

Vladislav Govtva

Intel Xeon Server CPU Maximum
Wake Latency Measurement

Metropolia University of Applied Sciences

Bachelor of Engineering

Electronics

Bachelor’s Thesis

18 February 2019

Abstract

`

Author
Title

Number of Pages
Date

Vladislav Govtva
Intel Xeon Server CPU maximum wake latency measurement

35 pages + 17 appendices
18 February 2019

Degree Bachelor of Engineering

Degree Programme Electronics

Professional Major Electronics

Instructors

Matti Fischer, Principal Lecturer
Artem Bityutskiy, Lead Developer

Modern CPUs implement mechanisms for managing power consumption when
being idle by means of clock- or power-gating various internal blocks. These idle states are
called "C-states". If a CPU is in an idle C-state to save power but there is a task ready to be
executed, the CPU exits the C-state, although with delay. This delay is referred to as "C-
state wake latency".

There are typically multiple C-state levels. And each level has its own wake latency. Based
on those latencies Linux will choose which level to use in time-sensitive applications.
The aim of this research is to measure this latency with different levels of idle states.
The paper will explore idle power states with different generations of Intel Server CPUs, how
those states affect wake latency, as well as how Linux performs power management.
There are requirements for the C-state wake latency measurement. The test must measure
with greater than 95% precision and with sufficient resolution to measure 1-2 µs wake la-
tency. The measurement method should not require expensive or unobtainable equipment,
such as custom-made motherboards with measurement points.

The test developed for measuring C-state wake latency uses a special Network Interface
Controller (NIC). NICs’ architecture and high resolution clock allow it to send a network
packet at scheduled time with 32 nanosecond granularity. The NIC keeps track of those
network packets, which allows the CPU to stay idle until a packet is sent. When the packet
is sent, NIC notifies the CPU by issuing an interrupt. This interrupt causes the CPU to wake
up and take a timestamp with special software. The difference between the interrupt time
and the timestamp is C-state wake latency.

The results showed that there is significant difference between generations of Intel Server
CPUs and Linux’s expectations for certain C-state’s maximum wake latencies were incor-
rect.

Keywords CPU, C-state, Idle, Intel, Linux

`

Contents

List of Abbreviations

1 Introduction 1

2 Intel Xeon CPU 3

2.1 Power Dissipation in Integrated Circuits 3

2.2 Intel Server CPU Architecture & Modern CPU Power. 5

2.3 Intel Server CPU Power Management & Hardware Level Power Management
 6

2.4 Linux and intel_idle Driver & cpuidle Driver 11

2.5 Wake Up from Idle 13

3 Additional Equipment 13

3.1 Intel Network Interface Controller, Intel i210 NIC 13

3.1.1 Network Interface Controller Interrupts 14

3.1.2 Using Network Interface Controller as a Clock Source 15

4 Experiment 17

4.1 Wake Latency Tracer 17

4.1.1 Waltr Module 18

4.2 Measurement Method 19

4.3 Errors and Inaccuracies 21

4.3.1 Timestamping Errors 23

4.3.2 Interrupt Time Error 24

4.4 Experiment Configuration and Setup 25

4.4.1 Hardware 25

4.5 System Under Test Characterization 26

4.6 Configuration in Software and Operating System 27

4.7 Collected Data 28

4.7.1 Results for C6 Measurements 30

4.7.2 Results for C3 Measurements 33

4.7.3 Results for C1E Measurements 33

4.7.4 Results for C1 Measurements 34

4.8 Results Summary 34

`

5 Making Use of the Results 35

6 Conclusion 36

7 References 38

Appendices

Appendix 1 Cpu .c
Appendix 2 intel_idle.c
Appendix 3 kernel_shed.c
Appendix 4 Idle Loop Figure
Appendix 5 C-State Wake Latency Figures
Appendix 5.1 C6 Wake Latency Figures
Appendix 5.2 C3 Wake Latency Figure
Appendix 5.3 C1E Wake Latency
Appendix 5.4 C1 Wake Latency

`

List of Abbreviations

TSC Time Stamp Counter – A CPU counter that consistently increments,

regardless of CC or PC state.

CPU Central Processing Unit

PCH Peripheral Control Hub

PCI Peripheral Component Interconnect

NIC

MAC

Network Interface Controller

Media Access Control Address

HW Hardware

BIOS Basic Input/Output System

SW

OS

Software

Operating System

1

`

Acknowledgements

I wish to thank my thesis supervisor Matti Fischer for being a supervisor for this project.

His willingness to give his time so generously has been very much appreciated.

I would also like to Artem Bityutskiy for all his assistance. His time and effort which he

charitably put into helping me with this project were crucial to its success.

I would also like to give special thanks to Intel employees who provided me with

indispensable technical information: Len Brown and Erik Mann.

1 Introduction

In modern servers, which are becoming a bigger part of our everyday life, there are three

aspects which are sought after. The aspects are: performance, Quality of Service, and

power efficiency. Performance allows to execute increasingly complex tasks within

shorter period of time. Quality of Service (QoS) provides the user an experience for which

they may be more willing to pay. And power efficiency lowers expenses for the business

that employs massive data centres.

Two of the above mentioned qualities, namely QoS and power efficiency, have an

important common component – wake latency from idle state. “Wake Latency” in this

paper refers to the time difference between a CPU receiving an interrupt while idle and

the first line of code it executes. For QoS, wake latency partly affects how quickly user’s

request gets processed, or in worst case, a user my not be able to use the service at all,

e.g. in networking applications a crucial packet can get dropped if the latency is too high.

Power efficiency is always a good goal. For individuals using laptops or desktop

computers, better efficiency results in longer battery life and better performance to cost

ratio. Power efficiency in server CPU mainly concerns business owners, it affects their

bottom line. When there are thousands and tens of thousands of CPUs in a datacentre,

their cumulative power consumption becomes one of the biggest contributors to their

expenses. [1] [2, p. 18]

2

`

That is why modern server CPUs implement power saving techniques, to improve power

performance. The techniques can be summarized as: core voltage gating, core clock

gating, completely turning off parts of the CPU, and combination of all of the above. The

benefit of these techniques results in significant power savings, the consequence is

increased wake latency.

The goal of this research is to isolate and measure wake latency in Intel Xeon CPUs,

Intel CPUs specifically designed for server applications, and compare them to values

written in Linux intel_idle driver. Linux intel_idle driver was used for reference because

most data centres use Linux kernel running on Intel Xeon CPUs. Any information about

wake latency of those systems comes from intel_idle driver.

The reason for measuring the wake latency is to validate the values in intel_idle. The

values in the driver are calculated by Intel Corporation. Because the values are

calculated, and not measured, there is a necessity to test them.

There is also an additional reason for investigating wake latency. Wake latency is a part

of total interrupt latency, which also includes factors such as: PCI topology of the system,

PCH, BIOS, and other factors. But measuring total response latency is not a topic of this

research. Intel_idle driver specifies wake latency of their CPUs, not the entire system.

And in simple systems the CPU wake latency is the largest components of response

latency and can be used as a short cut for estimating total response latency of that

system.

This latency is important to know when deciding which states are permissible for a

specific application. If, for example, there is an application where a server has to start

processing a signal within 50 µs of its arrival, any C-state with maximum latency longer

than 50 µs should not be used. This scenario is common in telecommunications and

networking applications.

There are also examples where large servers with a lot of computational power are

necessary but not utilized all the time. Typically, servers used for research, where there

are no tight timing constraints, fit this description. The work loads are usually intense but

3

`

few in number and far between each other. In this case, the deepest C-state available

will be best suited, since those will result in biggest savings.

2 Intel Xeon CPU

2.9 million server units were shipped worldwide between second quarter of 2017 and

same quarter 2018. [3] A large number of those systems were shipped with Intel Xeon

CPUs inside. That is why Intel CPUs are the focus of this paper. Better understanding of

their power management subsystem can be beneficial to all users.

2.1 Power Dissipation in Integrated Circuits

This work is primarily interested in wake latency, but since wake latency is a direct result

of power saving techniques, a high level picture of power dissipation helps to put the

issue in perspective. There are two primary sources of power dissipation in integrated

circuits: logic power, leakage power. These two sources are going to be discussed in

this chapter.

The first factor to cover is logic power. Logic power is power that is dissipated as a result

of a transistor switching state, going from “ON” to “OFF” and vice versa, which happens

during computation. This power can be expressed with an equation [2]:

 𝑃 ~ 𝐶 × 𝑉 × 𝑓 × 𝐴𝑅 (1)

where:

P = power dissipated

C = circuit capacitance

V = voltage

f = frequency

4

`

AR = active resistance

Modern CPUs aim to increase the frequency in the Equation 1, in order to increase the

number of calculations in a unit of time. But this increase in performance results in in-

crease in power consumption. The reverse is also true, if the frequency is decreased, we

get less performance and power dissipation. If frequency becomes 0, it would result in

no power dissipation.

Another way to affect logic power is to modulate voltage and the effect will be quadratic.

This means that reducing voltage by half can have a bigger effect on power dissipation

than reducing frequency by half. If voltage is lowered by 50% the effective power is low-

ered by 75%, and with frequency the change would be one to one. But increasing voltage

by a factor of 2, results in power quadrupling.

The reason why voltage is changed is because in order to achieve higher frequency,

more voltage is required.

Second factor is leakage power. Leakage power, is the power that is dissipated inside

the CPU to keep the transistors powered on, and memory state saved. The formula for

estimating power dissipation from leakage is [2]:

 𝑃 ~ 𝑉 ∗ (𝑒 ∗ 𝑒) (2)

where:

P – Power dissipated due to leakage

V – Voltage

t – Time

Notice, that the Equation 2 lacks any physical information about the circuit. That is be-

cause those variables are constants. This formula is used for estimation. It is useful be-

cause it accentuates the relationship between leakage power and CPU voltage, or time.

5

`

The higher the voltage the higher the power dissipation, exponentially. Leakage power

can altogether be avoided by having 0 V, or in other words turning off the circuit.

2.2 Intel Server CPU Architecture & Modern CPU Power.

Over its long history, Intel had many different microarchitectures, but we will focus on the

latest server CPU architecture, Skylake-SP.

There are five main components in a CPU:

 Core – the unit responsible for operation and logic of the CPU.

 Uncore – mesh which allows communication between CPUs, I/O, and Memory
controllers.

 Cache Memory – ultra fast, low capacity memory, extremely close to CPU
cores.

 I/O - UltraPath Interconnect, responsible for intra Socket communications (on
multi-socket systems), PCIe.

 The Memory Controller (MC) - controllers responsible for Read/Write to RAM
memory.

It is important to know these components and what they do in order to understand the

impact of each individual power state. Different power states progressively disable parts

of the CPU, in order to avoid unnecessary power dissipation. The effect of turning off

those parts was shown by Intel using thermal imaging [4, p. 14].

Intel CPUs implement hardware power management component (HWPM) called punit –

a dedicated component responsible for managing voltage, frequency, and off lining com-

ponents. This HWPM takes requests from the OS to enter a specific C-state and de-

pending on conditions grants it. The HWPM also puts the package into PC-state when

all cores have met the requirements.

6

`

2.3 Intel Server CPU Power Management & Hardware Level Power Management

As mentioned in Section 2.1 there are two ways that a CPU dissipates power. The first

one was active power, when CPU is doing work. To regulate how much power is dissi-

pated Intel Xeons have execution power saving states – P-states, which control the volt-

age and frequency. The power dissipated during active power dissipation is doing useful

work.

The second source of dissipated power was leakage. For regulating this power Intel

CPUs implement idle power saving states – C-states. In contrast to P-states, C-states

are for the moments when the CPU is idle, no work is being done, and there is no benefit

to dissipating power. To avoid this unnecessary power dissipation parts of the CPU are

completely turned off, which creates latency when that those parts are needed again.

There are other states as well. Here is a full list of them:

 P-states – changing frequency and voltage of cores, to reduce power dissipation
or increase performance

 C-state – voltage and frequency gating for CPU cores.

 PC-state – voltage gating components of the CPU

 S-state – sleep state, equivalent to halt

 D-state – device power management

In this research we focus on C-states and PC-states, because in servers S-states are

rarely used, P-states do not have wake latency (the CPU is executing instructions in any

P-state) and D-states are typically not as impactful.

Table 1 lists commonly implemented core C-states. But it is not necessary that all of

them are present in all platforms. For example, Skylake Xeon CPUs do not have CC3 or

CC7-CC10, because those states were omitted.

There is a significant step up in latency after C1E. There could be many reasons why,

but this information is only available inside of Intel. Something that is noticeable is that

CC3 is the first state that uses clock gating, and flushes caches. Restoring cached in-

formation, and restarting the core clock can be a complicated process.

7

`

PC-states are global package states which introduce further power savings, with addi-

tional costs in wake up latencies. One big difference from CC-states is that, in order to

achieve any PC-state all cores must be in the same CC-state as the desired PC-state or

deeper. For example, PC3 is possible if, and only if all cores are in CC3 or deeper. Table

2 contains commonly used PC states.

Figure 1 also shows the order of entering and exiting PC-states. This hierarchy may vary

across generations and specific skews. Depending on circumstance a CPU can switch

from PC6 to PC2 and then back. Such a circumstance would be when a PCI device

issues a Direct Memory Access (DMA) read request. In this case a CPU will bring uncore

online, and allow the PCI device to read from memory, after this the CPU will return to

PC6 or remain in PC2 until next interrupt.

8

`

Table 1 Core C-state description

State Status

CC0 Normal operating state of the CPU where code is being executed

CC1 All threads on that core execute HLT or MWAIT (C1/C1E) instruction.

The core is in low power mode with low voltage and frequency. When

returning to CC0, frequency and voltage are restored to the state before

idle state.

C1E Same as CC1, but when exiting this state, the CPU start operating in

LFM

CC3 The contents of L1, L2 caches are flushed to LLC, and the core’s volt-

age is lowered, and clock is stopped.

CC6 The core saves its architectural state to SRAM, and the core is com-

pletely powered down.

CC7 –

CC10

These states are rarely used in Xeon CPUs, but if these states are im-

plemented, they exhibit the same behaviour as CC6.

9

`

Figure 1 PC-state transitions [5, p. 76]

It is important to note that a CPU has a special register call Time Stamp Counter (TSC).

In Intel Xeon CPU, starting from Nehalem generation of CPUs, two generations prior to

Ivy Bridge, TSC became C-state invariant, meaning that it never stops counting, and it

also counts at a constant frequency.

10

`

Table 2 Package C-state description

State Status

PC0

This is the normal operating state for the processor. The processor remains

in the normal state when at least one of its processor IA cores is in the C0 or

C1. Individual processor IA cores may be in deeper power idle states while

the package is in C0 state.

PC2 Special package C-state not explicitly available to SW. There are two scenar-

ios when this state is used:

 When deeper PC-states are off limits, and PC2 is the deepest PC-

state

 When the CPU is in PC3 state and a memory access request is re-

ceived. In this case the CPU transitions to PC2, and completes all out-

standing memory access requests, and then transitions back to PC3,

or PC0 if there is a cause to wake from idle state.

PC3 Package low power state

PC6 LLC Cache is flushed, and turned off

PC7 –

PC10

Typically present only on Desktop CPUs, not on CPU meant for servers

11

`

2.4 Linux and intel_idle Driver & cpuidle Driver

For this experiment Linux is the OS of choice. Linux’s open source code allows to per-

form the experiment with greater degree of control compared to Linux’s competitors. An-

other reason for choosing Linux is how wide spread Linus is as a server or data centre

OS.

There are three major components in Linux’s idle loop. There is kernel scheduler, idle

governor, and a driver. The driver implements how to enter idle state. Different manufac-

turers have different implementation of idle driver. Kernel scheduler is responsible for

scheduling idle state. Whenever it notices that there is an available moment for going

into idle state, the scheduler calls “do_idle()” function (Appendix 3). In that function,

kernel disables interrupts on the CPU that’s executing that thread (Appendix 3, line 33),

before continuing to make decisions about which idle state to request.

Then idle governor is called to prepare the system before idle state. Idle governor calls

a function called “cpuidle_enter_state()” which is responsible for calling the correct func-

tion from the driver to enter a desired C-state (Appendix 1, line 40). The driver used with

Intel Xeon’s is called “intel_idle” driver. In this research we are only concerned with in-

tel_idle driver.

Idle governor checks available information about future and past events, then it checks

if there are any restriction on wake latency in Power Management QoS system, and

based on all of this information makes a decision to request a specific idle state. After

the state is chosen, governor calls corresponding function to enter that state. This is

where “intel_idle()” is called. “Intel_idle()” is responsible for calling mwait with a correct

hint (Appendix 2, line 37).

Mwait is a special instruction in CPUs which essentially instructs the CPU to enter power

saving mode. Mwait can be called in a variety of ways. Mwait can be called with a time

hint, to tell the CPU for how long it should be idle. Mwait can also be called with a hint

for C-state. Intel_idle passes the information from idle governor to the hardware by call-

ing mwait with hints to desired C-state.

12

`

Using a special tool, we can see exactly when mwait function is called. The tool is called

“ftrace”. One of the features of ftrace is that it allows to trace exactly what functions were

called by the CPU and in what order. In Listing 1 contains the ftrace output close to

intel_idle:

01)| call_cpuidle() {
02)| cpuidle_enter() {
03)| cpuidle_enter_state() {
04)| sched_idle_set_state();
05)| intel_idle() {
06)| leave_mm();
07)| mwait_idle_with_hints.constprop.2();
08)| }
09)| sched_idle_set_state();
10)| arch_local_irq_enable() {
11)|
12)| do_IRQ() {
13)| irq_enter() {

Listing 1. ftrace output

Line “07” in function trace is crucial, because this is where the CPU goes into idle state,

and turns off the core. The next relevant lines are 9-12 and those lines show that some

code is executed after idle state and before handling interrupts. For greater degree of

accuracy in measuring wake latency our timestamping function should fit between lines

“08” and “09”.

Intel_idle driver also contains information about wake latencies of different Intel CPUs

including Intel Xeon CPUs. The values for CPU tested can be seen in Table 3.

Table 3 Intel_idle Wake Latency values

Core Architec-

ture family

Ivy Bridge, µs Haswell, µs Broadwell, µs Skylake, µs

C1 1 2 2 2

C1E 10 10 10 10

C3 59 33 40 NaN

C6 80 133 133 133

13

`

2.5 Wake Up from Idle

When an interrupt is received the CPU raises a flag. The context manager then checks

if the interrupt handling is enabled, and if it is, the context is switched to interrupt han-

dling. If the interrupts are disabled, the process continues as normal, until the interrupts

are enabled. If the CPU was in idle state and the interrupts are disabled, the first instruc-

tion after wake up will be the next instruction after mwait. Linux idle loop utilizes this

mechanism to perform post idle state tasks before enabling interrupts and switching con-

text to take care of the interrupt. This is exactly where a time stamp for wake latency

should be taken.

The interrupt is going to be set up by an external source, the device that does it will be

Intel i210 NIC.

3 Additional Equipment

3.1 Intel Network Interface Controller, Intel i210 NIC

Intel i210 NIC (datasheet [6]) is a network device designed by Intel. It is a feature labelled

802.1Qav [6, pp. 1,7,314-320] - Forwarding and Queuing Enhancements for Time-Sen-

sitive Streams. This feature is intended to be used in time sensitive application like audio

and video streams, where in very precise transmissions are required.

This feature includes a capability to schedule a packet to be sent at a specific time.

Figure 7-11 in the datasheet [6], page 315, shows how this is achieved. There are four

queues on the device which hold descriptors with Launch Time - time at which a packet

should be sent - and pointer to data in host’s memory. When the Launch Time is met,

the card issues DMA read request and retrieves data into its own internal First in First

out (FIFO) queue, and sends it from there.

There are parameters such as Fetch Delta which are used to specify when to pre-fetch

the data into the cards FIFOs so that it would be ready by scheduled launch time. This

14

`

delta is useful in cases where the packets to be sent are large and require significant

time to fetch.

There is another feature of the network card, which is related to packet scheduling. The

card keeps only control message of the packet in its own memory. When it is time to

send the packet the network card needs to retrieve the packet from host memory. De-

pending on the size of the packet, the time might vary. A way to deal with that issue is to

configure a pre-fetch time. To achieve that, a user would need to know how long it takes

to retrieve some amount of information from host’s memory. For that reason Intel i210

keeps track of the longest 64-bit transaction. This time, the longest transaction, will be

refered to as DMA (Direct Memory Access) time.

In this research this feature will be used to measure PC6 to PC2 transition. That will be

the longest transition when retrieving a packet from an idle system, because it will include

the time uncore comes online and become available.

3.1.1 Network Interface Controller Interrupts

When using 802.1Qav mode Intel i210 NIC sends out an interrupt for transmit packages.

Table 4, from the NIC datasheet [6, p. 19], describes the transmission flow, in total 14

Step process. An interrupt is raised by the network interface controller at the end of this

process.

15

`

Table 4 Intel i210 NIC Transmit data flow [6, p. 19]

The interrupt is raised after the packet is sent to MAC, Steps 10-11. Then The NIC up-

dates all the information about the transmission, Step 12, and then it raises an interrupt,

Step 14. According to the lead architect for Intel i210 NIC, Erik Mann, the time between

Step 11 and Step 14 is 1.8 µs, later referred to as “NIC Interrupt Offset”. This number

later comes up, because during this moment nothing is happening on the host.

3.1.2 Using Network Interface Controller as a Clock Source

In the context of the experiment i210 serves 2 purposes: external interrupt source and

external time source. The former is the main feature, which allows the experiment to

achieve better precision of measurement. The latter is a complementary. Taking the time

from the same source as the interrupt source removes the necessity to synchronize times

between the host and the external interrupt source.

Using i210 as a clock source has its challenges. The network card has its own clock,

which is 64 bit clock with nanosecond precision. Taking a timestamp on i210 has a delay.

16

`

This delay will be referred to as Latch Offset. The name comes from the mechanism

used by i210 to take a timestamp. The steps necessary to read time from i210 are:

1. Read SYSTIMR register on i210, this latches the time when the register is read

2. Read SYSTIML register on i210 to get 32 least significant bits of 64-bit timer

3. Read SYSTIMH register on i210 to get 32 most significant bits of 64-bit timer

It is difficult to measure at what point exactly the time latches on step 1, but it is easy to

measure how long the entire read operation takes. This is done in characterization, cov-

ered later. But characterization obtains the average time to read contents of that register,

or latch the time, and dividing that value by two will give Latch Offset.

17

`

4 Experiment

The general concept of the experiment is to use an external interrupt source, to raise an

interrupt at a precise, known time. It is important that an external interrupt is used be-

cause in case a CPU has an internal algorithm which knows about the schedule wake-

up, the CPU might start the wake-up process sooner, thus lower the perceived wake

latency.

As soon as the CPU wakes up from idle state, it will start executing from the point where

it went idle. At that point we take a time stamp, and record the wake latency. After this,

interrupts are enabled, and the CPU OS continues to operate as usual. The experiment

is fully automated and done with software tailor made for this purpose.

4.1 Wake Latency Tracer

WAke Latency Tracer (waltr) is a tool for measuring C-state wake latency. It is currently

designed to work with Intel i210 NIC only. There are three main components to waltr:

 Armer – sets up a unix domain socket, an interface which allows to interact with

network stack from a normal program, and schedules packets to be set. Armer

can schedule packets to be sent at any time in the future.

 Waltr.c – a kernel module is responsible for taking timestamps before and after

“intel_idle();”, which are later used to calculate wake latency, and write them to a

location accessible from userspace.

 Waltr – a python tool to controls the entire measurement process, aggregates all

the data, and calculates statistical parameters: mean, median, standard devia-

tion, and minimum, maximum.

Armer and Waltr scripts do not require extensive coverage because their purpose is to

set up a measurement. The scripts themselves do not affect the final outcome of an

18

`

individual measurement. In addition, Armer and Waltr can operate remotely, when the

system under test will be less busy. Waltr.c module, on the other hand, needs some

explanation because it is directly involved in the measurement and has time sensitive

components, which affect the final outcome of the experiment.

4.1.1 Waltr Module

Waltr module is a linux kernel module, designed to interpose its own function instead of

“intel_idle()”. The module must be capable of taking a timestamp as close to the point

where CPU goes into idle state, and right after. And after those timestamps are acquired

waltr module must communicate those to user space.

Waltr module, when initialized, finds the address of “intel_idle()” function and inserts a

jump to its own internal function in the first few lines of “intel_idle()”. Waltr’s internal func-

tion is called “intel_idle_wrapper()”. “Intel_idle_wrapper()” wraps “intel_idle()” function

with other calls to get system information and timestamps. First, before calling “in-

tel_idle()”, waltr takes a snapshot of MSR registers and a timestamp, which represents

time before idle. After “intel_idle()” we take another timestamp straight away, and later

we take a second snapshot of MSR registers. Listing 2 shows the result after waltr mod-

ule was initialized, as seen in ftrace (with comments):

01)| call_cpuidle() {
02)| cpuidle_enter() {
03)| cpuidle_enter_state() {
04)| sched_idle_set_state(); # intel_idle would be called after this
point
05)| read_cstate_msrs [waltr]() { # Take snapshot of state registers
06)| read_cstate_msrs [waltr]();
07)| ktime_get_real_ts64();
08)| latch_nictime [waltr](); # This is where time is taken from
NIC
09)| ktime_get_real_ts64();
10)| leave_mm();
11)| mwait_idle_with_hints.constpr # Actual mwait instruction
12)| ktime_get_real_ts64();
13)| latch_nictime [waltr](); # Time stamp after idle, also from
NIC
14)| ktime_get_real_ts64();
15)| }
16)| sched_idle_set_state();
17)| arch_local_irq_enable() {
18)| # Context switch
19)| do_IRQ() { # Our transmit interrupt is processed
20)| irq_enter() {

Listing 2 ftrace output when intel_idle is interposed with waltr

19

`

Compared to idle trace from Listing 1 there are now timestamping functions (Listing 2,

lines 5-9, 11-14) as the last function before mwait (Listing 2, line 11) and right after.

4.2 Measurement Method

Figure 2 Waltr single data point measurement

A diagram of a single measurement can be seen in Figure 2. Data is logged after each

measurement cycle, which makes parsing it simple. This allows to perform the experi-

ment as many times as needed, and obtaining any amount of data. Here are the steps

of the experiment:

i. Armer (waltr) arms a network packet to be sent at some point in the future. That

point is Launch Time. After this waltr sleeps until after Launch Time.

ii. At this point there might be some activity on the system, which is not under our

control. At the very least, the time it takes for a packet to go through the entire

network stack may vary, so we cannot rely on this time to consistent. Another

example of uncontrolled activity would be a network packet received, if the sys-

tem is not isolated from any external network.

20

`

iii. Time before Idle, mwait – Here we take a time stamp before intel_idle is executed,

and then mwait is called by the OS, which puts the CPU in idle state.

iv. Silent Time – A period of time that the CPU had after mwait and before receiving

an interrupt. The CPU was in idle state, but not necessarily in any one CC- or

PC-state, for example, it could have switched to CC6 then to CC1 and then back

to CC6.

v. Launch Time – This is the time when the NIC starts sending a packet, which

wakes up the CPU up to PC2, if the CPU was deeper than PC2. After NIC is done

retrieving the packet from hosts memory, it takes 1.8µs to process the data, and

raises the interrupt. Launch time is used as the time when CPU starts to wake

up.

vi. Time After Idle – this is where the CPU starts executing instructions, and as the

first action, it takes a timestamp. And waltr logs the output to temporary location.

vii. Waltr wakes up from idle state, parses the output and logs it to final output file.

This pattern is repeated thousands of times to find the maximum wake latency.

It is important to note that Launch Distance is configurable, but we cannot control Silent

Time. This is because the OS might have other tasks scheduled between Armer and Tbi,

denoted with step “ii”, and that is outside of user’s control. This is actually to the benefit

of the test. Because it adds natural randomness to the test, increases likelihood of catch-

ing unforeseen scenarios. Launch distance was not kept constant in the experiment to

increase the range of possible Silent Times.

21

`

The final calculation for wake latency is therefore:

 𝑊𝐿 . = (𝑊𝑇 – 𝐿𝑂) – 𝐿𝑇 – 𝐼𝑂 (3)

 𝑊𝐿 . = (𝑊𝑇 – 𝐿𝑂) – 𝐿𝑇 − 𝐷𝑀𝐴 – 𝐼𝑂 (4)

Where:
WLC1,C1E = Wake Latency for C1 and C1E
WLC3,C6 = Wake Latency for C3 and C6
WT = Wake up time
LT = Launch Time
LO = Latch Offset
DMA = DMA read time
IO = Interrupt offset

4.3 Errors and Inaccuracies

Errors and Inaccuracies related to the method can be classified in two different catego-

ries: errors related to delayed timestamping and inaccuracy of NIC’s interrupt timestamp.

Before going over the categories, additional information is required. Figure 3 shows the

order of events that happen on CPU and NIC both between Time before Idle (Tbi) and

Time after idle (Tai) timestamps. The figure has additional detail compared to Figure 1.

Additional detail is necessary to better illustrate the origin of inaccuracies in the method

used.

In the figure we see the sequence of events and their dependencies, as depicted with

blue arrows. First action shown is taking a timestamp, Tbi, from the NIC (as explained in

Chapter 3.1.2), this is done in order to filter out events where the “launch time” happened

before CPU went to idle state. The timestamping is done on the NIC to keep everything

in the same time domain. The Tbi is also interlaced by TSC timestamps to keep track of

how long that took.

22

`

Figure 3 Tbi - Tai interval in detail

23

`

4.3.1 Timestamping Errors

Because the TSC and Tbi timestamps are in different domains, it is impossible to tell

when Tbi happens exactly from the point of view of CPU. Which makes it difficult to get

the time mwait was called in NIC domain. But it is possible to get a close approximation

with two methods. First, if an assumption is made that the TSC read before Tbi happens

almost at the same time, then the offset between clocks would be the difference between

those time stamps. And the formula for time when mwait was called in NIC domain would

be:

where:

Mwait = time when mwait is called

Tbi = Time before idle, NIC domain

HTbi1 = TSC timestamp before Tbi

HTbi2 = TSC timestamp closest to mwait

The mwait time error in this case is exactly the time between calling “latch_time()” in-

struction and the time latching on NIC. If the entire latch operation takes approximately

1.4µs then the error in this case would be sub 1.4µs. Since the use case for mwait time

if filtering out data points when the interrupt was raised before calling mwait, then 1.4us

window is sufficiently small.

The same arrangement is seen after idle around Tai, but in that case a different approach

was used because the event being measured happened before TSC timestamp. In this

case, an assumption is made that time latching happens in the middle of TSC

timestamps. The following formula show to calculation of time when the CPU started

executing instructions:

 𝑀𝑊𝑎𝑖𝑡 = 𝐻𝑇𝑏𝑖2 + (𝑇𝑏𝑖 − 𝐻𝑇𝑏𝑖1) (5)

24

`

 𝑊𝑇 = 𝑇𝑎𝑖 − (𝐻𝑡𝑎𝑖2 − 𝐻𝑡𝑎𝑖1)/2 (6)

where:

WT = wake up time

Tai = NIC Time after idle

Htai1 = TSC time before Tai

Htai2 = TSC time after Tai

In this case maximum error is half the difference between TSC timestamps, or in other

words, hald the time it takes to latch the time on NIC, which was measured to be typi-

cally 1.4 µs. Therefore, the error for wake up time is ±0.7 µs.

4.3.2 Interrupt Time Error

In an ideal set up the wake up latency should be calculated with:

 𝑊𝐿 = 𝑊𝑇 − 𝐼𝑇 (7)

where:

WL = Wake Latency

WT = Wake up Time, time when the first instruction was executed

IT = interrupt time, the time when an interrupt was received by the CPU, in the same

domain as WT.

But in the method used in the experiment, the interrupt time is more complicated.

Figure 3 also illustrates a gap between “Launch Time” and “Raise an Interrupt”, which is

used to calculate wake latency in Equations 3 and 4. The time difference between those

25

`

two events is labelled as Interrupt Offset. The way to account for this offset differs de-

pending on which package C-state the CPU was in at Launch Time:

 𝐼𝑂 , = (𝐷𝑀𝐴 − 𝐿𝑇) + 𝐼𝑂 (8)

 𝐼𝑂 , = 𝐷𝑀𝐴 + 𝐼𝑂 (9)

where:

IOC6,C3 = total interrupt offset for C3 and C6 C-states

IOC1E,C1 = total interrupt offset for C1 and C1E C-states

IONIC = Interrupt offset from DMA finished

DMAstart = DMA read request time

DMA = DMA read time

LT = Launch Time

The difference is a result of PC6 to PC2 transition during the first DMA read request.

This measurement is part of the total wake latency, and therefore should be included in

the final wake latency measurement. But when the PC-state is PC2 or shallower, DMA

read time should be excluded.

4.4 Experiment Configuration and Setup

4.4.1 Hardware

The experiment requires two servers, or a server and a switch connected by an Ethernet

cable. The server which is being tested should have Intel i210 NIC installed, it will be

referred to as “localhost”. When the NIC attempts to send a packet, it first checks if there

is a listener on the other end of the Ethernet cable, if there is no reply to its messages,

the NIC does not even attempt to send a packet, and does not raise an interrupt. This is

the purpose of the other machine, be it another server or a switch.

26

`

If it is possible to use two servers, the experiment can be controlled remotely. In that

case most processes will not be on a system tested and data logging will be done re-

motely. The benefit of this approach is less noise on the system under test.

Six different hosts were tested, with four different generations of Intel Xeon CPUs. The

results of for the four different generations are presented because there is little variation

within the same generation. In the table below is the information about the CPUs tested:

Table 5 CPUs tested

Core Architec-

ture family

Ivy Bridge Haswell Broadwell Skylake

Number of

Sockets

2 2 2 2

CPU model(s) Intel(R)

Xeon(R) CPU

E5-2697 v2

Intel(R)

Xeon(R) CPU

E5-2697 v3

Intel(R)

Xeon(R) CPU

E5-2699A v4

Intel(R)

Xeon(R) Plati-

num 8170M

CPU

C-states CC1,C1E,

C3,C6

CC1,C1E,

C3,C6

CC1,C1E,

C3,C6

CC1,C1E,C6

PC-states PC2,PC3,PC6 PC2,PC3,PC6 PC2,PC3,PC6 PC2,PC6

4.5 System Under Test Characterization

Characterization is a process where we define constants for the system under test. The

constants are: latch time, reading time, TSC, and MSR registers, and getting time of day

since epoch. When characterized, each of the above mentioned actions are performed

thousands of times and the average is taken.

27

`

The result of characterization allows us to account for the impact of our own measure-

ment tool. For example, before we call mwait, we first have to latch the time, which typi-

cally takes 1.3 µs, after that we have to read the time which takes 2.6 µs. So at this point

our mwait instruction is 3.9 µs ahead from the moment time registers were latched.

Knowing this we can calculate Silent Time more precisely.

More of these corrections will be mentioned in the remaining part of the thesis as they

come up. What is important to keep in mind, is that every system is characterized indi-

vidually, and all data is corrected using corresponding characterization values.

4.6 Configuration in Software and Operating System

A few steps are required in OS before running the test. The first and most important one

is turning off all virtual cores except for one. This simplifies the experiment by making

sure that all instructions are roughly executed in the desired order. Another benefit to

turning off cores is no race condition for timestamps. The fact that virtual cores are turned

off does not affect the wake latency because when a CPU is turned off in Linux OS, it is

equivalent to requesting the deepest C-states, making sure no interrupts are assigned

to it, and forbidding the OS from using that core. There is a possibility that any particular

physical core can be slower than any other core in the same CPU, but this requires a lot

of testing in order to find the slowest one.

Next important step is to configure the network stack to allow the network card to send

a packet at the desired time. This is done through configuring the queueing discipline in

Linux. A queueing discipline is a set of rules which orders the packets that are queued

to be transmitted and then it offloads the packets to driver in the desired order and at

desired time.

The queueing discipline used in this experiment is called Earliest Time First (ETF). ETF

orders the packets based on the time they are supposed to be sent off. An additional

feature in this queueing discipline which was developed with i210 in mind is “offloading”.

Offloading is a feature which, if hardware supports it, offloads the packet to the network

card some time before send off. That time is configured by a variable. For example, if a

packet is supposed to leave at time X, ETF can be configured to send the information

28

`

about this packet to hardware 500 µs before send off. Which means that the actual send

of time is controlled by the hardware on the NIC, not the OS. As a result a greater accu-

racy is achieved.

In this experiment, the network stack is configured so that the information about a packet

and its send of time are offloaded to the NIC half a second before send of time. Which

in practice means that as soon as we create a packet and send it through a network

stack, it is immediately offloaded to the NIC.

The last step necessary is time synchronisation between NIC and host. This is a con-

straint placed by ETF queueing discipline. The time on the network card is International

Atomic Time (TAI) and time in OS is Real-Time Clock, the difference between those, in

2019, is 37 seconds. A special program is started in the background called “phc2sys”

which periodically synchronizes the time between the card and the host. Any other time

synchronization should be turned off, otherwise, proper synchronization would be more

difficult to achieve.

4.7 Collected Data

The experiment is performed as follows:

1. the system is configured and prepared

2. Launch Distance is set to 300 µs.

3. 1500 data points are obtained, with the method from chapter 4.2

4. Launch Distance is increased by 10%

5. Next set of 1500 data points is obtained

6. Continue until Launch Distance exceeds 8 ms

29

`

Two variables tested are: CPU core family and deepest C-state. C-states tested are C1,

C1E, C3, and C6. CPUs tested are all generations from Xeon Ivy Bridge to Xeon Skylake,

with exception of C3 on Skylake, because it is not available.

As a result of the testing, 15 combinations of C-state and CPU were tested, total of 525

data sets were obtained, with 790 000 data points recorded for the raw dataset. There is

no real limit to the number of data points to obtain from the experiment, except for the

law of diminishing returns, the more data points are obtain the less frequent are the new

maximum data points.

Each C-state will be presented separately to showcase the difference in generations of

Intel server CPUs. An example of measurement can be seen in Figure 4 Broadwell C6

Wake Latency Measurement showing the results for C6 wake on Broadwell machine.

The points are arranged in chronological order. The orange line represents the Launch

Distance used for that section of the graph. The scale on the left is for wake latency, and

on the right for Launch distance.

Figure 4 Broadwell C6 Wake Latency Measurement

30

`

On the plot there is a cloud of data points ranging from ~2us up to maximum of ~82us.

The latter is the main focus of this thesis, and the entire figure can be summarized as

that single value. Figures of other machines and C-states can be found in Appendix 5.

4.7.1 Results for C6 Measurements

All systems performed within limits when exiting from C6. Table below summarizes re-

sults in Appendix 5.1:

Table 6 C6 wake latency

CPU architecture Maximum wake latency from C6, ns

Ivy Bridge 87062

Haswell 69727

Broadwell 81642

Skylake 112276

Interesting difference was found in behaviour between Broadwell and Skylake, Figure 5

and Figure 6 respectively. In order to better illustrate the difference between these gen-

erations of CPUs their wake latencies are compared with respect Silent Time (defined in

4.2). The reason for that, is Identical Silent Time is a better representation of the state of

the system when it received an interrupt, because it is definitely known that mwait was

called, and C6 was requested.

Additionally, there are special hardware counters to keep track of C-state residency.

Comparing those two with regards to Silent Time gives even more insight. Former is

depicted in Figure 5, latter in Figure 6.

31

`

On Figure 5 on x-axis we see silent time, and corresponding wake latency on y-axis.

wake latency for Broadwell (bdwep0 on Figure 5) started to increase almost instantly,

and increases with a constant slope up until 250us of Silent Time. This slope may sug-

gest that the CPU began to enter deep C-state, but the interrupt was received and the

CPU started to wake up again. Skylake CPU (sklep0 on Figure 5) on the other hand does

Figure 5 Skylake vs Broadwell wake latency

32

`

not show high latency values until 250 µs. This can suggest that the punit delays the

earliest entry by 250 µs.

This theory is also supported in Figure 6. On the x-axis we see Silent Tim and on y-axis

– value in C6 Residency Counter. We see discrete lines for both CPUs (the same graph

as for Broadwell can be observed in Ivy Bridge and Haswell). This suggests that there

are only few discrete point when the punit begins to enter idle after receiving mwait. For

Broadwell those points are approximately 60 µs and 200 µs. For Skylake though, the

points are 250 µs, 500 µs, and 1.1ms.

Figure 6 Broadwll vs Skylake CC6 cycles

33

`

4.7.2 Results for C3 Measurements

Neither Core C3 nor Package C3 are available in the late 2018 generation of Intel CPUs

Skylake Xeon Core. That is why it is not present in the figures below. The difference

between the C6 and C3 can be found in C-states description table and PC-state descrip-

tion table in Chapter 2.3

Table 7 C3 Maximum Wake Latency

CPU architecture Maximum wake latency from C3, ns

Ivy Bridge 78807

Haswell 59617

Broadwell 71803

Skylake NaN

In Table 7 we see that the wake latency for Broadwell Core and Haswell Core systemat-

ically exceeds those specified in intel_idle driver. This is an important finding, and will be

addressed in Chapter 5.

4.7.3 Results for C1E Measurements

Table 8 C1E Maximum wake latency

CPU architecture Maximum wake latency from C6, ns

Ivy Bridge 21765

Haswell 15911

Broadwell 18661

Skylake 16141

Here again, like with C3, we see that intel_idle C1 wake latency value was exceeded

across all generations. These results include RTD, because additional testing showed

that in some cases RTD is affected by C-state.

34

`

4.7.4 Results for C1 Measurements

C1 is difficult to measure, the expected wake latency for C1 is 2 µs which is too small to

measure with the current setup. But even if that is the case, anomalies where the exit

latencies are greater than 2 µs can still be detected. So this test is still valuable. And

indeed, we see that there are cases where we have significantly large wake latency.

Table 9 C1 Maximum wake latency

CPU architecture Maximum wake latency from C6, ns

Ivy Bridge 19270

Haswell 14956

Broadwell 15153

Skylake 15471

All generations failed to meet their expected maximum wake latency. All the configura-

tions were checked and it is quite likely that this is indeed the time it took for the CPU’s

to wake up. These results include RTD, because additional testing showed that in some

cases RTD is affected by C-state.

4.8 Results Summary

Table 10 summarizes all maximum values obtained in the experiments.

35

`

Table 10 Results Summary

Core Architec-
ture family

Ivy Bridge, ns Haswell, ns Broadwell, ns Skylake, ns

Wake Latency
Max., C6

82794 69727 74895 108573

Wake Latency
Max., C3

78807 59617 71803 NaN

Wake Latency
Max. C1E

21765 15911 18661 16141

Wake Latency
Max., C1

19270 14956 15153 15471

The results show that there are inaccuracies in intel_idle driver. In C1, C1E, and C3 have

points which exceed the expected maximum latency.

5 Making Use of the Results

It is important to keep in mind that the goal was to measure the wake latency of a CPU,

not interrupt response latency. CPU wake latency should only be dependant of the CPU

alone, and it is a subset of interrupt response latency. Interrupt response latency can

depend on number of factors. Whether the system is idle or busy. Whether an interrupt

source was external, and if so, are there physical factors affecting latency, such as dis-

tance. Are there any other components introducing latency between external interrupt

source and CPU? And many other conditions. This distinction is important when trying

to make use of the results, because the latencies mentioned above are smaller than real

world response latency.

The results show that Intel CPU’s wake latency as it is stated in intel_idle driver does not

match with certain C-states. In some applications such as automotive, audio and sound,

and telecommunications wake latency determines which power saving strategy can be

used. For example, for best quality of service C6, C3, and C1E are disabled in telecom-

munication services due to their high latency, which can result in packet drop.

36

`

To make proper use of the results, one must also look at the frequency at which latencies

close to maximum occur. For example, if the maximum measured point occurs once

every million points, this is something to take into consideration. Furthermore, the meas-

urement method also aims to find the maximum, not measure frequency of its occur-

rence. Therefore, the frequency in these results is exaggerated.

6 Conclusion

The method implements using an external interrupt for wake up, which makes it possible

to implement the same method on other systems or CPU manufacturers with minimum

manufacturers. And as mentioned in Chapter 4 the fact that the interrupt is external al-

lows the experiment to be valid even in systems with some optimization algorithms. In

addition to that the method uses the same clock source, i210 internal timer.

There is strong evidence suggesting that the method is sufficiently accurate. As we see

in Chapter 4.1.1 the module is installed in such a way that the timestamps are taken as

the first few steps after idle, when we start executing code. The placement of the

timestamps and their granularity result in the smallest footprint on the final measurement,

in other words, we are not measuring ourselves. Te Network card specifies that when

used in Qav mode the accuracy is sub 0.5 µs when it comes to delay from Launch Time

to packet in MAC. [6]

This research can serve as a base for further research into the behaviour of the CPU

related to wake latencies. For example, measuring difference between pure Core C-state

and Core C-state with Package C-state, to see how Package C-state influence wake

latency. Also investigating the effect of Efficiency Power Bias (EPB), which is a com-

monly available setting.

Another example would be measuring the effect of more complicated integrated circuit

on wake latency, by measuring a range of CPU’s within the same generation. Intel offers

a range of CPUs with a varying features, core count, and power.

37

`

This research also provides a method that can be used for future generations of Intel

CPUs, and with minor adjustments can be use in non-Intel CPU’s.

The goal of this research was to find maximum wake latency for Intel Xeon CPUs and

compare the results to values specified in Linux’s intel_idle driver. This goal was

achieved. As a result of extensive tests, with thousands of data points, the research

concluded that C1, C1E, and C3 figures for maximum wake latency were not correct the

last four generations of Intel Xeon Cores (as of end 2018 and beginning of 2019). Further

research can be done to investigate the cause of these longer latencies, for example,

isolating specific BIOS configuration which affect idle performance.

38

`

7 References

[1] N. Rasmussen, "Determining Total Cost of Ownership for Data Center and Network

Room Infrastructure," 8 June 2011. [Online]. Available:

https://www.apc.com/salestools/CMRP-5T9PQG/CMRP-5T9PQG_R4_EN.pdf.

[Accessed 21 January 2019].

[2] C. Gough, I. Steiner and W. Saunders, Energy Efficient Servers, Barkeley, CA:

Apress, 2015.

[3] IDC, "Worldwide server market Revenue Grew 43.7% Year Over Year to a Record

$22.5 Billion During the Second Quarter of 2018, According to IDC," 5 September

2018. [Online]. Available:

https://www.idc.com/getdoc.jsp?containerId=prUS44259518. [Accessed 22 January

2019].

[4] S. Jahagirdar, "hotchips.org," 27-29 August 2012. [Online]. Available:

http://www.hotchips.org/wp-content/uploads/hc_archives/hc24/HC24-1-

Microprocessor/HC24.28.117-HotChips_IvyBridge_Power_04.pdf. [Accessed 20

January 2019].

[5] intel.com, Intel's 8th and 9th Generation Core Family datasheet Vol. 1,

https://www.intel.com/content/www/us/en/products/docs/processors/core/8th-gen-

core-family-datasheet-vol-1.html, 2019.

[6] I. N. D. (ND), Intel® Ethernet Controller i210, Intel, 2018.

[7] Intel, "intel.com," Intel, 10 July 2017. [Online]. Available:

https://software.intel.com/en-us/articles/intel-xeon-processor-scalable-family-

technical-overview. [Accessed 17 January 2019].

[8] S. Jahagirdar, V. George, I. Sodhi and R. Wells, Power Management of the Third

Generation of Intel Core Micro Architecture formerly codenamed Ivy Bridge, Hot

Chips, 2012.

Appendix 2

 1 (2)

`

Appendix 1. Cpu .c

Location in the kernel tree: drivers/cpuidle/cpuidle.c

int cpuidle_enter_state(struct cpuidle_device *dev, struct cpuidle_driver
*drv,

 int index) 5
{

 int entered_state;

 struct cpuidle_state *target_state = &drv->states[index];

 bool broadcast = !!(target_state->flags & CPUIDLE_FLAG_TIMER_STOP); 10
 ktime_t time_start, time_end;

 s64 diff;

 /*

 * Tell the time framework to switch to a broadcast timer because our 15
 * local timer will be shut down. If a local timer is used from an-
other

 * CPU as a broadcast timer, this call may fail if it is not availa-
ble.

 */ 20
 if (broadcast && tick_broadcast_enter()) {

 index = find_deepest_state(drv, dev, target_state->exit_la-
tency,

 CPUIDLE_FLAG_TIMER_STOP, false);

 if (index < 0) { 25
 default_idle_call();

 return -EBUSY;

 }

 target_state = &drv->states[index];

 broadcast = false; 30
 }

 /* Take note of the planned idle state. */

 sched_idle_set_state(target_state);

 35
 trace_cpu_idle_rcuidle(index, dev->cpu);

 time_start = ns_to_ktime(local_clock());

 stop_critical_timings();

 entered_state = target_state->enter(dev, drv, index); 40
 start_critical_timings();

 sched_clock_idle_wakeup_event();

 time_end = ns_to_ktime(local_clock());

 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, dev->cpu); 45

Appendix 2

 2 (2)

`

 /* The cpu is no longer idle or about to enter idle. */

 sched_idle_set_state(NULL);

 if (broadcast) { 50
 if (WARN_ON_ONCE(!irqs_disabled()))

 local_irq_disable();

 tick_broadcast_exit();

 } 55

 if (!cpuidle_state_is_coupled(drv, index))

 local_irq_enable();

 diff = ktime_us_delta(time_end, time_start); 60
 if (diff > INT_MAX)

 diff = INT_MAX

Appendix 3

 1 (1)

`

Appendix 2. intel_idle.c

Location in the kernel tree: drivers/idle/intel_idle.c

/**

* intel_idle

* @dev: cpuidle_device 5
* @drv: cpuidle driver

* @index: index of cpuidle state

*

* Must be called under local_irq_disable().

*/ 10
static __cpuidle int intel_idle(struct cpuidle_device *dev,

 struct cpuidle_driver *drv, int index)

{

 unsigned long ecx = 1; /* break on interrupt flag */

 struct cpuidle_state *state = &drv->states[index]; 15
 unsigned long eax = flg2MWAIT(state->flags);

 unsigned int cstate;

 bool uninitialized_var(tick);

 int cpu = smp_processor_id();

 /* 20
 * leave_mm() to avoid costly and often unnecessary wakeups

 * for flushing the user TLB's associated with the active mm.

 */

 if (state->flags & CPUIDLE_FLAG_TLB_FLUSHED)

 leave_mm(cpu); 25

 if (!static_cpu_has(X86_FEATURE_ARAT)) {

 cstate = (((eax) >> MWAIT_SUBSTATE_SIZE) &

 MWAIT_CSTATE_MASK) + 1;

 tick = false; 30
 if (!(lapic_timer_reliable_states & (1 << (cstate)))) {

 tick = true;

 tick_broadcast_enter();

 }

 } 35

 mwait_idle_with_hints(eax, ecx);

 if (!static_cpu_has(X86_FEATURE_ARAT) && tick)

 tick_broadcast_exit(); 40

 return index;

}

Appendix 4

 1 (2)

`

Appendix 3. kernel_shed.c

/*

* Generic idle loop implementation

*

* Called with polling cleared. 5

*/

static void do_idle(void)

{

 int cpu = smp_processor_id();

 /* 10

 * If the arch has a polling bit, we maintain an invariant:

 *

 * Our polling bit is clear if we're not scheduled (i.e. if rq->curr
!=

 * rq->idle). This means that, if rq->idle has the polling bit set, 15

 * then setting need_resched is guaranteed to cause the CPU to

 * reschedule.

 */

 __current_set_polling(); 20

 tick_nohz_idle_enter();

 while (!need_resched()) {

 check_pgt_cache();

 rmb(); 25

 if (cpu_is_offline(cpu)) {

 tick_nohz_idle_stop_tick_protected();

 cpuhp_report_idle_dead();

 arch_cpu_idle_dead(); 30

 }

 local_irq_disable();

 arch_cpu_idle_enter();

 35

 /*

 * In poll mode we reenable interrupts and spin. Also if we

Appendix 4

 2 (2)

`

 * detected in the wakeup from idle path that the tick

 * broadcast device expired for us, we don't want to go deep

 * idle as we know that the IPI is going to arrive right away. 40

 */

 if (cpu_idle_force_poll || tick_check_broadcast_expired()) {

 tick_nohz_idle_restart_tick();

 cpu_idle_poll();

 } else { 45

 cpuidle_idle_call();

 }

 arch_cpu_idle_exit();

 }

 50

 /*

 * Since we fell out of the loop above, we know TIF_NEED_RESCHED must

 * be set, propagate it into PREEMPT_NEED_RESCHED.

 *

 * This is required because for polling idle loops we will not have 55
had

 * an IPI to fold the state for us.

 */

 preempt_set_need_resched();

 tick_nohz_idle_exit(); 60

 __current_clr_polling();

 /*

 * We promise to call sched_ttwu_pending() and reschedule if

 * need_resched() is set while polling is set. That means that clear-65
ing

 * polling needs to be visible before doing these things.

 */

 smp_mb__after_atomic();

 70

 sched_ttwu_pending();

 schedule_idle();

 if (unlikely(klp_patch_pending(current)))

 klp_update_patch_state(current); 75

}

Appendix 5

 1 (1)

`

Appendix 4. Idle Loop Figure

Appendix 6

 1 (8)

`

Appendix 5. C-State Wake Latency Figures

Appendix 5.1. C6 Wake Latency Figures

Appendix 6

 2 (8)

`

Appendix 6

 3 (8)

`

Appendix 5.2. C3 Wake Latency Figure

Appendix 6

 4 (8)

`

Appendix 6

 5 (8)

`

Appendix 5.3. C1E Wake Latency

Appendix 6

 6 (8)

`

Appendix 6

 7 (8)

`

Appendix 5.4. C1 Wake Latency

Appendix 6

 8 (8)

`

