

Tiia Rautavesi

Test automation as a part of agile
software development

Metropolia University of Applied Sciences

Bachelor of Engineering

Information and communications technology

Bachelor’s Thesis

10 May 2019

 Abstract

Author
Title

Number of Pages
Date

Tiia Rautavesi
Test automation as a part of agile software development

36 pages + 1 appendix
10 May 2019

Degree Bachelor of Engineering

Degree Programme Information and Communications Technology

Professional Major Media technology

Instructors

Jussi Latvaniemi, Project Manager
Aarne Klemetti, Researching Lecturer

This research project was a case study about implementing test automation as a part of
agile software development to the client’s software testing processes. The main research
problem was to find the necessary improvements for the testing process to make it more
efficient and optimized by test automation in sustainable way.

This thesis inspects the differences and benefits of test management tools in Waterfall and
Agile software development models and used the collected information for creating the
best possible test process for the client.

This thesis aimed to find the best test automation framework and test environment for the
client to use for test automation. The client needs a test automation framework that is easy
to use and can be used for modular testing. It also has to be free and based on open-
source.

The structure of the new test process is mainly based on Agile model and its principles
about involving the customer and end user. The test process is updated by adding docu-
mentation about user stories and technical requirements. This documentation will work as
the basis for test automation. Robot Framework was selected as the test automation fra-
mework, because it supports modularity and is easy to use.

The new testing process that we recommend is built around user’s needs. Test automation
will create a more reliable, faster and repeatable test process. Robot Framework will ease
out the process of collecting test data as it provides tools for creating detailed test reports.

Keywords Test Automation, Robot Framework, Agile, Software devel-
opment, Software Testing, Test Management

 Tiivistelmä

Tekijä
Otsikko

Sivumäärä
Aika

Tiia Rautavesi
Testiautomaatio osana ketterää ohjelmistokehitystä

36 sivua + 1 liite
10.5.2019

Tutkinto insinööri (AMK)

Tutkinto-ohjelma tieto- ja viestintätekniikka

Ammatillinen pääaine mediatekniikka

Ohjaajat

projektipäällikkö Jussi Latvaniemi
tutkijaopettaja Aarne Klemetti

Insinöörityössä tutkittiin testiautomaation sisällytystä ja ylläpitämistä osana asiakkaan ket-
terää ohjelmistokehitystä. Lähtötilanteessa asiakkaalla ei ollut vielä testiautomaatiota sisäl-
lytettynä prosesseissaan ja ohjelmistotestaus oli hajanaista. Tutkimusongelma oli asiak-
kaan ohjelmistotestauksen jäsentäminen ja parantaminen ja testiautomaation sisällyttämi-
nen yrityksen prosesseihin ketterästi ja kestävästi.

Työssä tutkittiin ja vertailtiin vesiputousmallin ja ketterän kehityksen (agile) mallin tarjoamia
periaatteita ohjelmistotestauksen näkökulmasta. Näihin menetelmiin ja niiden esittämiin
testausmalleihin pohjautuen asiakkaalle luotiin uusi testiprosessimalli, johon sisällytettiin
tarvittavat työvaiheet ja perustiedot menestyksekkään testiprosessin täytäntöön panemi-
seksi.

Työssä perehdyttiin testiautomaatioon myös yleisemmin, mutta pääosin tapauskohtaisesti,
asiakkaan näkökulmasta. Asiakkaan tarpeisiin etsittiin parasta mahdollista testiautomaa-
tiokehystä. Tärkeimmät vaatimukset valittavalle ojelmistokehykselle olivat modulaarisen
testauksen tukeminen ja helppokäyttöisyys. Sen tuli myös olla ilmainen ja avoimeen läh-
dekoodiin perustuva.

Tulokset testiprosessin uudistamisen kannalta pohjautuivat pitkälti ketterän kehityksen
malliin ja sen periaatteisiin asiakkaan ja loppukäyttäjän huomioimisen näkökulmasta. Asi-
akkaan prosessien aiemman tilanteen perusteella niihin oli sisällytettävä aiempaa enem-
män kommunikaatiota ja dokumentaatiota asiakkaan tarpeista. Testidokumentaatiota pai-
notettiin lähinnä käyttäjätarinoiden luomiseen ja teknisten vaatimusten luomiseen niiden
pohjalta. Tämä projektin tai sprintin alussa luotu dokumentaatio taas toimii alustana tuote-
kehitykselle ja testiautomaatiolle. Testiautomaatio luodaan RobotLab-ympäristössä Robot
Framework -ohjelmistokehystä käyttäen. Robot Framework valittiin testiautomaatiokehyk-
seksi, koska se tukee modulaarisuutta todella hyvin ja se on helppo ottaa käyttöön varsin-
kin RobotLabin kanssa. RobotLab mahdollistaa testien luomisen ja jakamisen selkeässä
muodossa, ja testit voi paketoida ja jakaa linkin avulla muille tiimin jäsenille, jotka voivat
ajaa testejä ilman RobotLabin lataamista.

Insinöörityönä tehty uusi testiprosessi ottaa asiakkaan tarpeet paremmin huomioon kuin
aiempi. Testaaminen on myös luotettavampaa, nopeampaa ja helpommin toistettavaa tes-
tiautomaation sisällytyksen ansiosta. Testidataa on huomattavasti entistä helpompaa kerä-
tä, sillä Robot Framework tuottaa yksityiskohtaisia raportteja testeistä.

Avainsanat testiautomaatio, Robot Framework, ketterä kehitys, agile, oh-
jelmistokehitys, ohjelmistotestaus

Contents

List of Abbreviations

1 Introduction 1

2 Structured testing 3

2.1 Differences and benefits of Waterfall model and Agile model in software
testing 4

2.1.1 Waterfall model in software testing 5
2.1.2 Agile testing 8

2.2 Standardizing the client’s test processes 10
2.3 About test automation 11
2.4 Choosing the test automation framework and test environment 12
2.5 Test documentation 16

3 Implementing test automation 17

3.1 Setting up test automation environment 18
3.2 Smart test automation for evolving web software 20
3.3 Test automation in the client’s software platform service environment 21
3.4 Test automation in the end user environment 24
3.5 Reports and reactions (what happens when there is a bug) 28
3.6 Maintainability and documentation 28

4 Results 29

4.1 The most practical test process for the client 30
4.2 Impacts of test automation in testing processes 32
4.3 Sustaining structured testing in Agile environment 33

5 Discussion 34

5.1 Pitfalls and ideas for further development 35
5.2 Conclusion 36

References 37

Appendix 1: TESTING INSTRUCTIONS 1

List of Abbreviations

Static testing Testing a static software draft that is not produced yet

Dynamic testing Testing a software product that has been developed

White box testing Testing a software product without without insight to the

code

Black box testing Testing a software product with background knowledge of

the code or access to inspect the code

Test case Entity of information about test inputs, conditions and

expected results of the test

Test suite Combination of test cases that are run one after another,

usually in the same order each time

DSL Domain Specific Language

HTML Hypertext Markup Language

CSS Cascading Style Sheets

JavaScript Programming language that is commonly used in web

environments

GitHub Online platform for hosting software and for version control

Repository A data structure for storing software files or directories and

their metadata

Jupyter Notebook Web application for creating and sharing live code. In this

thesis it’s the basis for JupyterLab which is the basis for

RobotLab.

RobotLab JupyterLab with Robot kernell installed. Used as a graphical

user interface for Robot Framework.

SaaS Software as a Service

 1

1 Introduction

This research project is a case study about creating efficient and maintainable test

processes for the most common test cases of the client. It aims to optimize the existing

and the new test processes by implementing test automation in the most usable and

agile way possible. The project proposes clear instructions and useful technical tools

that help to keep the testing structured. With the help of these tools the members of the

company can use and maintain the test processes independently in the future.

The research and technical execution was ordered by a small Finnish IT-company. The

client company focuses on creating tailored e-learning solutions for customers in

multiple business fields. Their company has mainly grown around a software

application, which offers the customers a chance to create and edit their own e-learning

modules. Currently there are over 100 active modules that have dependencies to this

software, which means over 100 modules that must be tested each time a major

change is implemented to the main software.

The client selected this topic due to the unstructured nature of the current software

testing processes. Currently most tests are unstructured and minimally instructed and

documented. They are manual tests that are performed after building the software,

which could be described as the most expensive way to test a software product. It is

expensive, because the product does not get verified and validated continuously, but

instead only after the development phase. Therefore, if the test results show that the

developed product can not be verified to match the requirements, the time and price of

development can be doubled. Moreover, the tests are often performed by testers who

are not familiar with the requirements and therefore the testers can produce more bug

reports by mistaking features to bugs and elongate the development process that way.

This research project aspires to find the tools that the client needs for increasing the

tests’ reliability and effectiveness, increasing quality of service delivery and decreasing

the testing costs. The study also inspects ways to increase the test documentation and,

by reflecting the found options to the client specific situation, tries to find the optional

test documentation standard. Besides confirming that the final product matches the

requirements, successful testing includes generating test data that can lead to

 2

improvements in both usability and technical execution of the end product. The test

data is extremely important when a bug is found, to see when was the last time and

what the software environment was like when the feature worked and the bug did not

exist.

As a method to find a solution for the previously stated problems and needs, we

decided to research implementation of test automation in the client company. The

popularity of test automation is based on its efficiency, repeatability, speed and

affordability. Test automation offers convenient features for documenting requirements,

test plans, test results and more specific test data. In the present day test automation

relies quite heavily on writing test scripts manually and it has to be maintained and

updated manually as the software keeps evolving. In this research project we tackle

this issue with modular approach to automated testing, that ensures that the tests are

reusable and effortless to execute and update when needed.

The question this research project is trying to answer is the following:

● What kind of test process is the best for the client, how can it be optimized by

test automation and how will it be maintained in agile software development

environment?

This question combines the three main research areas. First is finding the right test

theory and process for the client’s specific needs. Methods of the researching this are

are theoretical, such as research of the client’s specific problems and finding solutions

by comparing different testing models and test automation tools. Second area –test

automation is researched for concretical, technical point of view and tailored to test the

current software product. This are demands knowledge of the product and research

methods such as interviews of the development team and studying the software

structure, in both code and architectural sides, are very important. Third area is the

implementation and maintenance of the test process and test automation tools.

The results of this change in test processes can be analysed by measuring uptime of

the software, amount of bug reports from the customers and money saved on testing

costs by reduction of time it takes to test a certain piece of software. Customer

 3

satisfaction can be measured by literal feedback that can be collected with surveys or

conversations.

2 Structured testing

First method for finding the best test process was inspecting different structured testing

models. We inspected multiple models for structured testing and test management in

software development environments. These models provided essential information and

tools for creating regulated test environment for the testers and other members of the

development team. This chapter takes a look at the most common testing models and

reflects the client’s processes on them. The goal is to find a framework that could

provide a base structure for stable and efficient testing processes that benefits the

client’s needs.

In this project it was necessary to pay attention to the communication between different

roles within the production team. Even though Agile Manifesto (1) talks against

documentation, it can be very important depending on the test case. Verbal sharing of

requirements and test results can be enough for the most minor features, but in large

projects the lack of documentation can lead to problems. Testers have to return data to

the production, so that the product can be improved, and possible imperfections can be

fixed. The documentation of the tests and test results does not need to be strictly

formatted or excessive, but there has to be communication about the problems or

improvement ideas that come up during the testing. It is also important to keep track on

when a bug did or did not exsist. Another point of view includes adding documentation

in the inception of the project by creating requirements that can be referred while

development and testing.

The client has multiple situations in their development processes where testing is well

integrated already, and this projects seeks to create further structure to these testing

scenarios and improve the test process by adding test automation as an important tool,

that can reduce work hours spent on testing. At very least it helps these work hours to

be used for increasing the quality by going into details more than previously.

 4

There are several ways to test a software product. When evaluating whether or not the

software meets the requirements specifications, two measures used are verification

and validation. According to SQA’s material about verification and vlidation, validation

answers to the question: ”Are we building the right product?” and verification to the

question: ”Are we building the product right?” (2). One of the main tools for validation is

static testing, which means testing a product without running the program. It is a way

for finding what the user actually needs and figuring out how the product could be

improved to match these needs more than before. Static testing is often used for

testing the usability of the product. The Guru99’s article Static and dynamic testing

explains that dynamic testing involves running the program and it can for example be

used for acceptance testing. In practice acceptance testing can involve inspecting the

entire system on weather it meets the requirements or not (3). Dynamic testing can be

divided in black box testing and white box testing. Described by the Software Testing

Fundamentals black box testing means that the tester is not familiar with the system

structure, such as code (4). Black box testing imitates the user’s point of view and does

not take the quality of the code in consideration. Software Testing Fundamentals

describes that white box testing in the other hand includes inspecting the code too and

observes the software from the developer’s point of view. White box testing can be

executed before the graphical user interface is ready, as it focuses mainly on structural

and functional aspects of the software (5).

2.1 Differences and benefits of Waterfall model and Agile model in software testing

In the present day software development is mainly based either on traditional Waterfall

model or more modern Agile model. Both of these serve well in certain projects, but as

the technical development keeps only getting faster it is easy to see the benefits of

Agile development methods. This chapter goes through the differences and benefits of

these models and how they approach and include testing. These results will be

reflected with the client’s development environment and they will help to determine the

final test processes that will be created in this project. The selected changes to the test

process should improve the efficiency of the development process by the

implementation of better tools for documentation, communication and validation of the

user’s needs.

 5

2.1.1 Waterfall model in software testing

Traditionally software development follows the waterfall model that the figure 1 descri-

bes. This model dates back to developing concretical products, such as hardware rat-

her than software products. Waterfall model sets a phase for each activity that is nee-

ded to complete the software development project. This model suggests the product to

be ready before testing takes action. According to the Oxagile’s article Waterfall Soft-

ware Development Model (6) test phase mainly includes dynamic black box testing that

is targeted to find bugs in a working system. Similarly to the client’s current test pro-

cess, the Waterfall model’s testing phase does not focus on validation of the product

nor to the user’s perspective. The discovered bugs are then reported and fixed before

product delivery.

Figure 1. Waterfall model according to Fundamentals of software testing (7).

This model is rather problematic in testing point of view, because the waterfall model

does not describe the phase where users execute a static test for the product and find

out whether the product actually fixes their problems or not. Moreover, there is a risk

that the requirements are not clear enough and the developers misinterpret and end up

creating something else than was originally asked for. Mainly this issue is avoided with

strict, formal and time consuming documentation. Often in a Waterfall project the do-

cumentation and development stages are time consuming because they are so speci-

 6

fic. During that time changes for the requirements might come up from the customer’s

side. According to Testing Exellence’s Waterfall model, this kind of changes can break

up the entire development process (8) as the requirement specifications in the begin-

ning are fundamental for the entire software architecture.

In waterfall model the software testing process can be extended to the V-model that is

displayed by figure 2. V-model is a project management model that is designed to gui-

de the production team throughout the entire development process from the idea to the

finished product from the test management point of view. Unlike the figure 1 and Wa-

terfall model suggest, in V-model testing also includes static testing in the beginning of

the process when the requirements are discovered and then set. This will be followed

by the official testing phase that figure 1 describes too; dynamic testing in the very end

of the development process. This phase is inspecting weather or not the product is

what was asked for and all the requirements are met. But just like the waterfall model,

V-model does not provide much detail nor tools to what happens in the depths of the V:

in the production. This is what V-model gets criticized the most about.

 7

Figure 2. The general V-model according to Software Testing Foundations (9).

V-model introduces an enormous improvement to the closed and strict dynamics of the

waterfall model. It brings conversation and mutual understanding between the custo-

mer and the developer as well as including the user to the production process. Even

after all these efforts the user’s needs are only taken in consideration in the beginning

and therefore changes in circumstances are hard to implement. V-model is also strictly

conservative about test documentation which can be beneficial in legal situations, when

the product is massive and collects private data (etc. bank application). Creating test

documentation is time consuming and therefore it is not recommendable for smaller

projects in the scale that V-model introduces it.

The client of this project will definitely be able to benefit from the ideology behind the V-

model, which happens to be very similar to the ideology of Scrum development model.

Importance of user’s impact, communication, verification and validation are all there,

only the cycle length and amount of documentation are vastly different. Implementation

of better tools for documentation, communication and verification of the user’s needs

should improve the efficiency of the development process. Static usability testing is

 8

highly important way for finding and defining the user’s needs and it should definitely

be implemented as a part of the test processes in the client company.

2.1.2 Agile testing

Agile software development is based on development cycles and continuous improve-

ment. According to Software Testing Foundations Agile production process is all about

including the customer to the production process and this means including them also in

the testing in an early stage of product development (9). Frequent tests performed by

the customer and user make sure that what the programmers and designers are buil-

ding exactly what is needed. These tests could and, in most cases, should be perfor-

med also as static testing. The reality of the matter is that most customers are more

likely to be capable of expressing their wants and needs specifically and directly with a

touching surface to the first glimpse of what is being created.

QA Lab illustrates their Agile test process as displayed in figure 3 (11). It is an accurate

and detailed description of Agile development process and how testing is taken in con-

sideration in all phases but mainly executed in the “software build” sections. The visu-

alized methodology and way of thinking about testing as an entity would be possible to

customize to serve the client’s needs. This workflow is already quite descriptive of how

the development projects work, so it can be implemented with the current resources.

More about resources and implementation

 9

Figure 3. Description of Agile testing process (11).

On the left hand side, in the “inception” section, figure 3 states that user stories and

requirements need to be realized and test plan should be created based on these. For

this process model it is important to provide tools for the client to be able to create a

user story, requirement understanding document and test plan. All of these are consi-

derably new concepts for the client, but necessary to get familiar with. We feel that the

customers and users are interested in the product quality and will be available for con-

sulting about the user stories and requirements. If they are not willing to work together

for some reason, the development team will arrange user experience testing internally

and create user stories and requirements, that can be validated by the customer after-

wards.

By executing the tests in production and detecting the mistakes and bugs in the deve-

lopment phase they can be fixed more time and cost efficiently. This requires continuo-

us, committed testing throughout the product development. Test driven programming

simply means writing the automated test before or during programming the function to

be tested. According to Software Testing Foundations (9) this method allows testers to

work in a way that the test in fact, gets tested by the program instead of the traditional

way of programming a function and then testing it out. The process of writing out the

test before the function allows the programmer to have a moment to determine what

the requirements for the new function are in practice.

 10

2.2 Standardizing the client’s test processes

To implement test automation to the test environment it is necessary to create structure

for the test processes. Creating a test process that is clear, where everyone has a spe-

cific role and that is easy to execute as a routine practice is very important to run the

testing rapidly. The current test process does not define roles or rutines very cleary in

the client company at the moment. This chapter looks into tailored tools for updating

the client’s test process.

There are a few general test cases documented in the Test Document (Appendix 1).

The instructions stated in the test document are more like reminders for general tes-

ting, not really directing the tester. As seen in Appendix 1 some of the directions are

not even tests. Most of them do not help the tester, because they are not telling what

the desired outcome of the test actually is. The documentation of requirements for the

test objects are usually completely missing. The requirements can only be accessed by

directly asking the account manager, customer or a development team member who

has knowledge of the requirements. The Test Document (Appendix 1) is also targeted

to the software developers. Referring to Montvelisky’s article Why developers are poor

testers and what can be done about it (12), developers are not supposed to be the only

testers especially not when it comes to their self written program. Developers should be

sure that what they have made works, but they can not be the people performing all

tests and especially not the acceptance tests.

We decided to create simple and quick processes in a check list form to guide different

kinds of testers within variety of test cases. Figure 4 displays a component test with the

most basic testing steps in development component test case. It also demonstrates

how the steps can be crossed over. We collected these test process instructions into a

new website called Test Docs. The core purpose of this website is to give clear instruc-

tions to the testers in a place that is easy to find and use. Figure 4 is a screen capture

of Test Docs. It also going to includes other results of this research project, such as

general instructions for test automation, installation, documentation of requirements

and basics of test theory. The website was slightly inspired by Test Document (Appen-

dix 1) and other undocumented test processes that were already used by the client.

The previous test processes affected the categorizing of the test cases.

 11

Figure 4. Sample of a component test task list from Test Docs website.

Second motive for building this website is to instruct the client how to implement and

use test automation to make these processes easier, faster and nicer to execute. There

is also a page for the test developers and test specialists that includes all documentati-

on of test automation with the tools used in this project. In addition to installation opti-

ons and intructions the page includes tips and best practices for when the automated

tests have to be updated or a new test has to be created. It also introduces the minor

changes that were made to the production environment structure in order to make the

test automation work in desired way.

Third motive is to help the development team members to understand the test results

of automated tests and react to them. Test automation does not really fix anything on

its own, so it is important to get the test data out and then direct it to someone who can

respond to it by fixing the bug. Read moreore about this topic in 4.3 reports and reac-

tions.

2.3 About test automation

Test automation is a beneficial asset to perform continuous and fast testing within a

reasonable budget. Meyers, Sandler and Badgett stand in their book The Art of Softwa-

 12

re Testing (10) that automated testing is more reliable than manual testing approaches.

Manual testing is seen as necessary for certain problems, but also as a threat for the

targeted production time as “it may itself introduce bugs”. Therefore it can be stated

that test automation improves the efficiency and repeatability of testing in unbiased

perspective. Test automation is popular, not only for bringing down the testing costs by

working fast and with minimal human supervision, but also for improving the uptime of

the service by detecting the bugs early and fast. Test automation data can be also

used to improve the service uptime, since it helps to find the software environment that

was still working and that information can be used to detect the possible causes of the

bug.

More specifically the client is interested in GUI testing that stands for Graphical User

Interface testing. GUI testing focuses on how the software is performing in the user

interface level or as a whole, not really taken deeper level functionality in consideration.

Fundamentally it checks that the application is running, and does not care how it is

running. Partly it is chosen because it is realistic to execute in the limitations of the

budget and resources that are available for this project, but it also offers the kind of

stabilizing functionality the client is looking for.

Test automation and GUI testing are good solutions for the client, because the client’s

business model includes technical support of hundreds more or less similarly structu-

red e-learning modules. The functionalities of these modules are based on the base

software service’s features that is used for building the e-learning modules like the figu-

re 7 describes. When there is a system update to the platform all these modules have

to be inspected carefully, since some of them could have fatal impacts caused by the

update and the client naturally has to ensure steady service level to its customers.

2.4 Choosing the test automation framework and test environment

The client firm is rather small and does not want to invest in an expensive test automa-

tion solution. Looking for open source alternatives for test automation there are not

much options, since it is a competitive business at the moment. The client needs a tool

that is easy to use and maintain, even for people who are not programmers for their

profession. Even if the test cases has to be written and edited by programmers, it

 13

should be possible to execute the tests for a non-programmer. Also it is important to

receive readable reports in a pleasant form that does not feel overwhelming like for

example a continuous stream of emails might feel.

Robot Framework has a very good reputation as a free, powerful and flexible test au-

tomation tool and it fulfills the customer’s needs. It is built on Selenium and based on

Python, but the user will use Robot Framework’s own domain specific language (DSL)

for writing tests. This DSL is experienced either as convenient or confusing depending

on the user’s preferences.

The biggest criticism against Robot Framework is that it usually requires a complicated

installing process. This problem has been tackled with RobotLab package that is very

easy to install, but it is new and less known option and it has a very small user group. It

is also developed as an open source project by two men. This means that there is no

guarantee for continuous support for far into the future, since they are developing Ro-

botLab non commercially.

If you want to set up Robot Framework without RobotLab package, you have to take in

consideration a long list of applications, tools and settings on your computer. This will

take an hour or two, but once the process is completed, it does not need much main-

tenance. The benefit of manual installation process is that the user has more power

over the extensions and versions selected. Although, if the user is a developer who

needs specific versions of these dependencies elsewhere, the user has to remember to

keep those versions controlled. This issue can be solved with using a virtual machine.

Virtual machine is a virtual computer system that is running on top of another computer

system, Chris Hoffman describes in his article Beginner Geek: How to Create and Use

Virtual Machines (13). Virtual machines are good for keeping different environments

isolated, in this case test environment separate from development environment. It

might be a lengthy process to set up a virtual machine depending if the user is already

familiar with or not.

Other viable option for test automation is Katalon Studio that is also based on seleni-

um. Among other conveniences it offers a simple setup package with browser plug in

for recording actions. It is easier to use for people who are not comfortable with prog-

ramming and other work that demands IT knowledge (like using command prompt).

 14

Katalon Studio works quite well for what it is supposed to do, but it is advertised for no

programming test automation tool and that is not true. The user is capable to produce a

very simple test with a recording feature. However, if the test case is even a bit more

complex or needs variables or modular structure, the user gets forced into a Ja-

va/Groovy programming environment that is not necessarily bad, just not what the user

might predict. Any tester could enjoy testing with Katalon, if they enjoy programming

tests with Java/Groovy or find the recording feature to be enough for the complexity of

their tests.

As demonstrated in table 1 Katalon Studio offers basic features for a tester who does

not have much knowledge or interest in programming, or in the other end of the spect-

rum it offers remarkable freedom for a tester that really wants to program tests with

Java. Robot Framework could be seen as some kind of a midway; it does not have the

most easy to use recording tools that work entirely without code, but also you can use it

with a more readable domain-specific language (DSL), which is so easy to learn that

you do not need a programmer background to master it quickly. It is a close compari-

son between two constantly improving test automation tools.

Table 1. Comparison of Katalon Studio and Robot Framework.

Feature Katalon Studio Robot Framework

Built on Selenium Yes Yes

Free and open source Yes Yes

Easy install Yes Yes

Recording tests (without code) Yes No

Writing tests with real programming language Yes No

Writing tests with simple code with DSL No Yes

Readable test cases for non-programmer Depends Yes

Variety of clear reports Yes Yes

Feeding data Yes Yes

Custom keywords Yes Yes

Modular approach to testing No Yes

Total 81⁄2 9

 15

We decided to use Robot Framework because it is slightly more powerful than Katalon

Studio and the test cases are written in a clearer format. It also offers a modular ap-

proach for creating tests and that is convenient for the client. The client does not need

action recording functionality or Java programming, as the same test cases can be

written in Robot Framework’s DSL in a more readable way. This readability of test ca-

ses supports the earlier discovered ideology of tests being part of the communication

between developers (testers) and management.

Robot Framework offers possibilities to run tests with different softwares and devices.

Our client creates web software and therefore testing will naturally happen in a selecti-

on of different browsers. By using different Selenium drivers it is possible to run same

tests on different browsers and find out if there are any browser specific bugs. Browser

testing is one of the most automatable test cases in the client company and it is very

useful to taggle in this project. This is not really Robot Framework specific possibility,

but definitely a must-have.

As we decided to use Robot Framework new research question came up; what is the

most efficient way to use Robot Framework for creating and maintaining tests in the

client company? By researching the websites and recent events of Robot Framework

we found a remarkably useful document Robots from Jupyter (15) by Asko Soukka and

Nicholas Bollweg. It gives detailed information about writing tests with Selenium Library

and Robot Framework in JupyterLab development environment, that is basically a vi-

sual interface for developing anything and everything. They also created a package

called RobotLab (15) that includes all the tools needed for developing and deploying

tests instantly from installing forwards.

RobotLab is very easy to install and use. One of the perks is that the development en-

vironment is quite well controlled so that it is easy to share with other developers and

the program will work in any local environment. JupyterLab projects are quite easy to

share and therefore the tests created with it can be easily deployed by anyone - even a

person who never ran a test with Robot Framework before. It also offers a convenient

tool that helps the user to find and use correctly the desired Robot keywords. Especial-

ly for a new user it is very beneficial to instantly see what variables each keyword ex-

pects. The only downside to this is the inconvenient package size (400-500MB). It is of

 16

course possible to download JupyterLab and Robot Framework separately, but then

the user is required to configure JupyterLab manually.

2.5 Test documentation

Starting point for the client’s test documentation is that there is not very much test do-

cumentation. Tests are based on subjective assumptions of how things are supposed

to work. Specific test cases or expected test results are never written out. At the most,

they are spoken out loud and communicated from the management to the testers, but

often the test environment does not allow the testers to communicate directly with the

customer. This is why the management often hands the ball to the customer to execute

the acceptance testing. There should be documentation of what the requirements were

in the beginning of the project and what the test results should be at that point, but that

documentation rarely finds it way to the testers. These documents are emails and they

are not very descriptive or useful for testing purposes. Mainly this entire process is ba-

sed on verbal communication and individuals’ memories and perspectives.

Figure 3 offers a clear solution to the pre-production part of the documentation process

and quite a remarkable amount of steps for executing and documenting tests

throughout the entire project. By studying the figure we came up with a solution to the

inception level documentation.

One convenient part of Robot Framework is that it automatically creates test reports in

HTML form that is easy to read, share and save for later if needed. Major part of

the test automation process is writing out the user stories and translating them into test

cases that are written in Robot Framework’s DSL syntax.

Best way to approach this problem as a whole, would be starting to write out simple

test cases. This would benefit the client especially when performed in the beginning of

the test process. Even instructions for the developers could be formatted in a test case

form, that explains what the user is doing, what the program is doing and what is the

expected outcome. Documenting the requirements in this way would be very efficient

and radically reduce confusion and time when it comes to both; understanding the goal

of the project with minimum requirements and acceptance testing.

 17

This kinds of changes take a lot of commitment from the management. Therefore an

essential step is to provide the management with tools to create user stories and re-

quirements with the customers. These user stories can then be inspected and evalu-

ated within the client company’s development team and detailed requirements and test

cases can be written out based on them. This will offer another step to deliver these

requirements and test cases to the customer and make sure the development teams

are on the same page with the customer.

3 Implementing test automation

The goal of this chapter of the research is successful implementation of test automation

in the client company’s test processes. This chapter takes a deeper look into finding

the most efficient way to benefit from automated testing. The tools for test automation

have already been declared, but here are several big steps that needed to be taken in

consideration. First is setting up the test automation environment. This part is simple

and straightforward, but still has to be done correctly. When JupyterLab and Robot

Framework are running, it is time to dive deeper into Robot framework and modular

testing. According to Amy Reichert’s article Software testing for complex, integrated

applications? Go modular! modular testing is a “way to break down application func-

tionality into small pieces” and then reuse these pieces accordingly to the specific test

cases (16). Fortunately Robot Framework is built in a way that supports modular tes-

ting very well.

With the knowledge gathered from these parts of the research it will be time to take a

deeper look into test cases that are specific for the client’s needs. First part of the case

research is automating test processes in the software application, that is used for buil-

ding e-learning modules. Following comes the modular testing of a basic e-learning

module. That chapter looks into how modular testing can be executed with Robot Fra-

mework.

Finally we look into Reports and reactions alongside with documentation and main-

tainability. Single automatic tests created in this research are not very useful on their

own, if they can not be shared and maintained. Therefore it is important to put effort in

 18

the maintainability and documentation and give tools for the testers to keep their tests

up to date with the software to be tested.

3.1 Setting up test automation environment

After trying up few different setups of Robot Framework combined with variety of GUI

(graphical user interface) tools it turned out that there was a much easier way to do it.

By installing Robotlab, the package mentioned earlier, the user can really focus on the

testing part and not a complicated set up. This is especially good if the tester is not

familiar with programming and updating advanced user settings for their operating sys-

tem. GUI also provides testers easier ways to write and execute tests and view the test

logs and screen captures.

The user will start their effortless RobotLab installation process by visiting the following

URL: https://github.com/robots-from-jupyter/robotlab/releases (14) and choosing the

version that suits your operating system. Install it by following the instructions of the

installer, installing may take quite a while due to the inconveniently large size of the

package. After installation you can launch RobotLab by double clicking the desktop

icon. Unlike most software, RobotLab opens a new terminal/command prompt window

that displays the link to your JupyterLab page. It also opens the html file in the software

that your computer is set to automatically open html-files in. For example in a browser

or a code editor. If it does not open in a browser, copy the link from the terminal and

paste it to your preferred browser. After this you should be viewing something like figu-

re 5 presents.

 19

Figure 5. JupyterLab/RobotLab opening view

Robot Framework extension in Jupyter Notebook can be opened by clicking the icon

marked in figure 5 with red circle. The user will be instantly directed to the test suite

that contains by default one empty cell. To activate Selenium Library, user should se-

lect the first cell and at the code from Listing 1. Then this cell needs to be run by

clicking the play button that is located in the top of the window. Now Selenium Library

and Robot Framework are set and ready so the user can start adding more cells and

creating first test cases.

*** Settings ***

Library SeleniumLibrary
Suite teardown Close all browsers

Listing 1. Settings that are required to be run before any selenium keywords can be used in
tests.

A simple test case, written with Robot Framework, contains a name that is followed by

the keywords listed below. Listing 2 displays the basic syntax: selenium keyword is

followed by the variable(s), and these two have to be separated with two or more spa-

ces. This is then modified according to the functionality that each test case demands.

 20

*** Tasks ***

Open browser
Set Selenium Speed 1 seconds
Open Browser https://www.google.fi/
Capture page screenshot

Listing 2. Simple test that opens a browser and captures a screenshot.

You can find all the available keywords and specific functionalities from Robot Frame-

work user guide (20), SeleniumLibrary documentation (21) and BuiltIn documentation

(22). These documents are quite large due to the large variety of keywords. If you have

experience on Python, remember that many of the keywords are based on Python

keywords. It can ease the process of getting familiar with the DSL.

3.2 Smart test automation for evolving web software

Like one might come to expect, it is relatively simple to create an automated process

for a static environment. The challenge is to take in consideration how the test will stay

or be kept functional when the software evolves. The client’s development process can

be adjusted to compliment the previously created test automation format; similarly as

test driven programming that was mentioned earlier. Even while doing the best and

most versatile tests, they have to be adjusted if there are major changes to the applica-

tion. This chapter is about finding the best methods and processes for creating flexible

and modular test automation solutions.

The best of Robot Framework will be brought out when the tester begins to write their

own keywords, which are essentially lists of case specific actions created with Seleni-

um keywords. Robot Framework also encourages the user to create data-driven tests

and using variables for test data. This works towards tests’ reusability and makes it

easier to run multiple tests with same data. These features allow and encourage modu-

lar testing systems, which are exactly what the client needs for testing their products by

the quickest and the most convenient way possible.

Fortunately the most common test environment and the focus of this research project,

regular e-learning module, is already quite clearly sectioned. Like figure 6 displays the

client’s test processes will be targeted to compact and strictly scoped sections and the-

refore the tests can be limited to the scopes of these components. Traditionally tests

 21

need to be carried out in order like case specific testing explains. Modular testing is

targeting a situation that is very ideal from the client’s point of view: the order of the

components is trivial as the modular testing system is capable of detecting the com-

ponent type and running the test case assigned to that component.

Figure 6. Visualizing the impact of modular testing.

The modular system is also good in the sense that the tested e-learning module does

not have to “contain” all the test cases, and this is remarcable from the version control

point of view. What this actually means is that the test can be edited and updated, if

another project for example has all other same components but one extra. Then the

original test case can stay the same but one new keyword and module is added to the

test case. The updated test case can now be used to all the previous e-learning modu-

les and the new one too.

3.3 Test automation in the client’s software platform service environment

Occasionally the client also needs to test the software platform, that is used for building

these e-learning modules from the GUI perspective. One of the reasons why updating

the software is a hard and timely process is that the testing of these updates is highly

 22

time consuming and therefore expensive. Automating simple tests can open doors for

continuous delivery and smaller updates in shorter development cycles.

Figure 7 illustrates the software architecture of the client’s platform for building tailored

e-learning solutions, that is the fundamental product of the client’s business. The archi-

tecture seems logical in the picture, but the technical realisation is quite surprising in

the sense, that the GUI is built on many levels of different websites that are just nested

inside one another to look like a unified, complete web application. This is quite frustra-

ting from the testing point of view, but not unconquerable. Selenium and Robot Frame-

work have taken frame structure in consideration and it is possible to work with this

issue.

Figure 7. Client’s software structure and all the evolving components.

 23

One problem down, let’s tackle the next. The platform has a lot of moving elements,

that do not have unique identifiers. This causes excessive use of xpath for recognizing

elements and therefore it is close to impossible to create reusable test cases that could

be run whenever without human interaction directly with the application.

Modular testing would be the solution for this testing purpose too, but during the study

it turned out that it is not really possible to carry out successfully within the time restric-

tions since the software is working in multiple frames and levels and the structure is not

very consistent and the functionality is not fully repeatable. Some of the test cases can

be reused, but they have to be edited to work as desired. Listing 3 is an example of

how the software structure limits the possibilities to reuse the test cases by displaying

the parts that need to be manually edited for reusing the test case.

Open intro element
 Click element xpath://div[@id="container"]/ul/li[1]
 Select Frame class:iframe-edit

Listing 3. Example of multiframe testing. We are using the keyword “Select Frame” to move
between nested websites.

Another less significant problem is that there is also a layered structure in the frontend

that can provide the tester with a lot difficulty, in both normal use and automated tes-

ting. If a facilitator (user) wants to edit a picture they have to hover over the image and

carefully avoid the elements that are layered on top of the image and move the cursor

over a small icon in the top left corner of the image. This is very hard to do manually

too, but with automated testing it is incredibly frustrating. Listing 4 explains how it is still

possible to try to avoid the text boxes that are layered on top of the image.

Edit element image
 Select Frame class:iframe-edit
 Click Element At Coordinates class:image-wrapper -100 -110
 Click element class:imageEditorOpener
 Unselect Frame
 Click element xpath://div[@id="img-dialog"]/div[1]/a
 Select Frame id:img-library-iframe
 Click element class:lib-image
 Unselect Frame
 Click element class:insBtn

Listing 4. Test case of editing background image

 24

Because of the inconsistent multi level environment it is not really going to be worth it

to recommend GUI testing in the building platform environment as a routine tool for

most common front-end development related tasks. GUI testing can however be useful

for running specific test cases, especially when testing is related to system updates of

the platform instead of a specific e-learning module.

Other slightly further fetched use case could be robotic process automation (RPA).

Currently there are a lot of repetitive tasks that should be automated to save every-

one’s time and nerves, but that is not really what Robot Framework is made for and

more importantly it is out of this project’s scope. This subject is discussed more specifi-

cally in chapter 5.2 Ideas for further development.

3.4 Test automation in the end user environment

One of the main objectives for this research project was to create a test case that ap-

plies to all e-learning modules that are based on the most recent module template. The

aim is that this test case can be used to test large bulks of e-learning modules, as it is

so well modularized that it can be used for testing any module based on this module

template without editing. This specific test case will set the example to the tests that will

be created in the future and also be ready-to-use option for testers that are just getting

to know Robot Framework for the first time.

This automated test for all modules based on the template will have several use cases.

It can be used to test specific components in the development or system integration

test phases. It can be used for browser testing, or testing with different devices along

side with testing the responsive aspects of the GUI, such as scaling and accessibility

with all viewport sizes. With the test driven development mindset the automated test

can even be used as an acceptance test to a certain degree, as the component specific

tests include minimum requirements of those components in themselves.

In production it can be used to test a large amount of modules, when there is a system

update to the platform that is running in the background. Figure 7 also displays other

dependencies, such as external video players and browser features that may have had

changes in them since deployment and therefore it is good to run the test every now

 25

and then especially if there is a known change to the dependencies. It is highly impor-

tant to stay aware and updated about these moving factors that affect the GUI someti-

mes even fatally.

This test is structured in a reusable and modularized way that the figure 6 suggests.

Component specific tests are nested in compact, clearly named keywords, that are built

based on Selenium keywords and custom keywords that are created to make the most

repeatable tasks easy to use. These first-level custom keywords are for example

clicking a button to move to the next component or testing if it is possible to move to

the next component, when it should not be possible.

A good component test includes tests for positive and negative cases, takes all user

stories in consideration and is understandable for a team member, who has not written

it. Listing 5 describes a basic login component keyword, that is part of the created test.

It was chosen as an example since it has a large variety of different positive and nega-

tive tests and a lot of user stories compared to other more simpler components.

*** Variables ***
${FIRSTNAME} test_fname
${LASTNAME} test_lname

*** Keywords ***
Click ForwardBtn
 Click element class:ForwardBtn #Should be possible to continue

Click LoginForwardBtn
 Click element class:checkLoginBtn

No Click ForwardBtn
 Run Keyword And Expect Error Click ForwardBtn #Should not be possible

Test login
 No Click ForwardBtn #Should not be possible to continue
 Click LoginForwardBtn #All error messages should be visible
 Element Should Be Visible class:firstname-error
 Element Should Be Visible class:lastname-error
 Element Should Be Visible class:dobmonth-error
 Element Should Be Visible class:dobyear-error
 Input text id:fname ${FIRSTNAME}
 No Click ForwardBtn
 Click LoginForwardBtn #Other messages should be visible except firstname
 Element Should Not Be Visible class:firstname-error
 Element Should Be Visible class:lastname-error
 Element Should Be Visible class:dobmonth-error
 Element Should Be Visible class:dobyear-error
 Input text id:lname ${LASTNAME}
 No Click ForwardBtn
 Click LoginForwardBtn #DOB messages should be visible others should not
 Element Should Not Be Visible class:firstname-error
 Element Should Not Be Visible class:lastname-error

 26

 Element Should Be Visible class:dobmonth-error
 Element Should Be Visible class:dobyear-error
 Select From List By Value id:dob-month 05
 No Click ForwardBtn
 Click LoginForwardBtn #DOB year message should be visible others not
 Element Should Not Be Visible class:firstname-error
 Element Should Not Be Visible class:lastname-error
 Element Should Not Be Visible class:dobmonth-error
 Element Should Be Visible class:dobyear-error
 Select From List By Value id:dob-year 2001
 Click LoginForwardBtn #All error messages hidden, ForwardBtn visible
 Element Should Not Be Visible class:firstname-error
 Element Should Not Be Visible class:lastname-error
 Element Should Not Be Visible class:dobmonth-error
 Element Should Not Be Visible class:dobyear-error
 Element Should Be Visible class:ForwardBtn
 Click ForwardBtn

Listing 5. Example of a component test of login component

The main test includes a loop that inspects what component is currently visible and

runs a keyword assigned to that component. Recognizing the components turned out

to be harder than what was expected, partly because the programmers had never had

to think about test automation before in their work and had not added unique attributes

to the components. Modular GUI testing is not yet as familiar for most developers as it

should be. The takeover from this conclusion was to create more materials and tools

for developers to enhance their skills and knowledge in this field. These tools include

test examples, their introductions and documentation that can help a person who is

using Robot Framework for the very first time.

Since most of the components do not include a unique HTML attribute to inspect, there

are couple of options to approach this situation. First option is to create these unique

HTML attributes to clarify the structure for the test automation purposes. Other one was

to inspect the styling via Cascading Style Sheets (CSS), but this is a rather unpleasant

way to inspect elements with Robot Framework and in general, since CSS is not very

readable nor appealing, especially to the non-technical people. Third option suggested

was inspecting elements by the JavaScript function calls that are specific for the com-

ponent, but this is close to as unreliable as the last mentioned CSS-recognition way to

detect components. Some components use same functions with each other, but still

have differences in the GUI or other differences such as using multiple global functions.

Problem with CSS recognition is that different customers have different layouts and

therefore the CSS-styling is varying a lot between different e-learning modules. Similar-

ly to this it would be quite restrictive for the developers to not be able to change Ja-

 27

vaScript functions names or structures without editing the test. These challenges led to

a decision that each component of the module had to be assigned a global, recogniza-

ble class-attribute, that is same for each component and unique id-attribute. The new

unique id-attribute will perform as a dual feature since it is also useful in another struc-

tural task: determining the component type. Component type is used for calling com-

ponent specific functions within the building platform. Currently the component type is

not documented very efficiently either.

Listing 6 is an example of the main test. Variable ${ELEMENT_TYPE} is first defined in

the Variables shell. The main loop is detecting weather or not ${ELEMENT_TYPE} is

finish. Every e-learning module has a finish-component as the last component of the

module. This way it is possible to exit the loop when the module ends. Within the loop

we assign the ${ELEMENT_TYPE} as the unique id-attribute of the visible component.

Then follows a long list of component checks, and by comparing the ${ELE-

MENT_TYPE} variable to given page types the test selects which keyword has to be

performed.

*** Variables ***
${ELEMENT_TYPE}

*** Tasks ***
Check element

Set Selenium Speed 1 seconds
Exit For Loop If '${ELEMENT_TYPE}' == 'finish'

${ELEMENT_TYPE}= Get Element Attribute class:testable-element id
Run keyword if '${ELEMENT_TYPE}' == 'intro' Test intro
Run keyword if '${ELEMENT_TYPE}' == 'login' Test login
Run keyword if '${ELEMENT_TYPE}' == 'finish' Test finish

Listing 6. Keywords are looped through and components get detected

The id-attribute is also handy for version control. For example if there’s a new version

of login component that has new features and requirements, the same test can be used

but a new keyword with the name Test login 1.1 can be added. Appropriate id for this

component would be login1.1. Then this new case will be added to the loop and even if

the module has both of these login versions it can execute the right keywords in right

contexts.

 28

3.5 Reports and reactions (what happens when there is a bug)

Bug can occur via GUI testing either in development or in production. Executing the

tests stated in the test plan in the development environment is very important so that

bugs in the production can be minimized. All tests assigned in the inception state need

to be passed and the documentation in this case is a message related to the develop-

ment task that the tests have passed, and the product is ready to be published.

However, if a bug appears in production it is reasonable to file a bug report to the

HelpDesk. HelpDesk will reassign the bug fix task to a person who’s able to fix it.

Common situations why there might be a bug in the production is a change in the soft-

ware platform that the e-learning module is based on. Changes in the other dependen-

cies of the e-learning module, such as videos or images or changes in the browser, are

also commonly cause bugs.

3.6 Maintainability and documentation

The automated tests need to be quick and easy to create and maintain. User experien-

ce is something to take in consideration when creating these tests and expecting the

users to adapt them into their work and maintain them according to system updates.

First step towards creating clear and reusable tests was naming the custom keywords

clearly. The aim was that just by reading the name of the keyword, the tester who has a

bit of background knowledge of the components of the module could predict what that

keyrod is supposed to do. The focus is that it will be intuitive to update a component

and then update that keyword to match the update. This way there might be multiple

versions of the same test and those versions could be added to the version control that

is already practiced for the e-learning module packages.

Well performed version control is an important tool to control and develop the automa-

ted tests. The client has selected GitHub as their version control tool. Since we are

using JupyterLab (RobotLab) it is quite straight forward to save the Jupyter Notebooks

to GitHub. Changes can be updated through regular Git commits or simple drag and

drop on the web application. There are multiple ways to work with this subject and one

 29

of them is JupyterLab extension called JupyterLab-git (16). This tool allows easier ver-

sion control with the Jupyter Notebook and extends the user interface with visual versi-

on control management tool.

Sometimes test cases can be very specific to one project and in these cases, it would

be the easiest to store the test document in the project’s version management. Rule of

the thumb will be, that if the test is highly based on a generic module test and reusable

in another project as is, it should be kept in the version control of that test. However, if

the test is not reusable nor important for any other facet (e.g. project manager) in the

project, it should be moved to the version control of the project that it correlates with.

Borderline cases such as possibility that someone else wants to run the test indepen-

dently, the Jupyter Notebook should be kept in its own repository. If the tests are kept

in the project repository, they can also be exported later manually, if a need for sharing

comes up.

In addition to sharing test cases with technical testers through version control in Github,

it can be useful to share automated tests to non-technical people so that they are able

to get a link to a test case and immediately start running it independently. With Binder

tool Jupyter notebooks that are pushed to Github can be turned into interactive note-

books that can be shared, inspected and executed anywhere and with any browser.

Test suits packaged with Binder is excellent for sharing tests with other team members,

managers or even customers if needed.

4 Results

When inspecting the client’s processes, the main issue of the client’s test process was

found to be the overall lack of documentation and not consulting the customer enough

at the beginning of each project or sprint. This led to confusion in development and

testing. The tester was often not able to confirm if the product fills the requirements, as

the requirements were not clear. Acceptance testing was often performed by the cus-

tomer, which did not solve the issue of undocumented requirements, as even the cus-

tomer may have forgotten them or come up with new requirements during the deve-

lopment phase. The research implies that by creating and documenting user stories the

 30

customer could express their needs better. These user stories could be used as the

basis for user requirements which refers to the automated tests.

The research showed that test automation is quite effortless to implement technically,

but it does require very detailed description of requirements. If the automated test is

written clearly and preferably with comments, it can serve as the documentation itself.

Test automation was definitely seen as an advantage in the research when it came to

improve the testing process, as it would enable faster and more structured testing. It

turned out that modular technique for testing was very favorable when thinking of the

reusability and maintenance of the tests. Creating tests in modular form is way less of

an issue than not being able to reuse the same test case for multiple e-learning modu-

les.

The results chapter is a collection of findings and recommendations of the actions the

client should take based on the findings. The research question covers three main

areas: what the best test process is, how test automation should be implemented and

how the test process can be kept sustainable. Therefore, we sectioned the more detai-

led results in the three following chapters.

4.1 The most practical test process for the client

The final test process will include all members of the project team more dynamically

than previously. The main goal is to work together, communicate and document the

user stories and requirements in a way that enables reliable acceptance testing per-

formed by other people than the customer. This new process aims to reduce the con-

fusion between management and development when it comes to requirements, to re-

duce the time the development takes. The target is to deliver only products that were

asked for. Other benefits achieved are reduced amount of bugs detected by the custo-

mers, which leads to higher customer satisfaction and rise of security and efficiency

when it comes to testing and accepting system updates, which leads to faster deve-

lopment cycles.

Figure 8 illustrates the information flow of a software development project with heavy

focus on testing. It is based on the Agile software development process, that was pre-

 31

viously illustrated in figure 3. In figure 8 the development process is divided in ”re-

quirements”, ”sprint” and ”verification” sections with the base idea, that all these steps

are can either be followed just once in a project if it is very small, or repeated multiple

times in a larger project. The project team is divided in ”Account Manager & Customer”,

”External tester” and ”Development team”. These are the main role types that need to

deliver and receive information with each other to successfully create, test and verify

the software product.

Figure 8. The most practical test process. Deliverables are marked with green borders.

The first one of the main updates to the previous development process are adding user

stories as a major tool for the project. This documentation will have a big role as a way

for the customer to communicate the user’s needs to the development team. The user

stories will work as a base for the development team in creating the technical require-

ments in documented form, which can then be shown to the customer and verified by

 32

them. Technical requirements can be documented either with plain text, swimlane figu-

re or informal drawn description to the process flow. The form of documentation will

depend on the preference of the development team member and the scale of the featu-

re or project that the documentation is about. All of this documentation will also serve a

major role in testing, because the automated tests will be based on the requirements

and, in an extent, on the user stories too. The requirements are also very important for

manual tests, as they allow the external tester to have an insight on what the product is

supposed to do, as well as what it is not supposed to do. Previous to this project this

information was mainly communicated verbally, and sometimes lost for ever with pro-

jects that took place a long time ago or the developers of those projects left the com-

pany. This change will ease out the work of the client’s HelpDesk as they get tools to

inspect and verify the bugs found in the software and no longer mistake them to featu-

res.

The second main improvement to the development process is the implementation of

test automation. The successful execution of the automated test is one of the main

requirements for verifying that the product is working. Test automation can not be im-

plemented successfully without having the knowledge of the requirements and that is

one of the reasons why it is so important to document and validate the requirements in

the inception phase of the project. By implementing test automation the process of veri-

fying the product should get a lot faster and more reliable compared to the previous

methodology. By testing with Robot Framework it is easy to collect test data and store

accurate information of when the product was working and how exactly it was tested.

The test plan is documented very well by writing an automated test and therefore the

test it extremely repeatable.

4.2 Impacts of test automation in testing processes

Without a doubt the biggest issue that test automation is solving is testing the large

amount of e-learning modules that can now be tested by running just one script. The

time it takes to test each e-learning module manually is remarkably greater than the

time it takes to run this script. Even counting the time it takes to create and maintain

the test suite, it’s still more efficient and much more fun than manual testing. The core

software, the platform that enables building the e-learning modules, has not been up-

 33

dated as often as what would be ideal. This is due to the fear of breaking dependencies

and by that breaking all hundreds of e-learning modules with it. Automated testing of-

fers a great solution for this as when the automated testing is implemented, the chan-

ges to the base software can be done more frequently, effortlessly and it is easier to

scale up the development team.

The current development hierarchy is that the e-learning module building software is

mainly built by an external consulting company and the in-house front-end developers

only create the components that are visible for the end user of the e-learning module.

In the client’s case scaling up the development team means bringing the developers

from front-end, deeper into the software side. Test automation will make this process a

lot easier, since the manual testing will be non-existent or at least it will have a much

smaller role in the future.

It is very useful for the client to be able to use its resources for developing this platform

software faster. The customers are expecting better services continuously and it takes

a lot of effort to improve and grow in this area. It is also good for the front-end develo-

pers to be able to have more responsibility and understanding in the entire software

development process. Ideally this change will not only improve the quality of the servi-

ce but also brings transparency and mutual understanding in the development.

4.3 Sustaining structured testing in Agile environment

First tools for implementing and sustaining structured testing are basic instructions for

documenting the initial user stories, user requirements and technical requirements. In

addition to these the automated test based on these requirements will work as a more

detailed and specific version of the technical requirements. These documents need to

be done correctly. User stories are kept generic enough and focused on the users’ ac-

tual needs. They have to be able to create an entire scenario with the following data:

“As a <role or persona>, I want <goal/need> so that <why>” as Nikita Sobolev sug-

gests in his blog (23). User requirements are basically user stories written out more

specifically in a statement form and some preferences might be added as details.

Technical requirements will be written as the basis of automated test created for this

test case, in a similar format as one would write a test in Robot Framework. All of these

 34

will be stored in a REQUIREMENTS.md file in the project’s Github Repository, and can

be looked back at while developing, testing or maintaining the project in the far future

after the release.

One of the main tools for integration and sustainability was test-docs website. For de-

velopers or other black box testers it includes instructions for installing RobotLab, test

automation examples, user stories and requirements examples and best practices for

writing testable code. For all testers it includes instructions for the most common test

types, that will ofcourse not serve as well as specific requirements, but they will help to

direct the tester in the right direction.

Lastly a very important tool is automated tests version control in Github. There shall be

a Github repository created for documenting and controlling the development of the

major test suites. If there is an e-learning module that is radically different from the cur-

rent base module, it is reasonable to open a new repository or include the test suite

files to the e-learning module’s repository that this test concerns. The structure of the

repository will remain clear, when all the tests are listed inside a “tests”-folder.

5 Discussion

In its entirety the research found the following answers. The client’s test process should

be improved by creating documentation of the requirements in the beginning of the

project or sprint. The requirements should work as the basis for test automation. Test

automation will be realistic to achieve within the client company, if the requirements for

the test subject are well communicated and specific enough. The maintainability will be

achieved with trying to make the process as complementary to the previous process as

possible. The user stories are a minor, yet efficient addition to the process. Test auto-

mation on the other hand is quite major change and it will remain maintained due to the

modular way of creating the tests. The tests are reusable due to the modularity and

therefore they can be implemented to new projects without much need for changes.

 35

5.1 Pitfalls and ideas for further development

Our research was inspecting the entire development project team, but it was slightly

biased from the developer’s and tester’s view. We can not state the scale of impact this

had on the results, but if the research was to be continued, it should involve the mana-

gement of the client company more.

The research scope was focused on GUI testing and therefore unit testing was left with

minimal inspection. Unit testing was found to be an extremely useful tool for the testing

process, but it will be more timely when the client’s software structure is renewed to

more modular form and the technology will be upgraded. Future may introduce tools

such as Jest and Enzyme that both are testing tools for React JavaScript framework

(12). They can be used for unit testing and enable real test driven programming in a

scale that can not be produced with the current development environment. Hopefully

the client’s development team can start using React and test driven programming in

production soon.

Another area for improvement was that there was not enough time in the end of the

project to measure the results of the changes that the study suggests. Important mea-

surements for the performance of test automation would be calculating the bug reports

from the customers, time that it takes to test new features and time that it takes to fix

bugs with and without the suggested test documentation.

Other issue to tackle within the similar field is robotic process automation (RPA) that

means automation of common, repetitive processes. It could be used to automate the

most common tasks that are annoyingly long processes compared to how often the

developers have to execute them in their daily work. For example when React and ot-

her more modern and powerful tools are implemented as primary development tools,

Jenkins Pipeline could be introduced to ease out these processes as it is easy to au-

tomate building, testing, deploying and reporting with this tool. Jenkins Pipeline focuses

to continuous delivery which means improvement in synchronizing development team

work, and thrives in more rapid development and frequent releases.

 36

5.2 Conclusion

In conclusion the test process should be changed so, that it would involve the customer

more in the beginning and less in the end; customer should be consulted in the regard

of user stories and requirements and not in acceptance testing. Test automation is a

very beneficial tool for the client for GUI testing and acceptance testing. We recom-

mend using the test case that was created in this project for both, development and

acceptance testing. How ever, due to the technology that the development is based on,

unit testing will not be implemented as a part of this project. The automated test case

that was created in this project should remain maintainable because of its modularity.

Our approach will direct the testers to create modular and reusable tests in the future

and keep the test automation effortless by keeping up that manner. The goal for the

final outcome of the implementation of our suggestions is that the test automation will

help to create a more structured and meaningful test process for the client.

 37

References

1. Agile manifesto. 2001. https://agilemanifesto.org/

2. SQA. DH3E 35: Software Development: Structured Programming. 2010.

https://www.sqa.org.uk/e-learning/SDPL03CD/page_16.htm

3. Guru99. Static Testing vs Dynamic Testing: What's the Difference?. (Read

14.4.2019) https://www.guru99.com/static-dynamic-testing.html

4. Software Testing Fundamentals. Black box testing.

http://softwaretestingfundamentals.com/black-box-testing/

5. Software Testing Fundamentals. White box testing.

http://softwaretestingfundamentals.com/white-box-testing/

6. Waterfall Software Development Model. Oxagile. 5.2.2014.

7. Homes, Bernard. Fundamentals of software testing. Weinheim : Wiley-VCH.

2013. (p. 44)

8. Testing Excellence. Waterfall model.

https://www.testingexcellence.com/waterfall-model/

9. Spillner, Andreas; Linz, Tilo; Schaefer, Hans. Software Testing Foundations,

4th Edition. Rocky Nook. 2014.

10. Myers, Glenford J.; Sandler, Corey; Badgett, Tom. The Art of Software Testing.

2011. Publisher: John Wiley & Sons, Incorporated (p. 178)

11. QA Lab. Agile testing process. http://www.qalab.co/agile-testing-process.html

12. Montvelisky. Joel. 2016. Why Developers Are Poor Testers and What Can Be

Done About It. https://simpleprogrammer.com/developers-poor-testers-can-

done/

13. Hoffman, Chris. How-To-Geek. 2017. Beginner Geek: How to Create and Use

Virtual Machines (Read 26.03.2019)

https://www.howtogeek.com/196060/beginner-geek-how-to-create-and-use-

virtual-machines/

14. Asko Soukka. RobotLab Workshop. 2019.

https://robots-from-jupyter.github.io/RobotLab-Workshop_2019-01-16.pdf

15. Nicholas Bollweg. Asko Soukka. 2018. Robots from Jupyter.

https://github.com/robots-from-jupyter/robotlab/releases

16. https://github.com/jupyterlab/jupyterlab-git

17. https://www.oxagile.com/company/blog/the-waterfall-model/ (Read 21.1.2019)

 38

18. Myers, Glenford J.; Sandler, Corey; Badgett, Tom. The Art of Software Testing.

2011. Publisher: John Wiley & Sons, Incorporated (p. 178)

19. Reichert, Amy. TechBeacon. Software testing for complex, integrated applica-

tions? Go modular! (Read 25.03.2019) https://techbeacon.com/app-dev-

testing/software-testing-complex-integrated-applications-go-modular

20. Robot Framework. Robot Framework User Guide.

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.ht

ml

21. Robot Framework. SeleniumLibrary.

http://robotframework.org/SeleniumLibrary/SeleniumLibrary.html

22. Robot Framework. BuiltIn.

http://robotframework.org/robotframework/latest/libraries/BuiltIn.html

23. Sobolec Nikita. 2019. Engineering quide to writing correct User Stories. (Read

15.3.2019) https://sobolevn.me/2019/02/engineering-guide-to-user-stories

Appendix 1

 1 (1)

Appendix 1: TESTING INSTRUCTIONS

After a Developer has performed a correction or implemented a new element (let’s call

it here “element-X”) it is recommended to perform some basic testing.

Please, select the appropriate test cases from the list:

OK Failed 1. Create a small module, which contain at least one element before and
after element-X, in addition to Intro and Finish elements.

 2. Run the “Preview” test of all elements in the module.

 3. Test the dynamic editing functionalities, if available.

 4. Test the editing functionalities (copy&paste text in the fields, check if
special characters are allowed).

 5. If there is a video(s), test if you can remove /add / play it.

 6. Test if you can scale properly the window.

 7. Test the element tool bar (the red bar), if available

 8. In case of a Log-In element check if you can edit / remove the fields.

 9. Test if you can edit the Title and open the “Link Menu Settings”.

 10. Check if you can add / change the background picture.

 11. Check the functionality of every button in the element.

 12. Test the module with the following browsers: IE11, Chrome, Safari,
Firefox

Testing responsible: Task Id:

Project Name: Testing Date:

Other info:

