VAMK

VAASAN AMMATTIKORKEAKOULU
UNIVERSITY OF APPLIED SCIENCES

Samu Valimaki

MATCH-THREE GAME FOR
WINDOWS

Information Technology
2019

VAASAN AMMATTIKORKEAKOULU
UNIVERSITY OF APPLIED SCIENCES
Information Technology

ABSTRACT

Author Samu Valimaki

Title Match-three Game for Windows
Year 2019

Language English

Pages 71

Name of Supervisor Timo Kankaanp&a

Video game development is a constantly growing market and casual games make
a big part of the market. The aim of the thesis was to study different game engines
to develop two prototypes, and to develop a game implementing the popular
match-three genre of puzzle games in one engine.

The Unity and Clickteam Fusion game engines were studied for the case, and Fu-
sion was chosen as the final platform.

The result is a fun and fast-paced puzzle game. A lot was learned from what goes
to game development, such as Ul and graphics design and how to control the
events of the game to achieve good performance and satisfying gameplay.

Avainsanat Video game, match-three, Clickteam Fusion

CONTENTS

ABSTRACT
LIST OF FIGURES AND TABLES ... 5
1 INTRODUCTION. . .oittiii i e e e e s r e e e e e 9
2 REQUIREMENTS ... 10
2.1 MUSE DAVE-TEALUIESc.eeee e 10
2.2 Should have-TEatUIEScvie e 11
2.3 NICE 10 NAVE-TRALUIES......eiiiiie e 11
3 OPTIONS FOR GAME ENGINESooiiiiiiieee e 12
3L UNIEY oottt 12
3.2 ClICKLEAM FUSIONeieiiiie ettt snaee e e e 13
3.3 GaMEMAKEN STUMIOc.vvveeeiie et 14
KRR 00 4 3 {1 ot SRR 15
4 CREATION OF PROTOTYPES ..ottt 16
4.1 Prototype detailS........ceeeiivieiiiieeiiie e 16
A T Y o] (0] (0], oSSR 17
4.2.1 List of Unity GAmMeODJECESvvveiciiieiiiie e 17
4.2.2 Changes to the tutorial project...........ccccceeviveiiiie e 18
4.3 Clickteam FUSION PrOtOtYPEccvvveeiiieeiiie s 21
4.3.1 Advanced Game Board...........cccoveeiiiiniiiniie e 24
4.3.2 The structure of game development in Clickteam Fusion 25
4.3.3 Objects and variablescccoveiiiie i 29
4.3.4 Generating the board.............cccoveiiii i 33
4.3.5 Selection of objects for swapping.........ccccocevveiiiveeiiiie e 37
4.3.6 Deleting matched bricks..........ccceoviviiiii i 39
5 FURTHER DEVELOPMENT FROM A PROTOTYPEcocovvvvvveiriienne 42
5.1 List of new global variables...............ccoovieiiiiiiiii e, 43
5.2 THhe MaiN MENU ...ooiviiiiieiii ettt 43
5.3 Selecting a game MOUE.........ocoiveieiiee e 46
5.4 PAUSE MENU ...ttt et e et e e eas 48
5.5 Toggling SOUNGovviiiiiiiiec e 51

5.6 Determining the number of swaps left on the board...............c.c.ccon. 52

A G- 11 1SN0 1V/=] ST 54

5.8 The High SCOre framesccooiiiiiieiiiieeeee s 55
5.9 Design of the SCOrNg SYStEMoiviiiiiiiieiieeee e 59
5.10118QaI MOVE ... s 63
5.11 AudIiOVISUAI ABSIGN ...c.vveeiiieiie s 64
5.12 Afterthoughts 0N FUSIONooiiiiiiiiii s 64
B LB TESHING .ttt 65
6 IDEAS FOR FURTHER IMPROVEMENT OF THE GAME.............cccc.... 66
6.1 Online leaderboards............ccoviiiiiiiiie i 66
6.2 ANIMALION ..ttt 66
6.3 Improved audioViSUAIScoceeiiiiiiiiie 66
6.4 More game modes and SEtTINGS.........coviiiieriieiie e 67
6.5 SHALE SAVING .. eeiieiiiii ittt 67
7 CONCLUSION ...ttt 68
REFERENGCES ..ottt 69

APPENDICES

LIST OF FIGURES AND TABLES

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10

Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.

Figure 20.

The completed Unity prototype.

Resolution in Unity.

Position of BoardManager.

Editing the BoardManager.

Changes to OnMouseDown method.

Changes to ClearAllMatches method.

Fixing the Tile spawn bug.

A Clickteam Fusion event.

Loops in Fusion.

. The AGB Match-three example.

The Storyboard Editor.

Frame Editor and its drag and drop interface.
Creating new objects with several preinstalled object types.
The properties window.

The standard Event Editor.

The Event List Editor.

The finished prototype.

The Advanced Game Board.

The Shape object opened in Fusion image editor.

MouseMarker and SelectedMarker.

.18

.18

.19

.19

.20

.20

.21

.22

.23

.25

. 26

.27

.27

.28

.28

.29

.29

.30

.31

.32

Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.

Figure 41.

Setup Board and Clear connected tokens from array event groups.

Show Board and Animation event groups.

Board event.

Placing first marker.

Displaying the marker at the location of the cursor.
Changing the selection.

Swapping adjacent bricks.

Loop for match searching.

Move legality test.

On found connected and on found brick conditions.

Gravity in Advanced Game Board.

Adding new bricks.

Updating the Shapes according to the game state.
The storyboard editor view of the game.

The main menu.

The main menu logic.

Changing the descriptive text.

Normal Mode.

Timed Mode.

Code for Timed Mode.

Logic for pausing the game.

.34

.35

. 36

.37

.37

. 38

. 38

. 38

.39

.39

.40

.40

.41

.42

.44

.45

. 46

.47

.47

.48

.49

Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.
Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.

Figure 56.

The game with the pause menu opened.
The Pause Menu logic.

Code for toggling sound.

Reading the value of SoundToggle from a setting file.

Code of determining swaps left part 1.
Code of determining swaps left part 2.
Game over.

Game over in Normal mode.

The High score frame.

High score code.

Resetting the Hi-Score object.

Name entry.

Code for Name Input frame.
Distinguishing the initial swap.

The event that is triggered every match.

Figure 1 Resetting scoring variables

Figure 58.

Figure 59.

Figure 60. Increasing ScoreMultiplier and playing combo sounds.

Figure 61.

Figure 62.

Event On found brick

Rewarding matches with four or five-of-a-kinds.

The score multiplier display.

Legal and illegal move.

p. 60

.49

.50

.51

.52

.52

.53

. 95

. 95

. 56

. 56

Y

Y

. 98

.99

. 60

. 60

.61

. 62

.63

.63

Figure 63. Counting down all required timers
Table 1. List of must have-features.

Table 2. List of should have-features.

Table 3. List of nice to have-features

Table 4. List of Unity GameObjects

Table 5. List of variables for Shape.

Table 6. Variables for MouseMarker.

Table 7. Global variables in the prototype.

Table 8. List of new global variables.

. 64

.10

J11

J11

.17

.31

.32

.33

.43

1 INTRODUCTION

In this project a match-three game for the Microsoft Windows operating system was cre-
ated. A match-three game is a two-dimensional puzzle video game where the player is
given a board of easily distinguishable objects, and the player must swap the positions of
two adjacent pieces in order to create matches of three or more objects and clear the board,

with the game generating new pieces until the game is over.

Multiple game engines were considered for the project. Before the start of the production
of the final product, two engines out of these were chosen and prototypes were developed
for them in order to get familiar with them and inspect the different procedures that can
be utilized to create a grid-based game. After this, one of the prototypes was chosen to be

developed further to meet the requirements set for the project.

During the development cycle, multiple areas of game development were explored to
ensure a complete experience, including the creation of interfaces, menus, graphics and

sounds, alongside with what goes into creating satisfying and correctly paced gameplay.

2 REQUIREMENTS

The project was chosen certain requirements to evaluate its success. The features were

divided into three categories: Must have-features, should have-features nice to have (op-

tional) features. These features are shown in tables 1-3.

2.1 Must have-features

Table 1. List of must have-features.

Different menus

There needs to be proper menus to enter the game modes
and activate other choices.

Playfield and objects

The regular gameplay is to take place on an 8x8 sized grid-
based play area, each tile filled with an object (a piece).
There must be five or six different object groups, and each
generated piece belongs to one of these groups.

Swapping pieces
around

The core gameplay consists of the player selecting a piece
with the mouse and swapping it with another piece that is to
the side, above or below the chosen piece. The chosen piece
must be somehow highlighted for clarity. If the selected move
is legal, as in forming a match, the positions of the pieces are
swapped, and a match will occur. All other kinds of moves
are illegal, and the game must recognize this and not allow
such moves.

Acting out the
matches

When a match is formed, the game must recognize this and
destroy those pieces involved in a match. Multiple matches
can be formed out of a single move. When the pieces are de-
stroyed, the pieces above them must fall downwards and new
ones to be generated to always have the board full of pieces.
The pieces falling can cause other matches, and the control
should not be given back to the player until the board has sta-
bilized itself.

Changing the deci-
sion of the chosen
piece

The player might conclude that they do not want to move the
piece they have chosen. If a player clicks the piece they have
selected, it will be deselected. Also, if a player chooses a
piece, and afterwards chooses another piece that is out of
range for swapping with the first piece, the selection will be
transferred to that piece instead.

Scoring system

The game needs to have a scoring system to track the perfor-
mance of the player. If this is not done, playing the game is
unsatisfactory, as there is no reward for the actions of the
player.

Keeping track of the
game state

The game needs to keep track of the possible moves the
player can make in each situation, and if there is a situation
where there are no possible moves to be made, the game
must recognize this and issue a “game over” to prevent itself
from locking down.

11

2.2 Should have-features

Table 2. List of should have-features.

Multiple game
modes

The game needs to have at least two separated modes of
play: Timed and Standard. In timed mode, there is a timer,
and the game ends when the timer reaches zero. The al-
lowed play time can be a chosen parameter, for example be-
tween 1, 5 and 10 minutes. Standard mode ends only if there
are no more moves available on the board. There can also be
more game modes which can be planned later in the produc-
tion.

State saving and re-
start

In normal mode, you should be able to exit the game at any
point and save the state for later continuation, and it should
start the game from the same position the next time the
player starts playing. In timed mode, there should be a restart
button, so the player can start over if the attempt is not going
well.

Local leaderboards

To make the scoring system more meaningful, the best
scores achieved by the player for each mode should be
saved locally and be able to be viewed from the main menu.

Satisfactory game-
play

To make the game fun to play, the audiovisual design and re-
sponsiveness of the game must make the player feel good
when they complete matches. This is subjective but should
be strived for regardless.

2.3 Nice to have-features

Table 3. List of nice to have-features

Global leaderboards

In addition to local leaderboards, the game could have the
capability to upload the scores achieved by players into an
SQL database (or such) and the content of the database
could be viewed in-game. In addition, there should be made
an administrative page for the leaderboards so clearly
cheated scores can be removed easily.

Twitch integration

As an experimental feature, the game could be controlled by
connecting it to a Twitch.tv chat. This would have the game
reading the text from the chosen chat and recognizing certain
messages as gameplay commands and play out the game
through those commands.

Steam features

If the game is ready otherwise and can be ready for release,
using Steam’s features such as Steam Cloud or Steam
Achievements can be investigated.

Android version

If the Windows version is satisfactory, the game can also be
ported over to Android to increase playerbase.

3 OPTIONS FOR GAME ENGINES

There are numerous game engines that have been developed for the purpose of aiding
game developers in their jobs. These engines handle the graphics rendering, sounds, phys-
ics and multiple other subjects of the games, and have lots of available information and
community support. For this match-three game project, prototypes were developed with
Unity and Clickteam Fusion. In addition to these engines, a couple other ones were also
considered. In this part these game engines are shortly introduced.

3.1 Unity

Unity is an engine released in 2005 by Unity Technologies. Its primary purpose within
game development is usually to be a 3D engine, but 2D development is also very active
within its community. Unity is extremely versatile and allows development for dozens of
different platforms for free, such as Windows, i0S, Android, Linux, PlayStation 4 and
WebGL, just to name a few. This makes it a very good choice if the release for multiple
platforms is high priority. The scripts for Unity are created in the C# language. It is an
extremely popular engine and | also had previous experience on using it, so it was chosen

to be the first prototype engine.

Popular games created with Unity: Hearthstone, Ori and the Blind Forest, Hollow Knight
[1]

13
3.2 Clickteam Fusion

Clickteam Fusion is a 2D development software by Clickteam SARL. The company has
been developing 2D engines since their establishment in 1993. As of 2019, the newest
version of the software is Fusion 2.5. The engine can also be used to develop other kinds

of software and multimedia, such as slideshows and general Windows applications.

Clickteam Fusion does not use a traditional scripting system with a text-based program-
ming language, instead offering a graphical event system that is designed to allow the
user to do pretty much anything, as well as offering a wide variety of plugins to add
functionality. With the regular version of Fusion, only Windows applications are sup-
ported. iOS/Android/HTMLS5 platforms are also supported, but with additional costs. This
IS not the best case scenario but as | was primarily only looking to develop a Windows
game, | could let it slide.

Fusion is a paid software, but I had received it at an earlier time on Steam, so | wanted to
put it to use. The “visual” programming style sounded intriguing, as I had no previous
experience of anything of the sort. I also figured that as a platform dedicated for 2D de-
velopment, for my 2D game project it could be a very viable candidate. For these reasons,

I chose it to be the second prototype engine.

Popular games created with Fusion: Freedom Planet, Five Nights at Freddy’s [2-4]

3.3 GameMaker Studio

GameMaker Studio is developed by YoYo Games and was first released in 1999. It is
very similar to Fusion in a lot of aspects, such as including a visual programming lan-
guage utilizing drag and drop mechanisms, but it also has its own text-based scripting

language.

GMS is typically considered to be more of a beginner-oriented development software, but
there are many good examples of what is possible to be done with it. I was mildly inter-
ested in picking it but considering I did not own it (the software is not free) I did not end
up picking it. As I read about it, I also found many comments on its instability, something
I did not find for Fusion or Unity. However, | am still interested in trying development
with GMS in the future. It does support multiple platforms out of the box, with Nintendo

Switch being the most recent addition.

Popular games created with GameMaker Studio: Undertale, Hotline Miami, Nuclear
Throne [5]

15

3.4 Construct

Construct is a 2D game editor, first released in 2007 by Scirra, being the newest engine
on the list. The current version Construct 2 was released in 2011, with Construct 3 in
development at the moment. Construct seems to be a very powerful and interesting en-
gine, utilizing a lot of premade features which could produce impressive results with
seemingly little work. Construct is available for free, but there is a paid version available
for professionals if they desire to sell their work.

| am definitely very interested in familiarizing myself with Construct but seeing as the
engine is kind of obscure and did not seem to have that much community support behind
it, | felt that it was not the strongest option. The scripting system seems quite similar to
Fusion, but Fusion has been around for way longer and has been able to build a strong
community and plugin library, but Construct is still growing and keeps getting more in-
teresting. The platform support is a bit more limited than in the other programs, with

Windows, Android and iOS being the primary platforms.

Popular games created with Construct: Our Darker Purpose [6], [7]

4 CREATION OF PROTOTYPES

Before working on the final version of the game, the goal in the project was to develop
two prototypes on two different engines. The two game engines chosen ended up being
Clickteam Fusion and Unity.

Clickteam Fusion was chosen despite being a paid software, as it seemed like a powerful
and interesting engine to attempt developing a 2D game in. The engine not being free was
not an issue, as | had purchased it on Steam a while back. There was going to be a lot of
studying to do for development, but a part of the interest was for the matter of finding out
if the visual scripting style would make development easier or harder, and in which ways.

Unity was chosen as the second engine for being a widely used and versatile engine, with
which I have also had previous experience, working on simple games such as a sidescroll-
ing platformer and a space shooter. The primary interest was in finding out how one

would go about creating a grid-based puzzle game inside of Unity.
4.1 Prototype details

These prototypes will not fit all initial requirements, but most of them. The act of reading
the number of possible moves and assigning a game over was chosen to be too advanced
for a gameplay prototype, but all other gameplay related functions should work as in-

tended. Menus are also not necessary.
This concludes that the prototype should:

- Generate the 8x8 playing field without having matches happen in the start of the
game

- Allow for changing the positions of two adjacent objects only if it results in a
match being created

- Have a basic scoring system in place

- Have matches function properly without graphical glitches and have new pieces
fall from above as intended.

17
4.2 Unity prototype

Because of the previous experience with the Unity engine, no basic tutorials were needed.
However, having only done physics-based games before on the engine, there was no clear
starting point to how to go about creating a 2D puzzle game on the platform. This was
found through a Unity tutorial by Jeff Fisher [8]. This tutorial included a download with
it with a lot of premade assets, but it would have to be edited to fit the requirements of

this project.

The article explains most of the code used and repeating it would take a very long time,
so this part will mainly focus on what was changed to make the game fit the needs of this
project. An introduction to the actual game engine will also not be provided, as Unity is
very common in game development nowadays and it uses the common C# language for

scripting.
4.2.1 List of Unity GameObjects

The default building block in Unity is called a GameObject and these are placed in a
“scene” such as “Game” containing the gameplay elements. These objects utilize the C#
scripts that can be assigned to them to create the gameplay. These are the GameObijects

used in this prototype.

Table 4. List of Unity GameObjects

Main Camera The default camera in Unity. Stationary in this project

GameManager Handles things such as scene selection

GUIManagerCanvas Contains the ScoreTxt object

ScoreTxt Used to display the score of the player

SFXManager Handles the sound effects

BoardManager Handles the creation of the game board and manages find-
ing null tiles and shifting

Tile The basic gameplay element that is used to fill the game
board

Figure 1 shows the completed Unity prototype.

1

Dﬂlﬂﬂﬂ’)ﬂ
ORI

Figure 1. The completed Unity prototype.

4.2.2 Changes to the tutorial project

The original tutorial presented a game designed for mobile phones. The purpose of the
project was to create a game for Windows, so the resolution had to be changed to be
fitting. This was done by changing the value in Unity’s PlayerSettings as shown in Figure
2.

Settings for PC, Mac & Linux Standalone
Resolution and Presentation

Resolution

Default Is Full Screen®
Default Screen Width 1280
Default Screen Height TZ0

Run In Background®*

Figure 2. Resolution in Unity.

This resulted in the game always running in a 1280x720 window. The aspect ratio in the

“Game” display also had to be changed to 16:9 for testing to function properly.

19

The position of the BoardManager GameObject decides where the Tile objects will be

created. Figure 3 shows the change to fit the new screen size.

"4 ¥ BoardManager [[] static =

Tag | Untagged | Layer | Default 3 |

¥ .~ Transform £,
Position X|-2.66 ¥ |-2 Z 0
Rotation ¥ 0 Y0 Z 0
Scale H1 ¥ 1 Z1

Figure 3. Position of BoardManager.

New graphics were created for the Tile objects, and the size of the game board was
changed to 8x8 in BoardManager. (Figure 4).

V@ ¥ Board Manager (Script) @ %=
Script BoardManager fa}
¥ Characters
Size (3]
Element 0 1 o]
Element 1 2 (]
Element 2 3 [}
Element 3 4 @
Element 4 5 5]
Element 5 El6 @
Tile WTile (o}
X Size]
Y Size]

Figure 4. Editing the BoardManager.

The tutorial project had a “move counter” and allowed moves that did not result in
matches. This is not correct for the kind of game that is being made, so the move counter
was completely removed, and the code was reworked to only allow swaps that result in
matches. This is achieved through making the ClearAllMatches method return a Boolean
value, if no matches were achieved, the swap would be redone, canceling the swap.

Figures 5 and 6 display these changes.

OnMouseDown () {
if (render.sprite --= || BoardManager.instance.IsShifting){

if(previousSelected
Select();

if(GetAllAdjacentTiles().Contains(previousSelected.gameObject)){
clear1l, clear2;

SwapSprite(previousSelec
clearl = previousSelected. arAllMatches();

clear? = ClearAllMatches();

clearl && !clear2){
SwapSprite(previousSelected.render);

lected.Deselect();
Select();

ClearAllMatches(){
if(render.sprite ==)

ClearMatch(2] {Vector2.left, Vector2.right}):
ClearMatch(v 2] {vector2.up, Vector2.down});
if(matchFound){
render.sprite =
matchFound = H
StopCoroutine(BoardManager.instance.FindNullTiles()):
StartCoroutine(BoardManager.instance.FindNullTiles());

SFXManager.instance.PlaySFX(Clip.Clear);
return

Figure 6. Changes to ClearAllMatches method.

The game also had a bug where the Tiles on the top row would sometimes not spawn.
The fix provided by the user “hypnotistdk™ fixes this issue in the ShiftTilesDown method

and is applied in figure 7.

21

renders .Add(render);

; i<nullCount; i++){
instance

new Wa hiftDelay);
if(renders.Count == 1){

renders[@].sprite = GetNewSprite(x, ySize - 1);

for(int k =8; k<renders.Count - 1; k++){
renders[k].sprite = renders[k + 1].sprite;
renders[k+l].sprite = GetNewSprite(x, ySize-1);

IsShifting=false;

Figure 7. Fixing the Tile spawn bug.

After these changes, the game fulfilled all the conditions set for the initial prototype and

learning Clickteam Fusion could start.

4.3 Clickteam Fusion Prototype

The development process for the Fusion prototype started completely from scratch.
Within a few days, the default tutorials for the software were done to achieve a basic
understanding of the application before starting the development. In these tutorials, the
user gets to create clones of popular games such as Breakout and Flappy Bird. These
tutorials gave an introduction on how to use many popular game development concepts
inside Fusion, such as creating menus, implementing adjustable values, player controls,

using the physics engine, handling collision et cetera.

The first impressions on Fusion development were split. On the other hand, doing things
like basic menu functions or playing voice samples is very easy and effortless with Fu-
sion. For comparison, when | have developed prototypes with Unity before, the sound
system was not very easy to understand and took some time to figure out. In Fusion, there
are not standard kind of methods or functions that are called each time a certain action is

wanted to be activated, at least in the usual programming manner. Instead, the basic block

of code in Fusion is called “event”, and an event always has a condition. The basic way
of calling actions in Fusion is based on checking the states in the game constantly, and if
a state matches to the condition of an event, the code inside the event block is ran in-

stantly.

Regular functions can be emulated through “loops”. Unlike in basic object-oriented pro-
gramming, if there are multiple objects of the same “class”, the wanted method cannot
just be invoked through the reference of a specific object. If it is necessary to call an event
on an object without directly interacting with it and thus singling it out for the scope of
the event, a loop can be called that, for example, matches a value that is set to a variable
of an object. There are some instances with Fusion where this feels quite odd or requires
certain workarounds in order to make sure that the correct objects are being used in the

event.

Here are some examples (Figure 8, 9) of Fusion events from the finished Fusion proto-
type. These examples will be easier understood when the whole context of the game is

clear.

« User clicks with left button on i (Shape)

. (MouseMarker): Flag 0 is off
(MouseMarker) : Set Flag 0 on
(MouseMarker) : Set position at (0,0) from . (Shape)
(MouseMarker) @ Set Over¥ to Current(" ' (Shape)")
(MouseMarker) : Set OwverY to Currenty(" . (Shape)")

Figure 8. A Clickteam Fusion event.

This is what a basic block of code in Fusion looks like. The object that the event is called
upon is determined by the first condition, in which the uses clicks a Shape object. Through
which object is clicked, Fusion locks in the specific instance of the Shape object to which

all the code in the event applies to.

In this example, there are two conditions for the event, and the Flag 0 variable for object
MouseMarker needs to also be off. Flags in Fusion are variables that are present for each

object that is created, and they can be either on or off, so they are commonly used for

23

simple checks such as this. If the Flag was on, the event could not be called and very
likely another block of code in the program would be activated instead. Because it is not
specified in any way, which MouseMarker object the event is carried out for, it will au-
tomatically be done for all of them. In this example, there exists only one MouseMarker
object, so this is acceptable.

In activation of the event, first the flag for the MouseMarker is changed from off to on.
Then the position of the MouseMarker object is changed to the exact same coordinates as
the chosen Shape object, with (0,0) signaling the offset from the object in X and Y coor-
dinates. After this, the OverX and OverY variables of MouseMarker are changed to those
of the CurrentX and CurrentY variables of the chosen shape. These variables keep track
of where in the 8x8 sized grid each object currently resides, as this information will be

required in the game logic.

Figure 9 is an example of a loop in Fusion. The events in Fusion can be separated into
“groups” which can be disabled or enabled when required. If a group is disabled, none of
the events inside it will be ever considered for triggering.

« On group activation
% : Start loop "GetColor" XSizel(" (Advanced Game Board)" } * YSize(" (Advanced Game Board)") times

e On loop "GetColor"
+ IDof . (Shape) = LoopIndex("GetColor")

(Advanced Game Board) : Set brick at Currentx(" ' (Shape)"), CurrentY(" ' (Shape)") to type: Dir(" ' (Shape)")

Figure 9. Loops in Fusion.

Here it can be seen that a line of code is triggered when the group is changed to enabled
from disabled. The first line of code will start the loop with the name “GetColor” a set
amount of times, which is determined by the XSize and YSize variables of the object
Advanced Game Board. The Advanced Game Board object is incredibly important for

the game and its functions and the term “brick” will be inspected in greater detail later.

The second block of code is activated as the loop is initialized, and it will also take a

specific Shape object through asking for a Shape object with the same ID as the current

index of the GetColor loop. This will trigger the “set brick™ functionality for the place in
the game grid with the location corresponding to the CurrentX and CurrentY values of
the Shape singled out by the condition.

The set brick function will then set the type of the brick to the same integer value that is
determined by the current direction of the Shape object. If the Shape is, for example,
pointing to the direction of 2 degrees, the value of the brick in the location of the Shape
will become 2. In Fusion, storing different visual representations of an object in the di-
rection angles is a very common practice, and does not necessarily mean that the actual
direction of the object will be any different. So basically, this function goes through all

the Shape objects and assigns the correct brick type to each brick on the grid.

4.3.1 Advanced Game Board

When going through tutorials and practicing Fusion, | discovered Fusion Shapes, a Click-
Team store product which included a full-fledged match three styled game and the source

code. This game would be the source of some of the logic in the final game. [9]

After | started delving into how this game was created, a plugin to make developing this
specific kind of genre was introduced. This plugin was the Advanced Game Board ([10]).
The idea of this plugin is to provide an array to place the objects of the game in, while
providing readymade functionality for moving the game objects and searching for con-
nections created with the bricks, allowing for effective board manipulation. The plugin

had to be downloaded through the Fusion plugin manager (Figure 13).

This sounded very intriguing and was a no-brainer to be chosen as the backbone of the
prototype. The plugin contained multiple example games of classic games recreated with
the Advanced Game Board, such as Four of a Kind, Tic Tac Toe and Tetris. It also in-

cluded a bare-bones match-three game (Figure 10).

25

VOOVOB SRS
JOBVISKOIE

TVHOEDPINOION
Vo X ALY XX X
VKNGO INNIN
OOV AXOOIAY
VAN OIINORX S

e

PRI PXIIII L.
Total bricks removed: 21
Total systems found: 6
Recently remave d bricks: 21
Recently found systems: 6
Bejeweled clone Nest

Figure 10. The AGB Match-three example.

The goal of the prototype was rather clear — there was no need to reinvent the wheel. |
was going to create my own version of the AGB example from scratch, while also taking
in inspiration from Fusion Shapes to improve functionality and add some other features.
Things like an intricate scoring system and proper game over state recognition were to be
left for the improved version of the game but making a prototype would start from this

point.
4.3.2 The structure of game development in Clickteam Fusion

To fully understand what is done in the game development process and how it differs

from the typical game engine, the basic structure of Fusion should be explained.

The editor of Fusion is divided into three parts: Storyboard Editor (Figure 11), Frame
Editor (Figure 12) and the Event/Event List editor (Figures 15 and 16). The game is di-
vided into frames, and each frame has its own events it will activate and follow. The

developer can then move between these frames in their game through the events.

Mo. | Thumbnail Comments

Title : Title
Password :

a I «|f» B 630 by as0

Title : Gameplay
Password :

J« F» B 640 by 480

Title : Pause Menu
Password :

J« F» B 400 by 400
Title : Highscore Timed

I «|F» B 640 by 480
Title : Mame Input

W@

I «|f» Bl 640 by 480

T
Title : HighscoreMormal
Password :
5]
S p e+ |p» B 620 by as0

Figure 11. The Storyboard Editor.

In this project, each frame is confined to the game window and does not extend outside
of it, but in games which utilize scrolling such as platformers, the frames can be large,

and only a small part of them is shown at once.

After creating a frame, it can be opened in Frame Editor to enter a drag and drop interface
through which the developer can insert new objects and modify their settings through a

properties window.

Figure 12. Frame Editor and its drag and drop interface.

27

€9 Create new object

Audio
Background
Control
Data
Database
Files

Games
Graphics And Animations
Himl5
Interface
Internet
Network
Other Objects
Physics
Printer
Storage
System
Text

Time

Video

XMA

2
2 H @ = a [H o= ;
Active Active Active Direct Active Picture Active System ActiveX Advanced Analog
Backdrop Show Box Game Board Joystick
= LI
: :
Animation Array AVI Backdrop Background Button CD-Audio Click Blocker
System Box
=l -
m ® /7
Clickteam Combo Box Counter Cursor Date &Time Direct Show Download Draw object
Mavem... object
| @ H v K 5]
()
Edit Box fal File Formatted Fip Get Object Hi-Score HTMLS
Text
& — — = _ Tl
N ™y & = v il v

OK
Cancel

Help
From File(s)

Refresh

Manager

st

Figure 13. Creating new objects with several preinstalled object types. More can be

found through the “Manager” button which opens the plugin manager, which was used

to download Advanced Game Board.

Each object has a properties window that can be used to modify their attributes and fea-

tures (Figure 14)

Properties - String (1 x |

B E* ARDBED

Display Options

[Visible at start

[Display as background

Background options

[¥ Save background

[~ Wipewith co|[RGB = 255, 255, 255
Effect

[¥ Transparent

Effect None

Blend Coefficient| 0

RGE Coefficient || RGB = 255, 255, 255
[Anti-aliasing

Figure 14. The properties window.

The Event Editor (Figure 15) is for programming the logic of the game, and it has two
interfaces that can be used. The programming was mostly done with Event List Editor
(Figure 16) as it is way clearer what is done in complex events through having the actions

be all visible at once in text.

All the events . S ol | O |EEEE
All the objects Eél ‘ E—i R | e 5
|Storyboard Controls|

s User clicks with left button on e -
(NormalMode)

User clicks with left button on =~
2 L]
(TimedMode) J /

3 | ® User clicks with left button on x
(ExitButton)

“End the application |'

s User clicks with left button on |« «
(HighScores)

Figure 15. The standard Event Editor.

1 %

e User clicks w
: Set GameMode to "Mormal”

CN

ith left button on |-~ - (NormalMode

Mext frame

s User clicks w

2 ‘5%, g
g

s User clicks w

s User clicks w

CAE

ith left button on ==~ (TimedMode)

Set GameMode to "Timed"

: Mext frame

iith left button on x (ExitButton)

End the application

ith left button on | | (HighScores)

Jump to frame "Highscore Timed" (4)

Figure 16. The Event List Editor.

The initial prototype only consists of one frame, with the title “Gameplay”.

Figure 17 shows the finished prototype.

OOk O
SO E

Figure 17. The finished prototype.

4.3.3 Objects and variables

Here the objects and variables used in the prototype are specified.

29

Advanced Game Board

The first thing that needs to be added to the game is the Advanced Game Board object
that handles the object swapping and match finding (Figure 18 shows the settings window
of the object). The initial size of the board is set to 8x8 as the game is meant to be played
on a board with 64 objects layered out in a square. The origin of the board can be set to
place the board wherever the developer wants, and this number should also not be ignored
when designing the game and its events, as the information of the origin is important for
certain matters. The dimensions boxes signify the size of each object in the grid.

Game board Flags

Initial gize of board:

[Maove fived values with bricks

C %8
[Trigger 'On moved conditions

Mi ted befare trigger:

3|n SR B W] [Trigger 'On deleted' conditions
Eazy grid features

Drigiin: | | | anss

3z £4 naE
" i 3Ras
Dimensions: .
) Advanced game board object

Widh Height By Andos

Figure 18. The Advanced Game Board.
Shape

The primary playing object in the game is called Shape. There will always be 64 of these
objects on the board, and the objects themselves will be stationary and exist in the same
place for the whole game. What will change is the current “brick” value of each position
in the Advanced Game Board, and the Shape object on top of each position will change
its values to ensure that the image shown by the Shape will always correctly represent the

value of the brick, and this will lead to the game working as intended.

The Shape object has six images assigned to six different direction values from 1-6, as
there are six possible object types in the game. With five objects, the game would be very
easy and with seven objects running out of possible moves would be very common. Very
simple graphics for these objects were created. Figure 19 displays the image editor in

Fusion.

31

& Shape O X
O E = [
=]

GO =

=PLN

EReIPN .
OB A S

PRSI

o ¢
se [Y —
oty)

1 Wl 171 W= 1 < o !|7|7
Animations ™ o goOo. Direction Options ~ Frames Play
+ Stopped DDD . . 196, 88
.
Walking o
a CE Frame 1 0x0

Running] % Tame

Appearing Dn DE' 247,195,779

Disappearing o, o0

o o

mnchinn Y i —

[show all

Figure 19. The Shape object opened in Fusion image editor.

Table 5. List of variables for Shape.

ID The unique identifier of the Shape in the grid

Color The current value of the Shape direction and image shown
CurrentX The X location of the Shape in the Game Board

CurrentY The Y location of the Shape in the Game Board

Array

A three-dimensional array object had to be placed in the game in order to be able to handle

the logic of the initial playing field and then assigning its values to the Shape objects.

MouseMarker and SelectedMarker

These objects are simple yellow squares intended to give the player feedback on what
piece is selected and where the second selection will be. The positions of these two objects

are also used to determine if a move is legal, so the player cannot just swap any two

squares at will. The act of locking in a piece and hovering another is shown in Figure 20.

Figure 20. MouseMarker and SelectedMarker.

Table 6. Variables for MouseMarker.

OverX Signifies in what X position of the grid is the Marker placed to.
OverY Signifies in what Y position of the grid is the Marker placed to.

These values will be assigned to the functions of the Advanced Game Board when per-

forming a swap to be able to tell what the first piece of the swap is.
Counter_Score

A default counter included in Fusion. This counter will hold the value of the current score.
There will be no more advanced scoring system in place in the prototype, and this value

will simply tick up by 50 every time a piece is destroyed on the board.

33

Timer

One last object present in the prototype is a simple timer that will be increased to a certain
value whenever matches are created. This timer will then tick down fast, and some func-
tions in the game will require this timer to be 0, such as adding new pieces to the board
from the top.

The prototype also uses a single Active object (default object in Fusion) in order to use
its flag property for some decisions. In hindsight this flag did not need to be on its own

object, and it does not exist in the later versions.

Table 7. Global variables in the prototype.

ShowGameboard This value is ran from 0 to 65 in order to make all objects ap-
pear one at a time in the start of the game.
ValidationComplete | This is used when creating the initial game board. Before run-
ning the code that checks the board array for matches, this
will be made 0. If a change must be made, this will tick up, so
if the board is fine without any instant matches, this number
will stay as 0. In the beginning of the loop it is checked if this
number is 0, or more than 0. If itis O, it means that during the
previous iteration of the loop no problems were found, and
the game can start.

There is a lot than can be done using global variables, but they were not really utilized in
this prototype. A few variables were used for debugging purposes but none of them are

important for the functionality of the game.
4.3.4 Generating the board

As the original example did not have a proper way of generating the board, | studied the

code in Fusion Shapes for the logic. The code does exactly what is needed (Figure 21).

Figure 21. Setup Board and Clear connected tokens from array event groups.
Setup Board

This event group will run a loop in such a way that the Array object will be filled by 64
random values from 1 to 6. First all the Shapes with X =0 (leftmost column) will be given

a value, then the second column etc.
Clear connected tokens from array

The logic here is a bit complicated. The loop will be started 1024 times, which is arbitrary
to ensure that the board will be complete, usually it takes under 5 iterations to arrive at a
perfect board. ValidationComplete is set to 1 by default to ensure that the loop is ran for
the first time, because the code checks if it is more than 0. Then the loops will be ran to
give the validation functions the correct indexes to work with. Every time the code gets
to the loop “ValidateArrayY”, the logic will look at values first at the both sides of the
current value, and then the top and bottom values in the array and compare these values

to the initial value.

For example, if the value of the array in the position 3, 2, 0 is the same as the values in
positions 2, 2, 0 and 4, 2, 0, there are three values horizontally which contain the same
value. This will lead to ValidationComplete ticking up and the current value decided by

the loop indexes will be changed to another random value. After each run, the loops will

35

be started again from zero, to ensure that the whole board is always checked. The To-
talValidationSwaps global variable is here for debug purposes, so during testing it can be
seen how many changes had to be made to the grid before arriving at the final array.

After the array passes through the loops with ValidationComplete staying at 0, the game
is ready to start with the current board and the Validation loop is stopped. The directions
of all Shape objects are set to corresponding values in the array. The offsets in the logic
convert the pixelwise position of each Shape into an array. For example, the Shape that
resides in the 1, 1 position of the grid is actually in the position 80, 112 of the frame, with
the origin being the 0, 0 pixel of the Shape. So, if 32 is divided from 80 and 64 from 112
and both of these are divided by 48, resulting in the position 1, 1, 0 in the array, and its
value will be assigned to the direction value of the Shape.

After this, the group “Show Board” (Figure 22) is activated, which will make the Shapes

visible on the board.

ﬂ Show Board

¢« 0On group activation
17 ' (Shape) : Spread value 0 in ID

‘-'%[: Set ShowGameboard to 0

« 0n group activation
18| * ShowGameboard = 0

% : Activate group "Animation”

¢ New condition

J Animation

ID of ' (Shape) = ShowGameboard
' (Shape) : Reappear

¢ ShowGameboard < 63
22 %}, : Add 1 to ShowGameboard

¢ ShowGameboard = 64
33 Only one action when event loops

{% 1 Activate group "Board”

Figure 22. Show Board and Animation event groups.

This code will spread value 0 in the ID attribute of the Shape objects, giving them the IDs
from 0 to 63 starting from the bottom right corner. The game board will be displayed by
running the ShowGameboard global variable from 0 to 64. When the ID of a Shape

matches the value of ShowGameboard, the Shape appears. All Shapes are set to be invis-
ible in the start. After all Shapes are visible, the group “Board” (Figure 23) will be acti-
vated, and the game logic will be started.

ﬂ Board

« On group activation
% : Deactivate group "Show Board”

(Advanced Game Board) : Import actives for board: . (Shape)

' (Shape) : Set CurrentX to FindXfromFiced(" (Advanced Game Board)", Fxed(" . (Shape)”))
26 ' (Shape) : Set CurrentY to FindYfromFxed(" (Advanced Game Board)", Fixed(" ' (Shape)" 1)

% : Activate group "show current shape color”

% : Activate group "Board movement”
(% : Activate group "Search for connected bricks regularty”
{% : Activate group "Logic for matching”

« On group activation

2z % : Start loop "GetColor” XSize(" (Advanced Game Board)") * YSize(" (Advanced Game Board)") times

s On loop "GetColor”
28| ID of . (Shape) = LoopIndex("GetColor")

(Advanced Game Board) : Set brick at CurrentX(" . (Shape)"), CurrentY(" . (Shape)") to type: Dir(" . (Shape)”)

Figure 23. Board event.
Board

While activating the group Board, the group Show Board will simultaneously be turned
off. First, the object Shape will be imported as the “active” for the Advanced Game Board,
telling Advanced Game Board that the game is played through the Shape objects.

After this the CurrentX and CurrentY values of all Shapes are set through looking up their
position according to the Advanced Game Board. The groups with game logic that can

potentially disrupt with the game before it starts are turned on.

The loop “GetColor” is ran 64 times, from 0 to 63. For each brick, the brick type for
Advanced Game Board is looked up from the direction value of each Shape. This is where
CurrentX and CurrentY are required, without them the location that is wanted to be set
could not be passed. The brick type must always be the same as the direction value of the

Shape on top of it at each given point.

Now the game board has been initialized, and it is possible to start creating gameplay.

37

4.3.5 Selection of objects for swapping
First object

This step is very simple. Clicking on an object while the flag in MouseMarker is off trig-
gers the event, with the MouseMarker flag signaling whether the MouseMarker currently
exists on the board. The MouseMarker is initialized outside the game board, with this
event moving it on top of the chosen Shape, with also adapting the OverX and OverY
values from the CurrentX and CurrentY values of the Shape. The flag is also turned on to
prevent this code from executing every time (Figure 24).

ﬂ Place first marker

+ User clicks with left button on . (Shape)
(MouseMarker): Flag 0 is off
(MouseMarker) : Set Flag 0 on
(MouseMarker) : Set position at (0,0) from . (Shape)
(MouseMarker) : Set OverX to Current¥(" ' (Shape)")
(MouseMarker) : Set OverY to CurrentY(" . (Shape)")

31

Figure 24. Placing first marker.
Selection of the second object

Whenever the flag in MouseMarker is on, the SelectedMarker object starts being locked

to whichever Shape is currently hovered by the mouse cursor (Figure 25).

« Mouse pointer is over . (Shape)
. (MouseMarker): Flag 0 is on
(SelectedMarker) : Set position 3t (0,0) from i (Shape)

Figure 25. Displaying the marker at the location of the cursor.

Whenever the user clicks on another Shape with the SelectedMarker enabled, the distance
of the origin points of MouseMarker and SelectedMarker is calculated with the formula
of distance between two points. If this is more than 48 pixels, the SelectedMarker is not
on top of an adjacent Shape to MouseMarker. In this case, the selection will be transferred

to the newly clicked Shape instead of initiating a swap (Figure 26).

e User clicks with left button on . (Shape)
(MouseMarker): Flag 0 is on
+ Sgr{{ x(" (MouseMarker)") - X[" (SelectedMarker)”)}) pow 2 + ([Y[" (MouseMarker)") - ¥({ " (SelectedMarker)”)}) pow 2) = 48
(MouseMarker) : Set position at (0,0) from . (Shape)
(MouseMarker) : Set OverY to Currenty(" . (Shape)")
(MouseMarker) : Set OverX to CurrentX(" . (Shape)")

Figure 26. Changing the selection.

Figure 27 is the event that is initiated when the distance is less than 48 pixels, as in the
SelectedMarker is on an adjacent Shape to the MouseMarker. The clicked Shape is chosen
as the one the action is acted upon. The brick types of the chosen game board positions
are swapped. The actual changing of the directions of the Shapes is done elsewhere in the
code. After this MouseMarker flag is set off again and the marker objects are transferred
outside the screen. In the prototype, an Active object was used to set a flag that is used
with checking if the move results in matches. After this a loop is started that checks the
board for each match type and triggers marking of matched bricks (Figure 28). These

bricks are then deleted.

» User clicks with left button on . (Shape)
(MouseMarker): Flag 0 is on

+ Sar((X(" (MouseMarker)") - X[" (SelectedMarker)”)) pow 2 + (Y(" (MouseMarker)") - Y(" (SelectedMarker)” }) pow 2) <= 48
SelectedMarker) : Set position at (0,0) from . (Shape)
E Advanced Game Board) : Swap brick from OwerX(" (MouseMarker)"), OverY(" (MouseMarker)" } with CurrentX(" . (Shape)"), CurrentY(" . (Shape)")

(
(
(MouseMarker) : Set Flag 0 off
(MouseMarker) : Set pasition at (-189,18)
(SelectedMarker) : Set posttion at (-217,474)
*{\ (Active) : Set Flag 0 on

| : Start loop "loop” 6 times
B«

Advanced Game Board) : Delete marked bricks

Figure 27. Swapping adjacent bricks.

48 ‘ Loop for searching for matches

« 0On loop "loop”
E‘Eﬂ (Advanced Game Board) : Search horizontal for type LoopIndex("loop™) + 1

E‘Eﬂ (Advanced Game Board) : Search vertical for type LoopIndex(“loop™) + 1

49

Figure 28. Loop for match searching.

Also note that if the player clicks on the first selected Shape again, this brick will swap

with itself, resulting in cancelling the selection.

Checking for move legality

39

A swap should only be final if it results in matches in the game board. In the prototype,

simple events are used to check this (Figure 29).

39| Legal move

. }la (Active): Flag 0 is on
40 | + CountTotall " E (Advanced Game Board)") < 64
.| (Active) : Set Fiag 0 off

41 | « New condition

ﬂ Illegal move

. *a (Active): Flag 0 is on

+ CountTotall " E (Advanced Game Board)") = 64
E (Advanced Game Board) : Undo swap (swap again)
*.| (Active) : Set Flag 0 off

43

Figure 29. Move legality test.

The Active flag is used to check whether the check is ongoing. After each swap, either of
these events will trigger based on how many bricks exist on the game board. If this num-
ber is 64, it means that no match occurred, and the swap must be undone. This will be
done in an instant in the prototype, resulting in that visibly nothing happens but the mark-

ers go away.
4.3.6 Deleting matched bricks

The previous loop is not enough to mark the bricks, it just triggers the condition “On
found connected” which does this. It also sets the Timer to 10 to ensure that some other
events do not run while connections are being made. The “On found brick” event is also

triggered, in the prototype simply adding 50 points to the player’s score (Figure 30).

. E (Advanced Game Board): On found connected
E (Timer) : Set Counter to 10
E (Advanced Game Board) : Loop through found bricks
EEE (Advanced Garme Board) : Mark all found bricks as used

. E (Advanced Game Board): On found brick
L’-f'ff—' (Counter_Score) : Add 50 to Counter

Figure 30. On found connected and on found brick conditions.

Dropping bricks down

The Gravity function of the Advanced Game Board object will deal with dropping the
brick type downwards whenever there are deleted bricks (Figure 31). It will only do any-
thing if there are bricks with the type 0 on the board, working as one would think. A delay
condition is added to make the movement a bit slower, as it would trigger every frame

otherwise.

« Every 00"-11
E (Advanced Game Board) : Gravity: Drop bricks 1 slot down

Figure 31. Gravity in Advanced Game Board.

Adding new bricks to the top

The loop “add” is ran often to ensure that whenever everything possible has fallen, new
bricks will be generated to the top which will also fall downwards until there are 64 bricks
on the game board. This will simply go through the topmost line in the game board, mak-
ing their brick type a random value from 1 to 6 if their brick type is 0, as in they do not
exist (Figure 32).

« Every 00"-11

e @ (Timer) = 0
% : Start loop "add" 8 times

e Onloop "add”
64 | * BrickAt(" (Advanced Game Board)”, LoopIndex("add™), 0) =0

(Advanced Game Board) : Set brick at LoopIndex(“add"), 0 to type: Random(6) + 1

Figure 32. Adding new bricks.

Updating the game board

All the previous events would be meaningless without this logic. All the Advanced Game
Board does is move the brick type values around, it must be made sure that each Shape
corresponds to the brick type currently in its position. This will simply activate for each
Shape every frame to read the current brick type value in the Shape’s position and set its
direction to that value. The color is also set to the same value so in debugging it can be

made sure that each Shape is always representing the correct brick type (Figure 33).

41

« Always
- (Shape) : Set Color to BrickAt{ " E (Advanced Game Board)”, CurrentX(" ' (Shape)"), CurrentyY(" ' (Shape)")})

. (Shape) : Set direction to BrickaAt(" - (Advanced Game Board)", CurrentX(" . (Shape)"), CurrentY(" . (Shape)")})

Figure 33. Updating the Shapes according to the game state.

This concludes the development of the Fusion prototype.

5 FURTHER DEVELOPMENT FROM A PROTOTYPE

After the prototypes were finished, one of them was chosen for further development to
make it resemble more of a finished game. The Fusion prototype was chosen because of
the time that was invested into the engine and a will to find out more about its weaknesses
and strengths.

Multiple things in the prototype were adjusted, added or remade, and the audiovisual de-

sign was created, along with the user interfaces and the necessary menus.
The list of things that were done is the following:

- Added main menu, pause menu and local leaderboards

- Two game modes, one of which is endless until the player runs out of moves and
one is timed

- Improved game logic and a scoring system

- Graphics and sound design along with an ability to turn the sounds off

All the screenshots will be from the finished version, but during development the graphics
were the last thing to be developed. Very simple placeholder graphics were used before

that. Figure 34 displays the Storyboard of the finished game.

Title : Title
Password :

P« =+ B 640 by 480

Title : Gameplay
:t: Password :
I «|/F» B 640 by 480

(S ais | Title : Pause Menu
EEn Password :
EEX

[«/p» B 400 by 400

Title : HighscoreTimed
Password :
= |[F« |} » E 640 by 480

Title : Name Input
Password :

[« F» B 540 by 480
Title : HighscoreMormal

Password :
= |[p«)+ E 640 by 480

Figure 34. The storyboard editor view of the game, showing the frames the game moves

L
Py

between.

43

5.1 List of new global variables

Table 8. List of new global variables.

GameMode

Determines the game mode. A global string.

ScoreMultiplier

Used in the scoring system. Bigger combo increases
multiplier a