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1 Introduction

Artificial intelligence has been making impressive progress in different areas, such as 

technology, business and science every day. Many of our daily experiences are af-

fected by AI and machine learning. Siri, Google now and Alexa are good examples of 

this.

The main difference between humans and machines is that humans can learn from the 

past experiences, while machines need to be told what to do and follow instructions. 

But there is a way to make computers also learn from the past experiences and that is 

precisely what machine learning is about. And for computers the past experience is 

called data.

The basic concept of machine learning is that computers do not only fetch and display 

data but also make decisions based on this data. This concept includes different types 

of fields: from spam filters and automated transportation to medical diagnosis. There 

has been an increasing demand for the computers to learn from data and make predic-

tions and decisions based on those data. 

Generative adversarial networks (GANs) were introduced first time in 2014 by Ian 

Goodfellow and a few other researchers at Montreal University. According to an AI re-

search director Yann Lecun, this was one of the most interesting ideas in machine 

learning in the past ten years [1]. GANs have a great capacity to be developed and led 

to success in near future, because they can easily learn to imitate any data distribution 

such as images, music, emails and many other categories.

Generative adversarial networks are a recently introduced class of generative models, 

designed to produce realistic samples [2]. The basic idea of generative adversarial net-

works is their way of solving a generative modeling problem. 

In today’s world GANs are being used in different areas. The primary reason for this is 

GANs are filling a huge gap: not only can GANs make decisions and predictions based 

on data like neural networks, but they also can learn by themselves and generate data 
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that never existed. Therefore, they can thoroughly and independently study the data or 

practically any other object and consequently create new versions of those objects.

This exposes the reason why GANs are being so much used in different industries 

nowadays, from health care to retail and game industry. There has been an increasing 

need for the computers to learn from data and apply that knowledge to make predic-

tions and decisions and this is while the algorithm will continue to improve. 

On the basis of a number of problems that are possible to solve through GANs, the fol-

lowing two research questions were raised to be answered in this thesis:

1) How long do GANs need to be trained to output accurate results?

2) To what extent is it possible to improve GANs performance?

This thesis aims to review and investigate recent development of GANs and present 

behaviors that occur during training a GAN in practice, especially in a web browser, 

and lists several solutions to avoid these problems.

The primary focus of this thesis is on neural networks, which are inspired by the way 

human brain works; as well as generative adversarial networks, which are considered 

to be an approach to unsupervised machine learning. Unsupervised machine learning 

is based around the idea that it should be possible to give machines access to the data

and let them learn from those data by themselves. The term generative in computer vi-

sion means that a model can create new objects from scratch, which might have never 

existed before.
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2      Functioning of GANs

In machine learning, the algorithms can be divided into two main groups based on the 

way they learn about the data: supervised and unsupervised learning. 

In supervised learning we “teach the model” and then with that knowledge have it pre-

dict the future samples but for that we need a large dataset containing features as well 

as its corresponding label [3].

GANs are used in unsupervised machine learning. Unsupervised learning is where you

let the model to work on its own and discover information that may not be visible to the 

human eye. Unsupervised learning uses machine-learning algorithms that draw conclu-

sions on unlabeled data. Therefore, it creates a less controllable environment as the 

machine is creating outcomes for us. 

2.1     Generator vs. Discriminator 

In order to understand GANs, it is good to know how generative algorithm and discrimi-

native algorithm work and how they differ from each other. These two are the main 

components of a GAN.  

The generator tries to produce new unreal data, which is similar to the real ones while 

discriminator has to compare the generated data with the real ones, check their legiti-

macy and labels the difference. 

Figure 1 shows both neural network’s task:
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Figure 1. Comparison between the generator’s task and the discriminator’s task [4].

The idea state is when the generator knows how to generate realistic fake samples and
the discriminator can distinguish perfectly if it is fake or real.

Here are the steps in a GAN:

 The generator generates new data instances such as images.

 This generated image will be given to the discriminator for an evaluation beside 

a series of images from the real dataset.

 The discriminator takes both real and fake images and returns a probability be-

tween 0 and 1, with 1 representing a true case and 0 representing a fake one 

[5].

Discriminative model unlike a generative model does not pay attention to how data 

were generated, it only categorizes the data and give signals. The goal of the whole 

process is to train the discriminator using samples from a known dataset in order to 

reach some level of accuracy. In other words, a model continuously tries to fool another

model, until it can do so with ease. At that point, it can generate authentic looking data. 

GANs are designed to mimic any distribution of data such as music, images and 

speech. 
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3 TensorFlow

TensorFlow is the most popular machine learning library in the world, which was origi-

nally developed by researchers from Google’s AI organization. Almost every single 

Google products uses machine learning in some way, whether its image search, image

captioning, translation or recommendations. Google needs machine learning to take 

advantage of their large data sets to give users the best experience [6].

TensorFlow can be installed via python package manager using below command: 

Install Tensorflow via pip

It can easily be include it in our code by importing it in the beginning:

import * as tf from '@tensorflow/tfjs'

3.1    Creating and training the model

The next step is to define a model for linear regression. Models are a set of layers and 

in a sequential model, the outputs of one layer are the inputs of the next layer. 

const model = tf.sequential();

After that, training the model starts: 

model.add(tf.layers.dense({units: 100, activation: 'relu', inputShape: [10]}));

model.add(tf.layers.dense({units: 1, activation: 'linear'}));

model.compile({optimizer: 'sgd', loss: 'meanSquaredError'});

const xs = tf.randomNormal([100, 10]);

const ys = tf.randomNormal([100, 1]);

xs.print();

ys.print();
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At the beginning of the App.vue file a templateis defined using vue.js. This template 

contains a div where the data should show. 

<template>

  <div id="app">

    <h1>TensorFlow training </h1>

    <div v-if="tfProgress.epochs !== 0">

      <h2>Epoch: {{ tfProgress.epochs }}, loss 

{{ tfProgress.loss.toFixed(3) }}</h2>

    </div>

    <div v-if="tfProgress.epochs === 0">

      <h2>Waiting for data...</h2>

    </div>

  </div>

</template>

An interesting aspect is that there is conditional rendering in Vue.js, which makes up-

dating the HTML much easier. It is possible to use <div v-if> to insert/remove <h2> 

based on if the value of its expression is true or not. Also the single-file components in 

vue js is beneficial as the styles and JavaScript are all in one file with a .vue extension 

instead of separating them into separate files. This is very useful because in compo-

nent-based system each component is a single concern, not the three technologies it is

built with.

In order to get this running in the browser the latest version of the node needs to be in-

stalled and then the following command is used:

npm run dev
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After that, it will be seen that the project is running at port 8080. Figure 2 shows training
of TensorFlow in the browser:

Figure 2. Training TensorFlow in the browser

As stated earlier in this chapter, TensorFlow is a primary tool that many large compa-

nies are using for their machine learning working in all of their products in some ways. 

This library is built to scale so that it can run on multiple CPUs or GPUs and even mo-

bile operating systems with several languages such as python, Java and C. It is much 

easier to implement the generator and discriminator networks using TensorFlow layers.
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2 Improve GAN performance

As mentioned in chapter 2, generative adversarial networks are used in unsupervised 

learning which means data comes in with no labels. Although, there are a considerable 

number of new training strategies applying to the GAN’s framework. Unlike most peo-

ple might think in generative models, the model is not require to generalize any kind of 

prediction to new data or to be able to learn everything well enough without using any 

labels. In fact, adding labels to the data means to break it up into categories, which 

also results in improving the performance of GANs [7].

2.1 Conditional generative adversarial network (CGAN)

In a conditional generative adversarial network, labels give a head start to GAN for 

what to search. It could also be that the visual system is more sensitive to these labels;

hence, the generated images are continuously improving. In a nutshell, In CGAN a fake

example with a specific characteristic or condition will be generated. To add such a 

condition to both the generator and the discriminator a vector y is simply fed to both 

networks:

G (z,y), D (x,y)

Figure 3 shows the architecture of CGAN:
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Figure 3. Dataflow used in CGAN to take advantage of the labels in the samples [8].

As can be seen in the above graph, there is an additional input layer in the form of con-

ditional vector y that is fed into both discriminator network and generator network. 

Compare to GAN, the conditional GAN has a control over modes of the generated data

by adding the label y as a parameter to both generator so that corresponding images 

will be generated and the discriminator in order to distinguish the real images better.
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5    GANs problem

Many GAN models are suffering from a considerable problem, which is called mode 

collapse. The word collapse here is describing the generator when it produces a limited

variety of samples [9].

In order to understand this better, here is one example that can happen when mode 

collapse appears. MNIST database is a huge database of 10 digits from digit 0 to digit 

9. This also means there are 10 modes in MNIST database from 0 to 9. Figure 4 below 

shows the generated samples by two different GANs where in the top one all 10 modes

were produced while the other one creates a single mode which is digit 6 in this case 

[10].

Figure 4. Generated samples of MNIST dataset by two different GANs.
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5.1    Multiple GANs and Loss function

In order to avoid mode collapse GANs need to be trained with multiple generators in-

stead of a single one. As mentioned before, the discriminator and the generator are in 

constant competition to fool each other and the mode collapse is known as lack of bal-

ance between the discriminator and the generator. 

GAN can only cover a subset of modes in the dataset but in order to cover all modes 

we need to train multiple GANs instead. The process of using multiple GANs might be 

more time consuming and complicated, but it definitely improves GANs performance. 

According to multiple GANs concept a ratio of 5 discriminator iterations per generator 

update can be tested instead of keeping it a one to one ratio. The first step to improve 

GAN is to balance the loss between the generator and the discriminator and this hap-

pens by minimizing their own loss. A good example would be when the generator gen-

erates perfect fakes, which means its loss would be 0 and discriminator can distinguish

between fake and real data perfectly which also results in 0 loss.  

Figure 5 explains loss function in a GAN, which has a key role in producing better re-
sult: 

Figure 5. Loss function in a GAN 

In the loss function the error on each input will be calculated by looking at what output it

predicted for that specific input and take the difference of that output value. For exam-

ple, let’s say the model was classifying images of cats with a label of 0 and dogs with a 

label of 1. If an image of a cat is passed to the model and the model outputs 0.15 for 
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this image, then the error between the model output versus the true label for the image 

would be calculated this way:

e = output – true 

   = 0.15 – 0 = 0.15

the individual error for each input is accumulated and passed through to a loss function

and then the loss function is calculated at the end of each epoch. For example, a com-

mon loss function would be mean squared error (MSE) [11]. With MSE, the error from 

an input is received in exactly the same way as was calculated above and once the list 

of errors are received, the average of the squared errors is calculated.

                        

The important question is if there is a way to minimize both generator’s loss and dis-

criminator’s loss. The main goal is to minimize the loss function as more epochs are 

run. Two cases are presented below:

Generator Loss 0

Consider the case when the generator generates perfect fakes and the discriminator is 

fooled every time. This is when the generator’s loss would be zero.

G(loss) => 0

Discriminator Loss 0

Second case is when the discriminator is able to tell which samples are fake and which

are real which means the generator can never fool the discriminator and is not doing a 

good job.

D(loss) ==> 0
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One important note here is that when we talk about training a GAN we actually mean 

training the generator as the generator is the trigger factor in this whole training 

process. Samples are continuously fed to the GAN and the outcome is expected to be 

1 (real case) as the generator is expected to generate realistic images and the discrimi-

nator to say it is real or not. 

Even though the Generator initially produces poor images and therefore Its loss is high,

but through the training process it gets better and better. This is how the generator is 

trained via training the GAN.
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6 Generating human faces and Colorization

In the recent years GAN has made a massive progress in image generation from num-

bers like MNIST dataset to celebrity image generation. In a traditional GAN, the input is

randomly generated noise, which is not suitable for colorization. Instead, the generator 

must be modified to accept grayscale images as inputs and this would be possible by 

using conditional generative adversarial networks (CGAN). 

One great and fun use of CGANs is to generate human faces. The architecture for gen-

erating human faces is pretty similar to MINIST dataset except that for face generation 

three-color channels are used for an RGB image instead of one channel for a black 

and white image [12]. Generation of human faces starts from a very low resolution, 

which is improved by adding new layers until producing a better quality / less blurry im-

age. 

The objective is to add color to black and white images. The generator takes in the 

black and white version of an image and outputs a full RGB version of it. This very first 

output is a low-quality image, which will be enhanced with every iteration. The discrimi-

nator compares colored images from both original dataset and the generator with 

grayscale input as condition and then tries to distinguish the fake image from the real 

one. Figure 6 shows generated faces using CGAN:

Figure 6. Randomly selected samples generated with the DCGAN architecture which special-
ized GAN towards image generation.
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As seen above, the image on the left is the grayscale image; the middle one is the orig-

inal image and the right one is the color added by the generator. 

The same method can be applied to generate not only images of people who do not 

even exist in real World but also other fake objects and these would look more realistic 

after a few iterations because both networks work harder against each other. 

In this thesis, huge dataset that is a collection of over 200,000 celebrity faces called 

CelebA was used. There are a few steps to take into consideration:

1- Preprocessing the images:

 we define get_image function with four parameters, which are Image_path, width, 

height and mode:

def get_img(image_path, width, height, mode):

    """

    parameters: image path, image width, image height and image mode

    return: Image data

    """

2- Network Architecture

In order to get accurate result we need to have a very good GPU (above 4GB). We 

take Image width, Image Height and Image channel as parameters, which will be 

passed to the generator for generating fake images. On the other side the discrimina-

tor’s job is to identify which image is from the training set and which is from the genera-

tor (real or fake). Once the discriminator finds the difference in the image, it sends the 

gradient signal to the generator

3- Generator and Discriminator loss

There are two cases here:

1. The discriminator should be able to output a high value when it receives a real im-

age, meaning that it is confident about the image’s reality
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2. The discriminator should be able to output a low value when it receives a fake im-

age, meaning that it is confident about the image being fake.

4- Training

After training the neural network for over a thousand or even a million times we get an 

unbelievable result. Generator generates perfect fake images that made it almost im-

possible for the discriminator to distinguish if it was fake or real. This would bring con-

siderable benefits to creative industries such as video games and advertising. 
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3 Porting GAN to the browser

The next step was to train the GAN in the browser and observe both networks learn in 

real time. This was much more complicated than it seemed and in some cases it was 

easy to validate the hypothesis that a GAN is too difficult for the browser to handle. The

most important issue when porting GAN to the browser was that GANs were computa-

tionally expensive, in the sense that, they require a very powerful GPU’s to produce 

good results. For example, the previous topic about fake celebrity faces was generated 

by GANs after training many epochs using a high-power GPU (8 Tesla V 100) for 4 days

[13]. 

How GAN can be trained in the browser is illustrated with a less intensive example 

where a MNIST dataset as a training dataset, train it only using Tensorflow.js and then 

port it to the browser. We will look at a model for recognizing handwritten digits (MNIST

dataset) by looking at each pixel in the image and then using TensorFlow to train the 

model to predict the image by making it look at thousands of examples, which are al-

ready labeled [14]. In other words, first we will train the classifier by showing it the 

handwritten digit images and their labels; then we will evaluate the classifier’s accuracy

using test data.

To run the code locally we need NPM CLI or yarn installed and then we use the 

npm run watch

yarn watch

A new tab will be opened immediately on localhost:1234 as it is shown in Figure 7:
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Figure 7. Train MNIST and port it to the browser

7.1 Training MNIST using TensorFlow

First, TensorFlow was imported as the first line of code and then a few constants were 

included as shown below:

 IMAGE_SIZE = IMAGE_H * IMAGE_W (height and width = 28x28)

 NUM_CLASSES – number of label categories (10 digits between 0-9 or 10 

classes)

 NUM_DATASET_ELEMENTS –total number of images (65000 images in this 

case)

 NUM_TRAIN_ELEMENTS – number of training images (55000 in this case)

 NUM_TEST_ELEMENTS – number of test images

 MNIST_IMAGES_SPRITE_PATH & MNIST_LABELS_PATH – Paths to the im-

ages and the labels

Next is MnistData class for fetching MNIST dataset, which includes an important func-

tion called load () that is responsible for loading the images and label data.

  

async 

load()

{
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const image = new Image();
const canvas = document.createElement('canvas');
const ctx = canvas.getContext('2d');
const imageRequest = new Promise((resolve, reject) => {
      image.crossOrigin = '';
      image.onload = () => {
        image.width = image.naturalWidth;
        image.height = image.naturalHeight;

Async is a JavaScript feature to handle asynchronous actions. One way to handle this 

is to use JavaScript promises. This means we define a promise, which in this case is 

an image request. The promise takes a callback function with two arguments that are:

 Resolve: when the promise is actually fulfilled and finished

 Reject: When the promise is not fulfilled in given time

In our example we make a request for an MNIST image with specific image attributes 

such as width and height and once the image is loaded the promise is resolved.

Next, a new buffer will be initialized to contain every pixel of every image. This code will

be looping through each image and initialize a new TypeArray for that iteration. 

/* modified code obtained from https://thekevinscott.com/dealing-with-mnist-

image-data-in-tensorflowjs/?cv=1*/

const datasetBytesBuffer =

            new ArrayBuffer(NUM_DATASET_ELEMENTS * IMAGE_SIZE * 4);

        const chunkSize = 5000;

        canvas.width = image.width;

        canvas.height = chunkSize;

        for (let i = 0; i < NUM_DATASET_ELEMENTS / chunkSize; i++) {

          const datasetBytesView = new Float32Array(

              datasetBytesBuffer, i * IMAGE_SIZE * chunkSize * 4,

https://thekevinscott.com/dealing-with-mnist-image-data-in-tensorflowjs/?cv=1
https://thekevinscott.com/dealing-with-mnist-image-data-in-tensorflowjs/?cv=1
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              IMAGE_SIZE * chunkSize);

Then an image will be drawn and using getImageData() function that drawn image will 

turn into image data which returns an object representing pixels.

          ctx.drawImage(

              image, 0, i * chunkSize, image.width, chunkSize, 0, 0, 

img.width,

              chunkSize);

          const imageData = ctx.getImageData(0, 0, canvas.width, can-

vas.height);

Last step is to remodel the buffer into a new TypedArray that holds the pixel data. At 

the end the promise is resolved and the image source (src) is set. 

        this.datasetImages = new Float32Array(datasetBytesBuffer);

        resolve();

      };

      image.src = MNIST_IMAGES_SPRITE_PATH;

    });

At the end we set up the training process. Figure 8 is the result when porting the code 

to the browser:
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Figure 8. Training MNIST dataset in the browser

This is an impressive outcome considering the percentage of the accuracy, which is 

88%. We produce a prediction based on the output of the data through our neural net-

work and if that prediction is correct we get the green label otherwise it’s a red label as 

shown in the above picture. We repeat this process as many times as possible until we 

get a higher accuracy level.
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Conclusion

According to the examples mentioned before, GANs can be used in many different ar-

eas to do tasks deemed impossible before, despite their new state in machine learning.

In other words, it has changed the way neural networks are used. Not only can they 

make decisions and predictions based on various data such as in image classification, 

but they also can generate data that has never existed before. Therefore, they can 

learn from the object and generate similar versions of it.

In the introduction of this thesis, two research questions were posed questions were 

raised to be answered. These questions along with the answers are addressed below:

1. How long do GANs need to be trained to output accurate results?

Training a GAN is relatively hard, especially when it comes to heavier datasets, such 

as images, because in this case the colorizing or adding color layers needs to be taken

care of manually. The initial result after the first training sessions with a GAN is most of 

the time not accurate at all, but the more it is trained, the better the results become. 

What makes training difficult is that both neural networks in a GAN try to compete with 

each other, which continues until one of them overcomes the other. That is when the 

generator produces perfect fake samples and the discriminator is not able to identify 

fake from real.

1- To what extent is it possible to improve GAN’s performance?

There are many factors affecting GAN’s performance. The main factor is taking care of 

the loss function. GAN can be improved by making a balance between the Generator’s 

loss and the discriminator’s loss. This is achieved by minimizing their individual loss, 

which results in minimizing the whole loss function. At the very beginning, discrimina-

tor’s accuracy is very high and can easily separate fake objects from real, but after each

iteration the generator improves and generates realistic samples and that is when the 

discriminator’s loss starts to increase. In ideal situation the total loss will be zero.
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