

Aleksandr Semjonov

Implementing serverless web application
backend using AWS Lambda

Bachelor’s thesis
Information Technology

2019

2

Author (authors) Degree

Time

Aleksandr Semjonov Bachelor of
Engineering

May 2019

Thesis title

Implementing serverless web application
backend using AWS Lambda

46 pages
2 pages of appendices

Commissioned by

Matti Juutilainen
Supervisor

Matti Juutilainen
Abstract

This work investigated the serverless application design using AWS Lambda provided by Amazon
as a cloud platform of choice. Theoretical part described both the industry standard approach to
servers and the upcoming serverless technology, briefly touching on the history of the former and
providing an in-depth explanation and introduction of the latter. The advantages and disadvantages
of serverless application design was discussed in detail, without a significant focus on AWS over
other cloud platform providers.

In the practical part, a small-scale real-world application specification was introduced. The
application in question was a supplementary backend for a previously created website, providing a
service of private messaging to existing users, while being invisible for the end-user. Step-by-step
instructions are provided to implement a similar application using AWS Lambda and Node.js.
Relevant code snippets and configuration files were included and explained in detail.

As a result, a working application was produced, tested and deployed to cloud environment. A list of
encountered problems and possible solutions was provided, and monetary benefits of serverless
were discussed. The goal of the work was accomplished.
Keywords

Serverless, web development, backend, JavaScript, AWS Lambda, Node.js, cloud architecture

3

CONTENTS

1 INTRODUCTION .. 5

2 DEVELOPMENT TOWARDS SERVERLESS ARCHITECTURE 6

2.1 Abstraction and virtualization ... 6

2.2 The way we used to do it ... 7

3 INTRODUCTION OF SERVERLESS ... 9

3.1 Common serverless components in the AWS cloud platform 12

3.2 Example architecture ... 13

4 BENEFITS OF SERVERLESS ... 14

4.1 Reduced operational costs .. 15

4.2 Economies of scale .. 16

4.3 Reduced development costs ... 16

4.4 Global delivery ... 17

4.5 Scalability .. 17

4.6 Environmental impact .. 18

5 DRAWBACKS OF SERVERLESS ... 19

5.1 Vendor lock-in .. 19

5.2 Shared hardware ... 19

5.3 Core limitations .. 20

5.4 Start-up latency .. 22

5.5 Potentially low flexibility ... 22

6 IMPLEMENTING SECONDARY BACKEND USING SERVERLESS 23

6.1 Technical specification ... 23

6.2 Selecting the technology .. 24

6.3 Installing dependencies ... 25

6.4 Validating the requests .. 31

4

6.5 Implementing user authentication .. 32

6.6 Sending a message ... 36

6.7 Receiving a message .. 38

7 DISCUSSION ... 42

7.1 Slow log delivery .. 42

7.2 Inconsistent execution time ... 43

7.3 Monetary price of an error ... 44

7.4 Monetary benefits .. 45

8 CONCLUSION ... 46

REFERENCES ... 47

5

1 INTRODUCTION

“A new model, called serverless computation, is poised to transform the

construction of modern scalable applications” (Hendrickson et al. 2016). The

introduction of applications developed with serverless cloud technologies has a

significant chance to change the way both programmers and information

technology engineers think about the backend infrastructure. While

implementation details are abstracted by well-documented public APIs,

developers are free to spend their valuable time on the business needs of their

application. At the same time, reliance on highly developed and feature-rich

services, provided by a cloud service provider, allows higher degree of flexibility

in the future.

Of course, no new technology is ever able to enter the market without flaws in its

design. According to Hendrickson et al. (2016), serverless has been well-known

since at least 2016, and during the years major platform providers have had the

chance to make their serverless solutions available to public while iterating on

and improving the concept. If we investigate the technology at this time, most of

the issues have either been completely resolved, or the workarounds have been

found, and any other problems encountered today are likely to be among the list

of core drawbacks of serverless. Thus, it is a good time to investigate whether or

not serverless is worth the attention it’s getting.

The goal of this work is to investigate both the potential benefits and drawbacks

of a serverless design approach and utilize it in a practical setting to determine

whether or not the real-world results will match theoretical expectations. The tools

of choice for this work are AWS Lambda by Amazon, with Serverless Framework

as a build/deployment tool and JavaScript with Node.JS as the programming

language. None of these technologies is a requirement to use serverless

nowadays. However, according to Waterworth (2018), they are the most

established players in their respective fields.

6

2 DEVELOPMENT TOWARDS SERVERLESS ARCHITECTURE

Before diving deep into the concept of a serverless application, it is important to

understand some concepts that are common to the industry standard approach –

servers. Since the early years of computer science and first networked

computers, the IT engineers have gained large amounts of valuable experience

that has become the base knowledge to develop modern Internet infrastructure.

Even the standard approach nowadays has a number of concepts in common

with the serverless architecture, namely the idea of maximizing the abstraction

and virtualization up to the point of completely removing the constraints of a

single physical machine, and these topics are the ones to be discussed first here.

2.1 Abstraction and virtualization

“The rapid pace of innovation in datacenters and the software platforms within

them is once again set to transform how we build, deploy, and manage online

applications and services. In early settings, every application ran on its own

physical machine. The high costs of buying and maintaining large numbers of

machines, and the fact that each was often underutilized, led to a great leap

forward: virtualization. Virtualization enables tremendous consolidation of

services onto servers, thus greatly reducing costs and improving manageability.”

(Hendrickson et al. 2016)

The concept of virtualization has been incredibly important in both computer

science and information technology. Programmers use this concept while

designing the architecture of their code all the time, cloud engineers provide

services based on the concept, and even networking engineers find the benefits

of virtualization attractive. It would not be possible to design systems as complex

as we have today without the abstraction of concepts and virtualization of objects.

Whenever a person uses some cloud service, they interact with a virtualized

environment without even realizing that this is the case. Google, Amazon, Apple,

Microsoft and other cloud providers would not be able to offer their services on

such a scale without virtual machines running in their data centres around the

world. These VMs need to interact with the shared storage which is abstracted

7

away and instead presented as a simple-to-use interface, while also performing

security checks to ensure that the information is available only to authorized

parties. These steps happen automatically and are completely invisible to the

end-user.

Every device connected to the world-wide-web requires a unique identifier, and

when the system was designed, the commonly used Internet protocol standard

became known as IPv4. There are only 3,706,452,992 public IP addresses

available, whereas in 2017 there were over 20 billion devices connected to the

Internet (Statista, 2019). As the IPv6 protocol has not yet been able to replace its

predecessor, the world relies on the network address translation (NAT) to solve a

problem, and this approach qualifies as abstraction as well.

The operating systems we commonly use in our daily life are built with many

different layers, and each one of them abstracts some information from the layers

above and below. The highest level is an application. It is not and it should not be

aware of the details of hardware it is running on. It only interacts with the OS

layer using the provided API. Then, even though the operating system is in

control of the hardware, it doesn’t need to interact with it directly. There are

device drivers which handle the precise control and they provide some sort of

communication method for the OS to give commands and data. These drivers

then translate the commands into a set of messages that are understandable by

this specific piece of hardware and send them to the correct place in the memory.

The abstraction rule also works backwards, and the drivers do not need to be

aware of any applications that are running in the operating system, and they only

need to interact with the latter.

2.2 The way we used to do it

While high levels of virtualization became an industry standard in the recent

years, the classical approach to the service backend, which relies heavily on the

dedicated physical servers running in a datacenter, is still in use in many legacy

applications. These machines may or may not run clusters of VMs that provide

some layer of abstraction and separation for the services running there, but in the

8

end, it all comes down to the fact that there are physical machines which can

malfunction, which require proper cooling and other types of maintenance. All of

those problems need to be handled by the owner of the servers, and it is also

important to consider secondary services, like the backup, storage and

databases. As with any approach, there are pros and cons, and it is important to

understand all the details.

One of the most valuable advantages that the “old way” provides is the full control

over most of the operations. We have absolute power to use our devices to

whatever purpose we feel is necessary. We can put their whatever load is

required and the cost of running the servers will not change significantly. At

worst, increased load requires higher cooling capacity.

There have been servers deployed around the globe even before the World Wide

Web became what it is today, and the development of the best practices has also

begun at that time. During the years hundreds of practices and recommendations

have been proposed, tested and either discarded or adopted in common use.

When deploying a server nowadays it is relatively easy to run through a full

checklist of all the things that are to be done in order for the installation to be run

reliably and securely, and the time has proven that these practices are actually

useful.

Following from the previous point, the time-tested approach to servers means

that it is relatively easy to find experienced people to deploy, support and

maintain the servers. Senior DevOps engineers may have decades of experience

in the field, which effectively guarantees high level of security and reliability on

the servers they install. Also, some degree of familiarity with the servers is

important even for the software engineers, meaning that the developers will have

some understanding of the underlying system architecture when coding a new

feature or a brand-new service.

While the traditional approach provides a significant number of advantages, one

can find a counter-argument for every one of them. Full control over the physical

machines means that any problems the hardware encounters have to be thought

9

of in advance and the failover has to be planned for that case. In some situations,

it might even mean duplicating the whole service and putting the secondary

machine into a hot failover state, which means that this piece of hardware is not

performing any useful work, while still consuming the same amount of cooling

and electricity resources as the primary hardware.

Keeping the server software and hardware up-to-date, properly cooled and

running implies maintenance costs. These can be either direct, like in the case of

cooling and electricity, or indirect, for example, in the time of DevOps team, which

tends to be the major part of all the server maintenance.

Creating a new instance of the service or installing a new machine to scale up the

production is typically a time-consuming task. It may take days or weeks for the

new hardware to arrive and just as much time to install all the necessary software

while making sure that the existing environment is not affected by the installation.

In case of serverless approach, all of these delays can be reduced to the scale of

minutes or even seconds.

One may think that there are also containers, which are a comparably new

solution to a similar problem. However, containers have a significant

disadvantage over the serverless applications, and that is time to boot. A

container takes seconds to get up and running itself, and only after that the actual

service inside starts to initialize. It can be completely unacceptable level of delay

for the time-critical applications. Serverless applications, even though not the

perfect solution for that use cases themselves, provide a much better experience.

3 INTRODUCTION OF SERVERLESS

In terminology used by Amazon, serverless applications work on a level of

Lambda functions, which contain and run the code created by the user. The

Lambda functions are self-contained entities that are able to communicate with

each other and other services using the event system. The design model utilizing

the Lambda functions can also often be called the Lambda model.

10

“The Lambda model has many benefits as compared to more traditional, server-

based approaches. Lambda handlers from different customers share common

pools of servers managed by the cloud provider, so developers need not worry

about server management. Handlers are typically written in languages such as

JavaScript or Python; by sharing the runtime environment across functions, the

code specific to a particular application will typically be small, and hence it is

inexpensive to send the handler code to any worker in a cluster. Finally,

applications can scale up rapidly without needing to start new servers. In this

manner, the Lambda model represents the logical conclusion of the evolution of

sharing between applications, from hardware to operating systems to (finally) the

runtime environments themselves.” (Hendrickson et al. 2016)

Despite the fact this design mentality literally claims that no servers are involved,

it is not exactly true. The physical machines running the service will always be

there, but the way we think about the servers is completely different. Instead of

considering that there is a machine we have to manage that has a certain CPU

with some amount of RAM and persistent memory, we have our code just running

somewhere. There are core limitations for CPU cores, RAM and execution time,

which are mentioned in chapter 5, but for most use cases, if we need more

resources, we just have more resources. It happens instantly and automatically,

without any intervention from the programmer. It only affects the budget at the

end of the month.

But aside from the core concept, there are other ideas which also define

serverless. In general, with the serverless app we outsource as many services

and infrastructure to the platform provider as possible, and these services often

include authorization, authentication, accounting, database control, storage,

media processing and others. These types of services are required to be

implemented in most applications, but their general codebase is often very

similar. Using an existing implementation that has been polished to the point of

near-perfect state is a logical step to reduce the development time and costs,

while also increasing reliability of the service we’re building.

11

The serverless architectures are often complex networks of different services that

interlink with each other and the business logic of our application. These

networks are entirely event-driven, meaning that only an interaction from a user

or another system will trigger any changes in the application. If there are no

events to process, i.e. the application is not used during the night-time, or the

staging deployment is inactive after working hours, the system is softly shut down

to prevent any excess billing.

At the moment of writing this thesis, we may choose one of the four main

serverless platform providers: Google Cloud Platform, AWS Lambda by Amazon,

Azure Functions by Microsoft and OpenWhisk by IBM. All of them have their own

advantages and disadvantages, but the AWS Lambda was the first service,

launched in 2014, that defined serverless as we know it today.

Even though nowadays a programmer is effectively required to know multiple

programming languages to work with large and complex products currently on the

market, there is always a preference for one or the other language. It may be a

project requirement, like using C for the highest possible performance, or

collective consensus that this specific language works best for that project.

Regardless of the reason, the main programming language for the application is

an important factor when choosing a serverless platform. Waterworth (2018)

provides a useful table to help choose the best combination of a cloud platform

and the programming language.

12

Table 1. Serverless runtime support (Waterworth 2018)

As can be seen from the table above, not every platform supports every

programming language, and while all major players in the field have support for

Node.JS – backend-oriented JavaScript environment – most other technologies

are specific to one or two of the platform providers.

3.1 Common serverless components in the AWS cloud platform

As mentioned by Roberts (2018), a platform that provides serverless capabilities

typically also provides an array of supporting services to allow the intended use

of the serverless code. These services include authorization, authentication,

logging, storage and other APIs. While not being exactly the same across the

platforms, these services are similar enough that a list of basic components

available on AWS will give a good overview of their counterparts available on

other platforms.

● AWS Lambda is the core component that contains our custom business

logic and runs the code in the cloud. Lambda supports a variety of features

itself like automatic version control and automatic deployment.

● AWS Step Functions is the state machine that orchestrates the

serverless workflow. It is able to coordinate the Lambda functions and

manage the internal state of the running process. Using the Step

Functions the Lambda functions can easily be decoupled and abstracted

away to increase the modularity of our architecture.

13

● Amazon API Gateway is an essential component for any application that

relies on REST API. The gateway is able to accept and route incoming

requests, while also managing access control, monitoring and versioning.

● Amazon DynamoDB is a persistent NoSQL database that stores the

current state of the application. When used in conjunction with DynamoDB

Streams, Lambda functions can be invoked nearly instantly after a

database state is modified.

● Amazon Simple Storage Service (S3) is a storage service for static

resources like HTML web-pages or media files. These resources can also

be made available to users using a content delivery network, and Amazon

provides CloudFront to do just that.

● Amazon Cognito is a user authentication and authorization service. It is

able to support user sign-in, login, SSO (Single Sign-on) and data

synchronization when necessary.

In addition to the mentioned components, AWS provides 52 more services in

many areas, such as game development, machine learning, IoT and others

(Amazon 2019). While using them is not a requirement for serverless, their

inclusion may be beneficial if the services’ use-cases match the ones of the

application being built.

3.2 Example architecture

As a part of AWS documentation (Amazon 2019), Amazon provides a diagram

that illustrates a simple infrastructure built on their platform, pictured on Figure 2

below. The structure described by Amazon is not a requirement or a system

limitation, but only a guideline of the way their systems and services are intended

to be used in the classic use-case. The structure is to be expanded upon or

completely replaced if it is unsuitable for the current use-case.

14

Figure 1. Example Serverless architecture (source: Amazon)

Generally speaking, any static content is expected to be hosted in an S3 bucket

where the users have direct access to. In case some of the files need to be

protected, for example, require user authentication, it can be done in S3 as well.

User authentication is to be handled using Cognito directly, without invoking the

Lambda functions at this step. Only after the user has a valid session, they are

expected to make calls to Lambda functions performing the business logic of the

application. The requests always travel through API Gateway that handles load-

balancing and caching, and the functions have access to DynamoDB as a

storage engine.

4 BENEFITS OF SERVERLESS

The serverless computing model comes with a significant number of solutions for

problems that have been a defining factor in the system design over the last

decades. They mostly relate to the costs and maintenance factors, but the

serverless approach is also capable of changing the whole way the developers

look at the servers, creating some entirely new patterns and practices. It has

incredible potential to allow smaller businesses to run their operations with the

same efficiency as old and established enterprises, thus in turn, creating healthier

15

competition in the industry that has been dominated by the big players for years.

However, we should take a look at all the benefits and their impact one by one.

This chapter is based on “Serverless Architectures” article (Roberts 2018).

4.1 Reduced operational costs

“Serverless is at its most simple an outsourcing solution” (Roberts 2018). Instead

of developing our own systems with all the up-front costs for the datacenter rent,

hardware, operating systems and other software, we are now able to click a

number of buttons in a friendly user interface and to get our code running. A few

extra clicks will also enable us to use an infinitely-scalable database with built-in

protection and a large set of features that we may or may not use in the future, as

well as a complete authentication and authorization solution that seamlessly

integrates with all the other services. All of this has happened while we didn’t pay

anything, because there is no usage of that service skeleton yet.

As the service is developed and released to the public, the customer base

increases from the size of a single development team to hundreds, thousands,

maybe even millions of users, and there is no need for us to invest in new

servers, new storage, improved networking, clustering technologies or failover

mechanisms. All of them have already been handled for us, and the only thing

that is required from the developers is to increase the usage thresholds, if they

have been setup at some point. The bill size will increase with the number of

customers and requests they make to our service, but there is no need to

maintain anything but the actual software used, thus minimizing the operational

costs. It may even be possible to completely avoid creating a separate dev-ops

team, and as people consume a high percentage of all the businesses’ monthly

costs, this can lead to a significant level of money savings. Additionally, in case

that a service is no longer needed for whatever reason or has lost all the users, it

can be shut down easily and instantly, without the need to manage the hardware

that has lost its purpose.

16

4.2 Economies of scale

One of the problems that a software-development startup will encounter is the

cost of doing the operations on their own. Initial investments are costly, and in

order to maximize the user satisfactions, the servers should always have extra

capacity reserved in case of a usage spike. The number of users also typically

will fluctuate depending on the time of day, rising during the working hours and

dropping nearly to zero during the night. Global enterprises, however, do not

suffer from that problem. As their services are available world-wide, the number

of users throughout the day is more stable, thus making the hardware work more

evenly. Additionally, if the enterprise already has a massive server cluster setup

for some service, it may be reasonably easy to run an extra VM with a new

service for testing purposes. The experimentation is, once again, quite costly for

the new players in the field.

With the serverless approach even the start-ups are able to utilize high efficiency

that is provided by economies of scale. All the “heavy-lifting” has been done by

the service provider (Amazon, Google, Microsoft), and we are able to use their

platforms as if they were our big server clusters. Granted, we are still required to

pay for our usage, but in comparison with the costs we would have if we ran

every service on our own hardware, the benefits are significant.

If the new start-up companies are allowed easier access to the field, they can

stimulate competition even with their limited resources, and some amount of

healthy competition is required to move the progress forward. It used to be the

case that big enterprises are able to win by pure power and efficiency of the way

they do operations, making their services both cheaper and better for the end

users. However, by utilizing the serverless approach it is possible to match those

parameters even without investing billions into high-performance hardware

clusters.

4.3 Reduced development costs

Another interesting consequence of introducing serverless design into an

application development process is the reduced development cost, both in terms

17

of time and money. A team of developers is often required to spend their valuable

time for programming not the actual business logic, but the supporting code

which is not required in case of a serverless application. However, in case of

Amazon, Google or other platform providers, they have already invested their

time and effort in designing robust and feature-rich systems that we are now able

to use for solving our problems.

Another part of the same idea would be the fact that up to a certain point we can

even assume that any problem with our own service is caused by a hidden bug or

a miscalculation in our business logic, while the supporting serverless services

are operating normally. The chances of a fault on the platform provider’s side are

incredibly low, and any high-scale outage will sound alarm bells all around the

world, making it a well-known occurrence. The confidence in the supporting

services makes the actual service we develop easier to debug, save time, effort

and, in turn, money.

4.4 Global delivery

Currently it is common to use all sorts of global content delivery networks (CDNs)

to offload some of the servers’ traffic onto more powerful dedicated machines

controlled by another company. It can help tremendously with both latency for the

user and the peak load our own servers need to handle. However, with the

serverless application design the concept of CDN is built into the core design of

the design method and, in turn, our application itself.

The code we create for a serverless app is automatically distributed around the

world and the containers with that code may be running in a datacenter that is

closest to the user. While this may not be the default behaviour, there is nothing

that will really prevent that. Distributed operations, just like CDNs, will help

decrease latencies for the user and make sure their experience is optimal.

4.5 Scalability

One of the key benefits for serverless applications is the ability to easily scale

both up and down with the number of users and/or requests that hit our service.

18

This process is completely automated and new instances will be created when

the demand is high and destroyed when the active user amount drops back

down. The ability to scale easily makes serverless app a perfect solution for

some use cases that include, for example, bursty workloads, irregular requests or

fluctuating user amount.

The code that we are running in the cloud can also scale both horizontally and

vertically. In the current context, vertical scaling means that every single instance

has access to more resources for their task, and horizontal scaling is a term

describing the ability to run multiple instances in parallel. This way we can serve

a theoretically limitless number of users while dedicating more than enough

resources for each. There are some fundamental limitations for serverless

computing however, but those are mentioned in better details in the drawbacks

section.

4.6 Environmental impact

“Gartner (2019 has long talked about the "80% rule": that 80 percent of IT

budgets get spent simply "keeping the lights on", this survey seeks to wrap some

clarity around that. According to McKinsey and Company, typical servers in

business and enterprise datacenters deliver between five and 15 percent of their

maximum computing output on average over the course of the year.” (Kepes

2015)

If this statement is accurate, anywhere between 85% and 95% of computing

power available to privately owned servers around the world is completely

wasted. The servers are required to have high performance margins to

accommodate for possible performance spikes. However, if we were able to

combine all the wasted computational power, it would be possible to run much

fewer servers around the world, saving high amount of energy and, in turn,

reducing the amount of fuel burned to provide that energy.

19

5 DRAWBACKS OF SERVERLESS

As with any other technology in the market, serverless has a number of

disadvantages that need to be considered before locking yourself down for this

system design approach. This chapter is based on “Serverless Architectures”

article (Roberts 2018).

5.1 Vendor lock-in

One of the first things that comes to mind with the serverless applications is the

vendor lock-in. When an application is developed for a specific vendor, be it

Amazon, Microsoft, Google or other, it may be problematic to then move that

application to another platform. The core ideas of serverless are similar across

the board, but some of the features provided by platform providers may differ

significantly.

Even though there are some design patterns and methods to prevent the lock-in,

it also prevents us from using some of the features of our platform of choice,

moving more of the logic into our code which in turn partially defeats the purpose

of serverless, which is to delegate as much work as possible to the platform

owner.

5.2 Shared hardware

Even in serverless applications there are still servers. And these servers are

highly virtualized environments which are being used by hundreds of thousands

of users at once. This may cause significant problems for multiple reasons, these

being, for example, performance, security and reliability.

The performance of all the users will degrade, if just one of them consumes a

large portion of processing time. It is unlikely to happen due to the core

limitations, which are mentioned in more details in chapter 5.3, and just because

of the sheer amount of power the servers are equipped with. But, for smaller

service providers and/or smaller server clusters it may come into effect.

20

Even though the platform owners make their best to abstract away any sort of

hardware they actually use, in case of a configuration error, hardware failure,

network failure, or some other unforeseen circumstance, it is possible that there

will be an information leak between different applications. They share the same

host and the same physical memory modules, meaning that in some very rare

cases the information leak is possible. It touches the aspect of security, but it’s

yet another reason to consider not switching all the applications to serverless

design model.

Inherently, the serverless application is running in the cloud datacenter which is

mostly out of our control. It means that this approach may not be viable for some

critical applications, for example military or governmental projects with high

security requirements. We need to trust a specific platform provider to trust them

with all our data and all our source code, but if for one reason or another we are

unable to do so, the serverless applications are not a viable solution. The

development, deployment, debugging and everything else is done over the

network which is reasonably reliable nowadays, but man-in-the-middle attacks

are still a thing and such an attack may compromise the whole project.

5.3 Core limitations

Any cloud platform, would it be serverless application or any other type of

service, it has a set of core limitations. As the main focus of this work is on AWS

Lambda service, we can take a look at their upper execution limits as a guideline

an example.

Table 2. AWS Lambda execution limits (Amazon 2019)

Resource Limits

Memory allocation 3008 MB

Ephemeral disk capacity ("/tmp" space) 512 MB

21

Number of file descriptors 1,024

Number of processes and threads (combined total) 1,024

Maximum execution duration per request 300 seconds

Invoke request body payload size

(RequestResponse/synchronous invocation)

6 MB

Invoke request body payload size

(Event/asynchronous invocation)

128 KB

Even with these values it is important to understand that the limits are not

necessarily a negative thing. They force us to think and design in a certain

manner, in this example it is to build smaller, more specialized Lambda functions

that will, in turn, make our application more flexible. If we think about Lambda in

the way it is intended to be thought about, those limits become absurdly high and

we are unlikely to even hit any of them. Still, it is important to keep them in mind

and in case something goes wrong with the service, it may be caused by a

mistake or a design flaw that would cause the Lambda instance to hit one of the

limits.

As a side note about the importance of the limitations, limits have a role in

making sure that the money is not drained from the product owner’s pockets for

nothing. The code will fail from time to time, especially in the development phase,

and the errors can cause massive memory leaks, hanged execution, high CPU

usage or some other undefined behaviour. As the code is running on the cloud

platform, the system has no way of knowing if that type of behaviour is intended

or it is caused by a typo in the code. Hard limits will mitigate some of the

monetary damage that can occur in that case, making them a drawback, but a

debatable one.

22

5.4 Start-up latency

As any system, Lambda functions need some time to boot up. This delay time

can vary from individual milliseconds to tens of seconds, and it depends on

multiple factors: language used, amount of code, dependency lists, configuration

and so on. After the initial cold start, the subsequent requests will be served

significantly faster as Lambda is stored in the memory and re-used multiple

times. However, it will be retired after a period of inactivity, which is 5 minutes in

case of Amazon. (Amazon 2019)

This fact can either be of no consequence for an actively used application that

will only experience a cold boot after a code update or a manual restart, or it can

cause significant problems for an application that is only used from time to time

while requiring near-instantaneous response. This issue, however, is recognized

by the service providers and is a subject of continuous improvement making it a

smaller concern over time, but still an issue worth discussing.

5.5 Potentially low flexibility

As mentioned in the chapter 4, the best practice of the serverless application

design is to use as many services implemented by the platform provider as

possible, while focusing internal development efforts on the business logic of the

application. While this approach is an efficient one in most cases, there is always

that one extra use-case where the existing service is not suitable. If there is no

way that the application is able to mitigate that issue by using other service or by

somehow modifying the existing behaviour, it may be possible that the platform

provider doesn’t have a suitable service and there is a need to implement that

functionality using internal development power.

However, especially if the service in question is a critical one, like authentication

or access control, all the other services are often designed in a way to allow easy

integration with a built-in authentication service, while not having any

compatibility with an externally developed one. This may create a challenge that

leads to the development team creating more and more services for internal use,

which defeats the entire purpose of a serverless application. If that is the case,

23

the platform that is being used only creates problems instead of helping solve

them.

6 IMPLEMENTING SECONDARY BACKEND USING SERVERLESS

In the modern world where website constructors like Wordpress or Wix are quite

common, an interesting problem may arise. While the developer has access to

the front-end, the back-end is completely out of their control. It is not problematic

until the service provides all the necessary features, but as soon as the developer

decides to do anything non-standard, they immediately run into trouble. If they

don’t have access to the back-end, implementing any complex feature becomes

nearly impossible, but that can still be solved with the help of serverless.

This thesis will focus on implementing a “supporting back-end”, following the idea

that a website is served from the primary server, but some functions are

outsourced to this service. Supporting back-end needs to provide a mechanism

for secure authentication and its API needs to be as simple as possible. The

exact function of that service is not critical for the topic of this work, but in our

case, it will provide a secure messaging system.

Let us imagine a theoretical website where users are free to publicly post their

thoughts and opinions. Any user on the website needs to be authenticated, but

other than that all the content is public. Later, the owner of the site wants to add a

feature to add private content to the posts, targeted to specific users. They can

be, for example, warnings for the users that break the rules or just extra

information for administrator users only.

6.1 Technical specification

To be more specific with the requirements, the following requirements must be

met for the service to be considered finished:

- Safe and secure way to authenticate the user

- Ability to send a message to a single user, multiple users or a user group

- Ability for the user to read all messages sent to them

24

Going into even more detail, a sent message is exchanged for an UUID, which is

then embedded into the message. From the primary back-end’s point of view, this

is just a part of the post that doesn’t have any special meaning, but the custom

front-end code will detect the code, contact the supporting back-end and either

replace the code with the message body or hide it, if the user doesn’t have

access.

In practice, these specifications mean that there will be three endpoints available

for the front-end to call as follows:

 /login

Required parameters: username, application token, secret

Returned value: Authenticated JSON web token or error code

 /message/get

Required parameters: authentication token, message id

Returned value: Message body and list of receivers

 /message/send

Required parameters: authentication token, receiver, message

Returned value: Created message id or error code

All communication is performed using the JSON message format. Authentication

token is sent in the Authorization HTTP header in the same format as the OAuth

authorization header, word “bearer” followed by a space character and a token:

6.2 Selecting the technology

Even at this point in the development of AWS Lambda, there are multiple ways to

approach the development of a serverless application. Official guides from

Amazon propose a “drag-and-drop” way, showing screenshots of the AWS

console UI and pointing to the correct buttons to click (Amazon 2019). However,

this type of deployment is prone to errors, requires lots of manual labor to set

everything up and creates problem when creating multiple deployment stages,

i.e. development, staging and production.

25

One alternative to AWS console is Serverless Framework (Serverless Framework

2019). It is a command line tool that offers a standardized way to develop

serverless applications on all major platforms, including Amazon. With Serverless

Framework the infrastructure is described as a single configuration file which is

then translated into a format suitable for the target platform, which is

CloudFormation in case of Amazon. Serverless Framework simplifies the

deployment significantly, essentially reducing the work to the following command:

$ serverless deploy

Under the hood, this command creates a .zip archive with all the Lambda

functions and their dependencies, uploads it to the S3 bucket and initiates a

CloudFormation stack update. After the execution is finished, the service is

deployed to Amazon servers and is available on a randomly generated URL. The

simplicity and convenience of the deployment are the reasons this work uses

Serverless Framework over alternatives.

6.3 Installing dependencies

As this project is based on Node.JS technology, dependency management is

done via the NPM system. All dependency modules are installed from the public

repository using the following command:

$ npm install {package-name}

The only three packages we need are the serverless framework itself, JSON web

token library and a hashing library to safely store the passwords. I have decided

to use bcrypt algorithm, but it may need to be upgraded to a more secure option

when it becomes obsolete. The package names are as follows:

Hashing library: bcryptjs

Web token library: jsonwebtoken

Please note that the recommended way to install Serverless framework is to use

global mode, adding –g flag to the install command. The resulting command

looks as follows:

26

$ npm install –g serverless

Next, the Serverless Framework. A first step to deploy a service using Serverless

Framework is to connect it to the AWS account. That requires creation of a new

IAM user, enabling programmatic access to said user and downloading the secret

access keys. Then, the following command will configure the framework to use

the credentials globally:

$ serverless config credentials --provider aws --key KEY --secret

SECRET

Global configuration is arguably the most convenient available option; however,

the alternatives provide better security and flexibility. Please refer to the official

website for more information.

https://serverless.com/framework/docs/providers/aws/guide/credentials/

The core of Serverless Framework is .yml configuration file that contains full

description of used resources and services. During the deploy process, this

information is translated into appropriate format and transferred over to

CloudFormation, which in turn provisions and initializes the requested services

and resources. A typical configuration file may begin as shown in Figure 3:

Figure 2. Serverless Framework minimal configuration

With those lines in place an application may already be deployed, however, it will

not provide any functionality. The next step in configuration is to setup the

DynamoDB database which will store all the data of the service. The first part of

the setup is to create appropriate permissions to access the database, as

pictured in Figure 4.

27

Figure 3. DynamoDB permission configuration

The code in Figure 4 allows the table with given ARN, which is AWS unique

resource identifier format, to be queried and updated as required, but an issue

here is the fact that this identifier is unknown until we create the table. A solution

is to look up the ARN dynamically, as shown in Figure 5.

Figure 4. Obtaining dynamic DynamoDB table IDs

{...}DynamoDbTable are identifiers declared below in the config file. Now the

permissions are set up and we can move forward to creating the tables. The

segment demonstrated in Figure 6 declares one of the required tables,

specifically UserDynamoDbTable that will contain the registered users’ data. The

declaration is located on the same hierarchy level as service or provider,

meaning the segment does not require indentation.

28

Figure 5. DynamoDB table definition

The TableName parameter is an alias declared in the “environment” section

under “provider”. This alias will change depending on the service name (declared

on first line of the config file) and the selected deployment stage. The values

those aliases evaluate to are as follows:

DB_TABLE_USER = thesis-dev-user

DB_TABLE_ADMIN = thesis-dev-admin

DB_TABLE_MESSAGE = thesis-dev-message

Figure 7 demonstrates the code snippet that declares the aforementioned

aliases.

Figure 6. Global environmental variables

The only change from this definition to two other tables we create is the identifier

and TableName. Only a single column, id, is declared on the table. DynamoDB

requires to declare the keys that are used for searching. Because the table is

able to store arbitrary data for each combination of keys, there is no need to

specify every single column at this stage.

29

From now on, the three tables are accessible from the Lambda code. An example

to read a row from one of the tables may look as the following Node.JS snippet,

pictured in Figure 8. In the final version of the code attached to this thesis, the

table names are defined as environmental variables in the .yml configuration file.

Figure 7. DynamoDB table access example

Finally, the actual endpoints need to be declared and implemented. The code

snippet in Figure 9 declares three endpoints described in the section 6.1. The

snippet is located on a root level of configuration file, without indentation.

30

Figure 8. Lambda function definition

This definition assumes that the actual implementation is located in the module

handler, which can be created by using the code snippet in Figure 10, located

in handler.js file.

Figure 9. Minimal handler.js file example

31

Figure 10 demonstrates the minimal implementation of the endpoint handlers

which will compile and run without producing any errors. Obviously, they will not

produce any meaningful results either, but this is a starting point.

6.4 Validating the requests

The best way to develop a secure online system is to first assume that every

single user is a potential attacker, and then design the system in such a way that

nobody will be able to exploit it, unless they have explicit permission to use the

resources. It is also safe to assume that some part of the requests that will hit the

server will be invalid, thus making it necessary to validate a request before

executing any business logic. The minimal validation should at least make sure

that all the required parameters are present in the request, and reject it if they are

not. In this project, the following code validation flow is followed for every

endpoint, as demonstrated in Figures 11 to 13:

Figure 10. Request validation logic

Figure 11. Parameter parsing logic in Parser.js file

32

Figure 12. Helper functions in the Callback.js file

Additionally, Callback.instance(…) is used as an abstraction layer for the

response sent by an endpoint. Due to the nature of this service, the requests will

always arrive from different origin, making it necessary to specify a custom

header for the communication to proceed.

6.5 Implementing user authentication

Amazon provides an authentication service by the name of AWS Cognito

(Amazon 2019), and it is the recommended way to handle user authentication.

When this project had started, I expected to be using Cognito. However, the use-

case of the service didn’t match the requirements set above. This has forced me

to eventually switch away from Cognito in favor of custom login flow

implementation.

33

AWS Cognito, while being incredibly flexible and powerful, is tailored in a specific

way. I didn’t manage to find any conclusive evidence to back up the following

claims, but I believe that it is the user who is supposed to communicate with

Cognito, not the server on their behalf. In other words, the service expects the

user to contact it directly, to register or to exchange username/password

combination for authentication token, which should then be used to authenticate

on the actual service this user is trying to access.

This approach does make sense as this reduces the amount of logic needed to

be programmed to the serverless application. However, it doesn’t work in all

cases. One of the requirements I have described above is to keep the API as

simple as possible. Only a single login endpoint should be provided, that handles

registration behind the scenes. In Cognito that is either not possible or extra

complicated, and extra security measures - like email verification - are

problematic to disable. Being aware of multiple services and endpoints would

make the front-end code more complicated, which is not the direction I am willing

to take the project; thus, I have decided to switch away from Cognito to the

custom authentication implementation.

Due to the fact the supporting back-end doesn’t have access to the main user

database, it needs to maintain a separate list of all the user accounts. One

possibility for that is to hook into user registration, but the method this work

describes is simple and stateless. Whenever a user loads the website, custom

code checks if the authentication is present by trying to load an authentication

token from the cookie. If the cookie is not available or the token has expired, then

a call to /login endpoint is made.

Application token, which is referred to as ‘apptoken’ in the code, is used to

distinguish multiple websites that may use the same shared service. In the

backing database, the usernames are stored in the following format:

apptoken/username

34

This guarantees that even if two users have the same username on separate

services, it will not cause a name collision in the database. Figures 14 to 17

depict the full code responsible for the authentication flow.

Figure 13. Business logic for /login endpoint

Figure 14. User credentials check in Database.js file

35

Figure 15. User registration function in the Database.js file

Figure 16. User login function in the Database.js file

Creating and validating a JSON web token requires the use of a secret, which is

loaded dynamically from a file. The secret keys differ for staging and production

36

environments, and they are also excluded from the packaging step, except for

one key used in given environment. The following snippet demonstrates the

relevant part of the serverless framework configuration file:

Figure 17. Secret key file configuration example

The code listing attached to this work does not include the “secrets.yml” file. On

the other hand, “secrets-example.yml”, provides a template that this file follows.

Creating a copy of the example file, renaming it to “secrets.yml” and inserting

generated values is sufficient for the service to run normally.

6.6 Sending a message

As the front-end code is out of scope of this work, at this point sending a

message can be described as a following set of steps:

 Validate a request

 Parse the list of receivers and message body from the payload

 Save the message object into database

 Respond with the message unique ID

As the request validation has already been covered, I will assume that the

request is already valid and authenticated. The list of receivers is a comma

separated list of usernames that may also contain spaces. A simple way to parse

them into a list is to use a regular expression and JavaScript built-in split method,

as demonstrated in Figure 19.

37

Figure 18. Parse message receivers function in the Parser.js file

The function depicted above returns a string which is guaranteed to contain only

usernames separated by a vertical line character. This character is not legal in

the username in my use-case, but if it was, the escaping would be necessary at

this step as well. In Figure 20, the message creation function is demonstrated.

Figure 19. Message creation function in the Database.js file

Message creation is similar to user creation, as it uses the same DynamoDB API.

A version 4 UUID is generated as a message id, and the same id is exposed on

the client-side. In the figure above, timestamp is the current time, sender is the

username of the user that sends a message, receiver is the vertical line

38

separated list of receiver usernames, and message is the actual text of the

message. Full endpoint code is pictured in Figure 21:

Figure 20. Message sending endpoint in handler.js file

The unique ID returned to the client is to be embedded somewhere in the page

with a unique tag that a parser can later use to request the message body back

from the server if the user has valid authentication to access it. The details of this

implementation are, again, out of scope of this work, so I will assume that from

this point the messages are available in the database and the front-end is able to

request them from the server.

6.7 Receiving a message

After the message is created, it needs to be fetched again. Similar to sending a

message, receiving a message can be described as a short set of steps, but with

extra effort added to ensure security:

 Validate a request

 Fetch the message object from the database

 Check if the authenticated user is one of the message receivers

 Check if the authenticated user is registered as administrator

 Respond with the message text and list of receivers

39

For access checks, the user has to either be a message receiver or an

administrator. Administrators have implicit access to all messages sent through

the service, so if one of the checks passes, then the access is granted.

To fetch the message from the database, the helper function is again similar to

the one used to create it, with extra error handling added in case the requested

message ID is invalid. The helper function in question is shown in Figure 22.

Figure 21. Message fetching function in Database.js file

As the receiver information is contained within the message object, we first need

to fetch the object from the database to check if the user has access to it, but we

don’t need the message to check if the user is an administrator. In the current

implementation, administrator users have an entry in a separate DynamoDB

table, so we need to fetch that information as well. As two database calls are

asynchronous, it is beneficial to actually perform them simultaneously to save a

significant amount of time. Figure 23 shows a call that checks whether or not the

user is currently an administrator:

40

Figure 22. User privilege check function in Database.js file

If the user is an administrator, or their username is present in the message object

as one of the receivers, then we can safely return them the content of the

message. The list of receivers is also available in the response, as this is not a

private information if the user can read the message. The full source code of the

endpoint is available in Figure 24.

41

Figure 23. Message fetching endpoint in handler.js file

At this point all the specification requirements have been met. The user can

register, send a message and then receive a message. The service is ready to be

deployed. As a final step, the front-end needs to be configured with the endpoint

URLs, which will be randomly generated during the first deployment of the

service. The Serverless Framework provides the URL for each endpoint

separately, and the front-end needs to know those links to access the service.

When the deployed service becomes more heavily used, it might be a good idea

to take a look at provisioned capacity for the database tables, as the load spikes

will affect the user experience and loading times on the website. Additionally,

multiple environments are a must-have in case of Serverless. Any testing has to

be done after deploying somewhere, and, of course, development version should

be kept separate from production. Thankfully, Serverless Framework does

provide tools to handle multiple environments without any significant

development overhead.

42

7 DISCUSSION

Developing the application using a completely new technology is not a smooth

experience. Aside from the issues described in Chapter 5, there have been other

problems that have cropped up during the development. It is important to pay

attention to those problems as well while evaluating whether or not serverless

approach is something worth working with.

7.1 Slow log delivery

The process of creating a new application always consists of three main stages:

thinking, typing, debugging. A programmer jumps rapidly from one to another,

and the debugging is always the one with the most inherit frustration. There are

many tools that help with debugging, but the most basic is the one we rely on a

lot. When something is wrong, the first things to look at are the logs. The

Serverless Framework provides a nice API that is able to attach to a running

function and display the entire output. However, the information is not displayed

immediately. There is a significant delay between the event happening and the

log appearing on the screen, and it can take up to 17 seconds, while averaging at

about 15.

The following chart in Figure 25 demonstrates a difference between execution

time and log delivery time in milliseconds with 10 identical POST requests:

43

Figure 24. Execution time vs log delivery time chart

Over time these 15-second delays accumulate and are able to seriously impact

the speed of development. The exact cause of the delay is unknown, as Amazon

doesn’t disclose their internal infrastructure, but the fact that sometimes the logs

are delivered immediately may indicate that the delays are happening due to the

high demand on some of the servers.

7.2 Inconsistent execution time

One of the core principles of serverless application design is the pay-for-use

business model. More precisely, with Lambda it means that some cost is

associated with a request itself and execution time. The billing is discrete at

100ms intervals, meaning that a request that takes 1ms to complete and the one

that takes 95ms to complete cost the same amount of money. The problem,

however, arises when we are unable to predict the execution time of our code.

The following example, depicted in Figure 26, is recorded using the NodeJS

application deployed in dev stage on AWS servers. The function being tested

performs a reading operation from DynamoDB table with less than 10 lines,

performs data comparison and data conversion operations and returns some

result. All requests contain identical data.

44

Figure 25. Lambda function execution time graph

The execution time is inconsistent and the difference between consecutive

requests may be up to 250ms, which is significant if the service relies on real-

time code execution for critical operations. The most likely scenario that would

explain the observed behaviour is the fact that the code is running on the shared

hardware, and the moments of peak load correspond to higher execution time,

while lower load periods result in lower execution time.

7.3 Monetary price of an error

Developing a normal server application typically involves low risk. The

development environment is running on the developer’s personal machine and

any configuration changes, possible crashes or data corruptions will only affect

their own setup. While working with AWS, the situation is different though. The

recommended and simplest way to develop a serverless application is to deploy it

to the cloud, but that involves an inherited risk, because cloud computation time

costs money.

With typical usage it is difficult to exceed the limits of the free tier, which, at the

moment of writing, allow up to 1 million API Gateway calls, 1 million Lambda

function calls per month and 18,600 read and write capacity unit-hours for

45

DynamoDB. However, the code doesn’t always behave in a way we expect, and

it is possible to do a mistake that will result in these limits being exceeded.

Personally, I found the capacity units of DynamoDB a confusing measure and by

mistake increased throughput capacity of my tables way higher than they should

have been, expecting the costs to be consistent with other pricing models of

Amazon, which is “pay for what you use” (Amazon 2019). However, a day later I

found out that I accumulated 136,000 both read and write capacity unit-hours,

which way exceeds the limit of the free tier, resulting in USD 130 bill, while the

service I am working on has no users.

I have been able to resolve the issue after contacting the customer support, but

situations like this remind us about the dangers associated with working on

somebody else’s infrastructure. I would never be charged any money for

deploying a service in any state on my personal hardware, but it did happen with

Amazon.

7.4 Monetary benefits

However, it would be unfair not to mention the benefits that serverless design

provides. At the moment of writing, a version of the application is deployed to

production with a small set of customers, and the operational costs are even

lower than expected. With over 300 registered users and about 50 active

everyday users, the total running costs of the service are below EUR 1 per

month, being mostly covered by the Amazon free tier.

According to the price breakdown, easily accessible from the AWS management

console, most of the costs comes from API Gateway service, which handles

every single request that hits the servers. On average, there are about 2,000

requests per day, which include cache and load-balancing, already provided as a

part of API Gateway package. While not being anywhere large enough to be

called a highly loaded service, this application is already sizable enough to see

the benefits of developing an application based on AWS Lambda.

46

8 CONCLUSION

On such small scale the application hits the “sweet spot” of serverless benefits,

already providing a significant amount of load that probably requires a dedicated

machine while not yet having acquired a number of users large enough to justify

the investment for a dedicated server in a datacenter. As mentioned in the

Section 7.4, the operational costs of the service that scale will most likely be in

single-digit euros, which is affordable even for most students. As a result, new

business opportunities will be created as the entry cost will be lowered.

At the same time, however, serverless has a number of disadvantages that must

be considered before going that route, especially for a large enterprise. Vendor

lock-in in particular can prove problematic as the prices of the platform holder

fluctuate and the monetary benefits may dwindle over time. The application itself

has to also be built around the infrastructure, not the other way around, which

may require extra training or research time for developers, which, of course,

translates into expenses for the employer. As a verdict, the serverless application

design itself is not a gamechanger for every single developer, but it most

definitely creates more options in a market segment that has been lacking since

the inception of the Internet, namely small businesses or private entrepreneurs.

In any case, the goal of this work was completed successfully. The project with

given specification was completed and made available to the public, and at the

moment of writing is operational with a healthy number of users and minimal

running costs. Personally, I may consider using serverless for my future projects

as well, thanks to the experience obtained during the implementation of this

thesis, and I only expect the technology to become more widely adopted over

time, as the benefits it provides are truly unique, regardless of the possible

drawbacks.

47

REFERENCES

Amazon. 2018. Serverless Application Lens. WWW document. Available at:

https://d1.awsstatic.com/whitepapers/architecture/AWS-Serverless-Applications-

Lens.pdf [Accessed 03.05.2019]

Amazon. 2019. AWS Lambda Limits. WWW document. Available at:

https://docs.aws.amazon.com/lambda/latest/dg/limits.html [Accessed 22.04.2019]

Gojko, A. 2017. Designing for the Serverless Age. Live presentation. Available at:

https://www.youtube.com/watch?v=w7X4gAQTk2E [Accessed 03.05.2019]

Hendrickson, S., Sturdevant S., Harter, T., Venkataramani, V., Arpaci-Dusseau,

A. C. and Arpaci-Dusseau, R. H. 2016. Serverless Computation with

OpenLambda. WWW document. Available at:

https://www.usenix.org/system/files/conference/hotcloud16/hotcloud16_hendricks

on.pdf [Accessed 02.05.2019]

Herron, D. 2018. Building REST services with Serverless framework, in Node.js,

AWS Lambda and DynamoDB. WWW document. Available at:

https://blog.sourcerer.io/building-rest-services-with-serverless-framework-in-

node-js-aws-lambda-and-dynamodb-765beada2c57 [Accessed 03.05.2019]

Kepes, B. 2015. 30% Of Servers Are Sitting "Comatose" According To Research.

WWW document. Available at:

https://www.forbes.com/sites/benkepes/2015/06/03/30-of-servers-are-sitting-

comatose-according-to-research/#7052339459c7 [Accessed 22.04.2019]

Roberts, M. 2018. Serverless Architectures. WWW document. Available at:

https://martinfowler.com/articles/serverless.html [Accessed 03.05.2019]

Serverless Framework. 2019. Build apps with radically less overhead and cost.

WWW document. Available at: https://serverless.com/ [Accessed 16.05.2019]

Statista. 2019. Internet of Things (IoT) connected devices installed base

worldwide from 2015 to 2025 (in billions). WWW document. Available at:

48

https://www.statista.com/statistics/471264/iot-number-of-connected-devices-

worldwide/ [Accessed 16.09.2018]

Wagner, T. 2016. Serverless Design Patterns with AWS Lambda. Presentation.

Available at: https://chariotsolutions.com/wp-content/uploads/2016/04/Serverless-

Design-Patterns-with-AWS-Lambda-Philly-ESE.pdf [Accessed 03.05.2019]

Waterworth, S. 2018. Which Serverless Platform Should You Use? WWW

document. Available at: https://www.instana.com/blog/which-serverless-platform-

should-you-use/ [Accessed 19.09.2018]

