

Samu Välimäki

MATCH-THREE GAME FOR

WINDOWS

Information Technology

2019

VAASAN AMMATTIKORKEAKOULU

UNIVERSITY OF APPLIED SCIENCES

Information Technology

ABSTRACT

Author Samu Välimäki

Title Match-three Game for Windows

Year 2019

Language English

Pages 71

Name of Supervisor Timo Kankaanpää

Video game development is a constantly growing market and casual games make

a big part of the market. The aim of the thesis was to study different game engines

to develop two prototypes, and to develop a game implementing the popular

match-three genre of puzzle games in one engine.

The Unity and Clickteam Fusion game engines were studied for the case, and Fu-

sion was chosen as the final platform.

The result is a fun and fast-paced puzzle game. A lot was learned from what goes

to game development, such as UI and graphics design and how to control the

events of the game to achieve good performance and satisfying gameplay.

Avainsanat Video game, match-three, Clickteam Fusion

CONTENTS

ABSTRACT

LIST OF FIGURES AND TABLES .. 5

1 INTRODUCTION ... 9

2 REQUIREMENTS .. 10

2.1 Must have-features ... 10

2.2 Should have-features .. 11

2.3 Nice to have-features .. 11

3 OPTIONS FOR GAME ENGINES ... 12

3.1 Unity .. 12

3.2 Clickteam Fusion ... 13

3.3 GameMaker Studio .. 14

3.4 Construct .. 15

4 CREATION OF PROTOTYPES ... 16

4.1 Prototype details ... 16

4.2 Unity prototype .. 17

4.2.1 List of Unity GameObjects ... 17

4.2.2 Changes to the tutorial project ... 18

4.3 Clickteam Fusion Prototype ... 21

4.3.1 Advanced Game Board ... 24

4.3.2 The structure of game development in Clickteam Fusion 25

4.3.3 Objects and variables .. 29

4.3.4 Generating the board ... 33

4.3.5 Selection of objects for swapping .. 37

4.3.6 Deleting matched bricks .. 39

5 FURTHER DEVELOPMENT FROM A PROTOTYPE 42

5.1 List of new global variables .. 43

5.2 The main menu .. 43

5.3 Selecting a game mode ... 46

5.4 Pause menu .. 48

5.5 Toggling sound .. 51

5.6 Determining the number of swaps left on the board 52

5.7 Game over .. 54

5.8 The High score frames ... 55

5.9 Design of the scoring system .. 59

5.10 Illegal move ... 63

5.11 Audiovisual design ... 64

5.12 Afterthoughts on Fusion ... 64

5.13 Testing ... 65

6 IDEAS FOR FURTHER IMPROVEMENT OF THE GAME 66

6.1 Online leaderboards.. 66

6.2 Animation .. 66

6.3 Improved audiovisuals ... 66

6.4 More game modes and settings ... 67

6.5 State saving .. 67

7 CONCLUSION ... 68

REFERENCES .. 69

APPENDICES

5

LIST OF FIGURES AND TABLES

Figure 1. The completed Unity prototype. p. 18

Figure 2. Resolution in Unity. p. 18

Figure 3. Position of BoardManager. p. 19

Figure 4. Editing the BoardManager. p. 19

Figure 5. Changes to OnMouseDown method. p. 20

Figure 6. Changes to ClearAllMatches method. p. 20

Figure 7. Fixing the Tile spawn bug. p. 21

Figure 8. A Clickteam Fusion event. p. 22

Figure 9. Loops in Fusion. p. 23

Figure 10. The AGB Match-three example. p. 25

Figure 11. The Storyboard Editor. p. 26

Figure 12. Frame Editor and its drag and drop interface. p. 27

Figure 13. Creating new objects with several preinstalled object types. p. 27

Figure 14. The properties window. p. 28

Figure 15. The standard Event Editor. p. 28

Figure 16. The Event List Editor. p. 29

Figure 17. The finished prototype. p. 29

Figure 18. The Advanced Game Board. p. 30

Figure 19. The Shape object opened in Fusion image editor. p. 31

Figure 20. MouseMarker and SelectedMarker. p. 32

Figure 21. Setup Board and Clear connected tokens from array event groups. p. 34

Figure 22. Show Board and Animation event groups. p. 35

Figure 23. Board event. p. 36

Figure 24. Placing first marker. p. 37

Figure 25. Displaying the marker at the location of the cursor. p. 37

Figure 26. Changing the selection. p. 38

Figure 27. Swapping adjacent bricks. p. 38

Figure 28. Loop for match searching. p. 38

Figure 29. Move legality test. p. 39

Figure 30. On found connected and on found brick conditions. p. 39

Figure 31. Gravity in Advanced Game Board. p. 40

Figure 32. Adding new bricks. p. 40

Figure 33. Updating the Shapes according to the game state. p. 41

Figure 34. The storyboard editor view of the game. p. 42

Figure 35. The main menu. p. 44

Figure 36. The main menu logic. p. 45

Figure 37. Changing the descriptive text. p. 46

Figure 38. Normal Mode. p. 47

Figure 39. Timed Mode. p. 47

Figure 40. Code for Timed Mode. p. 48

Figure 41. Logic for pausing the game. p. 49

7

Figure 42. The game with the pause menu opened. p. 49

Figure 43. The Pause Menu logic. p. 50

Figure 44. Code for toggling sound. p. 51

Figure 45. Reading the value of SoundToggle from a setting file. p. 52

Figure 46. Code of determining swaps left part 1. p. 52

Figure 47. Code of determining swaps left part 2. p. 53

Figure 48. Game over. p. 55

Figure 49. Game over in Normal mode. p. 55

Figure 50. The High score frame. p. 56

Figure 51. High score code. p. 56

Figure 52. Resetting the Hi-Score object. p. 57

Figure 53. Name entry. p. 57

Figure 54. Code for Name Input frame. p. 58

Figure 55. Distinguishing the initial swap. p. 59

Figure 56. The event that is triggered every match. p. 60

Figure 1 Resetting scoring variables p. 60

Figure 58. Event On found brick p. 60

Figure 59. Rewarding matches with four or five-of-a-kinds. p. 61

Figure 60. Increasing ScoreMultiplier and playing combo sounds. p. 62

Figure 61. The score multiplier display. p. 63

Figure 62. Legal and illegal move. p. 63

Figure 63. Counting down all required timers p. 64

Table 1. List of must have-features. p. 10

Table 2. List of should have-features. p. 11

Table 3. List of nice to have-features p. 11

Table 4. List of Unity GameObjects p. 17

Table 5. List of variables for Shape. p. 31

Table 6. Variables for MouseMarker. p. 32

Table 7. Global variables in the prototype. p. 33

Table 8. List of new global variables. p. 43

9

1 INTRODUCTION

In this project a match-three game for the Microsoft Windows operating system was cre-

ated. A match-three game is a two-dimensional puzzle video game where the player is

given a board of easily distinguishable objects, and the player must swap the positions of

two adjacent pieces in order to create matches of three or more objects and clear the board,

with the game generating new pieces until the game is over.

Multiple game engines were considered for the project. Before the start of the production

of the final product, two engines out of these were chosen and prototypes were developed

for them in order to get familiar with them and inspect the different procedures that can

be utilized to create a grid-based game. After this, one of the prototypes was chosen to be

developed further to meet the requirements set for the project.

During the development cycle, multiple areas of game development were explored to

ensure a complete experience, including the creation of interfaces, menus, graphics and

sounds, alongside with what goes into creating satisfying and correctly paced gameplay.

2 REQUIREMENTS

The project was chosen certain requirements to evaluate its success. The features were

divided into three categories: Must have-features, should have-features nice to have (op-

tional) features. These features are shown in tables 1-3.

2.1 Must have-features

Table 1. List of must have-features.

Different menus There needs to be proper menus to enter the game modes
and activate other choices.

Playfield and objects The regular gameplay is to take place on an 8x8 sized grid-
based play area, each tile filled with an object (a piece).
There must be five or six different object groups, and each
generated piece belongs to one of these groups.

Swapping pieces
around

The core gameplay consists of the player selecting a piece
with the mouse and swapping it with another piece that is to
the side, above or below the chosen piece. The chosen piece
must be somehow highlighted for clarity. If the selected move
is legal, as in forming a match, the positions of the pieces are
swapped, and a match will occur. All other kinds of moves
are illegal, and the game must recognize this and not allow
such moves.

Acting out the
matches

When a match is formed, the game must recognize this and
destroy those pieces involved in a match. Multiple matches
can be formed out of a single move. When the pieces are de-
stroyed, the pieces above them must fall downwards and new
ones to be generated to always have the board full of pieces.
The pieces falling can cause other matches, and the control
should not be given back to the player until the board has sta-
bilized itself.

Changing the deci-
sion of the chosen
piece

The player might conclude that they do not want to move the
piece they have chosen. If a player clicks the piece they have
selected, it will be deselected. Also, if a player chooses a
piece, and afterwards chooses another piece that is out of
range for swapping with the first piece, the selection will be
transferred to that piece instead.

Scoring system The game needs to have a scoring system to track the perfor-
mance of the player. If this is not done, playing the game is
unsatisfactory, as there is no reward for the actions of the
player.

Keeping track of the
game state

The game needs to keep track of the possible moves the
player can make in each situation, and if there is a situation
where there are no possible moves to be made, the game
must recognize this and issue a “game over” to prevent itself
from locking down.

11

2.2 Should have-features

Table 2. List of should have-features.

Multiple game
modes

The game needs to have at least two separated modes of
play: Timed and Standard. In timed mode, there is a timer,
and the game ends when the timer reaches zero. The al-
lowed play time can be a chosen parameter, for example be-
tween 1, 5 and 10 minutes. Standard mode ends only if there
are no more moves available on the board. There can also be
more game modes which can be planned later in the produc-
tion.

State saving and re-
start

In normal mode, you should be able to exit the game at any
point and save the state for later continuation, and it should
start the game from the same position the next time the
player starts playing. In timed mode, there should be a restart
button, so the player can start over if the attempt is not going
well.

Local leaderboards To make the scoring system more meaningful, the best
scores achieved by the player for each mode should be
saved locally and be able to be viewed from the main menu.

Satisfactory game-
play

To make the game fun to play, the audiovisual design and re-
sponsiveness of the game must make the player feel good
when they complete matches. This is subjective but should
be strived for regardless.

2.3 Nice to have-features

Table 3. List of nice to have-features

Global leaderboards In addition to local leaderboards, the game could have the
capability to upload the scores achieved by players into an
SQL database (or such) and the content of the database
could be viewed in-game. In addition, there should be made
an administrative page for the leaderboards so clearly
cheated scores can be removed easily.

Twitch integration As an experimental feature, the game could be controlled by
connecting it to a Twitch.tv chat. This would have the game
reading the text from the chosen chat and recognizing certain
messages as gameplay commands and play out the game
through those commands.

Steam features If the game is ready otherwise and can be ready for release,
using Steam’s features such as Steam Cloud or Steam
Achievements can be investigated.

Android version If the Windows version is satisfactory, the game can also be
ported over to Android to increase playerbase.

3 OPTIONS FOR GAME ENGINES

There are numerous game engines that have been developed for the purpose of aiding

game developers in their jobs. These engines handle the graphics rendering, sounds, phys-

ics and multiple other subjects of the games, and have lots of available information and

community support. For this match-three game project, prototypes were developed with

Unity and Clickteam Fusion. In addition to these engines, a couple other ones were also

considered. In this part these game engines are shortly introduced.

3.1 Unity

Unity is an engine released in 2005 by Unity Technologies. Its primary purpose within

game development is usually to be a 3D engine, but 2D development is also very active

within its community. Unity is extremely versatile and allows development for dozens of

different platforms for free, such as Windows, iOS, Android, Linux, PlayStation 4 and

WebGL, just to name a few. This makes it a very good choice if the release for multiple

platforms is high priority. The scripts for Unity are created in the C# language. It is an

extremely popular engine and I also had previous experience on using it, so it was chosen

to be the first prototype engine.

Popular games created with Unity: Hearthstone, Ori and the Blind Forest, Hollow Knight

[1]

13

3.2 Clickteam Fusion

Clickteam Fusion is a 2D development software by Clickteam SARL. The company has

been developing 2D engines since their establishment in 1993. As of 2019, the newest

version of the software is Fusion 2.5. The engine can also be used to develop other kinds

of software and multimedia, such as slideshows and general Windows applications.

Clickteam Fusion does not use a traditional scripting system with a text-based program-

ming language, instead offering a graphical event system that is designed to allow the

user to do pretty much anything, as well as offering a wide variety of plugins to add

functionality. With the regular version of Fusion, only Windows applications are sup-

ported. iOS/Android/HTML5 platforms are also supported, but with additional costs. This

is not the best case scenario but as I was primarily only looking to develop a Windows

game, I could let it slide.

Fusion is a paid software, but I had received it at an earlier time on Steam, so I wanted to

put it to use. The “visual” programming style sounded intriguing, as I had no previous

experience of anything of the sort. I also figured that as a platform dedicated for 2D de-

velopment, for my 2D game project it could be a very viable candidate. For these reasons,

I chose it to be the second prototype engine.

Popular games created with Fusion: Freedom Planet, Five Nights at Freddy’s [2-4]

3.3 GameMaker Studio

GameMaker Studio is developed by YoYo Games and was first released in 1999. It is

very similar to Fusion in a lot of aspects, such as including a visual programming lan-

guage utilizing drag and drop mechanisms, but it also has its own text-based scripting

language.

GMS is typically considered to be more of a beginner-oriented development software, but

there are many good examples of what is possible to be done with it. I was mildly inter-

ested in picking it but considering I did not own it (the software is not free) I did not end

up picking it. As I read about it, I also found many comments on its instability, something

I did not find for Fusion or Unity. However, I am still interested in trying development

with GMS in the future. It does support multiple platforms out of the box, with Nintendo

Switch being the most recent addition.

Popular games created with GameMaker Studio: Undertale, Hotline Miami, Nuclear

Throne [5]

15

3.4 Construct

Construct is a 2D game editor, first released in 2007 by Scirra, being the newest engine

on the list. The current version Construct 2 was released in 2011, with Construct 3 in

development at the moment. Construct seems to be a very powerful and interesting en-

gine, utilizing a lot of premade features which could produce impressive results with

seemingly little work. Construct is available for free, but there is a paid version available

for professionals if they desire to sell their work.

I am definitely very interested in familiarizing myself with Construct but seeing as the

engine is kind of obscure and did not seem to have that much community support behind

it, I felt that it was not the strongest option. The scripting system seems quite similar to

Fusion, but Fusion has been around for way longer and has been able to build a strong

community and plugin library, but Construct is still growing and keeps getting more in-

teresting. The platform support is a bit more limited than in the other programs, with

Windows, Android and iOS being the primary platforms.

Popular games created with Construct: Our Darker Purpose [6], [7]

4 CREATION OF PROTOTYPES

Before working on the final version of the game, the goal in the project was to develop

two prototypes on two different engines. The two game engines chosen ended up being

Clickteam Fusion and Unity.

Clickteam Fusion was chosen despite being a paid software, as it seemed like a powerful

and interesting engine to attempt developing a 2D game in. The engine not being free was

not an issue, as I had purchased it on Steam a while back. There was going to be a lot of

studying to do for development, but a part of the interest was for the matter of finding out

if the visual scripting style would make development easier or harder, and in which ways.

Unity was chosen as the second engine for being a widely used and versatile engine, with

which I have also had previous experience, working on simple games such as a sidescroll-

ing platformer and a space shooter. The primary interest was in finding out how one

would go about creating a grid-based puzzle game inside of Unity.

4.1 Prototype details

These prototypes will not fit all initial requirements, but most of them. The act of reading

the number of possible moves and assigning a game over was chosen to be too advanced

for a gameplay prototype, but all other gameplay related functions should work as in-

tended. Menus are also not necessary.

This concludes that the prototype should:

- Generate the 8x8 playing field without having matches happen in the start of the

game

- Allow for changing the positions of two adjacent objects only if it results in a

match being created

- Have a basic scoring system in place

- Have matches function properly without graphical glitches and have new pieces

fall from above as intended.

17

4.2 Unity prototype

Because of the previous experience with the Unity engine, no basic tutorials were needed.

However, having only done physics-based games before on the engine, there was no clear

starting point to how to go about creating a 2D puzzle game on the platform. This was

found through a Unity tutorial by Jeff Fisher [8]. This tutorial included a download with

it with a lot of premade assets, but it would have to be edited to fit the requirements of

this project.

The article explains most of the code used and repeating it would take a very long time,

so this part will mainly focus on what was changed to make the game fit the needs of this

project. An introduction to the actual game engine will also not be provided, as Unity is

very common in game development nowadays and it uses the common C# language for

scripting.

4.2.1 List of Unity GameObjects

The default building block in Unity is called a GameObject and these are placed in a

“scene” such as “Game” containing the gameplay elements. These objects utilize the C#

scripts that can be assigned to them to create the gameplay. These are the GameObjects

used in this prototype.

Table 4. List of Unity GameObjects

Main Camera The default camera in Unity. Stationary in this project

GameManager Handles things such as scene selection

GUIManagerCanvas Contains the ScoreTxt object

ScoreTxt Used to display the score of the player

SFXManager Handles the sound effects

BoardManager Handles the creation of the game board and manages find-
ing null tiles and shifting

Tile The basic gameplay element that is used to fill the game
board

Figure 1 shows the completed Unity prototype.

Figure 1. The completed Unity prototype.

4.2.2 Changes to the tutorial project

The original tutorial presented a game designed for mobile phones. The purpose of the

project was to create a game for Windows, so the resolution had to be changed to be

fitting. This was done by changing the value in Unity’s PlayerSettings as shown in Figure

2.

Figure 2. Resolution in Unity.

This resulted in the game always running in a 1280x720 window. The aspect ratio in the

“Game” display also had to be changed to 16:9 for testing to function properly.

19

The position of the BoardManager GameObject decides where the Tile objects will be

created. Figure 3 shows the change to fit the new screen size.

Figure 3. Position of BoardManager.

New graphics were created for the Tile objects, and the size of the game board was

changed to 8x8 in BoardManager. (Figure 4).

Figure 4. Editing the BoardManager.

The tutorial project had a “move counter” and allowed moves that did not result in

matches. This is not correct for the kind of game that is being made, so the move counter

was completely removed, and the code was reworked to only allow swaps that result in

matches. This is achieved through making the ClearAllMatches method return a Boolean

value, if no matches were achieved, the swap would be redone, canceling the swap.

Figures 5 and 6 display these changes.

Figure 5. Changes to OnMouseDown method.

Figure 6. Changes to ClearAllMatches method.

The game also had a bug where the Tiles on the top row would sometimes not spawn.

The fix provided by the user “hypnotistdk” fixes this issue in the ShiftTilesDown method

and is applied in figure 7.

21

Figure 7. Fixing the Tile spawn bug.

After these changes, the game fulfilled all the conditions set for the initial prototype and

learning Clickteam Fusion could start.

4.3 Clickteam Fusion Prototype

The development process for the Fusion prototype started completely from scratch.

Within a few days, the default tutorials for the software were done to achieve a basic

understanding of the application before starting the development. In these tutorials, the

user gets to create clones of popular games such as Breakout and Flappy Bird. These

tutorials gave an introduction on how to use many popular game development concepts

inside Fusion, such as creating menus, implementing adjustable values, player controls,

using the physics engine, handling collision et cetera.

The first impressions on Fusion development were split. On the other hand, doing things

like basic menu functions or playing voice samples is very easy and effortless with Fu-

sion. For comparison, when I have developed prototypes with Unity before, the sound

system was not very easy to understand and took some time to figure out. In Fusion, there

are not standard kind of methods or functions that are called each time a certain action is

wanted to be activated, at least in the usual programming manner. Instead, the basic block

of code in Fusion is called “event”, and an event always has a condition. The basic way

of calling actions in Fusion is based on checking the states in the game constantly, and if

a state matches to the condition of an event, the code inside the event block is ran in-

stantly.

Regular functions can be emulated through “loops”. Unlike in basic object-oriented pro-

gramming, if there are multiple objects of the same “class”, the wanted method cannot

just be invoked through the reference of a specific object. If it is necessary to call an event

on an object without directly interacting with it and thus singling it out for the scope of

the event, a loop can be called that, for example, matches a value that is set to a variable

of an object. There are some instances with Fusion where this feels quite odd or requires

certain workarounds in order to make sure that the correct objects are being used in the

event.

Here are some examples (Figure 8, 9) of Fusion events from the finished Fusion proto-

type. These examples will be easier understood when the whole context of the game is

clear.

Figure 8. A Clickteam Fusion event.

This is what a basic block of code in Fusion looks like. The object that the event is called

upon is determined by the first condition, in which the uses clicks a Shape object. Through

which object is clicked, Fusion locks in the specific instance of the Shape object to which

all the code in the event applies to.

In this example, there are two conditions for the event, and the Flag 0 variable for object

MouseMarker needs to also be off. Flags in Fusion are variables that are present for each

object that is created, and they can be either on or off, so they are commonly used for

23

simple checks such as this. If the Flag was on, the event could not be called and very

likely another block of code in the program would be activated instead. Because it is not

specified in any way, which MouseMarker object the event is carried out for, it will au-

tomatically be done for all of them. In this example, there exists only one MouseMarker

object, so this is acceptable.

In activation of the event, first the flag for the MouseMarker is changed from off to on.

Then the position of the MouseMarker object is changed to the exact same coordinates as

the chosen Shape object, with (0,0) signaling the offset from the object in X and Y coor-

dinates. After this, the OverX and OverY variables of MouseMarker are changed to those

of the CurrentX and CurrentY variables of the chosen shape. These variables keep track

of where in the 8x8 sized grid each object currently resides, as this information will be

required in the game logic.

Figure 9 is an example of a loop in Fusion. The events in Fusion can be separated into

“groups” which can be disabled or enabled when required. If a group is disabled, none of

the events inside it will be ever considered for triggering.

Figure 9. Loops in Fusion.

Here it can be seen that a line of code is triggered when the group is changed to enabled

from disabled. The first line of code will start the loop with the name “GetColor” a set

amount of times, which is determined by the XSize and YSize variables of the object

Advanced Game Board. The Advanced Game Board object is incredibly important for

the game and its functions and the term “brick” will be inspected in greater detail later.

The second block of code is activated as the loop is initialized, and it will also take a

specific Shape object through asking for a Shape object with the same ID as the current

index of the GetColor loop. This will trigger the “set brick” functionality for the place in

the game grid with the location corresponding to the CurrentX and CurrentY values of

the Shape singled out by the condition.

The set brick function will then set the type of the brick to the same integer value that is

determined by the current direction of the Shape object. If the Shape is, for example,

pointing to the direction of 2 degrees, the value of the brick in the location of the Shape

will become 2. In Fusion, storing different visual representations of an object in the di-

rection angles is a very common practice, and does not necessarily mean that the actual

direction of the object will be any different. So basically, this function goes through all

the Shape objects and assigns the correct brick type to each brick on the grid.

4.3.1 Advanced Game Board

When going through tutorials and practicing Fusion, I discovered Fusion Shapes, a Click-

Team store product which included a full-fledged match three styled game and the source

code. This game would be the source of some of the logic in the final game. [9]

After I started delving into how this game was created, a plugin to make developing this

specific kind of genre was introduced. This plugin was the Advanced Game Board ([10]).

The idea of this plugin is to provide an array to place the objects of the game in, while

providing readymade functionality for moving the game objects and searching for con-

nections created with the bricks, allowing for effective board manipulation. The plugin

had to be downloaded through the Fusion plugin manager (Figure 13).

This sounded very intriguing and was a no-brainer to be chosen as the backbone of the

prototype. The plugin contained multiple example games of classic games recreated with

the Advanced Game Board, such as Four of a Kind, Tic Tac Toe and Tetris. It also in-

cluded a bare-bones match-three game (Figure 10).

25

Figure 10. The AGB Match-three example.

 The goal of the prototype was rather clear – there was no need to reinvent the wheel. I

was going to create my own version of the AGB example from scratch, while also taking

in inspiration from Fusion Shapes to improve functionality and add some other features.

Things like an intricate scoring system and proper game over state recognition were to be

left for the improved version of the game but making a prototype would start from this

point.

4.3.2 The structure of game development in Clickteam Fusion

To fully understand what is done in the game development process and how it differs

from the typical game engine, the basic structure of Fusion should be explained.

The editor of Fusion is divided into three parts: Storyboard Editor (Figure 11), Frame

Editor (Figure 12) and the Event/Event List editor (Figures 15 and 16). The game is di-

vided into frames, and each frame has its own events it will activate and follow. The

developer can then move between these frames in their game through the events.

Figure 11. The Storyboard Editor.

In this project, each frame is confined to the game window and does not extend outside

of it, but in games which utilize scrolling such as platformers, the frames can be large,

and only a small part of them is shown at once.

After creating a frame, it can be opened in Frame Editor to enter a drag and drop interface

through which the developer can insert new objects and modify their settings through a

properties window.

27

Figure 12. Frame Editor and its drag and drop interface.

Figure 13. Creating new objects with several preinstalled object types. More can be

found through the “Manager” button which opens the plugin manager, which was used

to download Advanced Game Board.

Each object has a properties window that can be used to modify their attributes and fea-

tures (Figure 14)

Figure 14. The properties window.

The Event Editor (Figure 15) is for programming the logic of the game, and it has two

interfaces that can be used. The programming was mostly done with Event List Editor

(Figure 16) as it is way clearer what is done in complex events through having the actions

be all visible at once in text.

Figure 15. The standard Event Editor.

29

Figure 16. The Event List Editor.

The initial prototype only consists of one frame, with the title “Gameplay”.

Figure 17 shows the finished prototype.

Figure 17. The finished prototype.

4.3.3 Objects and variables

Here the objects and variables used in the prototype are specified.

Advanced Game Board

The first thing that needs to be added to the game is the Advanced Game Board object

that handles the object swapping and match finding (Figure 18 shows the settings window

of the object). The initial size of the board is set to 8x8 as the game is meant to be played

on a board with 64 objects layered out in a square. The origin of the board can be set to

place the board wherever the developer wants, and this number should also not be ignored

when designing the game and its events, as the information of the origin is important for

certain matters. The dimensions boxes signify the size of each object in the grid.

Figure 18. The Advanced Game Board.

Shape

The primary playing object in the game is called Shape. There will always be 64 of these

objects on the board, and the objects themselves will be stationary and exist in the same

place for the whole game. What will change is the current “brick” value of each position

in the Advanced Game Board, and the Shape object on top of each position will change

its values to ensure that the image shown by the Shape will always correctly represent the

value of the brick, and this will lead to the game working as intended.

The Shape object has six images assigned to six different direction values from 1-6, as

there are six possible object types in the game. With five objects, the game would be very

easy and with seven objects running out of possible moves would be very common. Very

simple graphics for these objects were created. Figure 19 displays the image editor in

Fusion.

31

Figure 19. The Shape object opened in Fusion image editor.

Table 5. List of variables for Shape.

ID The unique identifier of the Shape in the grid

Color The current value of the Shape direction and image shown

CurrentX The X location of the Shape in the Game Board

CurrentY The Y location of the Shape in the Game Board

Array

A three-dimensional array object had to be placed in the game in order to be able to handle

the logic of the initial playing field and then assigning its values to the Shape objects.

MouseMarker and SelectedMarker

These objects are simple yellow squares intended to give the player feedback on what

piece is selected and where the second selection will be. The positions of these two objects

are also used to determine if a move is legal, so the player cannot just swap any two

squares at will. The act of locking in a piece and hovering another is shown in Figure 20.

Figure 20. MouseMarker and SelectedMarker.

Table 6. Variables for MouseMarker.

OverX Signifies in what X position of the grid is the Marker placed to.

OverY Signifies in what Y position of the grid is the Marker placed to.

These values will be assigned to the functions of the Advanced Game Board when per-

forming a swap to be able to tell what the first piece of the swap is.

Counter_Score

A default counter included in Fusion. This counter will hold the value of the current score.

There will be no more advanced scoring system in place in the prototype, and this value

will simply tick up by 50 every time a piece is destroyed on the board.

33

Timer

One last object present in the prototype is a simple timer that will be increased to a certain

value whenever matches are created. This timer will then tick down fast, and some func-

tions in the game will require this timer to be 0, such as adding new pieces to the board

from the top.

 The prototype also uses a single Active object (default object in Fusion) in order to use

its flag property for some decisions. In hindsight this flag did not need to be on its own

object, and it does not exist in the later versions.

Table 7. Global variables in the prototype.

ShowGameboard This value is ran from 0 to 65 in order to make all objects ap-
pear one at a time in the start of the game.

ValidationComplete This is used when creating the initial game board. Before run-
ning the code that checks the board array for matches, this
will be made 0. If a change must be made, this will tick up, so
if the board is fine without any instant matches, this number
will stay as 0. In the beginning of the loop it is checked if this
number is 0, or more than 0. If it is 0, it means that during the
previous iteration of the loop no problems were found, and
the game can start.

There is a lot than can be done using global variables, but they were not really utilized in

this prototype. A few variables were used for debugging purposes but none of them are

important for the functionality of the game.

4.3.4 Generating the board

As the original example did not have a proper way of generating the board, I studied the

code in Fusion Shapes for the logic. The code does exactly what is needed (Figure 21).

Figure 21. Setup Board and Clear connected tokens from array event groups.

Setup Board

This event group will run a loop in such a way that the Array object will be filled by 64

random values from 1 to 6. First all the Shapes with X = 0 (leftmost column) will be given

a value, then the second column etc.

Clear connected tokens from array

The logic here is a bit complicated. The loop will be started 1024 times, which is arbitrary

to ensure that the board will be complete, usually it takes under 5 iterations to arrive at a

perfect board. ValidationComplete is set to 1 by default to ensure that the loop is ran for

the first time, because the code checks if it is more than 0. Then the loops will be ran to

give the validation functions the correct indexes to work with. Every time the code gets

to the loop “ValidateArrayY”, the logic will look at values first at the both sides of the

current value, and then the top and bottom values in the array and compare these values

to the initial value.

For example, if the value of the array in the position 3, 2, 0 is the same as the values in

positions 2, 2, 0 and 4, 2, 0, there are three values horizontally which contain the same

value. This will lead to ValidationComplete ticking up and the current value decided by

the loop indexes will be changed to another random value. After each run, the loops will

35

be started again from zero, to ensure that the whole board is always checked. The To-

talValidationSwaps global variable is here for debug purposes, so during testing it can be

seen how many changes had to be made to the grid before arriving at the final array.

After the array passes through the loops with ValidationComplete staying at 0, the game

is ready to start with the current board and the Validation loop is stopped. The directions

of all Shape objects are set to corresponding values in the array. The offsets in the logic

convert the pixelwise position of each Shape into an array. For example, the Shape that

resides in the 1, 1 position of the grid is actually in the position 80, 112 of the frame, with

the origin being the 0, 0 pixel of the Shape. So, if 32 is divided from 80 and 64 from 112

and both of these are divided by 48, resulting in the position 1, 1, 0 in the array, and its

value will be assigned to the direction value of the Shape.

After this, the group “Show Board” (Figure 22) is activated, which will make the Shapes

visible on the board.

Figure 22. Show Board and Animation event groups.

This code will spread value 0 in the ID attribute of the Shape objects, giving them the IDs

from 0 to 63 starting from the bottom right corner. The game board will be displayed by

running the ShowGameboard global variable from 0 to 64. When the ID of a Shape

matches the value of ShowGameboard, the Shape appears. All Shapes are set to be invis-

ible in the start. After all Shapes are visible, the group “Board” (Figure 23) will be acti-

vated, and the game logic will be started.

Figure 23. Board event.

Board

While activating the group Board, the group Show Board will simultaneously be turned

off. First, the object Shape will be imported as the “active” for the Advanced Game Board,

telling Advanced Game Board that the game is played through the Shape objects.

After this the CurrentX and CurrentY values of all Shapes are set through looking up their

position according to the Advanced Game Board. The groups with game logic that can

potentially disrupt with the game before it starts are turned on.

The loop “GetColor” is ran 64 times, from 0 to 63. For each brick, the brick type for

Advanced Game Board is looked up from the direction value of each Shape. This is where

CurrentX and CurrentY are required, without them the location that is wanted to be set

could not be passed. The brick type must always be the same as the direction value of the

Shape on top of it at each given point.

Now the game board has been initialized, and it is possible to start creating gameplay.

37

4.3.5 Selection of objects for swapping

First object

This step is very simple. Clicking on an object while the flag in MouseMarker is off trig-

gers the event, with the MouseMarker flag signaling whether the MouseMarker currently

exists on the board. The MouseMarker is initialized outside the game board, with this

event moving it on top of the chosen Shape, with also adapting the OverX and OverY

values from the CurrentX and CurrentY values of the Shape. The flag is also turned on to

prevent this code from executing every time (Figure 24).

Figure 24. Placing first marker.

Selection of the second object

Whenever the flag in MouseMarker is on, the SelectedMarker object starts being locked

to whichever Shape is currently hovered by the mouse cursor (Figure 25).

Figure 25. Displaying the marker at the location of the cursor.

Whenever the user clicks on another Shape with the SelectedMarker enabled, the distance

of the origin points of MouseMarker and SelectedMarker is calculated with the formula

of distance between two points. If this is more than 48 pixels, the SelectedMarker is not

on top of an adjacent Shape to MouseMarker. In this case, the selection will be transferred

to the newly clicked Shape instead of initiating a swap (Figure 26).

Figure 26. Changing the selection.

Figure 27 is the event that is initiated when the distance is less than 48 pixels, as in the

SelectedMarker is on an adjacent Shape to the MouseMarker. The clicked Shape is chosen

as the one the action is acted upon. The brick types of the chosen game board positions

are swapped. The actual changing of the directions of the Shapes is done elsewhere in the

code. After this MouseMarker flag is set off again and the marker objects are transferred

outside the screen. In the prototype, an Active object was used to set a flag that is used

with checking if the move results in matches. After this a loop is started that checks the

board for each match type and triggers marking of matched bricks (Figure 28). These

bricks are then deleted.

Figure 27. Swapping adjacent bricks.

Figure 28. Loop for match searching.

Also note that if the player clicks on the first selected Shape again, this brick will swap

with itself, resulting in cancelling the selection.

Checking for move legality

39

A swap should only be final if it results in matches in the game board. In the prototype,

simple events are used to check this (Figure 29).

Figure 29. Move legality test.

The Active flag is used to check whether the check is ongoing. After each swap, either of

these events will trigger based on how many bricks exist on the game board. If this num-

ber is 64, it means that no match occurred, and the swap must be undone. This will be

done in an instant in the prototype, resulting in that visibly nothing happens but the mark-

ers go away.

4.3.6 Deleting matched bricks

The previous loop is not enough to mark the bricks, it just triggers the condition “On

found connected” which does this. It also sets the Timer to 10 to ensure that some other

events do not run while connections are being made. The “On found brick” event is also

triggered, in the prototype simply adding 50 points to the player’s score (Figure 30).

Figure 30. On found connected and on found brick conditions.

Dropping bricks down

The Gravity function of the Advanced Game Board object will deal with dropping the

brick type downwards whenever there are deleted bricks (Figure 31). It will only do any-

thing if there are bricks with the type 0 on the board, working as one would think. A delay

condition is added to make the movement a bit slower, as it would trigger every frame

otherwise.

Figure 31. Gravity in Advanced Game Board.

Adding new bricks to the top

The loop “add” is ran often to ensure that whenever everything possible has fallen, new

bricks will be generated to the top which will also fall downwards until there are 64 bricks

on the game board. This will simply go through the topmost line in the game board, mak-

ing their brick type a random value from 1 to 6 if their brick type is 0, as in they do not

exist (Figure 32).

Figure 32. Adding new bricks.

Updating the game board

All the previous events would be meaningless without this logic. All the Advanced Game

Board does is move the brick type values around, it must be made sure that each Shape

corresponds to the brick type currently in its position. This will simply activate for each

Shape every frame to read the current brick type value in the Shape’s position and set its

direction to that value. The color is also set to the same value so in debugging it can be

made sure that each Shape is always representing the correct brick type (Figure 33).

41

Figure 33. Updating the Shapes according to the game state.

This concludes the development of the Fusion prototype.

5 FURTHER DEVELOPMENT FROM A PROTOTYPE

After the prototypes were finished, one of them was chosen for further development to

make it resemble more of a finished game. The Fusion prototype was chosen because of

the time that was invested into the engine and a will to find out more about its weaknesses

and strengths.

Multiple things in the prototype were adjusted, added or remade, and the audiovisual de-

sign was created, along with the user interfaces and the necessary menus.

The list of things that were done is the following:

- Added main menu, pause menu and local leaderboards

- Two game modes, one of which is endless until the player runs out of moves and

one is timed

- Improved game logic and a scoring system

- Graphics and sound design along with an ability to turn the sounds off

All the screenshots will be from the finished version, but during development the graphics

were the last thing to be developed. Very simple placeholder graphics were used before

that. Figure 34 displays the Storyboard of the finished game.

Figure 34. The storyboard editor view of the game, showing the frames the game moves

between.

43

5.1 List of new global variables

Table 8. List of new global variables.

GameMode Determines the game mode. A global string.

ScoreMultiplier Used in the scoring system. Bigger combo increases
multiplier and gives more score

SwapInProgress Used to check if a swap is currently happening

SwapTimer Used to distinguish between matches created with
swaps and with combos

UndoTimer Used to add a delay to swapping bricks back after ille-
gal move

MatchCount Counts the combo amount

Matched Holds the number of connected bricks after a success-
ful match

MatchTimer Used to get rid of the value in Matched right after it is
used

ExitCurrentGame Used to either exit to the main menu or exit the applica-
tion from Pause Menu

GameTimer Used to keep the current combo going and disallowing
checking of swaps while it is above zero

SwapsLeft Holds the current number of possible matches. Results
in a game over when zero

ArrayCheckTempValue1 Used in checking the number of swaps left

ArrayCheckTempValue2 Used in checking the number of swaps left

NameEntered Checks if a player name has been given

5.2 The main menu

The graphical style of the game in general was chosen to be minimalistic, based on blue

and white gradients. The font for the buttons was chosen to be Quotable [11] which is

available free for personal use. The main menu consists of three buttons which let you

start a new game in either Normal or Timed mode or look at the local leaderboards. There

is also a button in the corner that lets the player end the application. (Figure 35)

Figure 35. The main menu.

The buttons consist of two images, one of which is shown by default and a colored one

when the button is hovered. There is also a text in the bottom which shows a description

of the currently hovered option.

This text is produced through the String object in Fusion and does not use the Quotable

font, as the font is not included in Windows and would not be displayed correctly.

The code for the menu is very simple. Clicking on either of the new game buttons sets the

GameMode global variable to the respective string, and advances the application to the

next frame, being the Gameplay frame. Clicking the Exit button simply ends the applica-

tion. The HighscoreTimed button moves the player to the leaderboard of the Timed game

mode, from which the player can move to the leaderboard of the Normal game mode.

Figure 36 displays the full code for the menu.

The two images associated with each button are set to different directions. This direction

is determined from if the mouse cursor is hovering over the button or not. The negate

feature of event conditions is used here, allowing the button to return to the white back-

ground when the mouse cursor leaves the button. So, if the button is hovered, the direction

is set to 8, and if it is not, it is always set to 0. The string object in the bottom of the frame

has 4 preset paragraphs that are displayed accordingly. If the cursor is not over any button

in the interface, the string is not shown at all and is turned invisible. Hovering over any

45

of the buttons changes the text of the object to describe the action of the button and sim-

ultaneously makes it visible (Figure 37).

Figure 36. The main menu logic.

Figure 37. Changing the descriptive text.

5.3 Selecting a game mode

After clicking one of the buttons to start a new game, the game will be slightly different

depending on the chosen mode. When initializing the game, no additional actions are

required in Normal mode (Figure 38). If the game mode is Timed (Figure 39), counters

displaying the time remaining are initialized and displayed in game (Figure 40). There is

a counter that shows the time remaining in seconds and one that shows it as a bar that

gradually goes down towards zero.

47

Figure 38. Normal Mode.

Figure 39. Timed Mode.

Figure 40. Code for Timed Mode.

Global variables are used for the timers because it was found during development that

global variables are easy to track during debugging. The counter objects that have been

added to the game board are just updated with the value of these variables whenever these

values are updated.

5.4 Pause menu

By pressing the pause button in the upper right corner, the Pause Menu Sub-Application

object can be accessed (Figure 41). This will halt the game actions and open the Pause

Menu (Figure 42) on top of the Game Board. A Sub-Application object lets you run mul-

tiple frames on top of each other on Fusion.

49

Figure 41. Logic for pausing the game.

Figure 42. The game with the pause menu opened.

Clicking around the area of the Pause Button (this is better than assigning the event to the

button itself because of its uneven shape) will open the Sub-Application that is set to the

Pause Menu frame. It is placed on top of the gameplay to avoid foul play.

All the Pause Menu application does is modify the ExitCurrentGame global variable. If

the user clicks on the Continue button, all that happens is that the Sub-Application termi-

nates itself and the game will continue. If ExitCurrentGame is set to 1, the application

will be restarted, ending the current run and launching the game back to Main Menu. This

is smooth and handily resets all the variables to default values. If ExitCurrentGame is set

to 2, the whole application will be terminated instantly. Figure 43 shows the Pause Menu

logic.

Figure 43. The Pause Menu logic.

During the making of this thesis, a bug was found in the Sub-Application object: if the

game window was moved to the right from the initial position, the Sub-Application would

spawn in an incorrect position. This is very ugly, and the pause menu should be remade

to have all the pause menu objects inside the Gameplay frame and halting all the neces-

sary gameplay functions manually.

I was trying to find a solution to this but found nothing. I also downloaded other applica-

tions using the Sub-Application and got the same results on my computer, leading to the

conclusion that there probably is a bug or an incompatibility in the Sub-Application com-

ponent. If the game window is not moved after starting the game, the Sub-Application

works as intended and I will not be editing because of the late time of finding the bug.

51

5.5 Toggling sound

Some sounds were added to the game, and there should be an option to turn these sounds

off. More on the sound design will be discussed later in the document.

The game uses a file called Settings.ini that will be saved in the AppData folder of the

user on Windows. This file could contain all kinds of settings, but the only one currently

being saved is the ability to turn the sound off and on. The sound can be toggled through

the button in the lower left corner during gameplay. (Figure 44)

Figure 44. Code for toggling sound.

The game checks every frame for the flag in the SoundToggle object and sets the image

of the object properly and saves the setting in the setting file. If SoundDisabled is 1, the

game will set the volume of channel 1 to 0. Whenever it is 0, the volume is 100. As all

the sound samples will be played on channel 1 in this game, this will effectively mute all

sounds while not interfering with music that could be added to the game (which would

have its own way of getting turned off). The Toggle Flag event is very useful here, as it

just changes the flag to 1 if it is 0 and vice versa.

Whenever the game is started, the setting file is read and the value of the flag of

SoundToggle is initialized according to it (Figure 45). The flag cannot directly be set to

a value so the value will be held by the SoundDisabled attribute created in the object itself

temporarily.

Figure 45. Reading the value of SoundToggle from a setting file.

5.6 Determining the number of swaps left on the board

This is the most complex functionality in the game. The game needs to keep track of the

possible number of swaps on the board, so that it can end the game when there are none

left. In this game, it is done through writing the state of the board into the Array object

and simulating all the possible moves by swapping each object upwards and rightwards

and checking if the swap results in a match. (Figure 46)

Figure 46. Code of determining swaps left part 1.

The loops handling the functionality are ran every time GameTimer is 0 and there are 64

bricks on the board, meaning that no more matches are found currently, and everything

is stationary. Counting the number of swaps would be very faulty if the board is not com-

pletely still. SwapsLeft is set to 0 before calculation and the Array object is cleared.

FillArray is ran as many times as there are Shapes and the loop ModifyArrayX is ran eight

times. Because the program is busy with these arrays, having SwapsLeft temporarily in 0

through this event will not cause other events to trigger with SwapsLeft = 0.

53

The board is written to the array through looping through the Shape objects and using

their physical position to determine their place in the array and setting their Color value

as their value in the array.

The logic is handled one column at a time, starting from 0, 0 to 0, 7. ModifyArrayY is

ran once for each brick on the board, and contains two loops. These loops first swap the

current brick and the one on the right to it in the first loop, and after this the current brick

and the one above it in the second loop. The values of these two bricks are put into the

ArrayCheckTempValue variables, and they are exchanged with each other in the array.

After this, EvalArrayX and through it EvalArrayY are executed to check the whole board

for swaps. EvalArrayY checks for the conditions first horizontally then vertically. If the

value in the array in the location designated by the current loop indexes is identical of the

value to the ones in X+1 and X-1 in the array, there is a horizontal match, and likewise if

the value is identical to the ones in Y+1 and Y-1, there is a vertical match. In the case that

either event is triggered, and a potential match is found, the SwapsLeft variable ticks.

(Figure 47)

Figure 47. Code of determining swaps left part 2.

After this the array is returned to its original state through assigning the values saved in

the temporary values back to their original positions, and the second loop will work in a

similar fashion to the other direction.

This function works properly and will always result in the SwapsLeft variable containing

the number of possible swaps that can be made in the game.

5.7 Game over

The game needs to have an end condition so the score can be saved to the high score list.

If GameMode is set to Normal, only running out of moves (SwapsLeft = 0) will trigger

the end of the game. If GameMode is timed, running out of time is the primary reason for

a game over, but running out of moves is also possible.

In Timed mode, the first condition to triggering a game over will look for the GameTime

value to be under 0. This will let the game go on even if the timer is 0, adding more

excitement to time running out instead of ending the game instantly. To help this, also if

there is anything happening on the board while the time runs out, the conditions will let

the board stabilize before ending the game. Triggering this event will set the Player 1

Score value to the value designated in the Counter_Score object, letting it be used to be

saved on the high score list. In timed mode, there is no pop up to notify of the time running

out, but the game jumps to the HighscoreTimed frame. (Figure 48)

In Normal mode, it is simply checked that SwapsLeft is 0 and the count of bricks is 64.

This means there are no more possible moves on the board and the “OutOfMoves” object

will be displayed to notify the player. Clicking this will transfer the player to the

HighscoreNormal frame. Similar events are also given to the Timed mode. Figure 49

shows the player running out of moves in Normal mode.

55

Figure 48. Game over.

Figure 49. Game over in Normal mode.

5.8 The High score frames

The game includes a high score frame for each game mode, HighscoreTimed and

HighscoreNormal, as well as a frame called Name Input which is used to input the player

name. The frames are identical with their logic, containing the leaderboard for their re-

spective game mode as well as buttons to move to the other leaderboard, a button to reset

the respective leaderboard and a button to return to the main menu. (Figure 50).

Figure 50. The High score frame.

Figure 51 shows the code for the high score lists. If the score of the player is better than

the one in the 10th place of the board, the player is prompted with a name input screen.

This name will be saved along with the score the player achieved. The name input screen

(Figure 53) will set the NameEntered variable to 1 and the score will be saved (Figure

54).

Figure 51. High score code.

57

The button in the bottom left corner can reset the Hi-Score object used to save the lead-

erboard, and an informatory text will appear if the button is hovered. Because of the un-

even shape of the image, zone recognition is used instead of the object itself. (Figure 52)

Figure 52. Resetting the Hi-Score object.

Figure 53. Name entry.

Figure 54. Code for Name Input frame.

The name entry screen has a textbox and button. The focus will be set when the frame is

initialized, so that the player does not have to click on the box. After clicking the submit

button or pressing Enter, player name is set, NameEntered is 1 and the frame transfers

back to the correct leaderboard.

The name entry was also initially performed by a Sub-Application object but was changed

after realizing its bugginess.

59

5.9 Design of the scoring system

The scoring system works using raw score values set for obtaining certain matches and a

score multiplier that multiplies the score gained from each individual brick. It takes ad-

vantage of the following global variables: MatchTimer, Matched, MatchCount and Ga-

meTimer. Also, SwapTimer is used when determining the initial swap.

Whenever a swap is initiated, the SwapTimer is briefly set to 1. This is used to distinguish

the initial swap. During the initial swap, the MatchCount cannot go above 1, as the combo

system requires matches to be made with falling pieces. After this, SwapTimer ticks to 0,

letting all future matches increase the MatchCount (Figure 55). This rewards the player

for making big combos through falling bricks.

Figure 55. Distinguishing the initial swap.

Whenever a match is made (Figure 56), the GameTimer is set to 16 and MatchTimer to

1. The GameTimer is refreshed every time a match is made, and when it reaches zero, it

means that the board has returned to the normal state and ScoreMultiplier is returned to 1

and MatchCount to 0 (Figure 57).

Figure 56. The event that is triggered every match.

Figure 5 Resetting scoring variables

Whenever a brick is found in a connection, the value of Matched is increased by 1 and

100 is added to the score of the player, multiplied by the ScoreMultiplier (Figure 58). The

value of Matched is used to determine four-of-a -kinds and five-of-a-kinds, giving a raw

bonus point value to the score. After this, MatchTimer instantly ticks to 0, resetting the

value of Matched. This way, Matched counts all the bricks found on the same frame.

Figure 58. Event On found brick

A four-of-a-kind is always worth 150 extra points and a five-of-a-kind is worth 300

points. Making two three-of-a-kind-matches at the same time gives no bonus points.

(Figure 59)

61

Figure 59. Rewarding matches with four or five-of-a-kinds.

If MatchCount reaches more than 1, it means that there has been a combo created after

the initial swap. Whenever a MatchCount threshold is reached, the ScoreMultiplier is set

to the specific value, a combo sound is played and the combo displaying text object in the

game is set to appear with the text signaling the size of the combo (Figure 61). The

ScoreMultiplier is capped to 3, reached at the MatchCount of 7, to keep the scores at a

reasonable level. (Figure 60)

Figure 60. Increasing ScoreMultiplier and playing combo sounds.

For the system to work properly, the GameTimer had to be set to a high enough number

that the combo would not be reset when the bricks were still moving, but also a low

enough number so the game would not feel sluggish, as one requirement for the player

selecting pieces and making swaps is that the ScoreMultiplier is 1, so the player cannot

make swaps while a previous combo is running. This makes the game feel less responsive

than in the prototype when no matches are being made, but the speed of the gravity in the

game is set high enough that it is not a huge issue. This is a thing that could be adjusted

in further development. The combo sounds are all the same sample, but the higher the

combo, the higher the pitch of the sample becomes. The only other sounds in this version

of the game are the whipping sound that is played whenever the player initiates a swap,

and a negative sounding sample whenever a player makes an illegal swap.

63

Figure 61. The score multiplier display.

5.10 Illegal move

Whenever the player makes an illegal swap in this version, the swap is still performed

and not outright blocked like in the prototype. After swapping, the variable UndoTimer

is set to 10. If the variable reaches 0 while SwapInProgress is still 1 (as in not made 0 by

the Legal move event) the pieces are returned to their original positions with a sound

effect. (Figure 62)

Figure 62. Legal and illegal move.

All the timer variables are counted down at certain time intervals (Figure 63).

Figure 63. Counting down all required timers

5.11 Audiovisual design

Most of the game was graphically designed using Photoshop. Some graphics, as in mostly

the gems, are freely available vector art that has been slightly edited for the purposes of

the game [12]. Audio design was made using Reaper and software synthesizers, and the

whip sample for swapping is a free sample found from the internet which increases the

satisfaction from the very quick swapping in the game.

5.12 Afterthoughts on Fusion

Developing with Fusion is fun and there is a rather sizeable community for it, so it left a

decent impression. Making menus, adding sounds and other such things are incredibly

easy with Fusion, and certain kinds of games are well suited to be developed with Fusion,

such as platformers. There are some interesting properties with Fusion, for example you

can access Arrays out of their bounds without any issue, unlike traditional programming

languages. It is a very powerful engine with not too many limits, but some of the advanced

things are hard to learn and require a lot of experience with the platform, regardless of

the programming style.

Certain things left something to be desired. In the event editor, it is not possible to com-

ment out single lines, only whole events, which makes trying out small changes and ex-

perimenting a pain compared to regular programming languages. This seems odd to me.

While trying to add some more advanced functionality to the game, bugs were encoun-

tered, and some of them felt like bugs in the engine itself, even though they could have

65

also been personal mistakes, and they would have been possible to be worked around.

The Sub-Application for the Pause Menu was a good idea on paper but turned out to be

buggy, which was disappointing.

All in all, Fusion is a nice 2D engine for beginners and advanced developers alike with a

very good amount of packed in features, but in hindsight, Unity would have probably

been a better choice, especially if the aim is to make a commercial product. There are not

too many popular commercial games made with Fusion, and it is kind of easy to see why

it is like that.

5.13 Testing

For testing, the game was played a lot during development and also given to a few people

to find bugs and playtest. This turned out to be a good method and many bugs were found

and fixed during the development cycle.

6 IDEAS FOR FURTHER IMPROVEMENT OF THE GAME

The game satisfies all initial requirements, but there are still many ways in which the

game could be improved.

6.1 Online leaderboards

Attempts were made to add online functionality to the game using PHP and MySQL, and

ready-made PHP files for this purpose were found from the forums of Fusion. A few days

were used to try to make these things work on the school server and MySQL and some

other free hosts were attempted, but making Fusion connect to the database was not suc-

cessful for some reason, despite all the attempts. Questions about the matter were made

on the forums, and nothing helpful was answered. By making the functionality myself, it

can probably be made to work but was scrapped due to time constraints. This would have

definitely been easier to implement with Unity.

6.2 Animation

The game does not really have much in the way of animation at the moment, and things

such as menu animations, transitions and gameplay animations could be added to liven

up the game. Gameplay animations were attempted to be added, and they almost worked

properly, but some very cryptic bugs appeared that led to some pieces turning invisible

until matches were made, after which they would reappear. A workaround could have

probably been found, but this was not a very important feature and was scrapped to make

sure everything functions properly.

6.3 Improved audiovisuals

The current game has a very minimalistic style and the usage of gems as gameplay objects

is not very creative, so the whole graphical style could be reworked into something more

impressive and unique. Also, the game is low resolution and runs in a small window. This

is not very modern, and through high resolution graphics the game could be made to run

in 1920x1080, and the player could be given the selection of the window size and full

screen/windowed gameplay.

67

Also, more audio effects could be added, and a chill music track too. I was planning to

make a song for the game but was not happy with what was made, so I left the audio to

just sound effects.

6.4 More game modes and settings

The genre of match-three has a huge potential for innovation and creativity. A lot of game

modes and variables could be added to add more playability to the game and let the player

customize the game to their playstyle.

6.5 State saving

The one “should-have” requirement that was not met was the state saving, as this was

forgotten about during the development, however a quick research shows that this is do-

able in Fusion and could probably be added without any major changes.

7 CONCLUSION

The game was finished successfully and runs well, fulfilling most requirements set for it.

Clickteam Fusion proved itself to be a strong engine, but has many negative sides such

as some outdated, buggy components and the ability to not comment out single lines.

However, learning the software was a valuable experience. It would be interesting to try

out to convert the game to Unity and see how that would turn out.

69

REFERENCES

[1] Wikipedia, Unity

https://en.wikipedia.org/wiki/Unity_(game_engine)

https://en.wikipedia.org/wiki/List_of_Unity_games

[2] Steam, Clickteam Fusion

https://store.steampowered.com/app/248170/Clickteam_Fusion_25/

[3] Clickteam, Clickteam Fusion

https://www.clickteam.com/clickteam-fusion-2-5

 [4] Wikipedia, Clickteam

https://en.wikipedia.org/wiki/Clickteam

[5] Wikipedia, GameMaker Studio

https://en.wikipedia.org/wiki/GameMaker_Studio

https://en.wikipedia.org/wiki/List_of_GameMaker_Studio_games

[6] Scirra, Construct

https://www.scirra.com/construct2

[7] Wikipedia, Construct

https://en.wikipedia.org/wiki/Construct_(game_engine)

[8] Raywenderlich, Unity Match 3

https://www.raywenderlich.com/673-how-to-make-a-match-3-game-in-unity

[9] ClickTeam Store, Fusion Shapes

https://www.raywenderlich.com/673-how-to-make-a-match-3-game-in-unity

https://en.wikipedia.org/wiki/Unity_(game_engine)
https://en.wikipedia.org/wiki/List_of_Unity_games
https://store.steampowered.com/app/248170/Clickteam_Fusion_25/
https://www.clickteam.com/clickteam-fusion-2-5
https://en.wikipedia.org/wiki/Clickteam
https://en.wikipedia.org/wiki/GameMaker_Studio
https://en.wikipedia.org/wiki/List_of_GameMaker_Studio_games
https://www.scirra.com/construct2
https://en.wikipedia.org/wiki/Construct_(game_engine)
https://www.raywenderlich.com/673-how-to-make-a-match-3-game-in-unity
https://www.raywenderlich.com/673-how-to-make-a-match-3-game-in-unity

[10] Cyberclic, Advanced Game Board documentation

http://cyberclic.margasoft.fr/AdvGameBoard.html

[11] Creativefabrica, Quotable font

https://www.creativefabrica.com/product/quotable/ref/87/

[12] Vecteezy, gem graphics

https://www.vecteezy.com/vector-art/108251-colorful-strass-stones

http://cyberclic.margasoft.fr/AdvGameBoard.html
https://www.creativefabrica.com/product/quotable/ref/87/
https://www.vecteezy.com/vector-art/108251-colorful-strass-stones

Appendix A. Research materials

Programming a Match Three Game in Multimedia Fusion

Krystian Rabe

2009

