
 

Deepak Bhandari

Job Vacancy Application using MERN
stack

Metropolia University of Applied Sciences

Bachelor’s

ICT

Job Vacancy Application using MERN stack

07/11/2018

 Abstract

Author(s)
Title

Deepak Bhandari
Job Vacancy Application using MERN stack

Number of Pages
Date

36 pages + x appendices
07 November 2018

Degree Bachelors of ICT

Degree Programme Information and Communication Technology

Specialisation option Mobile Application

Instructor(s) Janne Salonen (Content Instructor)
Sonja Holappa (Language Instructor)

This thesis focuses on the development of a full-stack job searching web applica-
tion using Javascript technologies. The application is written using MERN stack
(MongoDB, ExpressJS, ReactJS and NodeJS), ReactJS will serve the front-end
while NodeJS and expressJS will keep backend stay connected to the database,
MongoDB. The main objective of the project for the author was to learn full stack
web development using ReactJS as well as to build a job searching application for
his home city back in Nepal.

Each of the afore mentioned javascript libraries were thoroughly studied in-order to
create the application. Various frameworks and their strengths were studied con-
cluding to the most job savvy ReactJS backed by regular Mongo, Express and
Node trio. React being one of the most popular front-end java library developed
and being used by Facebook, provides multitudes of services in creating a single
page web application.

This document seeks to explain the motivations in using the MERN stack and each
of their brief explanation. This thesis also acts as a brief guidelines on developing a
full-stack MERN web application. Further development process’ will be explained
on the latter half of the document. The application is a beta, so, real server de-
ployments, user interface improvements and practical implementation will be car-
ried out even after the thesis has been submitted. Security and deployment
process’ are further explained below.

Keywords

Contents

Appendix 2. Title of the Appendix

Abbreviations 4

1. Introduction 1

2. Full Stack Web-development 2

3. MERN Stack 3

3.1 Mongo DB 4
3.2 Node.js 7
3.3 Express JS 8

3.3.1 Controllers 9
3.3.2 Middlewares 10
3.3.3 Models 11
3.3.4 Package.json 12

3.4 ReactJs 13

4. Tools, third party plugins and libraries 16

4.1 Visual Studio Code (VS Code) 16
4.2 JSON Web Tokens (JWT) 16
4.3 Redux 17

4.3.2 Reducers in Redux 20
4.3.3 Redux Store 21

4.4 React-strap 21
4.5 Axios 22

5. Vacancy Announcement Application (VacApp) 23

5.1 User Interface 24
5.2 Testing and deployment 33

6. Discussion 34

7. Conclusion 35

References 35

Abbreviations

API Application Program Interface

CSS Cascading Style Sheets

DOM Document Object Model

NPM Node Package Manager

HTML Hypertext Markup Language

JS JavaScript

JSX JavaScript XML

URL Uniform Resource Locator

HTTP Hypertext Transfer Protocol

TCP Transfer Control Protocol

JSON JavaScript Object Notation

XML Extensive Markup Language

UI User Interface

ODM Object Data Modeling 

Page ! of !1 36

1. Introduction

Technology has never been this interesting, specially web-technologies. Web develo-
ping using just HTML and CSS and linking many static pages together are the things of
the past. Developers are continuously provided with so many options and services to
tweak around the web-pages. Many frameworks and libraries are constantly being de-
veloped to create a web-page in a certain manner. Some provide efficiency, some agili-
ty, some promise on being light weight, while some boast on adaptability, however all of
them focus on making the best looking and behaving web page.

Many choices results in confusion, similarly choosing a convenient set of frameworks
and library or a Stack is an extremely hectic process. LAMP (Linux, Apache, MySql,
PHP) was the first to popularise the word Stack, meaning a set of frameworks constitu-
ting a complete web application, i.e. front-end and back-end. On latter development of
javascript frameworks, MEAN (Mongo DB, Angular JS, Express and Node), MERN re-
placing React with AngularJS was among the most used stacks. Choosing a stack is
one of the most important aspects of web development. However, MERN being the title
of this thesis already and a full stack component based platform, learning and imple-
menting it could be fun as well as irritating and time consuming at times.

The web application is the author’s idea towards an startup for popularising vacancy
announcements via easily accessible web app back in cities of Nepal where unem-
ployment rates are plunging for people not having a medium while economy is at the
rise because of new government system. Nepal has recently thrown away the hun-
dreds of years of autocratic monarchy and moved on to more democratic federal go-
vernment. Businesses are more open ended and this ecstatic evolvement of web tech-
nologies certainly helps in blooming the reach and actual economic prosperity of spe-
cially small businesses. Since small businesses are the backbones of any developing
economies. This publicly accessible application will help a lot of people find jobs and
employees find their matching employer. A lot of people are not fit (either unqualified or
overqualified) for their job and helping everyone secure their goals in the form of a va-
cancy application they just mailed because of this app would be a good social effort.
While on further developments, author is motivated in creating a job pool app, where
one can ask someone to do small jobs like delivery, car wash etc for calculated prices.
Practical application will be implemented when the final project is delivered.

Furthermore, it is explained how MERN is one of the best full stack javascript frame-
work and benefits of using React over other front-end frameworks and libraries.

Page ! of !2 36

2. Full Stack Web-development

Various web and native applications are developed using ‘stacks’ of various technolo-
gies. The word ‘stack’ was first referred to the LAMP stack, Linux as the OS, Apache as
the http server, MySql the relational database and PHP as the programming language
on which the application is developed. However, multipage applications are on the
decent and single page applications are more popular because of their seamless user
experience and lighter server calls which makes rendering the part of page easier wi-
thout refreshing the page. So, the front-end frameworks or libraries those can produce
single page applications are on demand. React being one of them.

Just like a good front-end, there needs to be a supporting database. This thesis is
based on a NoSql database, MongoDB. NoSql databases are also called Not-Only-Sql
because they also support SQL like query languages. MySql (SQL) stores data in rows
and columns, NoSQL databases store their data in different structures: key-value pairs,
wide columns, graphs, or documents. Simplicity, scalability, flexibility, availability and
speed of NoSql, databases like MongoDB have gained fame.

To bind the front-end and database together and to output a logical result in the client
screen, a strong backend is necessary. Popular languages like PHP, Ruby and Python
are among the early server side languages. Since, Javascript has made it possible to
create dynamic front end, its development has also had an impact on back-end, in the
form of NodeJS and ExpressJS. As a contemporary website consist of client side gra-
phical user interface (GUI), server side communication, server and the database to talk
to, the complete package comprising of all these factors make up full stack web-deve-
lopment. And the current development of web technologies has further allowed to com-
bine different libraries with various features, across different platforms to work on to a
single stack. [6]

Page ! of !3 36

3. MERN Stack

MERN stack as briefly discussed above consists of 4 independent frameworks and li-
braries, Mongo DB, Express JS, React JS and Node, hence the abbreviation MERN.
Below are described the individual aspects of MERN stack.

Fig 1. Full stack MERN architecture. Reprinted from The Modern Application stack [2].

Page ! of !4 36

3.1 Mongo DB

MongoDB is an open-source, cross-platform document-oriented NOSQL database. Ini-
tially released on Feb 11 2009 by MongoDB Inc, it is licensed under Server Side Public
License (SSPL). MongoDB uses JSON like files with dynamic schemas. Data are main-
ly stored as documents and collections. Collections can have multiple documents and
different schemas associated to them. Just like JSON objects, records on MongoDB
are documents with data structures containing field and value pairs but with their own
respective validations or schemas.

Unlike relational databases (RDB), MongoDB does not store data in tables. It assigns
keys and values pairs. These records are stored and fetched using a key item that
uniquely identifies the record, and is therefore used to quickly find the data within the
database. Each document has its unique ID field as a primary or identifier key for query
operations. Binary JSON (BSON) structured, schemas governing keys and the data
stored in them, values are stored in respective fields in documents inside of collections.
One collection has to be stored in one machine. Since JSON is compatible with Java-
Script, queries in MongoDB are written using JavaScript. MongoDB’s data modelling
makes it quite easy and efficient to store the data and combine it with another data with
any structure, without writing ambiguous validation rules, flexible data access and rich
indexing functionality. Developers can dynamically perform schema modification with-
out having a downtime, this feature is extremely convenient for developers making
rapidly evolving applications.[2] Below is a basic representation of field and value pairs
in MongoDB document.

{

name : “Deepak”, <- field: value

age : 25, <- field: value

hobbies: [“singing”, “reading”] <- field: value

}

Page ! of !5 36

MongoDB comprises of rich query languages to support basic read and write CRUD
operations while being able to easily text search and data aggregation. Among best
benefits offered by MongoDB one of them is using dynamic schemas which eliminates
the need to pre-define the structure, like fields or value types. Such models allows hi-
erarchical relationships representation, array storage, and ability to change the records
structure by simply adding or deleting fields.[3] Schemas are stored inside of Collec-
tions, within the documents. And each documents can have any amount of schemas
and shapes inside of them. Because of which developers can store their data in the
database without considering the database’s structural design. MongoDB doesn’t re-
quire data type validation therefore the database’s keys and values can be updated
when required.

Among other big MongoDB features, auto sharding data to horizontal scaling and repli-
cation of data among multiple servers for higher reach are the most developer friendly
assets. All the data are stored as documents, therefore horizontal scaling allows data
as documents to be stored at many different servers and locations, efficiency will be
the optimum than having a single machine handle all the valuable user information.
More machines means more space to support data growth and most importantly to
maintain efficient read-write operations. Which also allows storing higher scaled infor-
mation, when the start-up starts taking pace. Similarly, replication of the data prevents
the chances of data-loss since the data is stored in multiple servers. When one server
fails, the data still could be fetched from the replica. Highly efficient and higher scaled
storable informations achieved via auto-sharding and server data replications keeps
MongoDB edges away than other relational database counterparts like MySQL and
Oracle databases.

Everything has drawbacks, of course MongoDB has few, one being the inability of pro-
cessing multiple operation as one transaction like other relational databases. There-
fore, if any operation causes an error the whole transaction fails. It also lacks joint ope-
rations features like MySQL which in turn makes it weak against data with multiple rela-
tionships among them. When making changes, multiple documents has to be updated.
Changes in multiple data clusters in different documents should be tied to a single
transaction to make sure all the collections are updated. Hence MongoDB being a non-
transactional database, processes like such could be few of its weaknesses, it has
hard times at such. However, the ability to store any kind of freeform data structure wi-
thout any rule governing the relation can be a strength at times, applications can be
built at any platforms and they can have any sort of data-structure they prefer. For the

Page ! of !6 36

handling of such ambiguous ungoverned data structure, Mongoose was created by
MongoDB.

Mongoose is an Object Data Modeling (ODM) library for MongoDB and Node.js. It pro-
vides schemas to model application data which therefore cleans up the ambiguity of
databases. Mongoose as a library contains built-in type casting, validation, query build-
ing, business logic hooks and more. Therefore it aids in handling the relationships be-
tween the data, provides schema validation, and is used to translate between objects
in code and the representation of those objects in MongoDB. Mongoose removes the
need of writing difficult data validations, business logics and casting broiler-plates in the
documents. Moreover, it provides additional sets of features on top of MongoDB, for
instance it can help manage the connections to MongoDB database. It can be helpful
just even to perform basic operations like read, write, and save data. By providing
schema level validation rules, it also allows only valid data to be saved in MongoDB.

Fig 2. MongoDB Atlas screenshot.

Atlas provides easy web access to use MongoDB as a cloud service or it can be used
through Mongo shell. Former is used as the method to access database for this

Page ! of !7 36

project. Atlas handles all the processes of deploying, managing and healing the de-
ployments on the developers choice of cloud services (AWS, Azure and GCP). Mongo
being an open source platform, free 0.5 GB of memory can be allocated to an individ-
ual project for education purposes.

3.2 Node.js

Node.js is the currently most popular open source web server environment developed
by Ryan Dahl under Joyent Inc (currently owned by Samsung electronics). Being a run-
time environment, Node.js helps in executing javascript codes outside of a browser. It
uses Google chromes V8 engine to execute the javascript. V8 is originally Google’s
open-source runtime engine which was written using C++, similarly Mozilla uses Spi-
derMonkey and Microsoft uses Chakra as their respective runtimes. In layman’s term, it
helps translating javascript codes into machine level language, hence a machine is
able to understand the javascript codes without the need of a browser. This factor is
key towards developing full-stack applications. Node.js as a whole makes developing
cross-platform, server-side and networking applications much easier.[7]

Fig 3. Blocking I/O (left) vs Non-Blocking I/O (right). Reprinted from What exactly is NodeJS [7]

Page ! of !8 36

V8 engine being the main component, Node also includes several modules like net-
working protocols such as HTTP and assists in installing other third party modules like
MongoDB via npm (node package manager) tool. Node.js is an asynchronous, event
driven engine, meaning that when an application makes a request, it continues working
on that request to get a response while also continues working on other useful stuff. On
the completions of requests, it informs the application about the response by a call-
back. It helps in processing a large amount of request in parallel, which amounts in
making large scaling applications. MongoDB was also designed for being asyn-
chronous, hence these two can really work together side by side.

Node.js makes use of event driven, non-blocking I/O model to execute requests.[7]
Non-blocking I/O model makes node asynchronous.[7] The flow of the programs is de-
fined by the events taking place. Javascript uses single threaded event-loop, multi
threaded processes cant be executed. Hence, node has to execute multiple threads in
parallel without waiting on every event. Below is an example of what blocking vs non-
blocking I/O model looks like.

Node also provides tools and functions like NPM (node package manager) and require,
which help managing third party libraries like Mongoose and Express to make devel-
opment faster and efficient. NPM is the default package manager which comes bun-
dled with the Node environment. These tools also help load inbuilt node modules into
respective applications. Node modules are blocks of codes that can be used where
needed but when not loaded do not impact the application codes. Developers can also
build their own modules for personal use and for the community.

 3.3 Express JS

Express is a very light, extremely minimal and flexible open-source Node.js web appli-
cation framework designed for building web applications, mobile API applications and
APIs. Express runs as a module or an element within the Node.js environment. Unlike
popular frameworks like Koa.js and Happy.js, Express is much more minimal and pro-
vides advanced features in forms of plugins. Working as a layer above Node.js, Ex-
press can help designing single page, multi page and hybrid applications. Same back-

Page ! of !9 36

end applications could be written in plain Node, but Express provides with higher secu-
rities, much lesser lines of codes hence much faster development and also the easy
accessibility of third-party plugins makes it the most popular Node.js framework among
the developers.[11]

Express makes responding to requests with route support such that developers can
write responses to specific URLs simpler. It also supports multiple template engines to
simplify generating HTML. It can be easily installed using NPM and can be accessed
as a require statement in the server files. Below is an instance of a basic HTTP server
(server.js) that outputs ‘Hello Express’ built using Express.

Above written server.js file when ran using ‘node server.js’ in the terminal displays ‘Hel-
lo Express’ in browsers port 3000 (accessed using http://localhost:3000/ in the brow-
ser). One of the many benefits of express is the use of middlewares. Middleware are
any numbers of functions invoked by the Express.js routing layer before handling the
final request. Residing in the middle of raw request and final intended route, thus midd-
leware. Callback on the third line is an example of an Express middleware.

Node.js and express do not necessarily come with a strict file and folder structure. Be-
low are some of the components used along the express application.

3.3.1 Controllers

Controllers define the app routes and logic. This application has file server.js as the
main route and auth.js, users.js and vacs.js as the secondary routes to access far cor-
ners of the application. Routes mainly deal with Get, Post, Update and Delete

Page ! of !10 36

Fig 4. Back-end file structure.

3.3.2 Middlewares

Express middleware process the incoming requests before handling them down to the
routes. Auth.js middleware is used to check for the user authentication before any end-
user proceeds into the application. Below lines of code checks for the authentication
token and proceeds accordingly.

const config = require('config');
const jwt = require('jsonwebtoken');

function auth(req, res, next) {
 const token = req.header('x-auth-token');
 //check for token

Page ! of !11 36

 if(!token){
 return res.status(401).json({msg: "No token, au-
thorisation denied"})
 }
 try {
 //verify token
 const decoded = jwt.verify(token, config.get('jwt-
Secret'))
 //Add user from payload
 req.user = decoded;
 next();
 } catch (error) {
 res.status(400).json({msg:"Token is not valid"})
 }

}
module.exports = auth;

3.3.3 Models

These files represent the data structure of the application. It implements data logic and
handles the storage to MongoDB. User.js and Vac.js are the basic data models or
schemas used. Below is the data model for the entity User.

const mongoose = require('mongoose');
const Schema = mongoose.Schema;

// Create Schema
const UserSchema = new Schema({
 name: {
 type: String,
 required: true
 },
 email: {
 type: String,
 required: true,
 unique: true
 },

Page ! of !12 36

 password: {
 type: String,
 required: true
 },
 register_date: {
 type: Date,
 default: Date.now
 }
});

module.exports = User = mongoose.model('user',
UserSchema);

3.3.4 Package.json

Package.json file is core to the Node.js ecosystem. It manifests all the tools, plugins
and dependencies used along the development of the application.

Page ! of !13 36

3.4 ReactJs

React is one of the most widely used open source, component-based JavaScript library
for building client side user interfaces naturally for single page applications. It was first
developed by Facebook’s engineer Jordan Walke and is constantly updated by Face-
book and community of developers around the world. It was first deployed in Face-
book’s newsfeed in 2011.

Fig 5. React logo. Reprinted from React webpage. [8]

React allows rendering different components with different events without necessarily
having to re-render the web-page. As an UI interface library, react helps build fast,
scalable, single-page, component based web-pages and applications. It most specifi-
cally targets the view layer of MVC pattern of web development. Unlike other front-end
frameworks like Angular, React uses views that are declarative and makes code more
predictable to write and easier to debug. It allows developers to declare what to render
in the webpage instead of telling browser how to do it. React prepares simple views for
every different state in the application, and will update and render just the right compo-
nent when the data changes. Since React is just a library not a framework, it is in itself
lightweight hence the applications are executed instantly. React is easily readable be-
cause it uses the basic javascript fundamentals. It also orders codes in the block of re-
usable components which can be updated every time a state is changed. [1]

Any react applications are made up of many different components styled around each
other using bootstrap, react-strap in this project. Each component is responsible for
rendering fairly a small, reusable piece of HTML code. Components can be nested
within other ones, rendered on events to allow scalable applications to be built out of
small reused blocks.. A component can also maintain internal state – for example, a

Page ! of !14 36

Cart component might contain state regarding current items inside of it, a TabList com-
ponent can store a variable corresponding to the currently opened tab. In classical
web-development, instant changes are made to the DOM (document object model),
which is a slow process. But, React makes its own virtual DOM by copying the browser
DOM, which is similar to the end-user DOM but it makes changes to the virtual DOM
elements and only updates the browsers DOM if necessary by the comparison. Unlike
browser DOM elements, react elements are plain objects and are more efficient to cre-
ate.[3] The learning curve for React fundamentals is quite easy and the robust security
makes it the most desired javascript framework among the developers.

Fig 6. React virtual dom concept. Reprinted from What is React and why should we use it [2].

Instead of using regular javascript for templating, React uses JSX (Javascript and
XML). Even though it’s not mandatory, JSX allows developers to use markup and logic
of the webpage in a single file usually called components. HTML syntaxes are proces-
sed into JavaScript calls.

Unidirectional data flow being one of the strength of React, properties are passed from
parent to child components, which allows actions to be fired to the view, which in-turn
updates the states. A state is the place where data comes to the components. One way
binding is lesser error prone because developers have more control over the data.
Knowing the flow of data, makes debugging extremely easier and efficient in react. Va-
rious lifecycle methods are used in react, render being one of the essential, component
updates is much easier. [9]

Page ! of !15 36

Fig 7. React components unidirectional data flow. Reprinted from What is React and why should
we use it [2].

Components are the building blocks of any React app and they can be functional and
class-based, with or without states. Functional components are basic javascript func-
tions that usually do not hold any state in them while stateful components can hold
states and pass on properties to the child-components. Class components can have
lifecycle methods hence they can make changes to the UI and the data.

Page ! of !16 36

4. Tools, third party plugins and libraries

Multiple third party tools and plugins are used for the completion of the application.
Even though MERN is a self sufficient ecosystem, third-party tools and plugins help a
lot in providing the styling, feasibility and the writing of codes.

4.1 Visual Studio Code (VS Code)

VS Code is a popular source code editor by Microsoft. It can be used with many lan-
guages but since it is based on Electron, one of the Node.js frameworks, MERN deve-
lopment is easy and efficient. It is free for developers use and is open source under
MIT license. Built-in terminal support makes it much easier for web-development.

4.2 JSON Web Tokens (JWT)

JWT is a JSON web object which helps creating a safe data communication between
two parties which in application’s context are the application’s server and the end-user.
The token is composed of a header, a payload and a signature. Header provides in-
formation how signature is to be computed. Payload is the data stored in the token, like
the user information. The payload is encrypted or hashed to produce a signature.[13] It
is used for the authentication of users in the application. Below is the way JWT at-
taches with the application to provide security and privacy to the contents.

Page ! of !17 36

Fig 8. JWT to access the application server. Reprinted from Vandium Software [13].

4.3 Redux

Since, the data is stored as states among components in React, handling big scale ap-
plication data becomes difficult. So to tackle that ambiguity, Redux was made. Redux
manages the states in JavaScript applications. Even though React has brought their
own state management tools in the form of hooks, Redux being old practise and stable
one at that, this tool was chosen for this project. It can also be used for other javascript
frameworks and libraries, like angular and vue. It is itself extremely lightweight at me-
mory size 2KB with all the dependencies, so it doesn’t quite increase the total ap-
plications asset size. It was inspired by Facebook’s Flux and Elm to simplify the MVC

Page ! of !18 36

structure, specifically the Model and View relationship when the application size is sca-
led higher. It is modelled on functional programming concept.

Redux allows us to store all the states in one store and components can fetch them
when required. Like other frameworks, React comes with internal state management
system as well. It is not fully stable during the creating of this project as well as it is
also good at only handling smaller scale application with smaller amount of states
across smaller components. With larger applications state management is better with
Redux.

When an app has components that share states or data, a separate handler or store
for state to live in would be a great idea. Hence Redux implements that logic in provi-
ding states among components without linearly depending on the hierarchy. Generally,
state has to live in the parent component in React for children to fetch, so ideally sibling
components can’t access the states among them. From parents to child it has to be
passed on as props while Redux allows direct access to the central store, from where
you can fetch all the current states.

Fig 9. Redux state management. Reprinted from Vandium Software [13].

Page ! of !19 36

Redux has a store, reducers and actions which work together to provide states to the
components. When a user creates an event, actions are dispatched to the central store
as the only information that store receives from the user, that makes reducers fire a
method on the previous state depending upon the action received from the store that
decides what will happen to the old state. Below are brief descriptions of each Actions,
Reducers and the Store.

4.3.1 Actions

Actions are events like user interactions, API calls and form submission that send data
to the store. These are the only source of communication to the store but actions only
define what is gonna be the new state/object, not how. Actions are plain JavaScript ob-
jects sent using store.dispatch() Actions must contain a type variable and a payload
variable. Type property that defines the type of action that is to be carried out and a
payload that is the actual information that is to be passed to the store. [5] Actions are
created using an action creator. Below is an example of getVacs action with the action
type GET_VACS imported from ./types.

Fig 10. Screenshot of the application action.

Page ! of !20 36

4.3.2 Reducers in Redux

Reducers govern how the state of an application is changed upon an action is dispat-
ched containing a payload. All the application state is stored in Redux as a single ob-
ject. Reducers takes an action and decide what method is to be fired depending upon
the action that was dispatched. Hence a new state is produced every time.

Just like array.reduce in javascript, reducers take one object and one call back and re-
turn one object or array at the end, hence its called reducer. Same object or state pas-
sed through reducers callback yields the same new state every time because no addi-
tional callback is applied since they are usually passed as action conditions. Instead of
mutating the old state a new state is created by the reducers plain functions.

The following figure is one of the reducers (vacReducer.js) used in the vacancy an-
nouncement application. It takes a state, applies action and returns a new state. Impor-
tant action types are imported again from ../actions/types and many action cases are
applied to produce different result for different actions.

Fig 11. Screenshot of the application reducer.

Page ! of !21 36

4.3.3 Redux Store

Store in redux is the central container that holds the application state. It also behaves
as the actions and reducers gateway.[5] One react application always has one store
but might have multiple actions and reducers depending upon the number of compo-
nents and events available. Developers can access and store state, and register or un-
register event listeners with the use of helper methods. Reducers produce new state
which is stored in a separate file named store which makes it available all across the
application. Following is the Store implemented for the Vacancy Announcement appli-
cation using syntax createStore.

Fig 12. Screenshot of the application store.

4.4 React-strap

React-strap is a javascript library containing structural React Bootstrap components
that handle application’s composition and control.[10] It works mostly with the styling of
the front-end also providing various advanced UI features. React-strap along with
React-transition-group was used in the application to create headers, navigation bars
and for generally giving the media-query adaptability and styling. Following elements
were imported and used in the nav-bar component of the application.

Page ! of !22 36

import {
 Collapse,
 Navbar,
 NavbarToggler,
 NavbarBrand,
 Nav,
 NavItem,

 Container
} from 'reactstrap';

4.5 Axios

Axios is a famous JS library that allows performing HTTP requests in both computers
via NodeJS and directly on browsers. It is supported by majority of browsers and is a
better alternative for reacts own Fetch API. Axios is promise based library which en-
ables performing asynchronous XHR requests.

Axios over native Fetch API comes with a lot of perks, some are listed below

1. Axios supports older browsers without the need of polyfill unlike fetch.

2. It has a way to abort a request as well set response timeout

3. Has a in-built CSRF protection and includes upload progress

4. Allows JSON data transformation and most importantly works with node

Page ! of !23 36

5. Vacancy Announcement Application (VacApp)

VacApp is a web application project designed using MERN stack. It targets mostly the
small businesses in helping them find the right employee whilst helps unemployed
users score a job-interview. VacApp is designed to benefit both sides of the employer
and employee spectrum. For everyday user, searching for jobs, VacApp can be an
easy medium to fetch the most suitable. The usability is efficiently designed to manage
any vacancy posts for employers as well. Below is a general flow diagram on how the
application works.

Fig 13. Flow diagram of the VacApp application.

Page ! of !24 36

5.1 User Interface

VacApp, under production mode, starts with the fairly simple home page. Home page
allows users searching jobs to hit the job name and city to find the right job closest to
them. Home page also features navigation bar which holds the login or register buttons
based on the current status of business users. All the components in the application
are designed in-order them to fit in the size of the end-user screen. Hence, the naviga-
tion bar is retractable on the phone screens while fully featured when accessed
through a computer. Although all the contents are mostly rendered conditionally from a
single main component VacancyApp.js, in application separate pages are redirected
depending on the authentication status. Below is the figure of the applications home-
screen with and without the search criteria filled and a snippet of code that renders it
respectively.

Fig 14. Screenshots of the application’s home screen before and after search values entered.

Page ! of !25 36

<Form onSubmit={this.sermit}>
 <FormGroup>
 <Label for="title">Job title</Label>
 <Input
 type="text"
 onChange={this.oncser}
 name="serTitl"
 className="inp"
 placeholder="Job title eg: bartender"
 />
 </FormGroup>
 <FormGroup>
 <Label for="city">City</Label>
 <Input
 type="text"
 onChange={this.oncser}
 name="serCit"
 className="inp"
 placeholder="Which city?"
 />
 </FormGroup>
 <Button>Search for the Job!</Button>
 </Form>

 {this.state.isSubmitted && renderSe}

General job searching users can get all their work done on the main screen. Since the
application is designed to be extremely simple and easy to work with, general users do
not necessarily have to login. They can just fetch their necessities and close the appli-
cation, nobody is searching for a job all the time.

Page ! of !26 36

On the other hand, primary consumers of the application, employers, generally busi-
nesses can register new business or login to the user they have already created from
the navigation bar. Separate react-strap modal elements are provided for register and
login and they float above the home-screen. Below is the figure depicting login modal
and a snippet of the modal’s code.

Fig 15. Screenshot of the application’s login modal.

toggle()=> {
 // Clear errors
 this.props.clearErrors();

Page ! of !27 36

 this.setState({
 modal: !this.state.modal
 });
 };

 onChange = e => {
 this.setState({ [e.target.name]: e.target.value });
 };

 onSubmit = e => {
 e.preventDefault();

 const { email, password } = this.state;

 const user = {
 email,
 password
 };

 // Attempt to login
 this.props.login(user);
 };

 render() {
 return (
 <div>
 <NavLink onClick={this.toggle} href='#'>
 Login
 </NavLink>

 <Modal isOpen={this.state.modal} toggle={this.tog-
gle}>
 <ModalHeader toggle={this.toggle}>Login</Modal-
Header>
 <ModalBody className="lis">
 {this.state.msg ? (
 <Alert color='danger'>{this.state.msg}</
Alert>
) : null}

Page ! of !28 36

 <Form onSubmit={this.onSubmit}>
 <FormGroup>
 <Label for='email'>Email</Label>
 <Input
 type='email'
 name='email'
 id='email'
 placeholder='Email'
 className='mb-3'
 onChange={this.onChange}
 />

 <Label for='password'>Password</Label>
 <Input
 type='password'
 name='password'
 id='password'
 placeholder='Password'
 className='mb-3'
 onChange={this.onChange}
 />
 <Button color='dark' style={{ marginTop:
'2rem' }} block>
 Login
 </Button>
 </FormGroup>
 </Form>
 </ModalBody>
 </Modal>

 </div>
);
 }

When the business user registers and logs in using the created credentials, user-feed
is redirected. The feed is empty for new registration while it will contain all the vacancy

Page ! of !29 36

posts the user will ever create using the app. User-feed is where the users can create,
update and delete the existing vacancy posts.

Vacancy posts are the blocks of information provided by the business user which can
be searched by the job seeking consumers. Vacancy posts are unique and private to
the business user in the sense only they can update or delete the information. Vacancy
posts are listed in the home screen if the user search criteria meets the post’s informa-
tion. Modals are again executed while creating the vacancy posts. Business user clicks
on the vibrant Add Vacancy button provided on the top-left corner of the application to
create a post. A modal is launched to enter all the vacancy information for example
title, city and the businesses contact information. Below is the figure of the app’s User-
feed.

Fig 16. Screenshot of the application’s User-feed.

Page ! of !30 36

User feed is rendered conditionally depending on the authentication status. Option to
delete any post is only provided if the user is authenticated, posts on home-screen do
not have that luxury.

if (this.props.isAuthenticated) {
 return (
 <Container>
 <Fragment>
 <ListGroup>
 <TransitionGroup className="vac-app">
 {vacs.map(({ _id, title, city, sal, desc,
uid }) => {
 return uid === user.name ? (
 <CSSTransition key={_id} timeout={500}
classNames="fade">
 <ListGroupItem className="lis">
 <ListGroupItemHeading>
 {title}
 {city + ","}
{"Salary:"}
 {sal}{" "}
 </ListGroupItemHeading>
 <ListGroupItemText className="list-text">
 {" "}
 {desc}{" "}
 </ListGroupItemText>
 {this.props.isAuthenticated ? (
 <Button
 className="remove-btn"
 outline
 color="danger"
 size="sm"
 onClick={this.onDeleteClick-
.bind(this, _id)}
 >
 ×
 </Button>
) : null}
 </ListGroupItem>
 </CSSTransition>

Page ! of !31 36

) : null;
 })}
 </TransitionGroup>
 </ListGroup>
 </Fragment>
 </Container>
);

Add Vacancy fires a react-strap modal which has text fields to enter the post’s informa-
tion. Add vacancy modal asks business users to hit the accurate information regarding
the job since seeking costumers are also watching the same vacancy posts. Below is a
screenshot of the add-vacancy modal and a block of code to render it.

Fig 17. Screenshot of the VacApp’s after-authentication Add Vacancy React-strap modal.

Page ! of !32 36

render() {

 return(
 <div>

 {this.props.isAuthenticated ? (
 <Button
 color='dark'
 outline
 style={{ marginBottom: '2rem' }}
 onClick={this.toggle}>

 Add Vacancy</Button>
) : (
 <h4 className='mb-3 ml-4'>Job searching made
easy!</h4>
)}

 <Modal isOpen={this.state.modal} toggle={this.tog-
gle}>
 <ModalHeader toggle={this.toggle}>Add Vacancy</
ModalHeader>
 <ModalBody className="lis">
 <Form onSubmit={this.onSubmit}>
 <FormGroup>
 <Label for='vac' key="id">Fill all the
fields</Label>
 <Input
 type='text'
 name='title'
 placeholder='Job title'
 onChange={this.onChange}
 />
 <Input
 type='text'
 name= 'city'
 placeholder='City'
 onChange={this.onChange}
 />

Page ! of !33 36

 <Input
 type='text'
 name= ‘sal'
placeholder='Approximate Salary'
 onChange={this.onChange}
 />
 <Input
 type='text'
 name= 'desc'
 placeholder='Contact information and
work description'
 onChange={this.onChange}
 />
 <Button color='dark' style={{ marginTop:
'2rem' }} block>
 Submit info
 </Button>

5.2 Testing and deployment

Application’s API end-points are tested using postman. Postman is an API development
environment that works around complete software development cycle, designing and
mock, testing, documentation and monitoring. It enables to test the same request
against different environments with environment specific variables. Register and login
endpoints were tested and verified before starting the user interface development. Lo-
gin endpoints required authentication and register endpoints were tested without au-
thenticating, just by asserting GET/POST requests to /api/users/login and /api/users/
register respectively.

The application was finally deployed to heroku using heroku login in terminal.

The heroku deployed application can be accessed by browsing

 www.tinyurl.com/DeepVac

http://www.tinyurl.com/DeepVac

Page ! of !34 36

6. Discussion

This thesis study was carried out to produce a suitable vacancy application however
walking through the learning curve of Mongo, Express, React and Node was the bigger
challenge. Web-development is not in itself a vast topic to learn, simpler web-pages
can be created by merely touching the depth of javascript. But to be able to find just the
right libraries and adapt efficient functionalities is the tougher path to walk. Javascript
runtime to load the server and javascript enriched user-interface makes it easier for
developers to make changes around the code while keeping the usability of code
blocks at maximum.

It took around 3 months to complete the beta working VacApp application. It took a
confusing yet fruitful 2 months just to learn the basics of the MERN. This project is not
at its peak. More ideas like google or facebook login, photos and shareable posts, and
actual business confirmation could still be stitch into it. There are already bigger more
popular already existing same purpose apps, but they are usually hefty and process
taking. VacApp on the other hand would be 3 clicks go app, if a user is searching for a
job. If a business, then they would login to their accounts and create a simple vacancy
announcement post. Consumers crave for simplicity, big social medias are improving
accordingly.

The application still can produce a meaningful vacancy post and could be launched in
my city. More improvements will be made and earlier mentioned features will be added
soon. This thesis could be a great start for someone trying to learn the MERN stack. It
provides the list of detailed tools and ideas to create a one-paged full-frame react web-
page.

React being the user-interface, rendering becomes extremely fast. It is made by Face-
book and also provides mobile solutions with react native, so it is extremely appre-
ciable for the attraction it has created among big companies. The ability to change
parts of a webpage with components is simply amazing. Rendering just a part reduces
the amount of refreshing the page and deletes the compulsion of jumping over hyper-
linked pages.

Page ! of !35 36

7. Conclusion

The goal of this thesis was to create a suitable vacancy announcement application
using the widely popular MERN stack. Hence, this thesis discusses the application and
contents of MERN stack and ideas on using it to create a suitable web-app project.
Concepts of Redux and other plugins to make a web-page fast yet attractive are dis-
cussed all around the thesis.

In the light of JavaScript development and right when they made it work outside of
browsers, JavaScript front end development had to take its pace, developers were gi-
ven with frameworks after frameworks, Angular, VueJs, React etc. With the ability of
working front and back-end solely with JavaScript, MERN stack was authors choice of
stack. So the thesis is a documentation of all the MERN development. It opens up op-
portunities for anyone wondering about the stack. It explains on creating APIs using
Express on NodeJS framework. Briefly defines the attachment of MongoDB and its be-
nefits.

The application is completed as much the project proposal had described. With further
development, author plans on launching the application in his city with the co-operation
of the district government. Application will help a great deed in people either searching
for job or businesses searching for the right employee.

 References

Page ! of !36 36

1. What is ReactJS and Why should we use it? [Internet]. c-sharpcorner.com 2018 [cit-
ed 14 November 2018]. Available from: https://www.c-sharpcorner.com/article/what-
and-why-reactjs/

2. The modern application stack [Internet] Mongodb Official Website 2017 [cited 26-
January 2017] Available at: https://www.mongodb.com/blog/post/the-modern-applica-
tion-stack-part-1-introducing-the-mean-stack

3. React.js: a better introduction to the most powerful UI library ever created. [Internet]
hackernoon.com 2018 [cited 3 September 2018]. Available from: https://hacker-
noon.com/react-js-a-better-introduction-to-the-most-powerful-ui-library-ever-created-
ecd96e8f4621

4. A beginners guide to Redux [Internet] gistia software engineering 2017 [cited 4 Sep-
tember 2017] Available from: https://www.gistia.com/beginners-guide-redux/

5. “Hello World” in React-Redux [Internet] medium.com 2018 [cited 4 April 2018] Avail-
able at: https://medium.com/@lavitr01051977/easy-redux-b29391b499cb

6. Build a Login/Auth App with the MERN stack [Internet] Bits and Pieces 2018 [cited
21 November 2018] URL: https://blog.bitsrc.io/build-a-login-auth-app-with-mern-
stack-part-1-c405048e3669

7. What exactly is Node.js? [Internet] freeCodeCamp 2018 [cited 18 April 2018] URL:
https://medium.freecodecamp.org/what-exactly-is-node-js-ae36e97449f5

8. Components and Props [Internet] reactjs.org Official Website URL: https://reac-
tjs.org/docs/components-and-props.html

9. MERN Stack Front To Back: Full Stack React, Redux & Node.js [Internet] Udemy
Brad Traversy 2019 [last updated April 2019] Available at: https://www.udemy.com/
mern-stack-front-to-back/

10. React-strap [Internet] Official Website Available at: https://reactstrap.github.io/com-
ponents/listgroup/#

11. Basic routing [Internet] Express JS Official Website 2018 URL: https://expressjs.-
com/en/starter/basic-routing.html

12. ReactJS-JSX [Internet] TutorialsPoint 2019 URL: https://www.tutorialspoint.com/
reactjs/reactjs_jsx.htm 

13. 5 Easy Steps to Understanding JSON Web Tokens (JWT) [Internet] Vandium Soft-
ware [cited 16 May 2016] URL: https://medium.com/vandium-software/5-easy-steps-
to-understanding-json-web-tokens-jwt-1164c0adfcec

	Abbreviations
	Introduction
	Full Stack Web-development
	MERN Stack
	3.1 Mongo DB
	3.2 Node.js
	3.3 Express JS
	3.3.1 Controllers
	3.3.2 Middlewares
	3.3.3 Models
	3.3.4 Package.json

	3.4 ReactJs

	Tools, third party plugins and libraries
	4.1 Visual Studio Code (VS Code)
	4.2 JSON Web Tokens (JWT)
	4.3 Redux
	4.3.2 Reducers in Redux
	4.3.3 Redux Store

	4.4 React-strap
	4.5 Axios

	5. Vacancy Announcement Application (VacApp)
	5.1 User Interface
	5.2 Testing and deployment

	6. Discussion
	7. Conclusion
	References

