitron can identify patterns with missing information as
well as complete the image by adding the missing information. This could

be described as “inference” (Foote 2017).

The use of errors in training Deep Learning models called Back propagation
evolved drastically in 1970. Seppo Linnainmaa wrote his master’s thesis,
including a FORTRAN code for back propagation. Unfortunately, the
concept was not applied to neural networks until 1985, when Rumelhart,
Williams, and Hinton demonstrated back propagation in a neural network

could provide “interesting” distribution representations. This discovery
brought to light the question within cognitive psychology of whether
human understanding relies on symbolic logic (computationalism) or
distributed representations (connectionism). Yann LeCun provided the
first practical demonstration of backpropagation at Bell Labs in 1989. He

combined convolutional neural networks with back propagation, so the

4

system could read “handwritten” digits. This system was eventually used
to read the numbers of handwritten checks (Foote 2017).

The second Artificial Intelligence winter occurred in the second half of
1980s. Various overly-optimistic individuals had exaggerated the
“immediate” potential of Artificial Intelligence, breaking expectations of
investors. The impact of broken promises was so strong, the phrase
Artificial Intelligence obtained pseudoscience status. The research still
continued and significant advances were made. In 1995, Dana Cortes and
Vladimir Vapnik developed the support vector machine (a system for
mapping and recognizing similar data). LSTM (long short-term memory) for
recurrent neural networks was developed in 1997, by Sepp Hochreiter and
Juergen Schmidhuber (Foote 2017).

The next significant step for Deep Learning occurred in 1999, when
computers started becoming faster at processing data and GPU (graphics
processing units) were developed. Faster processing, with GPUs processing
pictures, increased computational speeds by 1000 times over a decade.
During this time, neural networks began to compete with support vector
machines. While a neural network could be slow compared to a support
vector machine, neural networks offered better results using the same
data. Neural networks also have the advantage of continuing to improve
as more training data is added (Foote 2017).

The Vanishing Gradient problem appeared in 2000. It was discovered that
“features’ which formed in lower layers were not being learned by upper
layers, because no learning signal reached these layers. This was not a
fundamental problem for all neural networks, just the ones with gradient-
based learning methods. The source of the problem turned out to be

certain activation functions. A number of activation functions condensed
their input, in turn reducing the output range in a somewhat chaotic
fashion. This produced large areas of input mapped over an extremely
small range. In these areas of input, a large change will be reduced to a
small change in the output, resulting in a vanishing gradient. Two solutions

used to solve this problem were layer-by-layer pre-training and the
development of long short-term memory (Foote 2017).

In 2001, a research report by META Group (nowadays called Gartner)
described the challenges and opportunities of data growth as three-
dimensional. The report described the increasing volume of data and the
increasing speed of data as increasing the range of data sources and types.

This was a call to prepare for the onslaught of Big Data, which was just
starting (Foote 2017).

The speed of GPUs had increased rapidly by 2011 making it possible to
train Convolutional Neural Networks without the layer-by-layer pre-

training. With increased computing speed, it became obvious that Deep

5

Learning had significant advantages in terms of speed and efficiency (Foote
2017).

Currently the processing of Big Data and the evolution of Artificial
Intelligence are both dependent on Deep Learning, which is still developing
and in need of new ideas (Foote 2017).

2.4 Methods of deep learning

First of all, Deep Learning consists of the following methods and their
variations:

• Unsupervised learning systems such as Boltzman Machines for
preliminary training, Auto-Encoders, Generative Adversarial
Network.

• Supervised learning such as Convolution Neural Networks which
brought technoogy of pattern recognition to a new level.

• Recurrent Neural Networks, allowing to train on processes in time.

• Recursive neural networks, allowing to include feedback between
circuit elements and chains.

By combining these methods, complex systems are created that
correspond to different tasks of Artificial Intelligence.

Deep training is an approved sample from a wide range of Machine
Learning methods for data representations that are most appropriate to
the nature of the task. The image, for example, can be represented in many
ways, such as the intensity vector of the values per pixel, or (in a more
abstract form) as a set of primitives, regions of a certain shape, etc.
Successful data representations facilitate the solution of specific tasks - for
example, face recognition and facial expressions. In systems of Deep

Learning, the process of selecting and adjusting attributes automates
itself, by training attributes without a teacher or with a partial involvement
of the teacher, using effective algorithms and hierarchical extraction of
characteristics

Deep Learning systems have found application in such areas as computer
vision, speech recognition, natural language processing, audio recognition,
bioinformatics, where for a number of tasks, much better results were
demonstrated than previously.

3 CONVOLUTIONAL NEAURAL NETWORK

6

3.1 Neuron

An artificial neuron is a representation of how the functions of the human
brain are recreated in computing. A neuron is essentially a unit which
receives signals through multiple junctions named dendrites, also referred
as synapses which can be seen on figure 2. These synapses serve as the

inputs of the neuron. Every neuron has a certain threshold value, which if
exceeded by the sum of the inputs the neuron shall send forward to

another neuron and so on.

Figure 2. Neuron (Neurofantstic 2017)

3.1.1 An artificial neuron

An artificial neuron is a structural unit of an artificial neural network and is
an analog of a biological neuron. Figure 3 demonstrates graphical
representation of an artificial neuron.

Figure 3. An artificial neuron (Saxena 2017)

From the mathematical point of view, the artificial neuron is the adder of
all incoming signals, applying to the resulting weighted sum some simple,
in general, nonlinear function that is continuous throughout the domain of

7

definition. Usually, this function increases steadily. The result is sent to a
single output (Saxena 2017).

Artificial neurons are combined in a certain way, forming an artificial
neural network. Each neuron is characterized by its current state by
analogy with the nerve cells of the brain, which can be excited or hindered.
It has a group of synapses - unidirectional input links connected to the
outputs of other neurons, and also has an axon - output connection of a
given neuron, with which the signal enters the synapses of the following
neurons (Saxena 2017).

Each synapse is characterized by the magnitude of the synaptic connection
or its weight wi, which is the equivalent of the electrical conductivity of
biological neurons (Saxena 2017).

The current state of the neuron (1) is defined as the weighted sum of its
inputs:

𝑠 = ∑ 𝑥𝑖 ∗

𝑛

𝑖=1

𝑤𝑖 + 𝑤0
 (1)

where 𝑤0 is the displacement coefficient of the neuron (the weight of a

single input (Saxena 2017).

The output of a neuron is a function of its state (2):

𝑦 = 𝑓(𝑠) (2)

Non-linear function 𝑓 is called activation function and can be represented
in different formulas (Saxena 2017).

3.2 Activation function

Although, the range of inputs may be different, the standard model of
neuron is capable of giving only binary output values depending on

whether the sum of its inputs exceeded or did not exceed the threshold
value of the neuron. The activation function is used to is used to introduce

non-linearity into the output of a neuron. A neural network without an
activation function is simply just a linear regression model. The activation
function does the non-linear transformation to the input making it capable
to learn and perform more complex tasks (Tiwari November 2).

8

3.3 Operating principles of neural networks

Figure 4. A neural network (Albright 2016)

The figure above shows a basic structure of an artificial neural network.
Each of the circles is called a “node” and it represents a single neuron. On
the left are input nodes, hidden nodes are located in the middle and output
nodes are on the right (Albright 2016).

Input nodes accept information from input values, which, for example,

could be a binary 1 or 0. The purpose of input nodes is to serve the data
flowing into the network (Albright 2016).

Each input node is connected to a number of nodes in hidden layer
(sometimes to every node, sometimes to a certain ones). Input nodes take

the information they have received and pass it along to the hidden layer
(Albright 2016).

Every connection, the equivalent of a neurons synapse, is given a certain
weight, which allows the network to place a stronger emphasis on the
action of specific node (Albright 2016).

Output layer nodes role is the same as hidden layer ones: output nodes
sum the input from the hidden layer, and if they reach a required value,
the output nodes fire and send specific signals. At the end of the process,
the output layer will be transmitting a set of signals that represents the
result of the input (Albright 2016).

The network shown above is simple, deep neural networks can have many
hidden layers and hundreds and even thousands of nodes (Albright 2016).

9

3.4 Learning with neural networks

Comparison to a real-life analogy may be efficient in understanding the
mechanisms of a neural network. Learning in a neural network is closely
related to how people learn in their regular lives and activities – they
perform an action and are either accepted or corrected by a teacher or

coach to understand how to get better at a specific task. Similarly, neural
networks require a trainer in order to describe what should have been

produced as a response to the input. Based on the difference between the
actual value and the value that was provided by the network, an error
value is calculated and sent back through the system. The error value is
analysed for each layer of the network and used to adjust the threshold
and weights for the next input. This way, the error keeps becoming

indirectly lesser each run as the network learns how to analyse values
(Futurism 2015).

The procedure described above is known as backpropagation and is
applied continuously through a network until the error value reaches a

satisfactory value. At this point, the neural network no longer requires
such training process and is allowed to run without adjustments. The

network may then finally be applied, using the adjusted weights and
thresholds as guidelines (Futurism 2015).

3.5 Usage of a neural network while running

When a neural network is active, no backpropagation takes place as there
is no way to directly verify the expected response. Instead, the validity of

output statements is corrected during a new training session or are left as
is for the network to run. Many adjustments may need to be made as the

network consists of a great number of variables that must be precise for
the artificial neural network to function correctly (Futurism 2015).

A simple example of such a process can be researched by teaching a neural
network to convert text to speech. User could pick multiple different

articles and paragraphs and use them as inputs for the network and specify
a desired input before executing the test. The training phase would then
consist of input data going through the multiple layers of the network and
using backpropagation to adjust the parameters and threshold value of the
network in order to minimize the error value for all input examples. The

network may then be tested on new articles to determine if it could
correctly convert text to proper speech (Futurism 2015).

Networks like these may be used as models for a great number of
mathematical and statistical problems, including but not limited to speech
synthesis and recognition, face recognition and prediction, nonlinear
system modelling and pattern classification (Futurism 2015).

10

3.6 Convolutional operation

Convolution is one of the most important operations in signal and image
processing. It could operate in 1D, 2D or 3D depending on what kind of
information is processed. This thesis is concentrated on convolution in 2D
spatial which is mostly used in image processing for feature extraction and

is also the core block of Convolutional Neural Networks. Generally, an
image can be considered as a matrix whose elements are numbers

between 0 and 255. The size of image matrix (3) is:

𝑖𝑚𝑎𝑔𝑒 ℎ𝑒𝑖𝑔ℎ𝑡 ∗ 𝑖𝑚𝑎𝑔𝑒 𝑤𝑖𝑑𝑡ℎ
∗ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑚𝑎𝑔𝑒 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠

 (3)

A grayscale image has 1 channel, where a colour image has 3 channels.

Each convolution operation has a kernel which could be any matrix smaller
than the original image in height and width as illustrated in figure 5. Each
kernel is useful for a specific task, such as sharpening, blurring, edge
detection, and etc.

Figure 5. Image filtering

To calculate the convolution, the kernel is swept on the image and at every
single location the output is calculated. The following equations are used
to calculate the exact size of convolution output for an input with the size

of (height = 𝐻, width = 𝑊) and a filter with the size of (height = 𝐹ℎ, width
= 𝐹𝑤):

𝑂𝑢𝑡𝑝𝑢𝑡 ℎ𝑒𝑖𝑔ℎ𝑡 =
𝐻 − 𝐹ℎ + 2𝑃

𝑆ℎ
+ 1

 (4)

11

𝑂𝑢𝑡𝑝𝑢𝑡 𝑤𝑖𝑑𝑡ℎ =
𝑊 − 𝐹𝑤 + 2𝑃

𝑆𝑤
+ 1

 (5)

where 𝑆ℎ and 𝑆𝑤 are vertical and horizontal stride of the convolution and

𝑃 is the amount of zero-padding added to the border of the image
(Karpathy 2016).

3.6.1 Convolutional layer

A convolution layer is used to perform a convolution operation in neural
networks. Its parameters consist of a set of learnable filters. Each filter is

small spatially but extends through the full depth of the input volume. For
example, one of the filters applied on convolutional layer might have size

5 ∗ 5 ∗ 3 (5 pixels width and height, 3 colour channels). During the process,
each filter is convolved across width and height of the input volume and
dot products are computed between the entries of the filter and input at
any position. Generally, a 2-dimensional activation map is created allowing
to give responses to the network when similar features are detected. Each

filter produces a separate 2D activation map. These maps are stacked
along the depth dimension and produce the output volume (Karpathy
2016).

When dealing with high-dimensional inputs such as images, it is impractical

to connect neurons to all neurons in the previous volume. Instead, each
neuron is connected to only a local region of the input volume. The spatial
extent of this connectivity is a hyperparameter called the receptive field of
the neuron (equivalently this is the filter size). The extent of the
connectivity along the depth axis is always equal to the depth of the input
volume (Karpathy 2016).

3.6.2 Spatial arrangement in convolutional layer

There are three hyperparameters controlling the size of the output
volume: the depth, stride and zero-padding (Karpathy 2016).

Depth of the output corresponds to the number of filters the user would
like to implement, each learning to search for something different in the

input (Karpathy 2016).

Stride is a parameter that specifies how filter slides on the image. When
the stride is 1 the filters move one pixel at a time. Increasing stride allows
to produce smaller output volumes spatially (Karpathy 2016).

Zero-padding is a parameter that adds zeros around the border of input.
This allows to control the spatial size of the output (Karpathy 2016).

12

3.6.3 Parameter sharing

Parameter sharing in Convolutional neural networks is used to adjust
number of parameters (Karpathy 2016).

The user can reduce the number of parameters by making an assumption

that if one feature can compute at some spatial position (𝑥, 𝑦), then it is
useful to compute a different place (𝑥2,𝑦2). In other words, denoting a

single 2D slice of depth as a depth slice. For example, during
backpropagation, every neuron in the network will compute the gradient
for its weights, but these gradients will be added up across each depth slice
and only update a single set of weights per slice (Karpathy 2016).

If all neurons in a single depth slice are using the same weight vector, then
the forward pass of the convolutional layer can be computed in each depth
slice as a convolution of the neuron’s weights with the input volume
(Therefore the name: Convolutional layer). This is the reason why it is
common to refer to the sets of weights as a filter (or a kernel), that is

convolved with the input (Karpathy 2016).

3.7 ReLU layer

The Rectified Linear Unit (6) (also Rectifier) is used to increase non-linearity
in images. It computes the function:

𝑓(𝑥) = max (0, 𝑥) (6)

In other words, the activation is thresholded at zero point as seen on figure
6.

Figure 6. ReLU function (Anukarsh Singh 2017)

There are several pros and cons to using ReLUs:

• Greatly increases the convergence of stochastic gradient descent

compared to sigmoid/tanh functions.

13

• Compared to sigmoid/tanh neurons that execute expensive
operations, the ReLU can be used by thresholding a matrix of

activation at zero point.

• Unfortunately, ReLU units are fragile during training and can “die”.
For example, a large gradient flowing through a ReLU neuron could
cause the weights to update in such a way that the neuron will
never activate on any datapoint again. If this happens, then the
gradient flowing through the unit will forever be zero from that
point on (Karpathy 2016).

3.7.1 Leaky ReLU

Leaky ReLU (7) is one attempt to solve the “dying ReLU” problem. Instead
of the function being zero when 𝑥 < 0, a leaky ReLU has a negative slope.

𝑓(𝑥) = 1(𝑥 < 0)(𝑎𝑥) + 1(𝑥 ≥ 0)(𝑥) (7)

where 𝑎 is a small constant (Karpathy 2016).

3.7.2 Maxout

Maxout is another solution to the “dying ReLU”. The Maxout neuron (8)
computes the function:

max (𝑤1
𝑇𝑥 + 𝑏1𝑤2

𝑇𝑥 + 𝑏2) (8)

Both ReLU and leaky ReLU are a special case of this form. The Maxout

neuron has all the advantages of a ReLU and has no drawbacks. However,
the Maxout doubles the number of parameters for every single neuron

(Karpathy, 2016).

3.8 Pooling

It is common to periodically insert a Pooling layer in-between successive

convolutional layers in a neural network architecture. Its function is to
progressively reduce the spatial size of the representation, to reduce the

number of parameters and computation in the network, and therefore to
also control overfitting. The pooling layer operates independently on every

depth slice of the input and resizes it spatially, using the MAX operation.
The most used form is a pooling layer with filters of size 2*2 applied with
a stride of 2. It down-samples every depth slice in the input by 2 along both

width and height, discarding 75% of the activations. The depth dimension
in pooling operation remains unchanged (Karpathy 2016).

14

3.8.1 General pooling

In addition to max pooling, the pooling layers can also perform other
functions. Average pooling was often used historically but has recently
fallen out of favour compared to the max pooling operation, which has
been shown to be more efficient (Karpathy, 2016).

3.9 Flattering

Figure 7. Flattening

Flattening layer is a simple layer that is used to prepare data to be the input
of the final and most important layer – Fully-Connected Layer. Generally,

neural networks receive data in one dimension in a form of an array of
values, this layer uses data received from pooling layer or convolutional
layer and squashed the matrixes into arrays as illustrated in figure 7.

Obtained values are used as an input to the neural network (Karpathy,
2016).

3.10 Full-connection

After numerous convolution and pooling layers are used in neural network
Fully connected layer is used in order to access all activation functions in

previous layer (Karpathy 2016).

3.10.1 Converting fully connected layer into a convolutional layer

The only difference between fully connected and convolutional layer is
that the neurons in latter are connected only to a local area of the input,
and that neurons in convolutional layer share parameters. However, the
neurons in both volumes calculate dot products, so their function is exactly
alike. Thus, conversion between layers is possible:

• For every convolutional layer there is a fully connected one, that
uses the same forward function. The weight is a large matrix which

15

is usually zero except for a specific blocks due to a local
connectivity, where the weights in the blocks are equal because of
parameter sharing.

• Fully connected layer can be converted to a convolutional simply

using a filter, which size is set to be the same as the input (Karpathy,
2016).

3.11 Softmax & Cross-Entropy

To convert the output of convolutional neural network into probability –
softmax function is used. Cross-Entropy serves the purpose of measuring
loss and optimization.

3.11.1 Softmax

Softmax function (9) is used to transform an N-dimensional vector of real
numbers into a vector of real number in range (0,1) which adds up to 1
(Dahal November 15).

𝑝𝑖 =
𝑒𝑎𝑖

∑ 𝑒𝑘
𝑎𝑁

𝑘=1

 (9)

As can be seen from the name, softmax function is another interpretation
of max function. Instead of selecting one maximum value, it breaks the
whole (1) with maximal element getting the largest portion of the

distribution with other smaller elements getting some of it as well (Dahal
November 15).

This property of softmax function that it outputs a probability distribution
makes it suitable for probabilistic interpretation in classification tasks
(Dahal November 15).

In python is necessary to remember that the numerical range of floating-

point numbers in numpy is limited. For float64 the upper bound is10308 .
For exponential function it is not difficult to overcome that limit (Dahal

November 15).

To make softmax function numerically stable, the values in the vector are
simply normalized by multiplying the numerator and denominator with a
constant 𝐶 (Dahal November 15).

𝑝𝑖 =
𝑒𝑎𝑖

∑ 𝑒𝑎𝑘𝑁
𝑘=1

=

𝐶 ∗ 𝑒𝑎𝑖

𝐶 ∗ ∑ 𝑒𝑎𝑘𝑁
𝑘=1

=

𝑒𝑎𝑖 +log(𝐶)

∑ 𝑒𝑎𝑘+log(𝐶)𝑁
𝑘=1

 (10)

16

User can choose an arbitrary value for log(𝐶) term, but usually
log(𝐶) = −max (𝛼) is chosen, as it shifts all elements in the vector from
negative to zero, and negatives with large exponents saturate to zero
rather than the infinity, avoiding overshooting (Dahal November 15).

3.11.2 Derivative of softmax

Due to the specific property of softmax function to output a probability
distribution, it used as a final layer in neural networks. For this derivative
or gradient is calculated and passed back to previous layer during
backpropagation (Dahal November 15).

𝜕𝑝𝑖

𝜕𝑎𝑗
=

𝜕
𝑒𝑎𝑖

∑ 𝑒𝑎𝑘𝑁
𝑘=1

𝜕𝑎𝑗

 (11)

From quotient rule we know that for 𝑓(𝑥) =
𝑔(𝑥)

ℎ(𝑥)
 we have 𝑓(𝑥) =

𝑔′(𝑥)ℎ(𝑥)−ℎ′(𝑥)𝑔(𝑥)

ℎ(𝑥)2 .

In this situation 𝑔(𝑥) = 𝑒𝑎 and ℎ(𝑥) = ∑ 𝑒𝑎𝑘𝑁
𝑘=1 .In ℎ(𝑥),

𝜕

𝜕𝑒
𝑎𝑗 will always

be 𝑒𝑎𝑗. , But it is important to note that in 𝑔(𝑥)
𝜕

𝜕𝑒𝑎 𝑗
 will be 𝑒𝑎𝑗 only if 𝑖 =

𝑗 otherwise is 0 (Dahal November 15).

If 𝑖 = 𝑗

𝜕

𝑒𝑎𝑖

∑ 𝑒𝑎𝑘𝑁
𝑘=1

𝜕𝑎𝑗
=

𝑒𝑎𝑖 ∑ 𝑒𝑎𝑘 − 𝑒𝑎𝑗𝑒𝑎𝑖𝑁
𝑘=1

(∑ 𝑒𝑎𝑘𝑁
𝑘=1)2

=

𝑒𝑎𝑖 (∑ 𝑒𝑎𝑘 − 𝑒𝑎𝑗)𝑁
𝑘=1

(∑ 𝑒𝑎𝑘𝑁
𝑘=1)2

=

𝑒𝑎𝑗

∑ 𝑒𝑎𝑘𝑁
𝑘=1

∗
(∑ 𝑒𝑎𝑘 − 𝑒𝑎𝑗)𝑁

𝑘 =1

∑ 𝑒𝑎𝑘𝑁
𝑘=1

=

𝑝𝑖 (1 − 𝑝𝑗)

 (12)

For 𝑖 ≠ 𝑗

𝜕
𝑒𝑎𝑖

∑ 𝑒𝑎𝑘𝑁
𝑘=1

𝜕𝑎𝑗
=

0 − 𝑒𝑎𝑗 𝑒𝑎𝑖

(∑ 𝑒𝑎𝑘𝑁
𝑘=1)2

=

−𝑒𝑎𝑗

∑ 𝑒𝑎𝑘𝑁
𝑘=1

∗
𝑒𝑎𝑖

∑ 𝑒𝑎𝑘𝑁
𝑘=1

=

 (13)

17

−𝑝𝑗 𝑝𝑖

So the derivative of the softmax (14) function is given as,

𝜕𝑝𝑖

𝜕𝑎𝑗
= {

𝑝𝑖 (1 − 𝑝𝑗) 𝑖𝑓 𝑖 ≠ 𝑗

−𝑝𝑗 𝑝𝑖 𝑖𝑓 𝑖 ≠ 𝑗

 (14)

Or using Kronecker delta 𝜕𝑖𝑗 = {
1 𝑖𝑓 𝑖 = 1
0 𝑖𝑓 𝑖 ≠ 𝑗

𝜕𝑝𝑖

𝜕𝑎𝑗
= 𝑝𝑖 (𝜕𝑖𝑗 − 𝑝𝑗)

 (15)

3.11.3 Cross-entropy loss

Cross entropy indicates the distance between what the model believes the
output distribution should be, and what the original distribution really is.
It is defined as, 𝐻(𝑦, 𝑝) = − ∑ 𝑦𝑢 log(𝑝𝑖)𝑖 . Cross-entropy measure is a
widely used alternative of squared error. It is used when node activations
can be understood as representing the probability that each hypothesis

might be true, i.e. when the output is a probability distribution. Thus, it is
used as a loss function in neural networks which have softmax activations
in the output layer (Dahal November 15).

3.11.4 Derivative of cross-entropy loss with softmax

Cross-entropy loss with softmax function are used as the output layer
extensively. Now derivative of softmax (14) that was derived earlier is used
to derive the derivative of the cross-entropy loss function (16)(17)(18)
(Dahal November 15).

𝐿 = ∑ 𝑦𝑖 log(𝑝𝑖)
𝑖

 (16)

𝜕𝐿

𝜕𝑜𝑖
=

∑ 𝑦𝑘

𝜕 log(𝑝𝑖)

𝜕𝑜𝑖
𝑘

=

− ∑ 𝑦𝑘

𝜕 log(𝑝𝑖)

𝜕𝑝𝑘
∗

𝜕𝑝𝑘

𝑜𝑖
𝑘

=

− ∑ 𝑦𝑘

1

𝑝𝑘
∗

𝜕𝑝𝑘

𝜕𝑜𝑖

 (17)

From derivative of softmax (14) we derived earlier,

18

𝜕𝐿

𝜕𝑜𝑖
=

−𝑦𝑖 (1 − 𝑝𝑖) − ∑ 𝑦𝑘

𝑘≠𝑖

1

𝑝𝑘

(−𝑝𝑘𝑝𝑖) =

−𝑦𝑖 (1 − 𝑝𝑖) + ∑ 𝑦𝑘

𝑘≠1

𝑝𝑖 =

−𝑦𝑖 + 𝑦𝑖 𝑝𝑖 + ∑ 𝑦𝑘

𝑘≠1

𝑝𝑖 =

𝑝𝑖 (𝑦𝑖 + ∑ 𝑦𝑘

𝑘≠1

) − 𝑦𝑖

 (18)

𝑦 is one but encoded vector for the labels, so ∑ 𝑦𝑘𝑘 =1 and 𝑦𝑖 + ∑ 𝑦𝑘𝑘≠1 =1.
So the formula is,

𝜕𝐿

𝜕𝑜𝑖
= 𝑝𝑖 − 𝑦𝑖

 (19)

which is a very simple expression (Dahal November 15).

4 CONSTRUCTING A CONVOLUTIONAL NEURAL NETWORK IN PYTHON

4.1 Overview of the language

Python is a high-level general-purpose programming language designed to

improve developer productivity and code readability. The syntax of the
Python kernel is minimal. At the same time, the standard library includes
a large amount of useful functions (Python November 22).

Python supports several programming paradigms, including structural,
object-oriented, functional, imperative, and aspect-oriented. The main
architectural features are dynamic typing, automatic memory

management, complete introspection, exception handling mechanism,
support for multi-threaded computing and convenient high-level data
structures. The code in Python is organized into functions and classes that
can be combined into modules (they in turn can be combined into
packages) (Python November 22).

The reference implementation of Python is the CPython interpreter, which
supports the most actively used platforms. It is distributed under the free
license of the Python Software Foundation License, which allows to use it
without restrictions in any applications, including proprietary ones. There

are implementations of interpreters for JVM (with the ability to compile),
MSIL (with the ability to compile), LLVM and others. The PyPy project

offers a Python implementation using JIT compilation, which greatly

19

increases the speed of execution of Python programs (Python November
22).

Python is an actively developing programming language, new versions
(with the addition / modification of language properties) are published
approximately every two and a half years. Because of this and some other
reasons, Python does not have ANSI, ISO or other official standards, and
CPython does (Python November 22).

4.2 Anaconda environment

Anaconda distribution comes with more than 1,000 data packages as well
as the conda package and virtual environment manager, called Anaconda
Navigator, so it eliminates the need to learn to install each library
independently (Conda November 22).

The open source data packages can be individually installed from the
Anaconda repository with the conda install command or using the pip
install command that is installed with Anaconda. Pip packages provide
many of the features of conda packages and in most cases they can work
together (Conda November 22).

You can also make your own custom packages using the conda build
command, and you can share them with others by uploading them to
Anaconda Cloud, PyPI or other repositories (Conda November 22).

The default installation of Anaconda2 includes Python 2.7 and Anaconda3
includes Python 3.6. However, you can create new environments that
include any version of Python packaged with conda (Conda November 22).

4.3 Spyder

Spyder is an open source cross-platform integrated development

environment (IDE) for scientific programming in the Python language.
Spyder integrates with a number of prominent packages in the scientific
Python stack, including NumPy, SciPy, Matplotlib, pandas, IPython, SymPy
and Cython, as well as other open source software. It is released under the
MIT license (Spyder November 22).

Initially created and developed by Pierre Raybaut in 2009, since 2012

Spyder has been maintained and continuously improved by a team of
scientific Python developers and the community (Spyder November 22).

Spyder is extensible with first- and third-party plugins, includes support for
interactive tools for data inspection and embeds Python-specific code

quality assurance and introspection instruments, such as Pyflakes, Pylint
and Rope. It is available cross-platform through Anaconda, on Windows

20

with WinPython and Python (x,y), on macOS through MacPorts, and on
major Linux distributions such as Arch Linux, Debian, Fedora, Gentoo Linux,
openSUSE and Ubuntu (Spyder November 22).

Spyder uses Qt for its GUI and is designed to use either of the PyQt or
PySide Python bindings. QtPy, a thin abstraction layer developed by the
Spyder project and later adopted by multiple other packages, provides the
flexibility to use either backend (Spyder November 22).

4.4 Keras

Keras is an open neural network library written in Python. It is an add-on
for the Deeplearning4j, TensorFlow and Theano frameworks. It is aimed at
operational work with deep learning networks, while being designed to be
compact, modular and expandable. It was created as part of the research
effort of the ONEIROS project, and its main author and sponsor is François
Chollet, a Google engineer (Keras November 22).

It was planned that Google will support Keras in the main TensorFlow
library, however Scholl selected Keras as a separate add-on, as according
to the concept Keras is more of an interface than a through machine
learning system. Keras provides a higher-level, more intuitive set of
abstractions that makes it simple to build neural networks, regardless of
the library of scientific computing used at the bottom level. Microsoft is
working on adding to the Keras and lower-level CNTK libraries (Keras
November 22).

This library contains numerous implementations of widely used building
blocks of neural networks, such as layers, target and transfer functions,
optimizers, and many tools for simplifying the work with images and text.
Her code is hosted on GitHub, and the support forums include the GitHub

FAQ page, the Gitter channel and the Slack channel (Keras November 22).

4.5 Creating working environment

Creating a custom environment is an important step to make convolutional
neural network work. It is required since Keras library is not officially
supported by Anaconda. But the latter allows to manage custom

environments with different settings.

Anaconda prompt or Windows Terminal is used for the following steps:

1. To create custom environment with a specific version of Python:
conda create --name myenv python=3.5
myenv is replaced with the environment name. Author uses tensorflow.

2. Activate environment virtual environment:

21

activate tensorflow
The prompt will be flanked by the name of the environment.

Earlier, the Anaconda installer automatically created a conda environment
called root that houses the core libraries for data science. Since a different
environment is used, those libraries cannot be accessed unless they are re-
installed in the new environment. Fortunately, conda allows users to install
packages that cover everything users need.

3. To install Spyder:
conda install spyder
Spyder can be used now.

Finally, Tensorflow and Keras libraries can be installed. Neither library is
officially available via a conda package so they need to be installed with
pip.

4. To install Tensorflow and Keras:
pip install --upgrade tensorflow
pip install --upgrade keras
Now all required libraries are installed.

5. To open Spyder:
spyder

4.6 Removing conda environment

In case user missed a step or made a mistake, conda environment can be
removed:
conda remove --name tensorflow --all

4.7 Tensorflow and Keras libraries with GPU support

By deefault Tensorflow and Keras use CPU to work, but GPU can be used
instead increasing neural network speed and performance significantly.

4.7.1 GPU+ Machine

TensorFlow relies on a technology called CUDA which is developed by
NVIDIA. The GPU+ machine includes a CUDA enabled GPU and is a great fit

for TensorFlow and Machine and Deep Learning in general.

4.7.2 CUDA

CUDA (Compute Unified Device Architecture) is a software-hardware
architecture of parallel computing that allows you to significantly increase

22

computational performance through the use of Nvidia graphics processors
(CUDA November 22).

CUDA SDK allows programmers to implement on a special simplified
dialect of the C programming language algorithms that can be executed on
Nvidia graphics processors and include special functions in the text of a C
program. The CUDA architecture allows the developer, at his discretion, to
organize access to the set of instructions of the graphics accelerator and
manage its memory (CUDA November 22).

Recommended version: Cuda Toolkit 8.0 (CUDA November 22).

4.7.3 cuDDN

The NVIDIA CUDA Deep Neural Network library (cuDNN) is a GPU-
accelerated library of primitives for deep neural networks. cuDNN provides
highly tuned implementations for standard routines such as forward and
backward convolution, pooling, normalization, and activation layers.
cuDNN is part of the NVIDIA Deep Learning SDK (cuDNN November 22).

Recommended version: cuDDN 5.1

On Windows, cuDNN is distributed as a zip archive. Extract it and add the
Windows path. For example C:\tools\cuda\bin and run:
set PATH=%PATH%;C:\tools\cuda\bin (cuDNN November 22).

4.7.4 Instal Tensorflow with GPU support

1. To create custom environment with a specific version of Python:
conda create --name myenv-gpu python=3.5
„myenv“ is replaced with the environment name. Author uses tensorflow.

2. Activate environment virtual environment:
activate tensorflow
The prompt will be flanked by the name of the environment.

3. Install Tensorflow and Keras:

pip install -- tensorflow-gpu
pip install -- keras

23

4.8 Creating code

4.8.1 Prerequisites

To train convolutional neural network user has to prepare labelled images
in advance. For example, author is using 5000 images of dogs and 5000
images of cats in total for binary classification. 8000 images are used for

training the CNN while other 2000 are need for testing it. Training sets can
be found and downloaded on GitHub and similar portals.

4.8.2 Setting path to training set folder

After initializing Spyder software it is important to remember to set a
console working directory so that future neural network could access
necessary data to train itself. To set directory in Spyder user has to find the
required folder in file explorer. For example:
C:\Users\Aleksandr\Desktop\Thesis\CNN\dataset
After the working directory is found:
Options -> Set console working directory.

4.8.3 Importing the Keras libraries and packages

The first step in building code is to import all required packages

beforehand. Following packages were used to create convolutional neural
network:

from keras.models import Sequential

from keras.layers import Conv2D

from keras.layers import MaxPooling2D

from keras.layers import Flatten

from keras.layers import Dense

A sequential library is used to specify what input shape model should
expect. This model is based on layers that go in sequence.

The Conv2D or 2D convolution library is needed since this specific program
is doing image classification. 1D convolution package is used for sound

signal whereas 3D is required for video.

 A maxPooling2D is necessary for pooling operation for convolved images.

A flatten library is responsible for preparing data to be the input for fully

connected layer.

24

A dense library allows to create additional layers such as fully-connected
layer in neural network.

4.8.4 Core of Convolutional Neural Network

Initialising the CNN

classifier = Sequential()

Step 1 - Convolution

classifier.add(Conv2D(32, (3, 3), input_shape = (64, 64, 3), activation = 'relu'))

Step 2 - Pooling

classifier.add(MaxPooling2D(pool_size = (2, 2)))

Step 4 - Full connection

classifier.add(Dense(units = 128, activation = 'relu'))

classifier.add(Dense(units = 1, activation = 'sigmoid'))

Compiling the CNN

classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy'])

The code above is the neural network itself. First objective is to create an
object of the sequential class. Since neural network is going to classify

images, the name of the object is classifier.

The first layer in CNN is a convolutional layer. “classifier.add” is a method
to implement a specific layer into network. 2D convolutional layer requires
certain arguments to be specified: number of filters or feature maps,

number of rows and columns of kernel. Number “32” is the most common
practice for creating first layer in most CNN projects, but it doesn’t

necessarily stop there. The higher number of filters allows to get higher
accuracy in predictions. Common numbers of filters are: 32, 64, 128 and

etc. Input shape is an argument related to how the system receives the
image format. First arguments in input shape are width and height
dimensions, the third one is number of color channels. For colored pictures

it is 3. The last parameter for convolutional layer is activation function. To
prevent negative pixel values ReLU function is used. With this

convolutional layer is ready to be used.

25

The next layer in the sequence is maxpooling layer. It reduces the size of
feature maps created after convolution operation leaving only important
features for system to detect. Pool size is 2 by 2 in this model.

The third layer is flattening. It converts pooled feature maps from 2
dimensional arrays into 1 dimensional preparing it to be used by fully-
connected layer.

As was mentioned above dense functions are used to add hidden layers. In
this case fully-connected layer is added. Parameter “unit” is representing
the number of nodes in the layer. There are no rules on what number of
nodes should be used, but in general practice number of 128 is
implemented. For this layer to be activated ReLU function is required.

The last layer in CNN is output layer. Number of output nodes is 1 which
is the predicted probability of one class. Sigmoid activation function is
required since the outcome in predictions is binary. For multiple outcomes
Softmax activation is needed.

When the core of CNN is created the next is to compile it. Compile method
uses following parameters: optimizer for stochastic descent algorithm, loss
function and metrics parameter to choose the performance metric. In this
model ‘adam” algorithm is used. “Binary cross-entropy” function is
implemented for binary outcome classifier. The last argument is metric.
Accuracy is what required for this CNN.

4.8.5 Fitting CNN into images

After the code is compiled the next task is to fit CNN into images. The
following code can be found on Keras documentation website in the
preprocessing section.

Part 2 - Fitting the CNN to the images

from keras.preprocessing.image import ImageDataGenerator

train_datagen = ImageDataGenerator(rescale = 1./255,

 shear_range = 0.2,

 zoom_range = 0.2,

 horizontal_flip = True)

26

test_datagen = ImageDataGenerator(rescale = 1./255)

training_set = train_datagen.flow_from_directory('dataset/training_set',

 target_size = (64, 64),

 batch_size = 32,

 class_mode = 'binary')

test_set = test_datagen.flow_from_directory('dataset/test_set',

 target_size = (64, 64),

 batch_size = 32,

 class_mode = 'binary')

classifier.fit_generator(training_set,

 steps_per_epoch = 8000,

 epochs = 25,

 validation_data = test_set,

 validation_steps = 2000)

Deep networks need a large amount of training data to achieve a good
performance. To build an efficient image classifier using very little training
data, image augmentation is required to raise the performance of deep
networks. Image augmentation artificially creates training images through
different ways of processing or combination of multiple processing, such
as random rotation, shifts, shear and flips, etc. Thus, the first section of
code is adding image generator in future CNN. Since pixels scale between
values of 1 and 255, rescaling is required. Using 1/255 scale allows pixels

to achieve values between 0 and 1. Same scale is used for test data
generator. Default arguments for shear and zoom range as well as
horizontal flip are used.

After importing an image generator and setting its arguments data
directories are needed to be specified. As was mentioned before images
are divided in training and test sets. Both “training_set” and “test_set”

require the same scaling as has been specified in core section so that
correct images are seen by the system.

The last code section is responsible for fitting the images into CNN as well
as testing its performance on the test set. First arguments is the number

27

of images that are expected to be used and how many times the system
has to run through these images while “learning”. The last arguments are
for testing the efficiency of training. Number of images for test is to be
specified.

4.8.6 Performance results

At this point the user can receive the first results. He needs to run the code
and wait. The training process can take from several minutes to several
hours depending on PC’s capabilities and whether neural network is
supported by CPU or GPU. The author’s first results came with a 75%
accuracy in 15 hours of training.

Figure 8. Training results

When the program starts working, the user will be able to see information
on the training process such as the estimated time to finish an epoch, the
loss that represents errors during training. The most important argument
is validation accuracy. It presents how efficiently the program recognizes
images that were not presented in the training set.

28

4.8.7 New predictions

import numpy as np

from keras.preprocessing import image

test_image = image.load_img('dataset/single_prediction/cat_or_dog_1.jpg', target_size = (64, 64))

test_image = image.img_to_array(test_image)

test_image = np.expand_dims(test_image, axis = 0)

result = classifier.predict(test_image)

training_set.class_indices

if result[0][0] == 1:

 prediction = 'dog'

else:

 prediction = 'cat'

Finally, the last part of the code is responsible for providing results based
on images that are not used during training process. First part is used to
set a path to an image that is going to be tested by CNN. Following next
are commands to transform test image into 3D array and adding to that
array another dimension which represents result for test image, which can
be either 0 or 1 in binary classification.

To specify which value belongs to which class additional lines of code are
added. User himself can determine the names of result variables. For
example, cats equal 0 and dogs equal 1.

When the code is finished, and neural network is trained, user has to
specify a path to image he wants to test and run the last part of code again.
The result will be shown in variable explorer.

29

Figure 9. Variable explorer

4.9 Tuning CNN

Performance of neural network can be improved by several means:

• Adding new convolutional layers in sequence. This way the CNN will
be creating more feature maps and thus receiving more data.

• Adding another fully-connected layer. The CNN’s analysis will
become more efficient.

First option is used in general practice. Also, it is important to mention that
arguments values in layers influence the CNN efficiency as well.

5 CONCLUSIONS

The goal of this thesis project was to create a classifier based on a neural
network using knowledge on deep learning and Python programming. A
Convolutional Neural Network based on 2-dimensional input data was a
suitable example of such a system. It is important to note that other types
of neural networks as well as programming languages could be used to

achieve the same results.

During the working process the author learnt new programming language
and understood structure of CNN archetypes.

The author noticed that a vast amount of information connected to the
thesis topic is discussed in blogs and forums of dedicated websites across

the internet by developers, programmers and people interested in
programming.

Convolutional Neural Networks might prove useful in areas, where
accuracy and attention to minute details are important, such as medical
field. Determining the slightest changes on medical scans at an early stage
can help to decide on the best treatment.

In the end, set targets were reached and a suitable Convolutional Neural
Network program was created to classify data by a binary outcome.
Further development of this project is possible in the future, with the
possibilities of creating more complex program for face or voice
recognition as well as for creating a multi-purpose application.

30

REFERENCES

Albright D. (2016, December 13), What Are Neural Networks and How Do

They Work? Retrieved from Make use of:
https://www.makeuseof.com/tag/what-are-neural-networks/

Conda (November 22), Concepts. Retrieved from:
https://conda.io/docs/user-guide/concepts.html

Dahal P. (November 15), Classification and Loss Evaluation - Softmax and

Cross Entropy Loss. Retrieved from Deep notes:
https://deepnotes.io/softmax-crossentropy

Foote K. D. (2017, February 7) A Brief History of Deep Learning. Retrieved
from Dataversity: http://www.dataversity.net/brief-history-deep-

learning/

Futurism (2015, August 18), How Do Neural Networks Learn? Retrieved
from Futurism: https://futurism.com/how-do-artificial-neural-networks-
learn

Karpathy A. (2016), CS231n Convolutional neural networks for visual

recognition. Retrieved from: http://cs231n.github.io/convolutional-
networks/#fc

Keras documentation (November 22). Retrieved from: https://keras.io/

MathWorks (October 15). What Is Deep Learning? Retrieved from:
https://se.mathworks.com/discovery/deep-learning.html

Neurofantstic (2017, May 1), Brain computation is a lot more analog than
we thought. Retrieved from:
https://neurofantastic.com/brain/2017/4/13/brain-computation-is-a-lot-
more-analog-than-we-thought

Nvidia (November 22), CUDA toolkit. Retrieved from:
https://developer.nvidia.com/cuda-toolkit

Nvidia (November 22), Nvidia cuDNN. Retrieved from:
https://developer.nvidia.com/cudnn

Python (November 22), What is Python? Executive Summary. Retrieved
from: https://www.python.org/doc/essays/blurb/

Saxena S. (2017, October 26), Artificial Neuron Networks (Basics) |
Introduction to Neural Networks. Retrieved from:

https://www.makeuseof.com/tag/what-are-neural-networks/
https://conda.io/docs/user-guide/concepts.html
https://deepnotes.io/softmax-crossentropy
http://www.dataversity.net/brief-history-deep-learning/
http://www.dataversity.net/brief-history-deep-learning/
https://futurism.com/how-do-artificial-neural-networks-learn
https://futurism.com/how-do-artificial-neural-networks-learn
http://cs231n.github.io/convolutional-networks/#fc
http://cs231n.github.io/convolutional-networks/#fc
https://keras.io/
https://se.mathworks.com/discovery/deep-learning.html
https://neurofantastic.com/brain/2017/4/13/brain-computation-is-a-lot-more-analog-than-we-thought
https://neurofantastic.com/brain/2017/4/13/brain-computation-is-a-lot-more-analog-than-we-thought
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cudnn
https://www.python.org/doc/essays/blurb/

31

https://becominghuman.ai/artificial-neuron-networks-basics-
introduction-to-neural-networks-3082f1dcca8c

Singh A. (2017, October 18), How does the ReLU function work for z < 0?
Retrieved from:
https://stats.stackexchange.com/questions/308689/how-does-the-relu-
function-work-for-z-0

Spyder (November 22). Retrieved from: https://www.spyder-ide.org/

Tiwari S (November 2). Activation functions in Neural Networks. Retrieved
from Geeks for geeks: https://www.geeksforgeeks.org/activation-
functions-neural-networks/

https://becominghuman.ai/artificial-neuron-networks-basics-introduction-to-neural-networks-3082f1dcca8c
https://becominghuman.ai/artificial-neuron-networks-basics-introduction-to-neural-networks-3082f1dcca8c
https://stats.stackexchange.com/questions/308689/how-does-the-relu-function-work-for-z-0
https://stats.stackexchange.com/questions/308689/how-does-the-relu-function-work-for-z-0
https://www.spyder-ide.org/
https://www.geeksforgeeks.org/activation-functions-neural-networks/
https://www.geeksforgeeks.org/activation-functions-neural-networks/

32

Appendix 1

Contents of the file “CNN.py”

Convolutional Neural Network

Part 1 - Building the CNN

Importing the Keras libraries and packages

from keras.models import Sequential

from keras.layers import Conv2D

from keras.layers import MaxPooling2D

from keras.layers import Flatten

from keras.layers import Dense

Initialising the CNN

classifier = Sequential()

Step 1 - Convolution

classifier.add(Conv2D(32, (3, 3), input_shape = (64, 64, 3), activation = 'relu'))

Step 2 - Pooling

classifier.add(MaxPooling2D(pool_size = (2, 2)))

Adding a second convolutional layer

classifier.add(Conv2D(32, (3, 3), activation = 'relu'))

classifier.add(MaxPooling2D(pool_size = (2, 2)))

Step 3 - Flattening

classifier.add(Flatten())

33

Step 4 - Full connection

classifier.add(Dense(units = 128, activation = 'relu'))

classifier.add(Dense(units = 1, activation = 'sigmoid'))

Compiling the CNN

classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy'])

Part 2 - Fitting the CNN to the images

from keras.preprocessing.image import ImageDataGenerator

train_datagen = ImageDataGenerator(rescale = 1./255,

 shear_range = 0.2,

 zoom_range = 0.2,

 horizontal_flip = True)

test_datagen = ImageDataGenerator(rescale = 1./255)

training_set = train_datagen.flow_from_directory('dataset/training_set',

 target_size = (64, 64),

 batch_size = 32,

 class_mode = 'binary')

test_set = test_datagen.flow_from_directory('dataset/test_set',

 target_size = (64, 64),

 batch_size = 32,

 class_mode = 'binary')

classifier.fit_generator(training_set,

 steps_per_epoch = 8000,

 epochs = 25,

 validation_data = test_set,

34

 validation_steps = 2000)

Part 3 - Making new predictions

import numpy as np

from keras.preprocessing import image

test_image = image.load_img('dataset/single_prediction/cat_or_dog_1.jpg', target_size = (64, 64))

test_image = image.img_to_array(test_image)

test_image = np.expand_dims(test_image, axis = 0)

result = classifier.predict(test_image)

training_set.class_indices

if result[0][0] == 1:

 prediction = 'dog'

else:

 prediction = 'cat'

