

Legacy Server Migration

Elias Ylänen

BACHELOR’S THESIS
April 2019

Degree Programme in Business Information Systems
Web Services

TIIVISTELMÄ

Tampereen ammattikorkeakoulu
Tampere University of Applied Sciences
Tietojenkäsittely
Web-palvelut

ELIAS YLÄNEN:
Vanhentuneen serverin päivitys

Opinnäytetyö 33 sivua, joista liitteitä 8 sivu
Huhtikuu 2019

Tämän opinnäytetyön tavoitteena oli siirtää vanhentuneella Red Hat 6 -serverillä
sijaitsevat asiakkaan web-palvelut uudelle Ubuntu-pohjaiselle palvelimelle, sa-
malla palveluiden taustalla olevaa arkkitehtuuria modernisoiden ja sovellusten
käyttöönottoa yhdenmukaistaen.

Uuden serverin rakentamisessa hyödynnettiin Dokku-nimistä työkalua, jonka
avulla suuri osa palvelimen tarpeellisesta konfiguraatiosta ja ohjelmistosta voi-
daan automatisoida ja keskittää yhden työkalun alaiseksi. Projektin lopputavoit-
teena oli saattaa mahdollisimman moni olemassaolevista palveluista hyödyntä-
mään Dokkun tarjoamaa kehitysputkea, Git-pohjaisesta käyttöönotosta Docker-
pohjaisten, omiksi kokonaisuuksiksi eristettyjen konttien hyödyntämiseen sovel-
lusten ajossa.

Kaiken kaikkiaan projekti kesti noin neljä kuukautta, syyskuusta 2018 tammikuu-
hun 2019, sisältäen vaadittujen palveluiden asennuksen uudelle palvelimelle, siir-
rettävien sovellusten asettamisen Docker-kontteihin, kriittisten riippuvuuksien
päivittämisen ja aiemmin globaalien ohjelmistojen eristämisen vain niitä hyödyn-
tävien konttien sisään. Palveluiden kehitys–käyttöönotto -putken yksinkertaista-
misen ohella projektin merkittävin tulos on yli 100 korjattua tietoturvahaavoittu-
vuutta.

Tämä opinnäytetyö on kirjoitettu yhteenvetona päivitysprosessista ja tuomaan
asiaan vihkiytymättömille ymmärrystä sekä DevOpsin tilasta vuonna 2019 että
mitä vaaditaan toimivan palvelimen pystyttämiseen.

Asiasanat: devops, docker, dokku, kontit, palvelin

ABSTRACT

Tampereen ammattikorkeakoulu
Tampere University of Applied Sciences
Business Information Systems
Web Services

ELIAS YLÄNEN:
Legacy Server Migration

Bachelor's thesis 33 pages, appendices 8 page
April 2019

The aim of this thesis was to migrate a client’s services running on an old Red
Hat server to a new Ubuntu-based server, simultaneously modernizing the archi-
tecture supporting many of the consumer-facing services deployed onto the
server and unifying the deployment process of the services to utilize a single
pipeline.

To build the new server, a tool called Dokku was used. Dokku is described as a
self-hosted PaaS service, which in practice translates to Dokku automating and
aggregating most of the configuration and software required to run a functioning
server under a single toolkit. The aim of the migration process was to have as
many existing services as possible migrated to the Dokku pipeline, including Git-
based deploys and running every service inside an isolated Docker container.

All in all, migrating the server lasted for about four months, including installing the
required software onto the new server, Dockerizing almost every application that
was to be deployed onto the new server, updating critical dependencies, and
scoping previously global functionality to be available only to the containers that
utilize them. Along with the streamlined development-deployment pipeline, the
most significant result of the project is the over 100 fixed vulnerabilities.

This thesis is written as a summary of the migration process and in order to offer
insight about the state of DevOps in the year 2019 to people with little to no
knowledge of what it takes to build and configure a functioning server.

Key words: containers, devops, docker, dokku, server

4

CONTENTS

1 INTRODUCTION .. 7

2 THE ORIGINAL SERVER ... 8

2.1 Structure .. 8

2.2 Issues ... 9

2.2.1 Deployment .. 9

2.2.2 Security .. 10

3 SOLUTION ... 12

3.1 Dokku ... 13

3.1.1 Deployment .. 14

3.1.2 Domains ... 15

3.1.3 Storage ... 15

3.1.4 Plugins .. 17

3.1.5 Customizing Nginx .. 19

3.2 Service-specific tools and cronjobs .. 20

3.3 Static files ... 21

4 CONCLUSIONS ... 23

REFERENCES .. 25

APPENDICES .. 26

Appendix 1. List of Dokku plugins ... 26

Official Plugins (Beta) ... 26

Community plugins ... 27

Appendix 2. Dokku - Customizing the Nginx configuration 31

Customizing the Nginx cofiguration .. 31

5

GLOSSARY

Apache A web server software that controls directing re-

quests, executing code and access control within

the server. Also referred to as httpd

AWS Amazon Web Services. Cloud solution suite pro-

vided by Amazon

CI Continuous integration. A practice for speeding up

software development and deployment by intro-

ducing automated testing, building and possibly

even deploying of pushed code (Fowler, Continu-

ous Integration, 2006)

Container An operating-system-level virtualized environ-

ment, that contains the application code and the

underlying software required to run the software in

an isolated environment on the host machine

(Kasireddy, A Beginner-Friendly Introduction to

Containers, VMs and Docker, 2016)

Cronjob An automated task that’s run periodically on the

system. Ideal for backups and other routine tasks

DevOps A combination of philosophies that strive to make

application delivery more performant and adapta-

ble by, for example, having the same engineer(s)

be responsible for the entire application lifecycle

from development to deployment (Amazon, What

Is Devops?)

Docker A container management platform

6

Dockerizing Wrapping a service inside a Docker container

Docker-compose A tool for orchestrating building, deployment and

inter-linking of multiple Docker containers

Dokku A tool to centralize and automate controlling

Nginx, Docker, and application deployment on the

server (Dokku, Getting Started with Dokku)

Drupal A content management system (CMS)

Environment variables Shell session-wide values used by application

code during build or runtime. An easier alternative

to hard-coding e.g. URLs to services used by the

application

EOL End-of-life. When the vendor has stopped sup-

porting the version or product

Fabric A Python library used as an abstraction for exe-

cuting shell scripts over SSH (Forcier, Fabric doc-

umentation, 2018)

Nginx A server software alternative to Apache

Quay.io A private container repository

Sendmail Software used to send emails from the server via

PHP

Vagrant An application for controlling virtual machines

WordPress The most popular CMS in the world

7

1 INTRODUCTION

This thesis has been made as part of an effort to migrate an undisclosed client’s

public web services to a new, modern server architecture while also unifying the

development – deployment cycle of the client’s main consumer portal and all ser-

vices connected to the site.

The main point of the thesis is to describe the server migration process, and due

to that focus not much attention is given to the actual services. All the reader

needs to know is that the servers consist of the main corporate website of the

client and a handful of smaller services that function either independently or are

linked to the main website via embedded HTML iframes.

The aim of this thesis is to describe and analyze the tools and methodologies

used during the project in a way that makes the process understandable to a

reader who might not have intimate knowledge about the server migration pro-

cess. By reading this thesis, the reader should gain familiarity with the tools and

technical terms utilized in modernizing the underlying systems required by the

more visible, user-facing services in the modern web landscape, and an under-

standing of the general architecture of a functioning web server.

Due to the nature of the project, references to the client, actual directory struc-

tures and some names have been replaced with placeholders.

8

2 THE ORIGINAL SERVER

2.1 Structure

Due to development of many of the services predating the inception of containers

and the original development team being unable to take advantage of the latest

DevOps methods, the deployment state of the server was in a disarray at the time

of starting this thesis. While a handful of the newer applications had been Dock-

erized, older software was either deployed as just static files, or in the case of the

main web portal, as a non-isolated Drupal site. Services like these had no isola-

tion and were dependent on the globally installed, usually outdated, services,

both of which can become critical vulnerabilities as time goes by.

The upper-level routing solution on the server was Apache – supplemented with

local .htaccess files when required – which directed the HTTP requests to the

service corresponding with the request URL. To generalize, apart from the Dru-

pal-run main website, most of the complementary services were split into sepa-

rate front and backend services, with the frontend being a directory with static

files, and the backend being a Dockerized service with its own internal server

software to handle application-specific routing.

As mentioned in chapter one, traffic to these services was routed through the

main website and proxied or redirected to the correct location, meaning that a

HTTP request to a service’s frontend was made via URL client.fi/service-

frontend and similarly the backend call was made to client.fi/service-

backend. This way the systems do not need to be linked to each other, thus cir-

cumventing the lack of Docker-compose support on the server.

In addition, a few of the services have databases connected to them. The com-

plementary services had their databases Dockerized due to them being more re-

cent, but the main Drupal service was connected to the server-wide MySQL da-

tabase server installation.

9

A few services also had certain tooling added to the servers Crontab to be run

periodically. These tasks included daily backups of business-critical data and

transforming material uploaded by the customer to a consumable format for cer-

tain backend services.

2.2 Issues

2.2.1 Deployment

Prior to this project, many of the client’s public services were running on a near-

end-of-life Red Hat Enterprise Linux 6.9 (henceforth abbreviated to RHEL 6)

server, which made developing and deploying software onto the server more dif-

ficult due to insufficient support for more modern tools, such as advanced con-

tainer management.

The original development team had opted to use shell commands given to the

server through SSH using Python’s Fabric library, for which dedicated service-

specific Fabfiles were created and distributed in the projects’ respective Github

repositories. Using these files, the applications could be deployed onto the server

in a relatively straightforward manner. However, these Fabfiles could be several

hundred lines long and only a handful of people fully understood what they did

and how they worked.

With Dockerized services, the process also included building the Docker images

and uploading them to Quay.io in the CI pipeline, where during deployment the

Fabfiles would have the servers download and start the images. This pipeline

proved rather fragile with builds occasionally failing due to errors with the Quay.io

integration, if not all that complicated from a developer’s point of view, since most

of the required configuration was abstracted behind the Fabfiles and executable

shell scripts. The Docker-based Fabfiles also contained an option to deploy the

services using Docker-compose but this could never be taken advantage of dur-

ing the lifetime of the original server.

10

2.2.2 Security

More pressingly, due to the server version nearing its end-of-life stage, security

vulnerabilities had started cropping up, thus making the continued usage of the

server a serious security liability. Pictured below is the lifecycle of RHEL version

up to version 6.

PICTURE 1. Red Hat Enterprise Linux lifecycle up to version 6 (Red Hat, Red

Hat Enterprise Linux Life Cycle)

This issue was compounded by the server also having EOL versions of virtually

every critical software installed, all of which were installed to server-wide

namespace instead of isolated containers. Listed below (picture 2) are the

installed and the latest versions of the software. It is worth noting that since some

of the tools have changed their versioning scheme, the version numbers do not

necessarily tell the entire truth. Hence, the most critical information are the

release and EOL dates.

11

Apache

 Installed version: 2.2.15, released 2017-09-19, EOL 2018-01-01

 Latest version: 2.4.38, released 2019-01-22

Docker

 Installed version: 1.7.1, released 2015-06-16, EOL 2017

 Latest version: 18.09.4, released 2019-03-28

MySQL

 Installed version: 5.1.73, released 2013-12-03, EOL 2013-12-31

 Latest version: 8.0.15, released 2019-02-01

Node.js

 Installed version: 0.10.48, released 2016-10-18, EOL 2016-10-31

 Latest version: 11.11.0, released 2019-03-06

PHP

 Installed version: 5.3.3, released 2010-07-22, EOL 2014-08-18

 Latest version: 7.3, released 2018-12-06

PICTURE 2. Installed versions, release dates, EOL dates and the latest versions

of the critical software on the server

The server was subject to routine monthly maintenance by the server provider,

but due to most software vendors not making their latest versions available to

operating systems no longer supported, automated system updates were not

able to upgrade the installed software to more recent versions, thus the issue

never getting automatically improved.

12

3 SOLUTION

In September of 2018 Futurice was commissioned to start a project to migrate all

the services to a newly created server. In place of the old RHEL 6 server new

Ubuntu 18.04 LTS based server, which is being supported by Canonical, the de-

velopers of Ubuntu, until the second quarter of 2023, was provided to the devel-

opers. The LTS version was chosen instead of the more recent 18.10 version due

to a longer support lifecycle, as illustrated below (picture 3).

PICTURE 3. Ubuntu release cycle (Canonical, The Ubuntu lifecycle and release

cadence)

The service management was also retooled to be more reliable and straightfor-

ward. Despite the initial willingness to utilize Docker-compose on the new server,

this was dismissed in favour of Dokku, a “self-hosted PaaS” service that com-

bines the deployment and control of Docker containers deployed onto the server

with a bundled Nginx installation and abstracts most of the required configuration

behind simple command line commands, all of which would have been required

to be configured manually via native methods had Docker-compose been used.

The following chapters detail the most commonly used Dokku commands, ex-

plaining how they were used and how they work behind the scenes.

13

3.1 Dokku

Dokku exposes the most often used Docker and Nginx commands and configu-

rations via its own command line commands, thus automating the more manual

parts of building a functioning server on top of the two services. Below are listed

the Dokku commands used in this project and their short explanations, which will

be further elaborated upon in the coming chapters.

$ dokku help

Usage: dokku [--quiet|--trace|--rm-container|--rm|--force] COMMAND <app>

[command-specific-options]

Commands:

 apps

 Manage Dokku apps

 config

 Manages global and app-specific config vars

 domains

 Manage vhost domains used by the Dokku proxy

 enter

 Connect to a specific app container

 logs

 Output app logs

 proxy

 Manage the proxy used by dokku on a per app

 ps

 List processes running in app container(s)

 run

 Run a command in a new container using the current application image

 ssh-keys

 Manage public ssh keys that are allowed to connect to Dokku

 storage

 Mount local volume / directories inside containers

Community plugin commands:

 mysql

 Plugin for managing MySQL services

 postgres

 Plugin for managing Postgres services

 redis

 Plugin for managing Redis services

PICTURE 4. Dokku commands used during the project

14

3.1.1 Deployment

Instead of complicated SSH commands and third party container repositories, all

deployment to a Dokku-run server requires is the deploying machine’s SSH key

added to the target machine using the dokku ssh-keys:add command, Git, and

the dokku apps:create <app-name> command. Adding the target server to

local SSH configuration is recommended (picture 5).

~/.ssh/config template:

 Host <server name>

 HostName <ip address>

 User <username on the server>

 Port <port number used by SSH to connect to the server>

Commands on the target server:

 ssh-keys:add <name> [/path/to/private/key/uploaded/from/local/computer]

 dokku apps:create <app name>

On the local machine, in the project directory root:

 git remote add <remote name> dokku@<server name>:<app name>

 git push <remote name> master

PICTURE 5. Commands required to deploy an app to Dokku

A valid Dokku application requires either a Dockerfile, which services in the con-

text of this project all use, or a Procfile. Procfiles are files used by Heroku – an

application hosting PaaS that Dokku emulates on a single-server-wide scope –

that tell the system what services to start during the service deployment and how

to start them. A Procfile is defined in the format:

<process type>: <command>

After deployment the services still end up as Docker containers, so from the view-

point of the deployed product there is no difference which deploy method is used.

The Dockerfile method is the more common one, and since these files can be

used also locally during development, only Dockerfile-based deploys were used

during this project.

15

3.1.2 Domains

Adding domains to applications on the server is also handled by Dokku via the

dokku domains command. Domains added this way are written to the applica-

tion’s Nginx configuration residing in /home/dokku/<app name>/nginx.conf,

as pictured below in picture 6.

$ dokku domains:report client-website

 Domains app vhosts: client.fi client.com www.client.fi www.client.com

$ sudo cat /home/dokku/client-website/nginx.conf

 server {

 ...

 server_name client.fi client.com www.client.fi www.client.com;

 ...

 }

PICTURE 6. Example of the relation between Dokku and Nginx configs

When making HTTP requests to the server, Nginx goes through the configured

domains and tries to match the request URL to a domain (Igor Sysoev & Brian

Mercer, Server Names). If a domain is found, the server directs the traffic to that

service. Otherwise, the server uses the configured default service, or missing

that, the first service alphabetically.

3.1.3 Storage

Adding sensitive configuration and data that could not be tracked in Git or pushed

to Github, due to security concerns, to the services was done by taking advantage

of Docker volumes, where a directory on the host system is mounted onto the

container, where it behaves like a native directory. This can be achieved in

Docker via the -v flag during container startup, but Dokku offers an automated

solution to this in the dokku storage command, an example of which is shown

in picture 7.

http://www.client.fi/
http://www.client.com/
http://www.client.com/

16

// Display the Docker volume flags configured by dokku storage

$ dokku storage:report client-website

Storage deploy mounts: -v /host/location/shared/client-website:/shared

Storage run mounts: -v /host/location/shared/client-website:/shared

// Show all files and directories in the container’s /shared directory

$ docker exec -it client-website.web.1 ls -al /shared

drwxrwxr-x 7 root 1013 114 Feb 11 09:51 .

drwxr-xr-x 1 root root 75 Mar 19 17:37 ..

-rw-r--r-- 1 root root 53 Feb 11 09:40 .env

-rw-rw-r-- 1 root <host-user> 467 Jan 2 07:55 sites.php

...

// Rest of the directory content redacted for security reasons

// Show the same files and directories on the host

$ ls -al /location/on/host/client-website

drwxrwxr-x 7 root <host-user> 114 Feb 11 09:51 .

drwxrwxr-x 11 root <host-user> 205 Mar 11 07:00 ..

-rw-r--r-- 1 root root 53 Feb 11 09:40 .env

-rw-rw-r-- 1 root <host-user> 467 Jan 2 07:55 sites.php

...

// Rest of the directory content redacted for security reasons

PICTURE 7. An example of Dokku storage in action and an indication how Dokku

app commands are just an abstraction on top Docker

For every service requiring a mounted volume a dedicated directory was created

onto the host filesystem, which in turn is mounted to the corresponding container

every time the container is built or started. During the container startup an entry-

point script creates symbolic links for the required files or directories into locations

where the services expect them to reside. An example of this is in picture 8, where

all site-specific configuration and files are mounted onto the /shared directory in

the container. In the case of the service described above, this data is linked to

the /var/www/html/site directory during build time (picture 8), which is the de-

fault location that the site’s Drupal installation uses for these files and directories.

17

RUN /bin/bash -l -c "ln -s /shared/sites.php ./sites/"

RUN /bin/bash -l -c "ln -s /shared/site1/files ./sites/site1/"

RUN /bin/bash -l -c "ln -s /shared/site1/settings.php ./sites/site1/"

RUN /bin/bash -l -c "ln -s /shared/site2/files ./sites/site2/"

RUN /bin/bash -l -c "ln -s /shared/site2/settings.php ./sites/site2/"

PICTURE 8. Dockerfile commands run during the container build process to cre-

ate soft links to the content mounted on /shared

The storage option is also used to insert environment variables into the containers

via .env files which are sourced during the container startup. Similar functionality

could also be achieved with the dokku config:set [--encoded] [--no-re-

start] (<app>|--global) KEY1=VALUE1 [KEY2=VALUE2 ...] command,

but was decided against to keep the experience closer to local development en-

vironments, where environment variables are also usually given by sourcing ap-

plication-specific .env files, and to make editing said variables more straightfor-

ward.

In the future the dokku config command might have to be also used, since the

.env files only work if the environment variables are needed during runtime. Ap-

plications that need to be built before being usable, like many contemporary front-

end applications, need to have access to these variables during build time, which

is usually done in conjunction with building the container. Such situation did not

arise during the initial migration project, but development of existing and new ser-

vices is ongoing.

3.1.4 Plugins

Dokku has a wide library of plugins, including controllers to various databases,

application redirection, and so on. The complete list of the official plugins can be

found at the Dokku Github repository (appendix 1). For this project, only MySQL,

PostgreSQL and Redis plugins were used.

18

In line with Dokku mainly working as an abstraction layer on top of regular con-

tainers, Dokku database plugins are also just Docker containers running a data-

base server instance. Due to these services not generally being contactable from

outside the server, Dokku does not generate Nginx configurations to them and

the plugin controller adds some commands to ease the handling of these ser-

vices, but otherwise they do not really differ from any other Dokku-managed ap-

plication. Below in picture 9 are listed the MySQL plugin commands used in this

project and their short descriptions.

$ dokku mysql:help

 mysql:app-links <app>

list all MySQL service links for a given app

 mysql:connect <service>

connect to the service via the mysql connection tool

 mysql:create <service> [--create-flags...]

create a MySQL service

 mysql:enter <service>

enter or run a command in a running MySQL service container

 mysql:export <service>

export a dump of the MySQL service database

 mysql:import <service>

import a dump into the MySQL service database

 mysql:link <service> <app> [--link-flags...]

link the MySQL service to the app

 mysql:list

list all MySQL services

 mysql:unlink <service> <app>

unlink the MySQL service from the app

PICTURE 9. List of the most used Dokku MySQL plugin commands. Each data-

base plugin has the same commands

Docker containers can be linked together to ease communication across different

containers with a shared context. Dokku database plugins expose this function-

ality with the dokku mysql:link command. Using this command, a database

container can be linked to another container in a way that the target container

gets an environment variable $DATABASE_URL that contains a direct URL to the

linked database. The database container’s name and network hostname are also

added to the container’s hosts file so that it can be referred to directly in connec-

tion URLs, etc. with only the container name. This can be seen in picture 10 which

19

has the relevant environment variable and the hosts file line pictured when inside

the main website container.

echo $DATABASE_URL

mysql://<username>:<pasword>@dokku-mysql-client-website:3306/client-website

cat /etc/hosts

...

172.17.0.4 dokku-mysql-client-website 78c2a54d0b1c dokku.mysql.client-website

...

PICTURE 10. Linking data inside a container. Username and password have

been redacted for security reasons

Docker allows connecting any kind of container to each other, but due it rarely

being used in production servers, Dokku does not have a dedicated command

for it outside of the database plugins. A more modern method of connecting con-

tainers to each other, Docker network, is available as a dokku network com-

mand, but that is outside the scope of this thesis.

3.1.5 Customizing Nginx

Nginx management has been pretty much automated by Dokku, and for simple

servers the developer might never need to manually touch the Nginx configura-

tion files. However, should such a situation arise, Dokku offers two methods for

extending the Nginx installation (appendix 2).

The more involved option is creating a custom configuration template file for an

application that Dokku user. This method was not used during this project and

will not be further detailed in this thesis.

The simpler option is to create new .conf files for Nginx to include in the global

configuration. Nginx has an include keyword that can be used to split the ser-

vice’s configuration to smaller, more manageable chunks. Using this functionality

Dokku is able to have each service’s specific configuration in its own file at

/home/dokku/<app name>/nginx.conf; Nginx build the final configuration from

these chunks each time the service is started.

20

Taking advantage of this, each service managed by Dokku also has an option for

extending the configuration with user-defined files by including every .conf file

in the nginx.conf.d/ subdirectory of each service’s /home/dokku/<app

name>/ directory.

These configuration files can inlude anything allowed inside Nginx config’s server

block, including rerouting or proxying traffic to different services or addresses,

access management, configuring the maximum allowed file upload size of the

server, etc.

3.2 Service-specific tools and cronjobs

As on the old server, the new server also includes several cronjobs. Simple tasks

like backup creation and deleting old backups did not drastically change, so those

could be copied from the old server with little to no alterations required.

However, many of the “worker” tasks required by the embedded services had to

be reworked due to the new architecture. On the old server these tasks were

usually just directories within the deployed applications containing a Dockerfile

that were built manually and run periodically, thus making changes to these work-

ers getting deployed dependent on deployment of the entire application and man-

ual work from the deployer. This was deemed unsustainable on the new server,

since the renewed toolkit allowed for a much leaner development experience.

The application-specific workers were separated into their respective Git reposi-

tories that could be developed and deployed separately from the main services.

Deploying these services was rewritten to utilize Dokku, but since these workers

were only used periodically, a configuration change to disable starting up the ap-

plications after building them was made via the dokku config:set <app name>

DOKKU_SKIP_DEPLOY=true env variable resulting in the images being built on the

server, but not allowing them to be run only when needed using the dokku run

command.

21

Managing the workers with Dokku also made taking advantage of the usual

Dokku commands, such as dokku storage, possible. This enabled the worker

commands to be condensed into just simple one-line commands that could be

added to the server’s Crontab. All the Docker-specific logic and filesystem routing

could then be handled inside the container’s Dockerfile or entrypoint command.

Dokku also allows the started containers to be deleted once their task is finished

with the --rm command, instead of keeping the now useless container running

in the background. An example of all these features in practice can be seen be-

low, in picture 11.

docker run -i --rm -v /host/directory:/data quay.io/client/service-tools

/data/materials/source_file.txt > /host/directory/service-name/output-

file.json 2> /host/directory/service-name/stderr.log

dokku --rm run service-name-tools npm run parse:area

PICTURE 11. The same cronjob as defined on the old and on the new server,

respectively

3.3 Static files

Not all services from the old server were Dockerized, usually due to the simplicity

of the service and the actual development of the services already having come

to an end. These kinds of services were copied directly from the old server and

given domain names in Nginx. Due to these services also getting routed through

main website, all that was needed was an addition of a custom Nginx configura-

tion file to the main website’s nginx.conf.d/ directory, that instructed Nginx to

serve the static files relating to the requested URL.

In the case of both Dockerized and static services existing on the same server,

the traffic to Docker containers could proxied to a local port defined as the point

of entry between the host and the container, while traffic to the static files was

routed directly to the containing directory and the HTML content was served as a

response, as seen in picture 12.

22

location /dockerized-service/ {

 proxy_pass http://localhost:<port defined for the app>/;

}

location /static-service/ {

 alias /host/directory/service-name/;

 autoindex on;

}

PICTURE 12. Nginx configurations for rerouting traffic to different services

http://localhost:%3cport

23

4 CONCLUSIONS

After being in development for close to four months, all domains associated with

the relevant services were moved to point to the new server on the 22nd of Janu-

ary 2019. The old server was left intact but not reachable via any URL for a period

of time to allow for undoing the migration in case of critical errors in the services’

availability, and for reference material both for this thesis, and should the need

arise to further configure the new server. The migration process has made devel-

oping applications running on the server more straightforward, allowed the entire

development team to be able to configure the server if needed, and fixed over

100 vulnerabilities.

Due to ongoing development of most of the services deployed onto the server,

the requirements and agreed upon best practices are constantly evolving; few

examples being the possible requirement to utilize the dokku config command

in the future and Dockerizing every service deployed onto the server. Thence, the

project cannot be described as completely ready. However, the portion covered

in this thesis has been deemed successfully completed by both Futurice and the

client, and development has entered its lifecycle management stage.

The advent of container-based application development has brought DevOps and

server-related development, both of which have a reputation of being somewhat

tedious and difficult aspects of software development, closed to the mainstream.

The average developer no longer needs to remember various server configura-

tion directives, Unix commands or commands for several different applications;

almost everything can nowadays be achieved with just one tool, like Dokku in this

case.

There is an argument to be made for hosting everything on a cloud platform like

AWS or PaaS like Heroku, which abstract the server configuration even further,

sometimes even freeing the developer entirely from thinking about anything else

but the application itself. However, with abstraction a bit of control over the un-

derlying system is also lost, and this is not always ideal. Even if deploying all of

the services to Heroku might have been ideal from the developers’ viewpoint,

24

uploading business-critical services to someone else’s servers and data centres

with no actual control over the server hardware – or even software – is usually

not the most tempting idea from the businesses’ perspective.

Due to this reason, experiencing how far building hand-made servers has come

in the last few years is absolutely pleasing. In a time when everything has more

or less to do with computers and software, every aspect of this industry should

be as approachable as possible to allow new talent to flourish. This has been the

driving idea in software development for quite a while, but finally the same idea

has caught on in DevOps circles, after years of confrontational back-and-forth

about Unix neckbeards and Ikea developers. One hopes that the current trend

keeps gaining momentum so that some day migrating a legacy server will not be

a project worthy of an entire thesis.

25

REFERENCES

Amazon. N.d. What is DevOps? Read 30.03.2019. https://aws.ama-

zon.com/devops/what-is-devops/

Canonical. N.d. The Ubuntu lifecycle and release cadence. Read 31.03.2019.

https://www.ubuntu.com/about/release-cycle

Dokku documentation. N.d. Getting Started with Dokku. Read 30.03.2019.

http://dokku.viewdocs.io/dokku/getting-started/installation/#what-is-dokku

Forcier, J. 2018. Fabric documentation. Published 26.07.2018. Read

30.03.2019. http://www.fabfile.org/

Fowler, M. 2016. Continuous Integration. Published 01.05.2006. Read

15.04.2019. https://martinfowler.com/articles/continuousIntegration.html

Kasireddy, P. 2016. A Beginner-Friendly Introduction to Containers, VMs and

Docker. Published 04.03.2016. Read 30.03.2019. https://medium.freeco-

decamp.org/a-beginner-friendly-introduction-to-containers-vms-and-docker-

79a9e3e119b

Red Hat. N.d. Red Hat Enterprise Linux Life Cycle. Read 30.03.2019. https://ac-

cess.redhat.com/support/policy/updates/errata

Sysoev, I & Mercer, B. N.d. Server names. Read 31.03.2019.

https://nginx.org/en/docs/http/server_names.html

https://aws.amazon.com/devops/what-is-devops/
https://aws.amazon.com/devops/what-is-devops/
https://www.ubuntu.com/about/release-cycle
http://dokku.viewdocs.io/dokku/getting-started/installation/#what-is-dokku
http://www.fabfile.org/
https://martinfowler.com/articles/continuousIntegration.html
https://medium.freecodecamp.org/a-beginner-friendly-introduction-to-containers-vms-and-docker-79a9e3e119b
https://medium.freecodecamp.org/a-beginner-friendly-introduction-to-containers-vms-and-docker-79a9e3e119b
https://medium.freecodecamp.org/a-beginner-friendly-introduction-to-containers-vms-and-docker-79a9e3e119b
https://access.redhat.com/support/policy/updates/errata
https://access.redhat.com/support/policy/updates/errata
https://nginx.org/en/docs/http/server_names.html

26

APPENDICES

Appendix 1. List of Dokku plugins

https://github.com/dokku/dokku/blob/master/docs/community/plugins.md

Official Plugins (Beta)

The following plugins are available and provided by Dokku maintainers. Where

noted, these plugins should be considered beta software and may not have been

used as thoroughly as community plugins. Please file issues against their respec-

tive issue trackers.

Plugin Author Compatibility

CouchDB (beta) dokku 0.4.0+

Elasticsearch (beta) dokku 0.4.0+

Grafana/Graphite/Statsd (beta) dokku 0.4.0+

MariaDB (beta) dokku 0.4.0+

Memcached (beta) dokku 0.4.0+

Mongo (beta) dokku 0.4.0+

MySQL (beta) dokku 0.4.0+

Nats (beta) dokku 0.4.0+

Postgres (beta) dokku 0.4.0+

RabbitMQ (beta) dokku 0.4.0+

Redis (beta) dokku 0.4.0+

RethinkDB (beta) dokku 0.4.0+

Copy Files to Image dokku 0.4.0+

HTTP Auth (beta) dokku 0.4.0+

Let's Encrypt (beta) dokku 0.4.0+

Maintenance mode (beta) dokku 0.4.0+

Redirect (beta) dokku 0.4.0+

https://github.com/dokku/dokku/blob/master/docs/community/plugins.md
https://github.com/dokku/dokku-couchdb
https://github.com/dokku
https://github.com/dokku/dokku-elasticsearch-plugin
https://github.com/dokku
https://github.com/dokku/dokku-graphite-grafana
https://github.com/dokku
https://github.com/dokku/dokku-mariadb-plugin
https://github.com/dokku
https://github.com/dokku/dokku-memcached-plugin
https://github.com/dokku
https://github.com/dokku/dokku-mongo-plugin
https://github.com/dokku
https://github.com/dokku/dokku-mysql-plugin
https://github.com/dokku
https://github.com/dokku/dokku-nats
https://github.com/dokku
https://github.com/dokku/dokku-postgres-plugin
https://github.com/dokku
https://github.com/dokku/dokku-rabbitmq-plugin
https://github.com/dokku
https://github.com/dokku/dokku-redis-plugin
https://github.com/dokku
https://github.com/dokku/dokku-rethinkdb-plugin
https://github.com/dokku
https://github.com/dokku/dokku-copyfiles-to-image
https://github.com/dokku
https://github.com/dokku/dokku-http-auth
https://github.com/dokku
https://github.com/dokku/dokku-letsencrypt
https://github.com/dokku
https://github.com/dokku/dokku-maintenance
https://github.com/dokku
https://github.com/dokku/dokku-redirect
https://github.com/dokku

27

Community plugins

Warning: The following plugins have been supplied by our community and may

not have been tested by Dokku maintainers.

Datastores

Relational

Plugin Author Compatibility

MariaDB Kloadut 0.3.x

MariaDB (single container) ohardy 0.3.x

MariaDB (single container) krisrang 0.3.26+

PostgreSQL jlachowski 0.3.x

PostgreSQL (single container) ohardy 0.3.x

PostgreSQL (single container) Flink 0.3.26+

Caching

Plugin Author Compatibility

Nginx Cache Aluxian 0.5.0+

Redis (single
container)

ohardy 0.3.x

Varnish

Zene-
dith

Varnish cache between nginx and applica-
tion with base configuration

Queuing

Plugin Author Compatibility

RabbitMQ jlachowski 0.3.x

RabbitMQ (single container) jlachowski 0.3.x

ElasticMQ (SQS compatible) cu12 0.5.0+

VerneMQ (MQTT Broker) mrname 0.4.0+

https://github.com/Kloadut/dokku-md-plugin
https://github.com/Kloadut
https://github.com/ohardy/dokku-mariadb
https://github.com/ohardy
https://github.com/krisrang/dokku-mariadb
https://github.com/krisrang
https://github.com/jlachowski/dokku-pg-plugin
https://github.com/jlachowski
https://github.com/ohardy/dokku-psql
https://github.com/ohardy
https://github.com/Flink/dokku-psql-single-container
https://github.com/Flink
https://github.com/Aluxian/dokku-nginx-cache
https://github.com/Aluxian
https://github.com/ohardy/dokku-redis
https://github.com/ohardy/dokku-redis
https://github.com/ohardy
https://github.com/Zenedith/dokku-varnish-plugin
https://github.com/Zenedith
https://github.com/Zenedith
https://github.com/jlachowski/dokku-rabbitmq-plugin
https://github.com/jlachowski
https://github.com/jlachowski/dokku-rabbitmq-single-plugin
https://github.com/jlachowski
https://github.com/cu12/dokku-elasticmq
https://github.com/cu12
https://github.com/SpinifexGroup/dokku-vernemq
https://github.com/mrname

28

Other

Plugin Author Compatibility

etcd basgys 0.4.x

FakeSNS cu12 0.5.0+

InfluxDB basgys 0.4.x

RethinkDB stuartpb 0.3.x

Headless Chrome lazyatom 0.8.1+

Plugins Implementing New Dokku Functionality

Plugin Author
Compatibi-
lity

App name as env cjblomqvist 0.3.x

Docker Direct josegonzalez 0.4.0+

Dokku Clone crisward 0.4.0+

Dokku Copy App Config Files josegonzalez 0.4.0+

Dockerfile custom path mimischi 0.8.0+

Dokku Registry1 agco-adm 0.4.0+

Dokku Require2 crisward 0.4.0+

Global Certificates josegonzalez 0.5.0+

Graduate (Environment Manage-
ment)

Benjamin-Do-
bell

0.4.0+

Haproxy tcp load balancer 256dpi 0.4.0+

Hostname michaelshobbs 0.4.0+

HTTP Auth Secure Apps matto1990 0.4.0+

Monit (Health Checks) mbreit 0.8.0+

Nuke Containers josegonzalez 0.4.0+

Open App Ports josegonzalez 0.3.x

Proctype Filter michaelshobbs 0.4.0+

robots.txt candlewaster 0.4.x

https://github.com/basgys/dokku-etcd
https://github.com/basgys
https://github.com/cu12/dokku-fake_sns
https://github.com/cu12
https://github.com/basgys/dokku-influxdb
https://github.com/basgys
https://github.com/stuartpb/dokku-rethinkdb-plugin
https://github.com/stuartpb
https://github.com/lazyatom/dokku-chrome
https://github.com/lazyatom
https://github.com/cjblomqvist/dokku-app-name-env
https://github.com/cjblomqvist
https://github.com/josegonzalez/dokku-docker-direct
https://github.com/josegonzalez
https://github.com/crisward/dokku-clone
https://github.com/crisward
https://github.com/josegonzalez/dokku-supply-config
https://github.com/josegonzalez
https://github.com/mimischi/dokku-dockerfile
https://github.com/mimischi
https://github.com/agco-adm/dokku-registry
https://github.com/agco-adm
https://github.com/crisward/dokku-require
https://github.com/crisward
https://github.com/josegonzalez/dokku-global-cert
https://github.com/josegonzalez
https://github.com/glassechidna/dokku-graduate
https://github.com/glassechidna/dokku-graduate
https://github.com/Benjamin-Dobell
https://github.com/Benjamin-Dobell
https://github.com/256dpi/dokku-haproxy
https://github.com/256dpi
https://github.com/michaelshobbs/dokku-hostname
https://github.com/michaelshobbs
https://github.com/matto1990/dokku-secure-apps
https://github.com/matto1990
https://github.com/mbreit/dokku-monit
https://github.com/mbreit
https://github.com/josegonzalez/dokku-nuke
https://github.com/josegonzalez
https://github.com/josegonzalez/dokku-ports
https://github.com/josegonzalez
https://github.com/michaelshobbs/dokku-proctype-filter
https://github.com/michaelshobbs
https://notabug.org/candlewaster/dokku-robots.txt
https://notabug.org/candlewaster

29

Plugin Author
Compatibi-
lity

SSH Deployment Keys3 cedricziel 0.4.0+

SSH Hostkeys4 cedricziel 0.3.x

Application build hook fteychene 0.4.0+

Post Deploy Script baikunz 0.4.0+

1 On Heroku similar functionality is offered by the heroku-labs pipeline feature,

which allows you to promote builds across multiple environments (staging -> pro-

duction)

2 Extends app.json support to include creating volumes and creating / linking da-

tabases on push

3 Adds the possibility to add SSH deployment keys to receive private hosted

packages

4 Adds the ability to add custom hosts to the containers known_hosts file to be

able to ssh them easily (useful with deployment keys)

Other Plugins

Plugin Author
Compatibi-
lity

Airbrake deploy Flink 0.4.0+

APT F4-Group 0.4.0+

Bower install

alexanderbe-
letsky

0.3.x

Bower/Grunt thrashr888 0.3.x

Bower/Gulp gdi2290 0.3.x

Bower/Gulp jagandecapri 0.3.x

Builders: bower, compass, gulp,
grunt

ignlg 0.4.0+

Chef cookbook nickcharlton

Docker auto persist volumes Flink 0.4.0+

Hostname michaelshobbs 0.4.0+

Limit (Resource management) sarendsen 0.9.0+

https://github.com/cedricziel/dokku-deployment-keys
https://github.com/cedricziel
https://github.com/cedricziel/dokku-hostkeys-plugin
https://github.com/cedricziel
https://github.com/fteychene/dokku-build-hook
https://github.com/fteychene
https://github.com/baikunz/dokku-post-deploy-script
https://github.com/baikunz
https://devcenter.heroku.com/articles/labs-pipelines
https://github.com/Flink/dokku-airbrake-deploy
https://github.com/Flink
https://github.com/F4-Group/dokku-apt
https://github.com/F4-Group
https://github.com/alexanderbeletsky/dokku-bower-install
https://github.com/alexanderbeletsky
https://github.com/alexanderbeletsky
https://github.com/thrashr888/dokku-bower-grunt-build-plugin
https://github.com/thrashr888
https://github.com/gdi2290/dokku-bower-gulp-build-plugin
https://github.com/gdi2290
https://github.com/jagandecapri/dokku-bower-gulp-build-plugin
https://github.com/jagandecapri
https://github.com/ignlg/dokku-builders-plugin
https://github.com/ignlg/dokku-builders-plugin
https://github.com/ignlg
https://github.com/nickcharlton/dokku-cookbook
https://github.com/nickcharlton
https://github.com/Flink/dokku-docker-auto-volumes
https://github.com/Flink
https://github.com/michaelshobbs/dokku-hostname
https://github.com/michaelshobbs
https://github.com/sarendsen/dokku-limit
https://github.com/sarendsen

30

Plugin Author
Compatibi-
lity

Logspout michaelshobbs 0.4.0+

Syslog michaelshobbs 0.10.4+

Long Timeout investtools 0.4.0+

Monit cjblomqvist 0.3.x

Monorepo iamale 0.4.0+

Node ademuk 0.3.x

Node pnegahdar 0.3.x

Rollbar iloveitaly 0.5.0+

Slack Notifications ribot 0.4.0+

Telegram Notifications m0rth1um 0.4.0+

Tor michaelshobbs 0.4.0+

User ACL Maciej Łebkowski 0.4.0+

Webhooks nickstenning 0.3.x

Wkhtmltopdf mbriskar 0.4.0+

Dokku Wordpress dokku-community 0.4.0+

Access mainto 0.4.0+

https://github.com/michaelshobbs/dokku-logspout
https://github.com/michaelshobbs
https://github.com/michaelshobbs/dokku-syslog
https://github.com/michaelshobbs
https://github.com/investtools/dokku-long-timeout-plugin
https://github.com/investtools
https://github.com/cjblomqvist/dokku-monit
https://github.com/cjblomqvist
https://github.com/iamale/dokku-monorepo
https://github.com/iamale
https://github.com/ademuk/dokku-nodejs
https://github.com/ademuk
https://github.com/pnegahdar/dokku-node
https://github.com/pnegahdar
https://github.com/iloveitaly/dokku-rollbar
https://github.com/iloveitaly
https://github.com/ribot/dokku-slack
https://github.com/ribot
https://github.com/m0rth1um/dokku-telegram
https://github.com/m0rth1um
https://github.com/michaelshobbs/dokku-tor
https://github.com/michaelshobbs
https://github.com/dokku-community/dokku-acl
https://github.com/mlebkowski
https://github.com/nickstenning/dokku-webhooks
https://github.com/nickstenning
https://github.com/mbriskar/dokku-wkhtmltopdf
https://github.com/mbriskar
https://github.com/dokku-community/dokku-wordpress
https://github.com/dokku-community
https://github.com/mainto/dokku-access
https://github.com/mainto

31

Appendix 2. Dokku - Customizing the Nginx configuration

http://dokku.viewdocs.io/dokku/configuration/nginx/

Customizing the Nginx cofiguration

Dokku uses a templating library by the name of sigil to generate nginx configura-

tion for each app. You may also provide a custom template for your application

as follows:

Copy the following example template to a file named nginx.conf.sigil and ei-

ther:

If using a buildpack application, you must check it into the root of your app repo.

ADD it to your dockerfile WORKDIR

if your dockerfile has no WORKDIR, ADD it to the /appfolder

When using a custom nginx.conf.sigil file, depending upon your application

configuration, you may be exposing the file externally. As this file is extracted be-

fore the container is run, you can, safely delete it in a custom entrypoint.shcon-

figured in a Dockerfile ENTRYPOINT.

The default template is available here, and can be used as a guide for your own,

custom nginx.conf.sigil file. Please refer to the appropriate template file ver-

sion for your Dokku version.

http://dokku.viewdocs.io/dokku/configuration/nginx/
https://github.com/gliderlabs/sigil
https://github.com/dokku/dokku/blob/master/plugins/nginx-vhosts/templates/nginx.conf.sigil

32

Available template variables

{{ .APP }} Application name

{{ .APP_SSL_PATH }} Path to SSL certificate and key

{{ .DOKKU_ROOT }} Global Dokku root directory (ex: app dir would

be `{{ .DOKKU_ROOT }}/{{ .APP }}`)

{{ .DOKKU_APP_LISTENERS }} List of IP:PORT pairs of app containers

{{ .PROXY_PORT }} Non-SSL nginx listener port (same as

`DOKKU_PROXY_PORT` config var)

{{ .PROXY_SSL_PORT }} SSL nginx listener port (same as

`DOKKU_PROXY_SSL_PORT` config var)

{{ .NOSSL_SERVER_NAME }} List of non-SSL VHOSTS

{{ .PROXY_PORT_MAP }} List of port mappings (same as

`DOKKU_PROXY_PORT_MAP` config var)

{{ .PROXY_UPSTREAM_PORTS }} List of configured upstream ports (derived

from `DOKKU_PROXY_PORT_MAP` config var)

{{ .RAW_TCP_PORTS }} List of exposed tcp ports as defined by Dock-

erfile `EXPOSE` directive (**Dockerfile apps

only**)

{{ .SSL_INUSE }} Boolean set when an app is SSL-enabled

{{ .SSL_SERVER_NAME }} List of SSL VHOSTS

Note: Application config variables are available for use in custom templates. To

do so, use the form of {{ var "FOO" }} to access a variable named FOO.

Customizing via configuration files included by the default templates

The default nginx.conf template will include everything from your

apps nginx.conf.d/ subdirectory in the main server {} block (see above):

include {{ .DOKKU_ROOT }}/{{ .APP }}/nginx.conf.d/*.conf;

That means you can put additional configuration in separate files, for example to

limit the uploaded body size to 50 megabytes, do

mkdir /home/dokku/node-js-app/nginx.conf.d/

echo 'client_max_body_size 50m;' > /home/dokku/node-js-app/nginx.conf.d/up-

load.conf

chown dokku:dokku /home/dokku/node-js-app/nginx.conf.d/upload.conf

service nginx reload

The example above uses additional configuration files directly on the Dokku host.

Unlike the nginx.conf.sigil file, these additional files will not be copied over

from your application repo, and thus need to be placed in the /home/dokku/node-

js-app/nginx.conf.d/ directory manually.

33

For PHP Buildpack users, you will also need to provide a Procfile and an ac-

companying nginx.conf file to customize the nginx config within the container.

The following are example contents for your Procfile

web: vendor/bin/heroku-php-nginx -C nginx.conf -i php.ini php/

Your nginx.conf file - not to be confused with Dokku's nginx.conf.sigil - would

also need to be configured as shown in this example:

client_max_body_size 50m;

location / {

 index index.php;

 try_files $uri $uri/ /index.php$is_args$args;

}

Please adjust the Procfile and nginx.conf file as appropriate.

