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Completely Automated Public Turing test to tell Computers and Humans Apart 

(CAPTCHA), is a public fully automatic program that distinguishes users from 

computers or people. This thesis developed a CAPTCHA recognition system that 

can be deployed on the NAO robot, a humanoid robot to pass the Turing test and 

also can be deployed on web services in order to provide a recognition service. 

The recognition system uses convolutional neural network to extract features in 

CAPTCHA image and encode data with one-hot encoding system which is widely 

used in multiclassification. Python is the programming language used in developing 

this project, TensorFlow and Keras library are used to easily establish a neural net-

work. NAO robot version is v5 and code testing is on Ubuntu 16.04 release. 

The final recognition model showed about 99.67% accuracy on train dataset and 

98.10% accuracy on test dataset with suitable optimizer and loss function. Accord-

ing to the one-hot encoding features when regulated data, the accuracy is a bit high 

than it performed in real applications. Due to a large amount of CAPTCHA data for 

the combination of numbers and letters, the CAPTCHA in this thesis dataset con-

sists only of numbers, which could be improved by using datasets contains numbers 

and letters CAPTCHA. 

Keywords: NAO Robot, CAPTCHA, Convolutional Neural Network 
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1 INTRODUCTION 

1.1 Background 

As artificial intelligence and deep learning have been gaining more and more attention 

since 2010, people began again to talk about where the boundaries between human beings 

and machines are. CAPTCHA, an acronym for “Completely Automated Public Turing 

test to tell Computers and Humans Apart”, is a fully automatic program that distinguishes 

users from computer or people. A commonly used CAPTCHA test is to let the user input 

the text or number displayed on a distorted picture if user types the correct text inside of 

CAPTCHA, he or she are believed a human (distortion is to avoid being recognized by a 

computer program such as Optical Character Recognition (OCR)), otherwise, the pro-

gram will generate a new CAPTCHA to do the test again within limited chances. If the 

input text and CAPTCHA text do not match more than a certain number of times, then it 

will be considered a robot and the previous work will not be recognized. Recognizing 

CAPTCHA is consider a hard work in the past, however, thanks to the deep learning 

algorithm, it can be possible in today’s technology. 

1.2 Purpose 

The goal of this thesis is to build a CAPTCHA recognition system, which could recognize 

what texts contained in the CAPTCHA image, with an over 50% accuracy and universal 

applicability which could be deployed on NAO robot in a real situation. To reach the goal, 

a series of researches and works are done to achieve the purpose. First, two datasets 

should be prepared for training and testing the model. Secondly, CAPTCHA images are 

regulated and processed in order to fit the training format and train the model more 

quickly. After these pre-processes for data, a convolutional neural network would be es-

tablished to train the model with multiple optimizers and loss functions. Then we analyze 

the result, choose the model performed best as our final model. Finally, we connect to the 

NAO robot and deploy our recognition system on it. We also provide a recognition inter-

face for web services that can be invoked by certain command. 



 

 

1.3 Overall Structure 

This thesis consists of ten chapters. The first chapter is the introduction part, which in-

cludes the relevant background knowledge, the purpose and the structure of this thesis. 

Chapter two mainly introduces the technologies and development tools used in this pro-

ject, including programming language, neural network library and instruction about NAO 

robot. In Chapter three, overall design of the whole project is given, with flow chart and 

documental explanations. Chapter four illustrates how data is been processed before train-

ing in the convolutional neural network by some methods, in order to suit the data format 

in the Keras library. Chapter five and six are the model designing and training parts, dur-

ing these two chapters, how CNN training structure is shown by several figures which 

can clearly explain the CNN structure. Besides, how our model is trained is detailed de-

scribed. After our model has been trained, an analysis of the result is given by chapter 

seven, includes the choice of optimizers and loss functions by analyzing the output results. 

Chapter eight is about deployment, in this chapter the suitable trained model is deployed 

on the NAO robot to establish a CAPTCHA recognition system in a real situation. Besides, 

a CAPTCHA-recognize web service is also provided through the Flask web framework 

in this chapter. The final chapter is the conclusion part, in which some recommendation 

improvements for future research are illustrated as well as the limitations. 



  

 

2 TECHNOLOGIES AND DEVELOPMENT TOOLS 

2.1 Technologies 

2.1.1 Artificial Intelligence 

Artificial Intelligence (AI) has gradually appeared in many news reports recently. How-

ever, it started far early since the 1950s. AI has 3 development periods. From 1956, when 

the concept of AI was first presented at the Dartmouth meeting, to 1980s is the first de-

velopment period, scientists were starting to do some researches in this field, mainly focus 

on voice recognition, cryptography, and expert system. IBM Deep Blue was invented in 

this period and beat a world champion chess player. After that, machine learning and 

simple perceptron model was introduced to this field which brought the second big de-

velopment. Advertisements Blocker is a typical application based on a machine learning 

method. Time comes to the twenty-first century, people realized that deep learning has a 

good application when the amount of data and computing capability are sufficient. In 

2010, Dr. Fei-fei Li established ImageNet with many other researchers brought AI to the 

third development period.  



 

 

 

Figure 1. Development of Artificial Intelligence [1] 

2.1.2 Perceptron Model 

In 1957, psychologist Frank Rosenblatt defined the concept of the Perceptron algorithm 

based on Warren and Walters’ work. They classify biological neurons as simple logic 

gates with binary outputs. In a more intuitive way, a neuron can be understood as a child 

node of a neural network in a biological brain. Here, the variable signal, considered as the 



  

 

input signal, reaches the dendrites. When the intensity of the input signal exceeds a certain 

threshold, an output signal is generated and transmitted by the dendrites. [2]  

 

Figure 2. Schematic of a biological neuron [2] 

 

Figure 3. Perception Model [2] 

The purpose of the perceptron algorithm is to learn a weight vector w for a sample set of 

multidimensional features, such that after multiplying w by the input feature vector x, 

based on the result, it can be determined whether a neuron is activated. Perceptron model 

is a model of two class classification. 

2.1.3 Deep Learning 

The concept of deep learning stems from the research of artificial neural networks. 

Artificial neural network is a computational model that inspires biological neural 



 

 

networks that process information from the human brain. The artificial neural network 

has made a series of breakthroughs in the fields of speech recognition, computer vision, 

and text processing. Multilayer Perceptron (MLP) is a specific artificial neural network, 

and it is also called Artificial Neural Network (ANN). In addition to the input and 

output layer, it can have multiple hidden layers in the middle, the simplest MLP 

contains only one hidden layer, that is, the structure of the three layers. 

 

Figure 4. MLP with some hidden layers [3] 

2.1.4 Convolutional Neural Network 

Convolutional Neural Network is an application of deep learning algorithms in the field 

of image processing, shown below. Convolution neural network is an efficient identifica-

tion method which has been developed in recent years and has attracted wide attention. 

In the 1960s, Hubel and Wiesel in studying the neurons used for local sensitivity and 

directional selection in the cat cortex, they found that their unique network structure can 

effectively reduce the complexity of the feedback neural network, and then put forward 

the convolution neural network (Convolutional Neural Networks is referred to as CNN). 

The new identification machine proposed by K. Fukushima in 1980, which is the first 

implementation network of convolution neural network. Subsequently, more researchers 

made improvements to the network. Among them, the representative research results are 



  

 

the "improved cognitive machine" proposed by Alexander and Taylor, which synthesizes 

the advantages of various improvement methods and avoids the time-consuming error 

reverse propagation. [3] 

 

Figure 5.CNN Concept Diagram [4] 

There are several layers that contain in the CNN: 

1. Convolution Layer: The convolution layer can simulate the nature of the local 

sensory field, which is not fully connected to the previous layer, but is a small 

area connection. This small piece is the local receptive field. By constructing spe-

cific convolution neurons, the artificial neural network can simulate the properties 

of different neurons that stimulate different reactions to different shapes. As 

shown in Figure 6, a neuron forms a feature map by processing layer, and then 

multiple layers will superimpose, and the number of layers gradually will accu-

mulate. 



 

 

 

Figure 6. Convolution Layer [5] 

2. Pooling layer: The memory consumption is huge when the picture size is large, 

and the role of pooling layer is to condense the effect and ease the memory pres-

sure, which means selecting a certain size area and representing the area with a 

representative element. There are two specific Pooling, averaging and taking the 

maximum value, and the common type of pooling layer is Max-Pooling, shown 

in Figure 7. The main benefit of Max-Pooling is that if the picture is panned a few 

Pixels, the judgment of the result will not have an impact at all, and Max-Pooling 

has a good anti-noise function. 



  

 

 

Figure 7. Max-Pooling [4] 

3. Flatten: Convolution layer can’t connect with Dense fully connected layer di-

rectly. The data of convolution layer needs to be flattened, and then can be directly 

added to the Dense layer, so the use of flatten is to compress the height, width and 

channel data from convolution layer in 2-dimension into a 1-dimensional array 

which the length is height x width x channel, in order to connect with fully con-

nected layer successfully, shown in Figure 8. 

 

Figure 8. Flattening Process [6] 

4. Fully connected layer: The fully connected layer (FC) acts as a "classifier" 

throughout the convolution neural network, shown in Figure 9. If the operation of 

convolution layer, pool layer, and activation function layer are to map the original 



 

 

data to the hidden layer feature space, the fully connected layer plays the role of 

mapping the "distributed feature representation" to the sample mark-up space. In 

practical use, the fully connected layer can be realized by convolution operation. 

 

Figure 9. Full Connected Layer Structure [7] 

2.2 Programming Tools 

2.2.1 Python 

Python is a simple, interpreted, interactive, high-level programming language. Clear and 

elegant syntax make it widely acclaimed. It has most of the features of an object-oriented 

language for full object-oriented programming. Python is portable and is cross-platform 

for a variety of operating systems includes Windows, MacOS, and Linux. These kinds of 

features above make it very popular internationally and are gaining more and more appli-

cations. Python version 2.7 is used in this project and the IDE is PyCharm. [3] 

2.2.2 OpenCV 

OpenCV (Open source Computer Vision) is an open source library that widely used in 

the field of computer vision. The library is written in C and C ++ and can be run on 

Windows, Linux, Mac OS systems. OpenCV supports interfaces in many programming 

languages, the interface of Python is used in this thesis and the version is 4.1.0. All the 



  

 

library's code is optimized and computationally efficient because it is more focused on 

design as an open source library for real-time systems. OpenCV uses C language to opti-

mize, and, in the multi-core machine above, it will One of its goals is to provide a friendly 

machine vision interface function that enables complex machine vision products to accel-

erate. The library contains over 500 interface functions spanning areas such as industrial 

product testing, medical image processing, security, user interface, camera Calibration, 

3D imaging, machine vision and more. 

2.2.3 NumPy 

NumPy is a powerful Python library for performing computations on multidimensional 

arrays. The word NumPy comes from two words - Numerical and Python. NumPy pro-

vides a large number of library functions and operations that help programmers easily 

perform numerical calculations. This type of numerical calculation is widely used in the 

machine learning model, Image processing and computer graphics and math tasks. [10] 

2.2.4 Matplotlib 

Matplotlib is a Python 2D plotting library which produces publication quality figures in 

a variety of hardcopy formats and interactive environments across platforms. Matplotlib 

can be used in Python scripts, the Python and IPython shells, the Jupyter notebook, web 

application servers, and four graphical user interface toolkits. [11] 

2.2.5 Captcha 

Captcha library is a python library that enables users to generate audio and image CAP-

TCHAs. Captcha library is easy to install and can be used in a simple way. 

2.2.6 TensorFlow 

TensorFlow is an open source software library for machine learning for a variety of per-

ception and language understanding tasks. In 2012, Google released its first generation 

of large-scale distributed deep learning framework - Google Distbelief, which is widely 

used in various applications of Google, such as Google Translate and YouTube. In 2015, 

Google has open sourced the second-generation of large-scale distributed deep learning 



 

 

platform – TensorFlow. Nowadays many companies are using this technology, including 

Airbnb, Uber and Intel. 

TensorFlow uses a dataflow graph to represent computation in terms of the dependencies 

between individual operations.  

 

Figure 10. Dataflow graph in TensorFlow [4] 

  

2.2.7 Keras 

Keras is a high-level neural networks API, written in Python and capable of running on 

top of TensorFlow, CNTK, or Theano. It was developed with a focus on enabling fast 

experimentation. Being able to go from idea to result with the least possible Delay is key 

to doing good research. [13] 



  

 

2.2.8 Google Colaboratory 

Google Colaboratory, also known as Colab, is a free Jupyter notebook environment (a 

web-based interactive computing environment, for creating Jupyter Notebook documents) 

that requires no setup and runs entirely in the cloud. With Colaboratory you can write and 

execute code, save and share your analyses, and access powerful computing resources, 

all for free from your browser. Colaboratory was originally part of the Jupyter project but 

was eventually taken over by Google. Colab supports free GPU training acceleration. [14] 

 

Figure 11. Training model on Google Colaboratory with GPU acceleration. 

2.2.9 Google Cloud Speech-to-Text 

Google Cloud Speech-to-Text enables developers to convert audio to text by applying 

powerful neural network models in an easy-to-use API. The API recognizes 120 lan-

guages and variants to support your global user base. You can enable voice command-

and-control, transcribe audio from call centers, and more. It can process real-time stream-

ing or prerecorded audio, using Google’s machine learning technology. [14] 



 

 

 

Figure 12. Google Cloud Speech-to-Text 

2.2.10 Flask 

Flask is a lightweight web application framework written in Python, based on the 

Werkzeug WSGI toolkit and the Jinja2 template engine. Flask is compliant with the BSD 

licenses. It implements the core of the framework in a minimalist way while retaining 

scalability. 

Flask has a default development server and is easy to debug. If the application mode is 

set to debug, whenever files change in this application, the server would detect them and 

reload automatically to get the application updated. At the same time, Flask provides us 

with a helpful debugger on the occurrence of exceptions. [5] 

2.3 NAO Robot 

NAO robot is a humanoid robot developed by the Aldebaran Robotics in France (acquired 

by SoftBank Group in 2015 and rebranded as SoftBank Robotics) and is widely used for 

research and education purpose in numerous academic institutions. NAO can be used as 

a research robot in schools, universities and universities. It is responsible for teaching 

programming and developing human-machine interaction. NAO robot has varieties of 

sensors which allow the robot can move like human beings. NAO robot has dual cameras, 

which can support it be sued to fully identify and position objects at 30 frames per second 

and the resolution is 1280 x 960 pixels. It contains 4 microphones which are located on 

the front, behind, left and right respectively, and all of them are 300 Hz to 8000 Hz. NAO 



  

 

robot also has a stereo system which consists of two speakers and an LED light. The robot 

has two CPUs, which are both Intel series. One is located on the head of the robot, the 

kernel is run in the language of Linux, and supports the Aldebaran company's own devel-

opment of the NAOqi framework. 

 

Figure 13. NAO robot structure (Unit: mm) [6] 

 



 

 

 

Figure 14. NAO Video camera [7] 

 

Figure 15. NAO Video camera [7] 



  

 

 

Figure 16. NAO robot Microphones [9] 

 

Figure 17. NAO robot Loudspeakers [10] 

2.3.1 NAOqi 

NAOqi framework is the programming framework developed by Aldebaran, used to pro-

gram NAO.   

NAOqi framework provides varieties of programming SDK including C++ and Python. 

In NAOqi framework, the robot communicates with the external world must through 



 

 

many proxies. In this thesis, ALAudioRecorder proxy and ALTextToSpeech proxy are 

used in order to make conversations between robots and users. 

2.3.2 ALAudioRecorder 

ALAudioRecorder provides recording services in “WAV” and “OGG” file format of the 

signals coming from the robot’s microphones. 

ALAudioRecorder relies on the Linux library SNDFile to efficiently encode audio inputs 

in real time. ALAudioRecorder collects input signals through ALAudioDevice.  

ALAudioDevice provides other NAOqi modules with access to NAO’s audio inputs (mi-

crophones) and outputs (loudspeakers). It is based on the standard Linux ALSA (Ad-

vanced Linux Sound Library) library to communicate with NAO’s sound driver and sub-

sequently to microphones and speakers. 

To process data coming from the microphones, the procedure is different. Indeed, a 

NAOqi module willing to process such data will first “subscribe” to ALAudioDevice and 

specify the format of the data that it requires (number of channels, sample rate, etc...). 

The data correctly formatted will then be automatically and regularly sent to the request-

ing module by using one of its methods as a callback. 

The recording capabilities are for now limited to the following formats: 

1. four channels 48000Hz in OGG. 

2. four channels 48000Hz in WAV. 

3. one channel (front, rear, left or right), 16000Hz, in OGG. 

4. one channel (front, rear, left or right), 16000Hz, in WAV. [8] 

2.3.3 ALTextToSpeech 

The ALTextToSpeech module allows the robot to speak. It sends commands to a text-to-

speech engine and authorizes also voice customization. The result of the synthesis is sent 

to the robot’s loudspeakers. [22] 



  

 

3 OVERALL DESIGN 

The whole structure of the system is shown below. First of all, by using Captcha library, 

a training dataset and a testing dataset are created and containing thousands of CAPTCHA 

images with certain labels as their file names. Secondly, those images data are loaded to 

the memory and are processed to fit the training format. After the image data and labels 

are prepared, a convolutional neural network is going to be established with dataset the 

input. Then we train our model in several rounds to enhance the accuracy and also select 

the best optimizer and loss functions in this model. When the model file is trained with a 

great performance in the test dataset, we then deploy it to NAO robot and a web service 

to test it recognizing capability in the real situation. 

 

Figure 18. Data Preparation flowchart 

 

Figure 19. Training Process Flowchart 

 



 

 

 

Figure 20. Deployment Flowchart 



  

 

4 DATA PREPROCESSING 

4.1 Create Dataset 

CAPTCHA creation is very related to the generators. Different generators can create very 

different CAPTCHA images. Captcha library is used to create CAPTCHA images in this 

thesis.  

 

Figure 21. CAPTCHA example generated by Captcha library 

We first create a charset which contains the characters we would like to insert in the 

CAPTCHA image. In this case, the number [0, 1, 2, …, 9] are used as the charset. 

 

Figure 22. CAPTCHA charset, dataset size, and data directory 

The CAPTCHA image is set to 160 pixels width and 60 pixels height. Each image con-

tains 4 characters. As training dataset needs a large amount of data to construct the recog-

nition model, 10000 is set to the size of the training dataset and the size of the test dataset 

is set to 2000. However, as 0 to 9 has 10000 possible combinations within 4 characters, 

which is the same size of our training dataset, the final dataset must be less than 10000 



 

 

CAPTCHA images because CAPTCHA images containing the same characters are not 

treated as different CAPTCHAs. 

 

Figure 23. CAPTCHA generating methods 

The figure above are the methods that generate CAPTCHA dataset. The first method aims 

to create a random combination of four-character string, which needs charset and length 

of the text as the arguments. The second methods need five arguments: the size of the 

dataset, the directory of the dataset, the height, width and the image format of the CAP-

TCHA image. We use the provided height, width and image format arguments to define 

our CAPTCHA image format, then create a four-character string in random combination. 

The string is used as the file name for each CAPTCHA containing that certain text. The 

label for each CAPTCHA is the file name without suffix (.png). Figure below shows how 

dataset looks like. 



  

 

 

Figure 24. CAPTCHA raw images with labels 

4.2 Process Input Data 

4.2.1 RGB Format to Grayscale 

As our CAPTCHA image is RGB (Red Green Blue) format, each image contains many 

color information. In order to accelerate the training process, we need to reduce the 

amount of data contained in each CAPTCHA image. The color information is not so nec-

essary, so we convert our RGB image to grayscale, which will reduce the number of color 

channels from three to one. 

Before converting color space, we need first load our dataset and convert image to numpy 

array which Keras only accepts input data in this format. 



 

 

 

Figure 25. load training and testing dataset 

 

Figure 26. Convert image to numpy array 

 

Figure 27. RGB to grayscale method 

 

Figure 28. Grayscale CAPTCHA image 

4.2.2 Data Normalization 

Data Normalization is to scale the data so that it falls into a small specific interval. Nor-

malizing the data for each batch can improve the generalization of the model and prevent 

overfitting. It can also improve the convergence speed of iterative solutions.  



  

 

 

Figure 29. Data Normalization process 

 

Figure 30. Before normalization 

 

Figure 31. After normalization 

 

4.2.3 Fit Keras Channels 

Keras provides two types of saving data format – “channels-first” and “channels-last”. 

The default way is “channels first”, it puts the position of channels value before the image 

height and width in the vector. On the other hand, “channels-last” put the value of the 

channel at the end position instead. Here we define a method to make our values fit Keras 

channels format. 



 

 

 

Figure 32. Method of fit Keras channels 

Batch number is the number of images that be processed together when training the 

model. 

4.3 Process Output Data 

4.3.1 One-hot Encoding 

One-hot encoding, also known as one-bit efficient encoding, uses an N-bit status register 

to encode N states, each state is independent of its register bits, and at any time, only One 

is valid. It can be understood that for each feature if it has m possible values, it is mono-

thermally and becomes m binary features. Also, these features are mutually exclusive, 

with only one activation at a time. Therefore, the data becomes sparse. 

 

Figure 33. example of one-hot encoding [11] 

We are encoding our labels with this encoding system. After one-hot encoding, the text 

value will transmit to vector, then use the method from NumPy library to convert this 

vector to NumPy array fit the Keras format. Besides, transmitting our label text to vector 

can also accelerate our training process. 



  

 

 

Figure 34. Method of transmitting label text to one-hot vector 

we create an array of length 10 four times during the loop, the number [0 - 9] occupy one 

position of the array based on one-hot encoding. After the looping, we combine these 4 

arrays into one 40 length array. The figure below is an example. The label “9513” trans-

mitted to an array with 40 lengths after one-hot encoding. 

 

Figure 35. "9513" encoded by one-hot encoding 

4.3.2 Decoding Output Vector to Text 

The predicted value our model outputs is an array containing 40 probability values. This 

cannot be recognized so we should translate them to a four-character text. Ten values 

make a group, and the highest probability value will be selected as the representative 

value of these ten. 4 groups have 4 output values, combining these 4 values and convert-

ing them to text would consist our prediction. 



 

 

 

Figure 36. Method of transmitting vector to text 

We first convert this vector to a NumPy array, then use argmax() method to translate 

vector value to text. 

 

Figure 37. Example of vector to text 

Here is an example of the translating process. The predicted value of the model is an array 

with 40 probability values, we choose the highest value in every ten items, translate them 

to text and combine them to a four-character prediction value. 

 



  

 

5 MODEL STRUCTURE DESIGN 

5.1 AlexNet and VGG-16 Model 

In 2012, Alex Krizhevsky and Ilya Sutskever designed a deep convolutional neural net-

work AlexNet at the University of Toronto's Geoff Hinton lab, winning the 2012 

ImageNet LSVRC championship with an accuracy rate far exceeding the second place, 

which caused a lot of sensation. AlexNet can be said to be a historical network structure. 

Before that, deep learning has been silent for a long time. Since the birth of AlexNet in 

2012, the latter ImageNet champions have been done with the convolutional neural net-

work (CNN), which makes CNN become the core algorithm model in image recognition 

classification, which brings about the explosion of deep learning. 

The success of AlexNet is related to the characteristics of this model design. AlexNet has 

3 main features: 

1. A nonlinear activation function is used: ReLU 

2. Methods to prevent overfitting: Dropout, Data augmentation 

3. Other: Multi-GPU implementation, use of LRN normalization layer 

 

Figure 38. AlexNet Structure [12] 

In 2014, the University of Oxford's Visual Geometry Group and Google DeepMind re-

searchers developed a new deep convolutional neural network: VGGNet and won the 



 

 

second price in the ILSVRC2014 competition classification project. VGGNet explores 

the relationship between the depth of convolutional neural networks and its performance 

and successfully constructs a 16-to-19-layer deep convolutional neural network, which 

proves that increasing the depth of the network can affect the final performance of the 

network to a certain extent, and drastically reduce the error rate. Besides, the scalability 

is very strong, and the generalization of migrating to other image data is also very good. 

So far, VGG is still used to extract image features. 

VGGNet can be seen as a deeper version of AlexNet, which also consists of two parts: 

the convolutional layer and the fully connected layer. 

Small convolution kernel is an important feature of VGG model. VGG uses a convolu-

tional layer of multiple smaller convolution kernels (3x3) instead of a convolutional layer 

with a larger convolution kernel. On the one hand, it can reduce parameters, on the other 

hand, it is equivalent to more nonlinear mapping, which can increase the network fit-

ting/expression capabilities. [13] 

 

Figure 39. VGG-16 model [13] 

5.2 Construct Model 

In this thesis, VGG-16 model is used to create our convolutional neural network. The 

network consists of 3 convolutional layers, 3 pooling layers,1 dropout layer, and 2 full 



  

 

connected layers. The last full connected layer classifies the output into 10 classes for 4 

times, and each time the maximum probability is the output value. Then we splice 4 clas-

sification results together to get the final result. 

 

Figure 40. Flow chart of the CNN 

 

Figure 41. CNN model in this project 

The output is an array containing each value’s probability, we then use vector to text 

method which introduced above to decoding the value into predicted text. 



 

 

 

Figure 42. The whole structure of the CNN 

 



  

 

6 MODEL TRAINING PROCESS 

After we establish our CNN model, it’s time to train our model with pre-defined batches 

and epochs.  

 

Figure 43. Flow chart of the training process 

In order to select the best optimizer and loss function in this model, 7 combinations are 

choosing to be trained. Each model saved as a .h5 file, and the corresponding log is also 

created along with the model file and saved in history folder with the .history suffix. 

 

Figure 44. Model and history files 

We use model.fit() method (provided by Keras library) to start training our model. 



 

 

 

Figure 45. Training process 

X_train, Y_train are the images and labels of the training dataset. batch_size, which has 

been explained above, is the number of images that be processed together. Epochs value 

is the number of training rounds. After trying several times, 300 rounds are great enough 

that our model can reach a high accuracy in test dataset within these rounds of processes. 

Verbose control the log information. 0 means that the log information is not output via 

the standard output stream, 1 is represented as the output progress bar record, and 2 is 

represented as the output row record for each epoch result analysis. Validation_data 

makes model calculate the accuracy and the loss in test dataset in order to overcome over-

fitting problem that our model is suitable for more general application scenarios than just 

performing well on training sets. 



  

 

7 RESULT ANALYSIS 

7.1 Loss Function 

The loss function is used to estimate the degree of inconsistency between the predicted 

value f(x) of your model and the true value Y. It is a non-negative real-valued function, 

usually expressed by L(Y, f(x)). The smaller the loss function, the better the robustness 

of the model. The loss function is the core part of the empirical risk function and an im-

portant part of the structural risk function. The structural risk function of the model in-

cludes empirical risk terms and regular terms, which can usually be expressed as follows: 

θ∗ = arg min
θ

1

N
∑ L(yi, f(xi; θ))

N

i=1

+ λ Φ(θ) 

Among them, the previous mean function represents the empirical risk function, L repre-

sents the loss function, and the latter Φ is a regularizer or a penalty term, which can be 

L1 or L2, or Other regular functions. The whole expression means to find the value of θ 

when the objective function is minimized. 

7.1.1 Mean Squared Error 

Mean Square Error (MSE) is the most commonly used regression loss function. The cal-

culation method is to find the sum of the squares of the distance between the predicted 

value and the true value. The formula is shown below: 

MSE =  ∑(𝑦𝑖  − 𝑦𝑖
𝑝)2

𝑛

𝑖 = 1

 



 

 

 

Figure 46. MSE graph [15] 

7.1.2 Poisson Regression 

The Poisson loss function is a measure of how the predicted distribution diverges from 

the expected distribution, the Poisson as loss function is a variant from Poisson Distribu-

tion, where the Poisson distribution is widely used for modeling count data. It can be 

shown to be the limiting distribution for a normal approximation to a binomial where the 

number of trials goes to infinity and the probability goes to zero and both happen at such 

a rate that np is equal to some mean frequency for the process. [16] 

L =  
1

𝑛
∑(𝑦𝑝𝑟𝑒𝑑

(𝑖)
 − 𝑦𝑡𝑟𝑢𝑒

𝑖  ∙  log(𝑦𝑝𝑟𝑒𝑑
(𝑖)

))

𝑛

𝑖 − 1

 

7.1.3 Cross Entropy 

Cross-Entropy is commonly used in binary classification (labels are assumed to take val-

ues 0 or 1) as a loss function (For multi-classification, use Multi-class Cross Entropy), 

which is computed by:  

L = −
1

n
∑ [y(i)log(y(i)̂) + (1 − y(i)) log(1 − y(i)̂)]

n

i=1

 



  

 

Cross-entropy measures the divergence between two probability distribution, if 

the cross-entropy is large, which means that the difference between two distri-

bution is large, while if the cross-entropy is small, which means that the two 

distribution is similar to each other. [16] 

7.2 Optimizer 

The function of the optimizer is to minimize (or maximize) the loss function E(x) by 

improving the training method. 

Optimization algorithms fall into two broad categories: 

1. The first order optimization algorithm 

This algorithm uses the gradient values of the various parameters to minimize or maxim-

ize the loss function E(x). The most commonly used first-order optimization algorithm is 

gradient descent. Function gradient is a multivariate expression of the derivative 
dy

dx
 used 

to represent the instantaneous rate of change of y with respect to x. Often in order to cal-

culate the derivative of a multivariate function, the gradient is substituted for the deriva-

tive and the partial derivative is used to calculate the gradient. One major difference be-

tween the gradient and the derivative is that the gradient of the function forms a vector 

field. 

2. Second-order optimization algorithm 

The second-order optimization algorithm uses a second derivative (also called the Hes-

sian method) to minimize or maximize the loss function. This method is not widely used 

because of the high computational cost of the second derivative. 



 

 

 

Figure 47. Gradient Descent [17] 

In each iteration, the gradient descent updates the independent variable along the gradient 

of the current position based on the current position of the independent variable. How-

ever, if the iterative direction of the independent variable depends only on the current 

position of the independent variable, this may cause some problems. Some researchers 

have proposed a technique called Momentum, which accelerates non-momentum training 

by optimizing the training of related directions and weakening the oscillations of irrele-

vant directions. In the parameter update process, the principle is similar: 1. Make the 

network more optimal and more stable convergence; 2. Reduce the oscillation process. 

 

Figure 48. With momentum & without momentum [30] 

There are four optimizers that used in the training process: Adagrad, Adadelta, Rmsprop, 

and Adam. 

 

 



  

 

 

Figure 49. adam & binary cross entropy 

 

Figure 50. adam & Poisson 

7.3 Loss Function Analysis 



 

 

 

Figure 51. Model Accuracy comparison by different loss functions in train dataset 

 

Figure 52. Model Loss comparison by different loss functions in train dataset 

As we can see from the diagrams above, binary cross entropy performed better in train 

dataset as it has the highest accuracy and the loss rate also performed in a good way. 



  

 

 

Figure 53. Model Accuracy comparison by different loss functions in the test dataset 

 

Figure 54. Model Loss comparison by different loss functions in the test dataset 

In test dataset, MSE has a better loss rate compared other 2 methods, however, binary 

cross entropy is far more accurate than the other two. 

 



 

 

7.4 Optimizer Analysis 

 

Figure 55. Model Accuracy comparison by different optimizers in train dataset 

 

Figure 56. Model Loss comparison by different optimizers in train dataset 

Except for Adam methods, those other three reached the highest accuracy and lowest loss 

rate in training set are quite similar, but Adam has better continuous learning ability than 

the other three methods. 



  

 

 

 

Figure 57. Model Accuracy comparison by different optimizers in the test dataset 

 

Figure 58. Model Loss comparison by different optimizers in the test dataset 

However, after 300 epochs training, in the test dataset, Adam performs far better than the 

other three with the lowest loss rate. The other three reached a lower loss rate but re-

bounded to a higher value after about 50 epochs, which means that with Adagrad, 



 

 

Adadelta, and Rmsprop, the model is overfitting with the training set that cannot continue 

to perform well on the test set or some general situations. 

By comparing the performance within three loss functions and 4 optimizers, Adam with 

Binary Cross Entropy is more comprehensive on the test set, which will be used when 

deploying to real applications. 



  

 

8 DEPLOYMENT 

After we got our training model, it’s time to deploy our model in real applications to test 

its generalization capability. 

8.1 Deploy to NAO Robot 

Deploy our recognition system on NAO robot is quite simple. First, we establish a frame-

work that robot starts to begin the recognition test, then load our model to the robot and 

make it recognize 15 random generated CAPTCHA images, if the robot recognizes more 

than half of them, our model is considered performing well. Google Cloud Speech-to-

Text is used for robot to detect starting command and ALTextToSpeech protocol is used 

to make responses. OpenCV library is used to display CAPTCHA images. OpenCV pro-

vides cv2.imread() method to read images, one advantage of using OpenCV is that after 

load image to memory through cv2.imread() method, the images are automatically con-

verted to NumPy array format, which can make it easier to deal with the predicting output. 



 

 

 

Figure 59. recognize CAPTCHA image 



  

 

 

Figure 60. Robot recognizing CAPTCHA images 

A complete test video can be watched at https://youtu.be/4pxHi9h1caU 

8.2 Deploy to A Web Service 

We also provide an interface of our recognition service on web applications. Flask web 

framework is used to create our testing application, and CURL command is used to call 

the service.  

https://youtu.be/4pxHi9h1caU


 

 

 

Figure 61. Deploy CAPTCHA recognition service to a web server 

 

Figure 62. Call a CAPTCHA recognition service through CURL command 



  

 

9 CONCLUSION 

In this thesis, a CAPTCHA recognition system is developed, by using convolutional neu-

ral network, which is a popular technique in deep learning field and can be deployed to a 

humanoid NAO robot and web service to execute recognition service. During the estab-

lishment and the training process, there are some issues found that can be improved in 

future development.  

As the label text is translated to vector by one-hot encoding system, there are 36 of zeros 

and 4 of ones containing in the NumPy array. Because of this feature, if our model pre-

dicts the correct position of each zero, the accuracy would rise to a high level. When I 

was training the model, accuracy started at 90%, which is not an accurate number for the 

initial training moment. In the future, maybe another encoding system could be used to 

solve this problem. 

Another thing that can be improved is that the CAPTCHA image only contains numbers 

as the text because of the huge amount of data if we introduced letters and other characters 

in our dataset (624 combinations if we introduce uppercase and lowercase letters). It can 

be improved if computing capability is increased in the future. 

In this project, establishing the convolutional neural network and designing the training 

model are the core parts. CAPTCHAs are becoming more and more difficult to crack 

nowadays, but with the deep learning algorithm developing, more advanced neural net-

work will be developed to cope with increasingly complex CAPTCHA algorithms. 
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