

Aino Nummikallio

Internet of Things Devices: Case
Studies on Security

Helsinki Metropolia University of Applied Sciences

Bachelor of Engineering

Information and Communication Technology

Bachelor’s Thesis

2 April 2019

 Abstract

Author
Title

Number of Pages
Date

Aino Nummikallio
Internet of Things Devices: Case Studies on Security

35 pages + 1 appendix
8 April 2019

Degree Bachelor of Engineering

Degree Programme Information and Communications Technology

Professional Major Smart Systems

Instructors

Janne Manninen, Project Manager
Kimmo Sauren, Head of Smart Systems

The purpose of this thesis is to analyze ethical hacking efforts and penetration testing of

embedded IoT devices and their relation to recommended mitigations. Embedded devices

present specific security challenges which are best mitigated during design and develop-

ment phases. Penetration testing is contextualized with current approaches to introducing

cyber security in organizations, in particular threat modeling and cyber security relevant

regulations. Similar tests were performed on a variety of devices employing the same basic

measures to demonstrate the commonly successful attacks which require minimal expertise,

and show the common vulnerabilities they exploit. The results are used to derive practical

measures for developers and management to employ during the development process to

avoid the demonstrated flaws and vulnerabilities. The measures are organized in a simple

list format which is intended to become a freely available internal resource for the client

company.

 Abstract

Keywords penetration test, cybersecurity, Tosibox, hackathon, threat

modeling, employee guide, cyber security, mitigation, em-

bedded Linux, internet of things

Contents

List of Abbreviations

1 Introduction 1

2 Organizational Security Principles and Practice 2

2.1 Organizational Risk Management 2

2.1.1 Risk Analysis 3

2.1.2 Human Resources in Cyber Security 3

2.2 Conceptual Tools 3

2.2.1 CIA & STRIDE 4

2.2.2 Threat Modeling 4

2.2.3 Hardening 7

2.2.4 Secure Design 8

3 Embedded & IoT Device Security 10

3.1 Legal and Regulatory Considerations 10

3.2 Specialized Embedded Devices 11

3.2.1 Healthcare Devices 11

3.2.2 Security and Alarm Devices 12

3.2.3 Industrial Devices 12

4 Device Threat Evaluation Tools and Methods 12

4.1 Automated scanning 12

4.2 Penetration Testing 13

4.3 Test Environment 15

4.4 TosiBox Hackathon 16

4.5 Device Test Cases 18

5 Results 18

5.1 Tosibox Hackathon Outcome 18

5.2 Embedded Gateway Results 19

5.3 UPS Results 22

5.4 UPS With New Network Card 23

6 Discussion 24

6.1 Hackathon 24

6.2 Gateway Test Case 25

6.3 UPS 26

6.4 Comparative Analysis of Cases 26

6.5 Converting Lessons Learned into Recommendations 28

6.6 Next Steps and Future Developments 28

7 Conclusion 29

References 31

Appendices

Appendix 1. General Handbook for IoT Device Security

List of Abbreviations

AEP Application Execution Platform

ARP Address Resolution Protocol

CIA Confidentiality, Integrity, Availability

CVE Common Vulnerabilities and Exposures

DoS Denial of Service

DDoS Distributed Denial of Service

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IoT Internet of Things

LoRa Long Range (Radio)

LoRaWAN Long Range (Radio) Wide Area Network

MITM Man In The Middle

MQTT Message Queueing Telemetry Transport

NIST National Institute of Standards and Technology

OS Operating System

OSINT Open Source Intelligence

RF Radio Frequency

RSA Rivest-Shamir-Adleman cryptosystem

SSH Secure Shell

STRIDE Spoofing, Tampering, Repudiation, Information Disclosure, Denial of Ser-

vice, Elevation of Privilege

TCP Transmission Control Protocol

UDP User Datagram Protocol

UPS Uninterruptible Power Supply

USB Universal Serial Bus

SSL Secure Sockets Layer

TLS Transport Layer Security

VAS Vulnerability Assessment System

VPN Virtual Private Network

Wi-Fi Radio Wireless Networking Technology Trademark

WLAN Wireless Local Area Network

WPA-2 WiFi Protected Access (version 2)

WPS WiFi Protected Setup

 1

1 Introduction

The subject of this thesis is the conversion of specific penetration test cases into em-

ployee guidance as part of security architecture on an organizational scale in an embed-

ded device oriented company. A variety of Internet of Things (IoT) devices are tested

using the same basic framework of tests to draw out common shared vulnerabilities. The

results of the penetration tests will be combined with the results of an event organized

by a customer of the client company, the “TosiHack hackathon” which was a

crowdsourced competitive penetration testing event targeting an IoT VPN gateway

(Tosibox Oy, 2018).

IoT devices are the primary focus of this thesis and the main product of the client com-

pany. They are embedded systems, devices of limited computing power and specific

functionality, with sensors or other interfaces that allow them to monitor and interact with

their environment without human intervention. These devices are then interconnected

into a network and to the general Internet, where they operate in co-operation with both

human users and other machines. (Smith, 2017)

The results of the penetration tests are analyzed in order to establish general mitigations

for the commonly successful attacks. These mitigations will be arranged into an advisory

checklist for employees, which can be found as Appendix 1. By guiding employees in

how to anticipate threats and employ protective measures in the form of actionable

measures it is hoped that some security breaches may be prevented entirely. The pri-

mary purpose of this thesis is to look at security from an organizational, practical per-

spective which integrates security into the practices of individual developers and focuses

on the parts of security architecture which involve technical implementation.

For one particular device which was under the continuous control and development of

the client company, some potential hardening measures are applied in order to briefly

demonstrate the practical implementation of hardening. The implementation of some

measures is further used to add suggested hardening measures to the checklist and

shape the format of suggestions.

The purpose of this work is not to focus on the particular methodology of exploits in

penetration testing, or indeed to analyze the overall process of penetration testing. Both

 2

of these subjects are thoroughly explored in other works such as those by Weidman and

Kim. (Kim, 2014) (Weidman, 2014) The basic penetration testing in this work was within

a common framework using a beginner friendly toolset and simple common exploits. This

approach is sufficient to demonstrate the simplest attacks faced by devices in the field

as well as show how they can be mitigated.

Tests were either whitebox or greybox. Whitebox tests are those in which the engineer

has full information on the functioning and construction of the device. This is in contrast

with blackbox and greybox tests, terms also used in this work. Blackbox tests are blind

tests in which the engineer knows only what they learn by testing, and greybox tests are

tests in which the engineer has only partial information. (Khan & Khan, 2012)

The recommendations produced by this work concern the technical portion of the devel-

opment process of new IoT devices using embedded Linux. The penetration tests con-

ducted in the development of the recommendations are limited in scope, with efforts fo-

cused on gaining root Linux user access in on-site whitebox tests of IoT devices. Micro-

controllers are excluded from the scope of review, as are non-embedded devices. Also

outside of scope are analysis of the effectiveness of the methods used as compared to

other potential penetration or security testing methods. Aspects of security architecture

not directly related to the development process of new devices such as human resource

management or systems administration on-site are out of scope.

2 Organizational Security Principles and Practice

2.1 Organizational Risk Management

Risk management is the process of assessing and containing risks on an organizational

scale. (Pompon, 2016) A risk is a potential or hypothetical negative consequence of the

current course of action. There are several potential models for cyber security risk man-

agement available such as the model suggested by NIST (National Institute of Standards

and Technology, 2019) or those referenced by (Mead & Woody, 2017). They will not be

examined in detail here, however some parts are briefly described. The gathering of data

on security vulnerabilities and mitigations is a component of risk analysis which is a step

 3

in risk management, therefore risk analysis is briefly described below. (Webb, et al.,

2014) (Mead & Woody, 2017)

2.1.1 Risk Analysis

Risk analysis is a part of risk management which seeks to assess, categorize, and con-

textualize the risk within the lifecycle (Pompon, 2016). Like risk management in general,

several models are available for risk analysis which serve different perspectives (Mead

& Woody, 2017). Some conceptual tools used to evaluate risk and mitigation in this thesis

are explored below. These conceptual tools require the addition of data on threats and

mitigations, sometimes referred to as threat intelligence. The results of penetration tests

in this paper form part of threat intelligence for future cases by examining specific cases

representative of the technology developed at the client company.

2.1.2 Human Resources in Cyber Security

Human resource considerations intersect with cyber security considerations. Basic se-

curity measures such as account control often correspond to employee roles within the

organization (Tevault, 2018). Employee education and training also have an integral role

in protecting against human hacking and phishing attacks. Human hacking is intrusion

based upon human manipulation, of which phishing is a particular type. Phishing is in-

trusion based upon convincing people to give up their credentials or other information

under a false pretense (Okenyi & Owens, 2007). The threat intelligence gathered in this

paper will be used to create a teaching tool for employees. Proper training will improve

the coverage of the requested measures in the organization, improving overall security

as well as the individual security awareness of the employees (Caldwell, 2013).

2.2 Conceptual Tools

Described below are some of the conceptual tools in use at the client company as part

of the wider risk management framework. They are described in order to clarify the model

upon which the tools and methods are built.

 4

2.2.1 CIA & STRIDE

The CIA triad is the Confidentiality, Integrity, Availability model of security. Confidential-

ity, integrity, and availability are considered to be overlapping requirements of a secure

device. (ISO/IEC, 2018, pp. 4.2.3, p.12) Confidentiality is defined by controlled access

to data, and ensured using methods such as encryption, user access control, and data-

base separation. Integrity is the verification of data as it moves from one point to the

next, and the guarantee that data cannot be altered without trace and controls on alter-

ations made. Availability is the overall accessibility and usability of the device, and par-

ticularly related to Denial of Service attacks. (Shostack, 2014, pp. 148-157)

STRIDE is a threat classification model. The acronym is composed of Spoofing, Tam-

pering, Repudiation, Information disclosure, Denial of Service, Elevation of privilege.

(Shostack, 2014, pp. 9-11) The term definitions can be refined for the context of embed-

ded systems as follows. Spoofing refers to falsifying identity, which may be the identity

of an account or a source or destination device. (Shostack, 2014, pp. 64-65) Tampering

is making changes to information on the device or travelling to or from the device. Repu-

diation is the denial of responsibility for an attack, i.e. defeating forensic measures after

a breach. Countering forensics includes activity such as deleting logs and command his-

tory which would allow the attack to be traced. Information disclosure is the leaking of

information such as client details or business secrets. Denial of service is a particular

type of attack, commonly shortened to DoS which prevents others from accessing a ser-

vice or using a device by overburdening it and causing it to cease functioning. Elevation

of privilege is a common part of attacks and refers to expanding access and capabilities

after the initial access to a device is obtained. (Shostack, 2014, pp. 74-75) Connected to

the threats of STRIDE are authentication and authorization. Authentication is the verifi-

cation of the identity of an actor. (Shostack, 2014, pp. 146-148) Authorization is the ver-

ification of the right to access of an actor. (Shostack, 2014, pp. 157-159)

2.2.2 Threat Modeling

As part of security by design, or as a less involved alternative to a full security based

architecture plan, threat modeling may be used. The steps and their relation to each

other are shown in Figure 1 below. Threat modeling is a process wherein the developers

of a device and security professionals consider the device as a hypothetical case study.

 5

The case study is divided between development threat modeling and business threat

modeling (also modeled as business impact analysis and privacy impact analysis. (Neil,

2018, pp. 33-34)).

Figure 1. Threat modeling process

The threat modeling diagram process used during this thesis is as follows, with an ex-

ample of the resulting diagram in Figure 2. Developers are asked to first set out the

planned or existing architecture of the device, including the user interfaces, component

devices, servers, and connections between parts. Then the developers are asked to sec-

tion the diagram based on the transitional points of information. The components are

grouped together such that those performing the same function in the workflow of the

device are one unit. Each time the information is substantially altered or changes hands

a new wall is created, referred to as trust boundaries. (Susi, 2018)

 6

Cloud: Storage & UI server

Maintenance/Administrator

Developer

End-User Web Interface

End User

Gateway

IoT Device

Sensors

Sensor
Handler
Software

Communica
tion

Software

SPI SPI

LoRa

MQTT

HTTPS

HTTPS/SSH

UART/SSH

UART/SSH

Version Control/Build Server

HTTPS/SSH

Figure 2. System diagram with trust boundaries

Once the information flow and system architecture is clarified, the developers are asked

to imagine threats to the device. Brainstorming includes “malicious user”, “corporate es-

pionage”, “incorrect usage”, and “outside attacker” stories, with particular attention paid

to the transitional points between grouped areas as vulnerable points. Finally, the devel-

opers are asked to suggest mitigations to the discovered threats. (Shostack, 2014)

The basis of business threat modeling is the consideration of security threats from a

financial and managerial perspective. (Shostack, 2014) The advantage of this is two-

fold. Firstly, the business is able to discuss the consequences of the threats discovered

in software threat modeling, e.g. the potential for a costly GDPR breach, and the devel-

opers are therefore not required to do so. Secondly and more importantly, business

threat modeling can examine the security practices and potential flaws of the organiza-

tion itself using the context of the particular development process under consideration.

Business threat modeling is carried out by the managerial staff of a project, using the

findings of software threat modeling. The potential breaches are considered in terms of

potential organizational consequences, to evaluate their severity and the necessity and

cost-effectiveness of particular mitigations. Organizational processes are clarified by im-

agining the next steps in the event of a breach, i.e. to whom the breach must first be

 7

reported, who will make required changes to policy, and how will these policy changes

be conveyed to the organization. (Susi, 2018)

2.2.3 Hardening

Hardening is the improvement of the security of a device. Hardening comprises configu-

ration changes, software addition and removal, and the improvement of specific soft-

ware. Hardening comprises a wide variety of practices although it is possible to state

some specific guidelines in the case of Linux devices. (Tevault, 2018)

Linux devices employ permissions for files and users which allow varying levels of sys-

tem access or program execution. Controlling these permissions making sure they are

as un-permissive as possible is a core tenet of Linux security, referred to as the principle

of least privilege. Access control is employed both as a direct security measure and as

preparation for forensics in the event of an attack. (Neil, 2018, pp. 15-17)

On a software level hardening includes code obfuscation, memory access control, and

data protection. (Neil, 2018, pp. 221-225) Code obfuscation is the practice of modifying

the appearance of the source to make it more difficult to use if it is revealed. Code ob-

fuscation is most useful in the preservation of intellectual property and trade secrets.

(Neil, 2018, p. 222)

Hardening can also include material changes to the kernel and operating system of the

device. This can include removing features at a kernel level or including additional oper-

ating systems features to allow for better security. In particular networking behavior at

the kernel level can affect device vulnerability, particularly to DoS attacks (Jaeger, et al.,

2011).

Controlling user behavior via device changes can be an effective form of hardening, as

some vulnerabilities are caused by misuse. This includes changes to the UI or credential

requirements. (Kopecky, 2017) User interfaces can prevent user error as well as prevent

the development of dangerous shortcuts in day to day usage of a device (e.g. shared

accounts & passwords). Common hardening oriented credential requirements include

password length and complexity requirements, banned usernames and passwords,

password change frequency and so on. (Tevault, 2018)

 8

2.2.4 Secure Design

Security by design is an idea referred to even in GPDR legislation. (2016, p. Art. 25) In

this thesis security by design refers to the development and implementation of cyberse-

curity mechanisms in the device engineering itself, comparable to the technical imple-

mentation focused portions of security architecture as described by (Ross, et al., 2016,

pp. 84-156). “The security community has long argued that security must be designed

into systems from the ground up; it can’t be “bolted on” to an existing system at the last

minute.” (Dirk, et al., 2004, p. 21) Security by design is also referred to as secure design

patterns or secure design and is a methodology for securing devices pre-emptively.

(Dougherty, et al., 2009)

In the case of embedded devices in particular updating and patching is not possible in

the case of every device, and requires additional time and expense on the part of the

manufacturer (Smith, 2017). Relying on an incident response model is not always pos-

sible for embedded devices because of this difficulty. Security critical patching and up-

dates are a reactive approach to security which seeks to respond only after an exploit is

discovered. Security by design attempts to secure against not only known exploits, but

to anticipate the methods of the exploiter more generally and counter them in the funda-

mentals of the product (Smith, 2017). The requirements of security by design are

weighted against the requirements of user friendliness and ease of use, with which they

may conflict (Kopecky, 2017). If correctly implemented the promise of security by design

is that the device will be a significantly less attractive target to a hacker, with a noticeably

reduced attack service and limited exploitability.

Some of the measures and choices of security and design can be explained with a hy-

pothetical example of the process for a cloud connected IoT device. Suppose a client

purchases design and development services for a cloud connected healthcare device

which monitors heart rate, blood oxygen level, and blood pressure. The client provides

the relevant legislation and standards related to healthcare devices for their usage envi-

ronment (e.g. maximum voltages, grounding requirements, personal information security

laws). The specific choice of hardware and cloud services are left to the company.

In addition to taking into account the transmission and collection requirements for the

data, the hardware designers take into account the integrity principle of the CIA triad in

 9

designing data handling capabilities, as well as the confidentiality and authorization re-

quirements. In doing so they implement tamper proof casing, and hardware which is

capable of encryption.

The software designers begin with choosing the cloud service implementation. They con-

sider the physical and software security of their servers, the authorization and privilege

divisions of their cloud access, and the redundancy and overall resilience of their cloud.

GDPR as well as logging and data verification best practices are taken into account when

considering how long data is stored in the cloud, and which data, as well as the archiving

process. The decision is made to limit the API of the cloud based on the particular con-

nection source being handled.

Given the basic hardware of the device, the developers begin to design the software.

The operating system of the device is decided based upon the hardware and the pro-

cessing and connection requirements. At this stage solutions such as gateways or sen-

sor-collector device chains are considered.

Supposing each device individually connects to the cloud, it can be assumed they have

some running services. The minimum viable product concept is used to devise a list of

absolutely necessary services. Thereafter, services required for testing and debugging

are listed. Plans are made to include security testing in the test stage of development,

and software security best practices are reviewed and modified for the particular project.

Based upon the system type and project scope, both the development process software

version control and updating are decided, as well as suggestions for post-delivery update

security.

During the development process, code review considers not only code correctness and

functionality, but also data security and obfuscation. Code suggesting known ‘antipat-

terns’ is identified and tested and modified or removed accordingly. Antipatterns are com-

mon code or process blunders which result in vulnerabilities (Smith, 2017).

In testing the tests most relevant to the running services and device type related risks

are run, and their risks and possible harms are evaluated. The product is released to the

client with security aspects included in documentation, to ensure proper disclosure.

 10

Security by design is by no means a foolproof approach. The example provided is in fact

fairly involved and idealistic compared to the realities of product design and develop-

ment, and client preferences. As stated above, usability and user friendliness may be

considered opposing concerns to security in this approach. Security by design seeks to

close as many access methods and remove as many functionalities as possible, to re-

duce malicious access and the potential for malicious use of these functionalities. How-

ever excessive removal of functionality will eventually hobble the device and affect its

attractiveness to customers. An example of this is the comparative ease of connecting a

device to the Internet and to the cloud which serves it. An absolute security by design

approach might necessitate long complex access keys for the device attempting to ac-

cess the cloud, WPA-2 or better security for WLAN or a requirement for Ethernet internet

access, a technician with root access to set up the device, or other security measures

which require additional effort on the part of the user. By contrast many devices connect

automatically to their backend once powered on and connected to the internet using API

keys (which may be vulnerable to collection) and connect to the internet using WPS or

connect to any available open network. The second device may be more attractive to the

average user, and as such outperform the first in sales.

3 Embedded & IoT Device Security

In recent years the security of Internet of Things devices and embedded systems has

become a more prominent issue, following several high profile large scale attacks. IoT

devices in particular present their own unique security concerns and constraints. The

devices are often in continuous communication with a cloud backend which necessitates

internet connectivity, but also have hardware constraints which do not allow the full spec-

trum of security measures available on fully featured devices (Smith, 2017).

3.1 Legal and Regulatory Considerations

Pursuant to the recent change in EU law, embedded and IoT device security has gained

further importance. IoT devices in particular may serve many functions which deal with

personal data of the type protected by GDPR and the leaking of such data from a poorly

secured device is a financial liability under the new legislation. GDPR legislation requires

tight control of personal data, with users being allowed to control and access their own

 11

personal data upon request. Personal data can include anything which can be used to

identify a particular person. (The European Parliament and the Council of the European

Union, 2016, Art. 24, 15)

3.2 Specialized Embedded Devices

Included in the devices developed at the client company were healthcare, security, and

industrial devices. These particular devices have some unique security requirements, as

well as unique restrictions on the hardware and software employed. Devices of these

categories are governed by specific legislation and national or international standards.

For example, the National Institute of Standards and Technology refers to several such

industry cybersecurity standards in connection to their general cybersecurity framework

guidance. (National Institute of Standards and Technology, 2019) In cybersecurity mat-

ters they have particularly stringent requirements which are beyond the scope of this

paper to implement. Nevertheless a short discussion of the nature of these devices and

implementing security measures in those cases is provided below.

3.2.1 Healthcare Devices

Healthcare devices must be designed to very tight specifications for patient safety. In

particular this can result in limitations on broadcasting power and voltages as well as

mandatory duplication of communication channels. Healthcare devices are likely to

transport or contain sensitive data which may be covered by GDPR protections and as

such special attention should be paid to their information security. Also of considerable

importance is device availability in the case of a device with a measurable impact on

patient wellbeing and hospital efficiency. The cyber security measures of the device can-

not compromise the provision of care, providing an additional challenge with regard to

user authentication measures. The cyber security requirements of medical devices are

well known to the extent that they have been or will be codified into general standards

and legal measures.

 12

3.2.2 Security and Alarm Devices

In this category are various alarm systems, including burglar, fire, and personal safety

alarms. Devices of this type are can serve as a vector of attack or accident more broadly

than other IoT devices due to the risks associated with a malfunction. Availability and

accuracy are paramount concerns. Devices should be designed with physical and soft-

ware fail-safes, and tamper proof casing in just about every case. False alarms are pref-

erable to a lack of alarm, however the accuracy of alarms can be lifesaving in these

applications. The integrity of data should be verified as much as possible without impact-

ing availability.

3.2.3 Industrial Devices

The term industrial devices is used to refer to devices used for a manufacturing process

or otherwise in a particularly demanding physical environment. Industrial devices in an

IoT context are sometimes referred to as Industrial Internet of Things (IIoT). These de-

vices must typically function without intervention for long periods of time, and have high

value components produced to greater environmental tolerances than consumer de-

vices. They may be required to pass electrical, explosive, or radiation safety tests. From

the perspective of cybersecurity industrial devices can cause large financial losses if

successfully compromised and may even be a target of terrorism or cyber warfare. De-

pendability of the devices must be ensured, often with little possibility of update after

installation. (Gupta, et al., 2019) As such these devices particularly benefit from exten-

sive threat and device testing, and require a ‘future proof’ general threat based approach

to security. They cannot depend exclusively on the current known vulnerabilities for se-

curity assessment, and must have controlled reactions in case of a breach or failure.

(Smith, 2017)

4 Device Threat Evaluation Tools and Methods

4.1 Automated scanning

Two different automated scanning systems were tested as part of the reconnaissance

phase of penetration testing. The automated scanners tested were F-Secure’s Radar

 13

and an open source alternative, Greenbone OS4 (OpenVas). These systems need not

necessarily be included in penetration testing, and can be used for network wide moni-

toring and vulnerability management (Scarfone, et al., 2008).

4.2 Penetration Testing

Penetration testing can be viewed as a methodology of other approaches to security or

as a security approach of its own, depending on the fashion in which it is used. (Wyk,

2007, rev. 2013) The tools and the skill of the tester significantly affect the quality of

penetration testing. While many tools are open source and accessible, knowledge of

tools and how to use them is essential. (Caldwell, 2011) Penetration testing, shortened

to pentesting is the combination of vulnerability analysis with actual execution of exploits

(as much as possible) to ascertain the consequences of a successful attack. (Weidman,

2014, p. p.1)

The exact naming of the phases of a penetration test vary from source to source. Some

sources use the term “kill-chain” to describe the phases of an exploit, others describe

the individual sub-phases (e.g. lateral movement, privilege escalation). The general or-

der described here is an overall summary of various sources, broadly divided into recon-

naissance or information gathering, exploit, and forensic countermeasures. (Weidman,

2014) (Wyk, 2007, rev. 2013) (Neil, 2018) (Kim, 2014)

Passive reconnaissance is defined by gathering information about the target from public

sources, avoiding direct contact with the target. (Neil, 2018, p. p.258) This is commonly

referred to as Open Source Intelligence or OSINT. This involves reading product manu-

als, running searches against public databases, downloading and examining publicly

available software, gathering information from company social media accounts to identify

phishing targets and password dictionary entries, identifying company and website ali-

ases and potential spoofing targets, and looking for potential vulnerabilities in the public

websites of the company.

Once sufficient information is gathered, active reconnaissance begins. Active reconnais-

sance involves scanning of the network under attack, identifying possible attack vectors

 14

and target devices on the network, and performing tests based on passive reconnais-

sance data to gather more specific information.

Active reconnaissance is considered more ‘dangerous’ than passive reconnaissance,

because it risks detection by network administrators, and defensive software, and re-

quires some access to the network.

A portion of active reconnaissance is fuzzing. Fuzzing is an approach which can be ap-

plied in a variety of ways, but in this context means gathering information on the open

ports and network traffic to and from a device, and then sending packets to the device to

collect the responses. Fuzzing allows the tester to determine what kind of information a

particular device expects on a specific port as well as take advantage of any information

leaked in the responses to the packet.

The exploit phase of the penetration test involves attempting to use the information gath-

ered to successfully gain access to the device. This can be done either on the production

network or in a test network. On a production network the test can further be done as a

surprise to the network administrator, to test their response to a true threat. However the

use of the production network requires the ability to guarantee no lasting harm to the

environment and surrounding devices, including those used to gain access to the target

device. Further, exploit attempts can be simplistic or complex. Simplistic attacking more

closely models the conduct of an opportunistic attacker with no particular interest in the

device itself, who will favor easy targets and public IP addresses. By contrast complex

attacks are deep dives into a particular device, including writing custom exploits and

focused repeated attempts.

Forensics countermeasures are used to avoid detection after an exploit is completed and

a possible backdoor is opened. These include deleting the exploiting software, tampering

with logs, and masking the specific target of the attack by attacking other random targets.

Forensics are used to identify the nature of the attack conducted and mitigate it in future

devices. They are not necessarily included in all penetration tests, depending on the

wishes of the target owner and the scope of the test. They are however part of a complete

incident response plan in the case of a real attack.

 15

The basic test framework used in this thesis was to identify open IP ports and services

behind them and then launch suitable exploits, as well as password based attacks on

login points. An attack was considered successful if root level shell access was obtained.

In some cases DoS attacks were also tested as well as fuzzing results which may indi-

cate unexplored potential attacks. This framework is very similar to some automated

attacks faced by devices on the open internet which are outwardly visible and using de-

fault or near default configurations, and is similar to the attack framework suggested by

Falco, et al. (2018). (Falco, et al., 2018)

4.3 Test Environment

Each penetration test is planned based on the needs of the particular device. In the case

of the hackathon, results are compared against the stated priority list. The penetration

test itself will be primarily carried out on a Kali Linux virtual machine which exists on a

laptop dedicated for the purpose of security testing and isolated from the main network

and domain. Kali Linux is a distribution of the Linux operating system which includes

several security testing tools by default (Offensive Security, 2019). A security testing

network will be used, which is a firewalled IP address space behind a switch, with no

enterprise network connectivity. This is to minimize threat to any personal computer and

allow maximum separation of the test environment from the organization network. In ad-

dition to a Kali Linux VM with open source tools, a Greenbone OS4 (OpenVAS) virtual

machine will be used, as well as the proprietary F-Secure Radar tool. Greenbone OS or

OpenVAS is a vulnerability scanner which can be run from a dedicated server or as a

virtual machine on another machine (Greenbone Networks GmbH, 2019). F-Secure’s

Radar is a scanning tool which runs from a server and provides a continuing picture of

the vulnerabilities of scanned devices as compared to several vulnerability databases

(F-Secure, 2019).

The exploit phase of tests was carried out using Metasploit framework in several cases.

Metasploit is a tool which contains a database of attacks in a software which can launch

them, given certain configuration parameters. (Gupta & Kumar, 2015) Also used were

dictionary attacks, which are attacks that use a wordlist as a “dictionary” and try to log in

to an interface with different username and password combinations. This was expedited

using hydra, a tool which connects to an interface and automatically sends login requests

 16

until the connection is closed or login is successful. (Czagan, 2019) Both the dictionary

attacks and the Metasploit based exploits used may be considered brute force attacks,

which involve using many attempts of the same attack slightly modified repeatedly to

eventually gain access. (Sowmya, et al., 2012)

An exception is the hackathon described below, wherein a Kali Linux LiveUSB system

was used on the open Wi-Fi network provided by the hackathon organizers. The Li-

veUSB system is otherwise the same as the virtual machine, but it runs from within a

USB stick.

4.4 TosiBox Hackathon

TurkuSEC members will be the primary “attackers” at the hackathon. Some teams were

also composed of security professionals from TosiBox partner organizations. The Tosibox

hack target device is the TosiBox Lock 500. This is an under development device

intended for enterprise and industrial use. In the topology of Figure 3 below it takes the

position of Tosibox Lock. The device will release in 2018, and as such documentation

and user manuals are not yet available.

Figure 3. Tosibox Usage Diagram © Tosibox Oy, 2018

The device connects with a user device with a mobile client, SoftKey, MatchMaking ser-

vice, or virtual Central Lock. These software are all software which authenticate the de-

vice to the lock or act as a lock to another device, forming a VPN tunnel endpoint or

 17

passthrough. The traffic inside this tunnel is encrypted between the endpoints which can

decrypt the traffic with keys. These keys are the most important information carried by

the various devices and software, as evidence by the list of hackathon targets below.

(Tosibox Oy, 2018)

Listing 1. TosiHack stated targets in priority order.

• eavesdropping of the VPN connection / defeating encryption

• obtaining VPN authentication RSA keys remotely from any product

• remote root login / remote code execution in Lock / (Virtual) Central Lock
from WAN interface

• obtaining RSA keys or key material from a TOSIBOX® Key (token)

• obtaining RSA keys or key material from Mobile Client app

• obtaining RSA keys or key material from SoftKey

• obtaining RSA keys or key material from a Lock 500

• obtaining the password of a TOSIBOX® Key (token)

• obtaining the password of a SoftKey

• impersonation: making Lock / Key / SoftKey / Mobile Client / (Virtual) Cen-
tral Lock connect with a fake end point

• impersonating a TOSIBOX® device towards MatchMaking service

• obtaining RSA keys or key material from Lock / (Virtual) Central Lock

• remote root login / remote code execution in Lock / (Virtual) Central Lock
from LAN / service port

• root login on Lock with physical access to device

Hackathon testing was of the greybox model. A full set of devices, software, and user

end usage instructions were provided. The results described in this thesis were those

obtained by one of the teams comprised of employees of the client company.

 18

4.5 Device Test Cases

One client owned and one company owned device were tested for comparison. The cli-

ent device was a network connected UPS, which was then hardened by the client com-

pany and returned. Testing was of the blackbox model. The operating system was not

revealed by the client, and the user interface was a web interface.

The company owned device was tested with a whitebox model. The company device

was a LoRa enabled IoT gateway used to collect data and transfer it to servers. The

gateway uses a Linux based operating system. The particular model used in this instance

had a web interface using Linux operating system (later upgraded to a purely command

line Linux system), additional RF antennas and a LoRa module. The device was con-

nected to the Internet via ethernet during the test, and the LoRa module was operational

but not in continuous use.

5 Results

5.1 Tosibox Hackathon Outcome

The hackathon group was a mixture of professionals and beginners in security. Hacka-

thon participation began before the hackathon event with reconnaissance and reverse

engineering attempts. Reverse engineering focused on software packages such as the

SoftKey application and the mobile client. Primarily the search was for data leaks and

fuzzing targets. Secondarily a MITM attack via the software update channel attempt was

considered.

Reverse engineering was done by downloading the publicly available software packages

and reviewing the raw binaries for patterns matching keys, as well as using proprietary

software to attempt to translate the binary first into machine instructions and then into

code. Some public key material was discovered as well as potential vulnerabilities in how

the mobile application code was structured.

 19

The results of reverse engineering suggested the potential vulnerability in the upgrade

channel due to the necessity for some authentication of the firmware package. The up-

grade channel of the device required it to be switched to an upgrade mode, from which

it might be more vulnerable to other attacks, if it were possible to find this upgrade mode

switch.

Hackathon results mostly focused on potential vulnerabilities rather than fully executed

exploits, compared to the fully implemented approach of penetration testing. Reverse

engineering also played a much more significant role, revealing the possible vulnerabili-

ties of the application in use, as well as data which could potentially be used for fuzzing

keys and passwords.

5.2 Embedded Gateway Results

As with the other test cases, social engineering and OSINT were minimized for these

device cases, due to the nature of the company-client relationship with the device man-

ufacturer. It should be noted that the device firmware updates are freely available on the

manufacturer webpages, as well as a variety of information regarding the device, aiding

in possible reverse engineering efforts. However employee and customer information is

not advertised on the website, discouraging social engineering.

The penetration test began with general scanning of the cybersecurity network, trying to

deduce the IP address and open ports of the target gateway. Also on the same network

were the firewall protecting it, a Windows server, another gateway, and the computer

used for testing. The first tool used was masscan, which was able to deduce the IP ad-

dresses of the live hosts on the network in a more passive fashion. Masscan is an inter-

net scanner which sends TCP packets to probe the network it is used on (Graham, 2019).

Thereafter a several scans were run in nmap. Nmap is another open source network

scanner which provides a wider set of scans and tests, particularly port and service scan-

ning (Lyon, 2019). Nmap scans provided the IP addresses of the live hosts and their

open ports. The open port list allowed the exclusion of the firewall and the Windows

server, narrowing the field to the two gateways.

 20

Further nmap scanning provided an OS guess and running services. The OS guess was

inaccurate, but the running services were accurate, and combined with the patterns of

the IP addresses on the network allowed guessing which IP address belonged to the

target.

F-Secure Radar was also used as a comparison point to open source tools on the device.

The scan found vulnerabilities primarily related to the SSH version of the device, and

was accurately able to show the open TCP & UDP ports. It also provided a more accurate

OS guess than the nmap scan. The firmware of the device was the latest version, and

there were no immediate updates available to patch the SSH version to a newer one,

which was the suggested fix of the SSH vulnerability according to the CVE database.

The Common Vulnerabilities and Exposures (CVE) database is an open source data-

base of known vulnerabilities in applications and devices (The MITRE Corporation,

2019). The findings of the OpenVas/Greenbone scanner were almost identical, with dif-

ferences only in the OS guess results of the scanner, and the names used for the findings

in reports generated.

The software of the device was then updated to the version recommended for LoRaWAN

server functionality, a common use of this particular gateway. Some vulnerabilities were

thereby eliminated, namely those SSL/TLS vulnerabilities related to the running web-

server for the AEP user interface. However, notably, the SSH vulnerabilities were unaf-

fected.

A MITM attack via ARP poisoning was used to monitor the traffic to and from the device.

ARP poisoning is giving false information to the gateway on a network in order to receive

packets bound for another machine (Gibson, 2005).The traffic was further triggered by

logging in over SSH from a different machine to check for leaking information.

Based on the results of the active reconnaissance the SSH service had several potential

vulnerabilities. The device was vulnerable to DoS attack via the SSH port, using TCP-

packets. Further a MITM attack on the SSH service was tested, which succeeded in

capturing SSH packets.

Having established that the SSH version was vulnerable to multithreaded login brute

forcing, a hand generated wordlist based on common usernames (admin, root etc.) as

 21

well as passwords and password patterns (root, CompanyName, companyname, device-

CurrentYear) was used with hydra to attempt login. This attempt was successful and the

login credentials were used to create a permanent backdoor. This was done using a

cronjob exploit to start a reverse TCP shell. Crontab is a Linux administration tool which

causes the device to run a particular program or task at the specified time or at a speci-

fied interval. These tasks are called cronjobs (Ubuntu Foundation, 2016). In this instance

the program was used maliciously to inconspicuously check the existence of the back-

door and re-establish a connection to the attacking computer if necessary. Further device

files were downloaded for future reference.

The exploit was done in a clumsy fashion, with little attempt to mask the connection to

the device. As such network log files clearly show the IP address of the attacking com-

puter and the new cronjob is also easy to notice. These particular changes however

highlight one important security feature, frequent logfile and cronjob comparison in order

to notice changes. These comparisons can be automated (for example, notify adminis-

trator if a new IP address connects to an unusual port).

The gateway is a largely closed system without the possibility of installing new software.

However some measures can be taken to make it more secure. Firstly, the SSH should

be reconfigured to use SSH-keys. The firewall should be configured to reject most re-

quests, and the SSH port should be moved from the default port.

As an alternative a custom firmware was built using the Yocto build system. Yocto is a

framework which allows the user to customize a Linux operating system for an embed-

ded device by selecting layers which contain particular limited programs and configura-

tions to create their own version of the Linux operating system (Linux Foundation, 2018).

The manufacturer provides a base Yocto layer with the necessary board defines and

basic software. This allows the removal of all but the most necessary programs from the

device operating system. Furthermore necessary custom software can be wrapped into

a Yocto layer allowing the employing of all available code obfuscation and encryption

measures.

The example system built was one which contained only MQTT functionality and LoRa

functionality over the base operating system. Further the ports were changed from de-

fault ports, and a firewall was set up to reject connections to all other ports. The device

 22

includes the ipkg package manager which is a lightweight software which allows for the

download and installation of other software on the device after the initial installation

(Chetwynd, et al., 2004).The assumed update method of the device is using the ipkg

package manager to update the software, including software added by the client com-

pany. This can be done by configuring the source list of the ipkg package manager.

A debug port is available on the back of the device and this was used to configure the

running system. The modified build by default does not allow remote login, so this debug

port must be used.

The device lacks a user application for testing, however as a general principle applica-

tions run as part of an embedded solution should not run as root. To this end a user

account on the machine with reduced privileges should be set up and used wherever

possible.

Further hardening measures are a crucial step with regard to any custom applications

developed for the device, but the creation of a software implementation is beyond the

scope of this paper. In general terms these include measures such as data encryption,

separate compilation and installation via a Yocto Layer, authentication, and logging. This

methodology should be used to set up a firewall, protected remote login, and up to date

software on the device.

5.3 UPS Results

Passive reconnaissance using the Radar and Nmap tools resulted in open ports for telnet

(23), SSH (22), and HTTP (80). An AllegroSoft ROM overflow/misfortune cookie vulner-

ability was detected, with an OS guess of WindRiver/VXWorks. The ROM overflow/mis-

fortune cookie vulnerability is a buffer overflow flaw which makes it theoretically possible

to cause a DoS or execute arbitrary code on the device. It is referred to as AllegroSoft in

these results as it has been discovered on devices from that manufacturer (National

Institute of Standards and Technology, 2016). The OS guess WindRiver/VXWorks re-

fers to a real time operating system called VXWorks developed by WindRiver

(WindRiver, 2019). OpenVAS/Greenbone guessed that the OS was for a HP printer, and

found the same open ports and vulnerabilities with the addition of a default login HTTP

 23

interface. The particular OS used by HP printers is not revealed by HP, however it is not

the operating system of this device, though it may be similar.

Direct connection to port 80, and 22 was refused. Connecting to the HTTP interface via

web browser was successful and revealed a great deal of information about the device,

including manufacturer and use case.

To begin a series of basic brute force Metasploit exploits were tested. Notably, the

NetGear telnetd exploit resulted in a successful root shell, a command prompt with the

maximum level of access to the device. This exploit is a vulnerability found in NetGear

devices as well as other embedded and IoT devices which takes advantage of the con-

figuration of the telnet process of the device (Metasploit, 2018). Also possible was login

using a dictionary attack against the web login page of the device. This allowed access

(via another common default password) to a software update utility. Development of ma-

licious firmware was out of the scope of this device but would theoretically have been

uploaded from this interface.

5.4 UPS With New Network Card

Preliminary scanning was done both with the automated OpenVas/Greenbone and Ra-

dar tools as well as manually using nmap and Wireshark. As a result open ports 22

(SSH), 443 (SHTTP), and 80 (HTTP) were discovered. All tools returned the same op-

erating system guess of ‘Linux’ with no detail available on exact Linux version. The SSH

service visible through port 22 had an up to date version of OpenSSH at time of test.

The HTTP port was selected as the most likely vector of exploitation. HTTP fuzzing was

done with a variety of malformed requests. Oversized requests resulted in a closed con-

nection. All other requests were received without reply.

The login page served from the port was devoid of unnecessary information, which pro-

vided less basis for dictionary attacks. In many devices these credentials remain un-

changed, creating an easy attack vector. Dictionary and offline attacks were not used,

however common default credentials were tried. Default credentials are those which are

available to the user from user manuals or web pages, which are intended to be used for

 24

first login and then changed (OWASP, 2016). Excessive attempts did not lock the inter-

face, allowing brute forcing.

Attacks using Metasploit framework were launched against the device. The chosen

Metasploit modules were unsuccessful. Further probing of the device suggested up to

date software and an obscured OS. SSH modules and HTTP modules were preferred

for attempted exploits and were unsuccessful. Certificate and key based SSH attacks

were not tested. Certificate and key based attacks are those which do not rely on a key-

board based login, instead attacking SSH connection via cryptographic credentials (SSH

Communications Security Inc., 2018).

Overall no successful exploit was completed. Other potential attack vectors and security

relevant configuration decisions were identified in the implementation of the web inter-

face and the SSH connection but were not tested due to time constraints. These con-

cerns were discussed with the manufacturer along with results from tests on the prior

model.

6 Discussion

6.1 Hackathon

Results of the hackathon were somewhat hampered by time constraints. As noted above

in the description of the results, reverse engineering proved a surprisingly large part of

successful efforts. This was done on publicly available software intended for end users

of the product, which happened to contain data to facilitate connection to the cloud

backend. Likewise the connection between the gateway and the user endpoint was po-

tentially vulnerable to a MITM attack.

The test device of the hackathon was a fairly classic IoT device, and had the issues of

such a device. Namely the need to make software easily available to end users also

made it easy to obtain for reverse engineering. Furthermore, the device had connections

to several endpoints, some remote, and each connection outwards was a potential attack

vector.

 25

Also of interest was the difference between the preparedness and skill level of the teams

and between team members. The experience and skill of each penetration tester mat-

tered a great deal, as well as the amount of preparation done before the hackathon.

Teamwork was of importance, but most attacks were facilitated by one primary penetra-

tion tester focused on a particular attack vector.

6.2 Gateway Test Case

The automated scanning carried out in the passive reconnaissance phase revealed one

of the difficulties of embedded systems security. The results of the scanners were so

similar because although they used different techniques for OS detection and therefore

reported different results, they rely on the same databases for vulnerability intelligence

and detection methods. These databases often contain limited information on any par-

ticular embedded system OS or hardware compared to conventional computer software

and operating systems. The vulnerabilities found were based on Linux SSH vulnerabili-

ties, however there are important differences in how Linux is implemented in an embed-

ded system. It is unwise to assume an embedded Linux system has all the same vulner-

abilities or strengths as a desktop Linux OS due to certain differences in the underlying

software. Generally embedded Linux devices do not use the bash shell, instead using a

more limited sh or ash shell. They tend to have fewer services than a desktop Linux

device due to the general lack of a full desktop environment and only specified online

services (Linux Foundation, 2018).

In contrast to other test cases the gateway revealed a large amount of information in

casual scans. The default credentials are available online and are easily cracked with a

dictionary of common usernames and passwords. The login provides root access im-

mediately, with no less privileged users.

The SSH version vulnerabilities were not patched along with other updates to the device.

Once login was achieved there were no further protections to dumping the device

memory. ‘Dumping’ device memory is the copying of all the contents of the device

memory. The danger of dumping device memory is reverse engineering and the potential

loss of keys or other sensitive material stored in the memory (Sianipar, et al., 2018).

 26

While the closed build Linux operating system presents an advantage in terms of soft-

ware standardization and customization, it complicates the hardening process. The

closed buildroot/Yocto style operating system does not allow free installation of pack-

ages, which makes the system more secure, but this also prevents the optimization of

software and removal of unnecessary packages if the vendor does not reveal the nec-

essary information about the hardware. In this case it was available for use but was not

open source. Without source code it is time consuming to assess the implementation of

the system, and as such impossible to easily assess the security of the architecture.

The base system provided was used to build a custom system without “unnecessary”

packages which had no open ports. The installation of up to date utilities might require

customized updated packages not available from manufacturer repos. This was not

tested here, but it was noted that the minimum system remains a black box with regard

to the packages installed.

6.3 UPS

The UPS test case is an example of the core tenets of hardening. Unnecessary ports

were closed, and credentials were changed. These two changes countered the most

simplistic attacks. Further the login page was redesigned, which is an important preven-

tative measure. Underlying software was updated and all encryption measures the de-

vice could support were enabled. The front page of the device no longer revealed any

information other than the manufacturer name and the need for a username and pass-

word. The manufacturer states that there are further plans to close port 80 and require

HTTPS by default. The option to opt-in to using port 80 and HTTP traffic will be provided

to customers, who can choose to use this method if necessary.

6.4 Comparative Analysis of Cases

Common to all of the penetration testing conducted was helpful information leaks from

vendor webpages or manuals which led to more focused plans of attack. These leaks

were generally related to either passwords or cryptographic keys. In the case of keys

safe storage is clearly material to the security of the device, as even partial key material

is useful for gaining access.

 27

Also of note was a slight correspondence between open ports and active services and

the overall quality of the security of the device, suggesting that a design which seeks to

limit ports is more likely to take other security factors into account. Each service or port

can provide different potential attack vectors.

Reverse engineering formed a material part of hackathon efforts, and revealed surprising

insights. The information left behind in an executable file may be somewhat unpredicta-

ble, and may contain keys or other information helpful to an attacker.

Both the original UPS design and the original gateway setup shared a problem with the

easy accessibility of the software upgrade utility once initial access was gained. This

made the conversion of the attack into a more complex tampering attack trivial. Security

should take into account the pivoting steps of an attacker after initial access.

In the case of the gateway the device was very vulnerable to DoS attacks, despite its

gateway function. This might have been avoided with stress testing during development.

Comparatively the UPS and the Tosibox Lock were resistant, closing connections if ex-

cessive packets were sent.

Overall although some of the attacks might have been mitigated by better configuration.

Several attacks used default passwords and many attacks leveraged device features or

design side effects. These may not have been available if the device was configured less

permissively. As such the viewpoint found in literature review which suggested that se-

curity is difficult to add after the fact proved true.

In the case of the redesigned UPS organizational factors and organizational interest in

security were material in facilitating a much improved product. Many of the risk factors

and attacks identified were in fact known to the client company and taken into account

in the redesign.

In the case of the gateway, the improved software developed for this thesis was heavily

supported by documentation and up to date software and tools provided by the manu-

facturer. The maintenance of this documentation also serves as organizational memory

of the security status of the device.

 28

Some of the services and software in the original gateway software were included for

debugging purposes. Debugging tools are services and software which assist the devel-

opment of the device or other software on it by revealing information about its operation

and allowing monitoring. Debugging tools used by developers can be particularly helpful

attack vectors if not removed from the final product. They may also cause problems if

accidentally discovered by the end user.

6.5 Converting Lessons Learned into Recommendations

The overall takeaway from these tests is the need for an organized and systematic ap-

proach to security which encompasses the entire organization and begins with the design

of the device. Developers must maintain documentation, avoid behavior which is predict-

able by automatic tools, test against common vulnerabilities, and remove all unneces-

sary debug tools, design features for minimum attack surface, and guide the user through

the design and the documentation towards correct configuration of the device. These

steps take into account several stages of the development process, despite being used

by relatively simple attacks.

The organization must understand the information carried by each device and the secu-

rity risks associated with devices. The potential consequences of these risks should be

assessed and organizational memory should be created for risk management process.

Developers should be facilitated in passing on this knowledge. The organizational frame-

work and awareness is necessary due to the spread of basis of the vulnerability over the

entire development process.

These overall principles are converted into concrete steps which can be taken at appro-

priate points in the development process in the attached Appendix 1, along with some

additional points directed towards managerial staff.

6.6 Next Steps and Future Developments

The next steps of this work after the publication of this thesis are automation of the testing

process used and integration into a Continuous Integration (CI) pipeline. A CI pipeline is

 29

a sequence of tests run automatically on a server by various software during develop-

ment, which then return their results to the developer (ThoughtWorks Inc., 2019). This

will provide the most efficient results and allow the development of a further device spe-

cific test process. Automation is a key next step of a timely approach to penetration test-

ing because of the marked increase in attacks, in particular simple automated attacks

which mirror the exploits attempted in this work. Automated penetration testing and fuzz-

ing will be used as part of the CI pipeline to free time to do more involved and nuanced

penetration tests and raise the basic level of security of devices developed at the client

company.

The automated test system will also help to measure the effectiveness of the distributed

guide. Improvements and expansions to the guide will be developed. Coverage of topics

exclusive to microcontrollers, physical security topics, and cryptography advice will be

added at a later date after more data is collected.

7 Conclusion

The techniques employed for this thesis were all basic penetration testing techniques.

However in the case of at least two devices, those techniques were still able to achieve

full access rights remotely. These kinds of simple attacks can be automated and are

fairly commonplace given the wide variety of simple to use tools available and ready to

download (Offensive Security, 2019). The successful attacks suggest a series of basic

mitigations, enumerated in the Handbook (Appendix 1). Based upon the findings of this

thesis penetration testers can be a part of the wider security architecture design process

in embedded devices. The findings of a penetration test are valuable information for the

hardening and forensic measures taken to prevent a security incident.

More importantly, the preventative measures of the attacks are best implemented by

each developer. Devices of several different types had similar vulnerabilities, suggesting

a lack of the related mitigations. Each of these mitigations can be stated simply and

plainly, and they do not require specific knowledge of the related attacks or vulnerabili-

ties. The attacks are however related to changes or missed steps at several stages of

the development. Consequently, the application of mitigation is in small steps at various

 30

stages. These steps, as listed, may lead to safer devices by preventing attacks by de-

sign.

 31

References

Caldwell, T., 2011. Ethical Hackers: putting on the white hat. Network Security, 2011(7),

pp. p.10-13.

Caldwell, T., 2013. Risky business: why security awareness is crucial for employees.

[Online]

Available at: https://www.theguardian.com/media-network/media-network-

blog/2013/feb/12/business-cyber-security-risks-employees

[Accessed 3 4 2019].

Chetwynd, J. et al., 2004. Handhelds.org: Ipkg. [Online]

Available at:

https://web.archive.org/web/20100823030002/http://www.handhelds.org/moin/moin.cgi/

Ipkg

[Accessed 8 4 2019].

Czagan, D., 2019. https://resources.infosecinstitute.com/online-dictionary-attack-with-

hydra/. [Online]

Available at: https://resources.infosecinstitute.com/online-dictionary-attack-with-hydra/

[Accessed 8 4 2019].

Dirk, B., Durfee, G. & Smetters, D., 2004. In Search of Usable Security: Five Lessons

from the Field. IEEE Security & Privacy, September/October .pp. 19-24.

Dougherty, C. et al., 2009. Secure Design Patterns, Pittsburgh, PA, U.S.A.: Carnegie

Mellon Software Engineering Institute.

Falco, G., Viswanathan, A., Caldera, C. & Shrobe, H., 2018. A Master Attack

Methodology for an AI-Based Automated Attack Planner for Smart Cities. IEEE Access,

6(2018), pp. 48360-48373.

F-Secure, 2019. F-Secure Corporation: F-Secure Radar. [Online]

Available at: https://www.f-secure.com/documents/10192/1566545/Radar+brochure

[Accessed 2019].

Gibson, S., 2005. ARP Cache Poisoning. [Online]

Available at: http://www.grc.com/nat/arp.htm

[Accessed 8 4 2019].

Graham, R., 2019. Masscan Github Repo. [Online]

Available at: https://github.com/robertdavidgraham/masscan

[Accessed 6 April 2019].

 32

Greenbone Networks GmbH, 2019. OpenVAS. [Online]

Available at: http://www.openvas.org/

[Accessed 8 4 2019].

Gupta, A. A. A. et al., 2019. Prevailing and emerging cyber threats and security practices

in IoT-Enabled smart grids: A survey. Journal of Network and Computer Applications,

Volume 132, pp. 118-148.

Gupta, H. & Kumar, R., 2015. Protection against penetration attacks using Metasploit.

[Online]

Available at: http://ieeexplore.ieee.org/document/7359226

[Accessed 8 4 2019].

ISO/IEC, 2018. 27000:2018. New York, U.S.A.: ISO/IEC.

Jaeger, T., van Oorschot, P. C. & Wurster, G., 2011. Countering Unauthorized Code

Execution on Commodity Kernels: A survey of common interfaces allowing kernel code

modification. Computers & Security, 30(8), pp. 571-579.

Khan, M. E. & Khan, F., 2012. A Comparative Study of White Box, Black Box and Grey

Box Testing Techniques. International Journal of Advanced Computer Science and

Applications, 3(6), pp. 12-15.

Kim, P., 2014. The Hacker Playbook: Practical Guide To Penetration Testing. North

Charleston(South Carolina): Secure Planet LLC.

Kopecky, S., 2017. Cyber Paradox from a User's View Point. London, IEEE, pp. 783-

787.

Linux Foundation, 2018. Yocto Project. [Online]

Available at: https://www.yoctoproject.org/

[Accessed 8 4 2019].

Lyon, G., 2019. Nmap Reference Guide. [Online]

Available at: https://nmap.org/book/man.html

[Accessed 8 4 2019].

Mead, N. R. & Woody, C. C., 2017. Cyber Security Engineering: A Practical Approach

for Systems and Software Assurance. 1st ed. Boston: Addison-Wesley.

Metasploit, 2018. Exploit Database: NetGear "TelnetEnable' Magic Packet. [Online]

Available at: https://www.exploit-db.com/exploits/44245

[Accessed 8 4 2019].

National Institute of Standards and Technology, 2016. National Vulnerability Database:

CVE-2014-9223 Detail. [Online]

 33

Available at: https://nvd.nist.gov/vuln/detail/CVE-2014-9223

[Accessed 8 4 2019].

National Institute of Standards and Technology, 2019. Cybersecurity Framework: Critical

Infrastructure Resources. [Online]

Available at: https://www.nist.gov/cyberframework/critical-infrastructure-resources

[Accessed 31 January 2019].

National Institute of Standards and Technology, 2019. NIST Risk Management

Framework. [Online]

Available at: http://csrc.nist.gov/groups/SMA/fisma/framework.html

[Accessed 2 4 2019].

Neil, I., 2018. CompTIA Security+ Certification Guide. 1st ed. Birmingham: Packt

Publishing.

Offensive Security, 2019. What is Kali Linux?. [Online]

Available at: http://docs.kali.org/introduction/what-is-kali-linux

[Accessed 8 4 2019].

Okenyi, P. O. & Owens, T. J., 2007. On the Anatomy of Human Hacking. Information

Systems Security, 16(6), pp. 302-314.

OWASP, 2016. Testing for Default Credentials (OTG-AUTHN-002). [Online]

Available at: https://www.owasp.org/index.php/Testing_for_default_credentials_(OTG-

AUTHN-002)

[Accessed 8 4 2019].

Pompon, R., 2016. IT Security Risk Control Management: An Audit Preparation Plan. 1st

ed. Seattle: Apress.

Ross, R., McEvilley, M. & Oren, J., 2016. Systems Security Engineering: Considerations

for a Multidisciplinary Approach in the Engineering of Trustworthy Secure Systems,

Gaithersburg: National Institute of Standards and Technology.

Scarfone, K., Souppaya, M., Cody, A. & Orebaugh, A., 2008. Technical Guide to

Information Security Testing: Recommandations of the National Institute of Standards

and Technology, Gaithersburg: National Institute of Standards and Technology, U.S.

Department of Commerce.

Shostack, A., 2014. Threat Modeling: Designing for Security. 1st ed. Hoboken, N. J.,

U.S.A.: John Wiley & Sons.

Sianipar, J., Sukmana, M. & Meinel, C., 2018. Moving Sensitive Data Against Memory

Dumping, Spectre and Meltdown Attacks. Sydney, Australia, IEEE.

Smith, S., 2017. The Internet of Risky Things. 1st ed. Sebastopol, CA, U.S.A.: O'Reilly.

 34

Sowmya, G., D.Jamuna & Reddy, M. K., 2012. Blocking of Brute Force Attack.

International journal of engineering research and technology, 1(6), pp. 1-4.

SSH Communications Security Inc., 2018. SSH.com: Attack: Man-In-The-Middle Attack.

[Online]

Available at: https://www.ssh.com/attack/man-in-the-middle

[Accessed 8 4 2019].

Susi, H., 2018. Threat Modeling [Internal Documentation]. Espoo: Etteplan Oy .

Tevault, D. A., 2018. Mastering Linux Security and Hardening. 1 ed. Birmingham, UK:

Packt Publishing.

The European Parliament and the Council of the European Union, 2016. Regulation (EU)

2016/679 of the European Parliament and of the Council on the protection of natural

persons with regard to the processing of personal data and on the free movement of

such data, and repealing Directive 95/46/EC (General Data Protection). Brussels,

Belgium: The European Parliament and the Council of the European Union.

The MITRE Corporation, 2019. Common Vulnerabilities and Exposures (CVE). [Online]

Available at: http://cve.mitre.org/

[Accessed 8 4 2019].

ThoughtWorks Inc., 2019. Continuous Integration. [Online]

Available at: https://www.thoughtworks.com/continuous-integration

[Accessed 8 4 2019].

Tosibox Oy, 2018. TosiHack.fi. [Online]

Available at: www.tosihack.fi

[Accessed 4 February 2019].

Ubuntu Foundation, 2016. Ubuntu Cron HowTo. [Online]

Available at: http://help.ubuntu.com/community/CronHowto

[Accessed 8 4 2019].

Webb, J., Maynard, S. B., Ahmad, A. & Shanks, G. G., 2014. Information Security Risk

Management: An Intelligence-Driven Approach. Australasian Journal of Information

Systems, 18(3), pp. 391-404.

Weidman, G., 2014. Penetration Testing: A Hands-On Introduction to Hacking. 1st ed.

San Francisco, CA, U.S.A.: No Starch Press.

WindRiver, 2019. WindRiver VXWorks. [Online]

Available at: https://www.windriver.com/products/vxworks/#products

[Accessed 8 4 2019].

 35

Wyk, K. v., 2007, rev. 2013. Build Security In: Adapting Penetration Testing for Software

Development Purposes. [Online]

Available at: https://www.us-cert.gov/bsi/articles/best-practices/security-

testing/adapting-penetration-testing-software-development-purposes

[Accessed 31 January 2019].

 36

Appendix 1

General checklist for IoT device security

• Clarify with the project manager the person responsible for security concerns.

• Include threat modeling and proposed mitigations in the planning phase of devel-

opment.

• Set up a unified and documented development environment.

• If network functionality testing is necessary, ensure a closed test network is used.

• If automated scanning is available, utilize it regularly during development to track

potential vulnerabilities and the efficacy of hardening measures.

• Document the active services and software of the device (list format is sufficient).

• In particular make a note of software and services used for debugging purposes.

• Prefer a ‘whitelisting’ approach where each open port, service, and application

added is included with a justification, rather than including all by default and then

closing vulnerabilities.

• Avoid default ports, but remain within the privileged 0-1023 if possible. In partic-

ular focus on ports that expect a user configured connection on the service such

as SSH or MQTT. These ports can be moved and the users informed with relative

ease. This will defeat a variety of simple automated attack tools which scan net-

works looking for weak targets.

• Include security best practices along with other code standardizations in the de-

velopment process.

• During code review, refer to an accepted code standard.

 37

• Before release use the port, software, and service list generated previously to

remove all non-critical software and debugging tools from the device.

• Incorporate unit testing during development. In addition to resulting in more ro-

bust code, unit testing can be used to test the security of individual components

of the code.

• During the testing phase, include basic stress testing and fuzzing. Do not assume

the device will always be used as intended. Test edge cases such as overly large

inputs, wrong formats, and unusual encoding. Purposely ‘misuse’ the device. If

possible invite a colleague unfamiliar with the project to use it to get an idea of

‘new user’ mistakes. Particularly for health and industrial use cases, perform sim-

ple denial of service attacks on open ports and test the robustness of the device.

• Dump device memory and check for passwords and sensitive data

• If possible force default credentials to be changed on first login. Make the default

credentials harder to guess. While defaults must understandably be straightfor-

ward, avoid credentials such as: admin, password, root, 12345678, 0000, user,

administrator. Consider a randomly generated per device password, as a suffi-

ciently long random alphanumeric string is difficult to guess using automated

methods, even if it never changed by the end user. If this is not possible, try to

use words that are known mainly within the company and the client such as pro-

ject_name, over terms that can be found publicly such as CompanyName.

• An attacker with physical access to the device poses a particularly large threat.

With this in mind, recommend tamper proof casing and hardware fail-safes.

• Finally, maintain transparency with the client. Internal documentation should be

clear with regard to active programs and services on the device. Known vulnera-

bilities should be documented and checked with the client [in non-public docu-

ments]. Client requests and/or approval for security reducing changes and non-

action on vulnerabilities should be obtained in writing whenever possible.

 38

• In writing external documentation keep in mind the publicity level of the documen-

tation. If this is not already the case, suggest sectioning customer documentation

and public documentation and include information accordingly.

Business Management & Legal specific steps:

1.) Review contracts, in particular warranty clauses on a per-project basis. Devices may

be vulnerable to breakage in response to testing, and such testing should only be pro-

vided on an as-is basis.

2.) Isolate the company from responsibility for future security breaches. Explicit contrac-

tual refutation of responsibility constructive or otherwise for future security flaws and

breaches based upon security services provided is preferred. In the negotiation process

strive to ensure the client has a realistic view of the possible consequences of security

findings and recommendations, and the limitations of such services.

3.) As the first point of contact for your developers, clarify the steps to be taken in the

event of a security breach or major threat disclosure.

4.) Managers should pay particular attention to the paper trail and transparency of the

project, maintaining wherever possible written evidence of provided security information

and advice, and client responses thereto.

5.) While most projects have understandable resource constraints, the addition of code

review and CI pipelines to projects can provide significant security advantage. A second

developer can provide a vital sounding board for implementation decisions and as well

as CI code review can flag issues earlier when they are easier to address.

