

Hieu Le

Building and evaluating recommender
systems

Metropolia University of Applied Sciences

Bachelor of Engineering

Information Technology

Bachelor’s Thesis

4 May 2019

 Abstract

Author
Title

Number of Pages
Date

Hieu Le
Building and evaluating recommender systems

36 pages + 6 appendices
4 May 2019

Degree Bachelor of Engineering

Degree Programme Information Technology

Professional Major Software Engineering

Instructors
Peter Hjort, Senior Lecturer
Minna Paananen-Porkka, Senior Lecturer, Language Advisor

Recommender systems play an important role in the lives of people in today’s information-
rich environment. Businesses and companies utilize recommender systems to make
meaningful suggestions to their users, increasing sales, and improving user experiences.
Users make use of recommender systems to avoid wasting time finding the right products
and contents, and to discover new perspectives and insights about what their likes and dis-
likes are. In most scenarios, recommender systems are highly likely to bring benefits to
both businesses and their users, and thus, should be carefully planned and constructed so
that a satisfactory outcome is achieved.

This thesis project is a demonstration of how technical implementations of recommender
systems can be done. Five recommender systems were built based on the goodbooks-10k
dataset, and their contexts and theories are given. The recommender systems were then
evaluated according to an arbitrarily established evaluation strategy. Insights into different
characteristics and qualities of the five recommender systems could be drawn from the
evaluations.

It is concluded that the process of building and evaluating recommender systems are
highly customizable, depending on multiple business-specific factors. Due to the heuristic
nature of the building and evaluating processes, it is often the case that there is no one
best way to implement such processes. It is advisable that businesses and companies per-
form careful planning and experimenting in order to reach a satisfactory result.

Keywords recommender system, evaluation metric, theoretical algo-
rithm, technical implementation, Python

Contents

Glossary

1 Introduction 1

2 Theoretical background 3

2.1 Top-� recommendation problem 3

2.2 Rating system 3

2.3 Evaluation strategy 4

2.3.1 Accuracy 5

2.3.2 Coverage 6

2.3.3 Novelty 6

2.3.4 Diversity 7

2.3.5 Personalization 8

2.4 Recommendation methods 9

2.4.1 Random-based recommender system 9

2.4.2 Popularity-based recommender system 10

2.4.3 Content-based recommender system 11

2.4.4 Item-based collaborative filtering recommender system 12

2.4.5 Hybrid recommender system 13

3 Implementation 15

3.1 Technology 15

3.1.1 Python 15

3.1.2 Jupyter Notebook 15

3.1.3 Pandas 15

3.1.4 NumPy and SciPy 16

3.1.5 Scikit-learn 16

3.2 Dataset 16

3.3 Testing methodology 17

3.4 Procedures 17

3.4.1 Starting Jupyter Notebook and importing Python libraries 17

3.4.2 Analyzing the dataset 21

3.4.3 Partitioning the data into a training set and a testing set 24

3.4.4 Pre-processing tag-related data and making a content-centric similarity
function 25

3.4.5 Building an evaluator 28

3.4.6 Implementing recommender systems 30

4 Evaluations 32

5 Conclusions 34

References 35

Appendices

Appendix 1. Implementation of the evaluator

Appendix 2. Implementation of the random-based recommender system

Appendix 3. Implementation of the popularity-based recommender system

Appendix 4. Implementation of the content-based recommender system

Appendix 5. Implementation of the item-based collaborative filtering recommender sys-

tem

Appendix 6. Implementation of the hybrid recommender system

Glossary

��� Mean average precision. The metric that quantifies the capability of a rec-

ommender system in recommending accurate and useful items.

�� Catalog coverage. The metric that shows the fraction of the recommenda-

ble items over the item repository of a recommender system.

��� Mean novelty score. The metric that quantifies the capability of a recom-

mender system in recommending novel and less popular items.

��� Mean diversity score. The metric that quantifies the capability of a recom-

mender system in recommending diverse recommendation lists.

��� Mean personalization score. The metric that quantifies the capability of a

recommender system in recommending personalized recommendation

lists.

IBCF Item-based collaborative filtering. The recommending method where rat-

ings of multiple users are utilized to calculate the similarities between items.

CSV Comma-separated values. The delimited text file format where tabular data

is stored as plain text and values are separated by commas.

1

1 Introduction

Recommender systems are tools that help users discover products and content by rec-

ommending items that they think users would like. Recommender systems are utilized

most notably by merchants to suggest personalized recommended items to their cus-

tomers [1]. In the e-commerce industry, recommender systems have become an essen-

tial part of the business models of companies and businesses that offer a wide variety of

products, such as Amazon and eBay [2]. In 2006, Netflix, a movie and TV show stream-

ing provider, announced a competition with a prize of one million US dollars to improve

the accuracy of their recommendation algorithm [3]. It is reasonable that Netflix was will-

ing to invest a considerable amount of money into their recommendation algorithm. With

85 thousand titles to choose from, according to [4], Netflix’s users would have difficulty

hand-picking relevant movies by themselves.

Providers of other types of online content, such as YouTube (an online video sharing

platform) and Spotify (a music service), face the same challenge. YouTube hosted bil-

lions of uploaded videos on their website [5], whereas Spotify offers more than 50 million

songs with their service [6]. In today’s information-rich environment, recommender sys-

tems play an essential role in human lives. Figure 1 shows an example of how Youtube

suggests videos for their users to watch at their main website.

Figure 1. Example list of Youtube's video recommendation. Retrieved May 5, 2019, from
https://www.youtube.com. Screenshot by author.

2

As depicted in Figure 1, Youtube’s recommendation algorithm filters billions of videos to

get the top 12 videos that it thinks the user might like and watch. This algorithm ad-

dresses what is called the top-� recommendation problem, where recommender sys-

tems determine the top-� most relevant items to their users [7, p. 3]. This problem is the

most common problem that online merchants aim to solve with recommender systems.

Goodbooks-10k is a book dataset recently published on Github [8]. The dataset contains

six million ratings by more than fifty thousand users for ten thousand books. As the da-

taset is new, few research papers have been written with it being the main subject of the

recommendation problem. In this thesis, the goodbooks-10k dataset serves as the focus

of a study on recommender systems.

The primary goal of this thesis project was to demonstrate how recommender systems

can be built and evaluated. Five recommender systems were built based on the good-

books-10k dataset and aimed at solving the top-� recommendation problem. The chap-

ters in this thesis are organized as follows. Chapter 2 introduces theoretical backgrounds

about the top-� recommendation problem, the rating system, the evaluation strategy,

and the recommending methods. Technical implementations of the recommender sys-

tems are described in Chapter 3. Chapter 4 provides the evaluations of the recommender

systems built in Chapter 3. Finally, conclusions and summary are given in Chapter 5.

3

2 Theoretical background

2.1 Top-� recommendation problem

The top-� recommendation problem can often be reduced to the problem of calculating

numerical values that represent a user’s likelihood of performing positive actions on cer-

tain items that she has not interacted with. The items are then ranked based on the

computed numerical values, and the top-� items are determined based on the ranking.

The form of the said numerical value varies between different recommender systems.

Recommender systems based on different assumptions have different theories on why

a specific type of numerical value correlates with users’ tendency to act positively on

items. In this thesis, the mentioned numerical value is referred to as the ranking score.

In this thesis, an arbitrary value of 10 as � is chosen when solutions to the top-� recom-

mendation problem are constructed. The recommender systems built in this project were

evaluated based on the quality of the top 10 items they suggest. Choosing 10 as � is a

reasonable choice as a user will usually be distracted if her recommended list is too long.

It is worth noting that the value of � was not a focus in this project since the value of �

has little effect on the process of building and evaluating recommender systems. The

process laid out in this thesis applies to any value of � that is larger than 0. In this thesis

project, many arbitrary decisions were made when building and evaluating the recom-

mender systems, such as choosing the value of �, selecting the metrics in the evaluation

strategy, or choosing the values of the parameters used in the algorithms. These deci-

sions are highly business-specific and thus, should be made based on the context and

the field of the business in question. When one applies the procedures mentioned in this

thesis, she should replace the arbitrary decisions in this project by careful experimenta-

tion so that the resulted recommender systems are suitable to her problems and busi-

ness field.

2.2 Rating system

To make meaningful and personalized recommendations, recommender systems re-

quire the presence of a feedback system where users could explicitly state their opinions

and preferences. A typical type of feedback system is the rating system, where a user’s

4

preference of an item is represented as a numerical value belonging to a discrete set of

ordered numbers [7, p. 10]. An example of a rating system is illustrated in Figure 2.

Figure 2. Ratings of the book The Fault in Our Stars on Amazon.com. Retrieved May 6, 2019,
from https://www.amazon.com/The-Fault-in-Our-Stars/dp/B006VPAXQY. Screenshot
by author.

Figure 2 demonstrates how Amazon’s users give their feedback on the e-commerce site.

To state their opinions, users can choose from a set of five values, intuitively from 1-star

as the least positive response to 5-star as the most positive response. The most common

rating scales employed by rating systems are 5-point, 7-point, and 10-point [7, p. 10].

The goodbooks-10k dataset also uses a rating system with a 5-point scale. Users’ ratings

are stored as numerical values ranging from 1 to 5. In this thesis, the ratings correspond-

ing to a numerical value are referred to as 1-ratings, 2-ratings, and so on.

2.3 Evaluation strategy

In order to evaluate a recommender system, a systematic evaluating strategy must be

established. This thesis focuses on a few evaluation factors that indicate the quality of

recommendations outputted by recommender systems. Each of the following factors has

been researched intensively in the recommender system community and is often re-

garded to affect the experience of users. An improvement in these factors usually trans-

lates to an improvement in the performance of recommender systems when real users

use them.

5

2.3.1 Accuracy

Accuracy is an essential factor of most evaluating strategies [7, p. 229]. Generally, in the

context of the top-� recommendation problem, accuracy can be understood as the ten-

dency that the users will react positively to the recommended items. In a 5-point rating

system, it is safe to assume that if a user gives an item a 5-rating, that item is relevant

to the said user, since 5-rating is the highest available rating that a user can give. The

accuracy of recommender systems that operate on a 5-point rating system can then be

determined by how likely a user will give a 5-rating to a recommended item.

The problem of recommending relevant items has a close connection to the problem of

information retrieval, as recommending can be considered as an act of retrieving infor-

mation, and metrics that measure the accuracy of information retrieval systems can be

utilized to measure the accuracy of recommender systems as well. In this thesis, the

metric that is used to measure the accuracy of recommender systems is the mean aver-

age precision (���) metric. According to [7, pp. 244-247], ��� is classified as a utility-

based measure, whose overall goal is to quantify the usefulness of recommender sys-

tems.

Let �� be the binary value that denotes whether the �th item in a ranked recommend list

is relevant to the user receiving the recommendations:

 �� = �
 1 (if �th item is relevant)
 0 (if �th item is irrelevant)

 (1)

Therefore, precision at � (�@�), which computes the fraction of relevant items in the first

� items in the recommended list, can be calculated as follows:

 �@� =
�

�
∑ ��

�
��� (2)

Average precision (��) for a recommended list of length � is defined as follows:

 �� =
�

min{�,�}
∑ �@��

��� (3)

where � is the total number of relevant items in the repository. In the case that � is less

than �, averaging the precision values by � instead of � is more intuitive as otherwise

6

a recommender system would be wrongfully penalized for recommending � items even

if it correctly places all � relevant items to the top of the recommended list.

Finally, ��� is computed by averaging the �� calculated across all the users:

 ��� =
sum total of �� across all users

number of users
 (4)

One advantage that ��� has over other traditional metrics used in academic research,

such as the root mean squared error metric, is that it gives greater importance to the

order of the recommended list [7, p. 244]. It is intuitive that a recommended list that

places relevant items closer to the top is evaluated as more accurate compared to a list

that places relevant items closer to the bottom.

2.3.2 Coverage

It is often the case that there is a fraction of the repository of items that a recommender

system will not be able ever to suggest even if it possesses excellent accuracy [7, p.

231]. Coverage of a recommender system describes how many unique items it can in-

corporate into its recommendation algorithm compared to the total number of items in

the repository. One of the metrics that can quantify this factor is catalog coverage (��),

which is the fraction of items that are at least recommended to one user:

 �� =
number of items that are recommended at least once

number of items in the repository
 (5)

�� is particularly suitable for the evaluation of top-� recommendation lists, while other

metrics are more fitted to evaluate a recommender system’s ability to predict ratings [7,

p. 232].

2.3.3 Novelty

Novelty is considered a desirable characteristic of recommender systems [8, p. 110].

Novelty can typically be understood as a recommender system’s ability to suggest less

popular items [8, p. 110]. Novel recommendations usually help users take a more-in-

depth look into their likes and dislikes that they are not aware of [7, p. 233].

7

A method of quantifying novelty is through measuring the unexpectedness of the recom-

mended items in the list compared to their global popularity [9, p. 3]. An item’s popularity

(��) can be measured by computing the fraction of users who have rated the said item

over the total number of users in the system:

 �� =
number of users who have rated the item

number of users
 (6)

An item’s novel value (���) is then measurable by taking the log of the inverse ��:

 ��� = − log�(��) (7)

The novelty of a recommended list, referred to as the novelty score (��), is then calcu-

lated by averaging the ��� of the items recommended in the list:

 �� =
sum total of ��� across all items in the list

�
 (8)

The �� calculated for every user can then be averaged to get the mean novelty score

(���), which quantifies a recommender system’s ability to recommend novel items:

 ��� =
sum total of �� across all users

number of users
 (8)

where higher ��� indicates better ability in suggesting novel recommendations.

2.3.4 Diversity

Essentially, diversity can be understood as how different content-wise items within a

single recommended list are from each other [7, p. 234]. Keywords that represent the

attributes of items are often utilized to formalize a similarity function, which can be used

in measuring diversity as well as recommending items. Keywords are typically

weighted differently based on how important they are in describing an item, as a key-

word about a book’s author might be more descriptive than a keyword stating whether

the said book is an e-book or an audio-book.

The similarity function can be formulated based on the vector-space representation of

item keywords [7, p. 234]. One of the most common ways of formulating a similarity

8

function is the use of the cosine function [7, p. 151]. Let � = (��. . . ��) and � =

(��. . . ��) be a pair of items, where �� and �� denote the weight of the �th keyword in the

two items. The cosine similarity function is then defined as follows:

 �����, �� = ������(�, �) =
∑ ����

�
���

�∑ ��
��

��� �∑ ��
��

���

 (10)

The results retrieved from applying the similarity function pair-wise between items in a

recommended list can be averaged to get the quantification of the diversity of a recom-

mended list, referred to as the average similarity (��) of a recommended list � of length

�:

 �� = 2
∑ ∑ ���(�,�)� ∈ � (� � �)� ∈ �

�(���)
 (11)

As �� always lies in the range [0, 1], diversity score (��) of a recommended list can be

calculated as follows:

 �� = 10 ⋅ (1 − AS) (12)

The average value of �� across all users in the system is referred to as the mean diver-

sity score (���), which measures the diversity of a recommender system:

 ��� =
sum total of �� across all users

number of users
 (13)

where ��� lies in the range [0, 10] and higher ��� denotes a higher capability of rec-

ommending a diverse list of items.

2.3.5 Personalization

Personalization has a close relation to diversity. A personalized recommender system

usually suggests different items to different users [9, p. 3]. A metric that can quantify this

factor is the inter-list distance (���), which is calculated between two lists of recom-

mended items:

9

 ��� = 1 −
the number of common items in two lists

�
 (14)

Personalization score (��) for a user �’s recommended list is determined by the average

��� computed between her and all other users, multiplied by 10:

 ��(�) = 10
∑ ��� ������� � ��� ����� �����

the number of users - 1
 (15)

Finally, the mean personalization score (���), which measures the personalization qual-

ity of a recommender system, is calculated by averaging the �� measured across all

users in the system:

 ��� =
sum total of �� across all users

number of users
 (16)

where ��� lies in the range [0, 10] and higher ��� implies greater capacity of recom-

mending personalized recommendations.

2.4 Recommendation methods

Different recommender systems have different assumptions and methods in solving the

recommendation problem. This thesis project focuses on five basic approaches to con-

structing a recommended list of items. Each approach’s assumptions and characteristics

are described below.

2.4.1 Random-based recommender system

A random-based recommender system assumes that users prefer arbitrary recommen-

dations that disregard both the items’ characteristics and their past interactions with the

rating system. While the assumption is arguably not sound, this type of recommender

system can provide highly surprising recommendations that are usually not expected by

users due to its random nature.

Another strong point of the random-based approach is the ease of implementing a rec-

ommender system that follows the said approach. In this project, a random-based rec-

ommended list for a user consists of � random items chosen from a set of items that the

10

said user has not interacted with, referred to as a recommendable set. The computation

and complexity of the aforementioned process are trivial compared to the process of

building the other four types of recommender systems.

A possible alternative to produce random-based recommendations is to generate a rank-

ing score value that lies in a specific range, such as [0, 1], for each item in the recom-

mendable set. The items are then ranked based on the generated score, and the top �

items are selected based on the ranking. A possible ranking score formula for an item

� is as follows:

 �����(�) = a randomized number in the range [0, 1] (17)

While this option requires more computational resources to operate, the generated score

can be used together with other types of numerical values computed by other types of

recommender systems to form a hybrid recommender system, which is further explained

in a later section.

2.4.2 Popularity-based recommender system

A popularity-based recommender system assumes that users prefer popular items. The

notion of popularity can be interpreted in different ways, and as a result, different meth-

ods of producing recommendations can be formed.

A possible interpretation of popularity is the number of ratings an item has. A popular

item is intuitively known by many users and consequently is rated by many users. This

interpretation assumes that the higher the number of ratings an item has, the more likely

it will be reacted positively by users.

In this project, the interpretation of popularity was decided as the number of 5-ratings an

item has, and a higher number of 5-ratings denotes greater popularity. An advantage of

this approach, compared to the previous interpretation, is that this method takes ratings

into account when constructing recommendations. It is often the case that the more re-

sources a recommender system can utilize, the more useful recommendations it can

suggest. Therefore, there is a high chance that recommending items by their numbers

of 5-ratings leads to better results than that produced by recommending based on num-

bers of ratings. The formula for the ranking score is as follows:

11

 �����(�) = number of 5-ratings item � has (18)

While it is relatively easy to implement a popularity-based recommender system, the

resulted recommendations are usually not novel nor personalized. Recommending only

popular items directly diminishes the novelty of the recommendations and restricting the

pool of items to only popular ones results in greater overlaps between recommended

lists suggested to different users. Another downside of a popularity-based recommender

system is its poor coverage, which is also a consequence of having a limited collection

of items to recommend.

2.4.3 Content-based recommender system

Fundamentally, content-based recommender systems are systems that utilize items’ de-

scriptions to make recommendations to users [7, p.139]. The assumption of content-

based systems is that if a user has reacted positively to items possessing certain char-

acteristics, she must also be interested in similar items which are described as having

the same attributes. The most common representations of items’ characteristics are key-

words and the keywords’ weights, which denote how important the keywords are in de-

scribing the items.

The most elementary approach, which is also the approach the system built in this project

follows, to building a content-based system is the determining of the top-� lists of similar

items [7, p. 151]. This approach requires a content-centric similarity function, for which

Equation 10 is a good candidate. Given an item, this method returns the top � most

similar items and their similarity weight, which are leveraged to make recommendations.

There are many ways one can utilize the top � most similar item lists in the process of

producing recommendations. A simple method that this project focuses on is to find the

top-� list for all items that have been given a 5-rating by a user. Items that do not appear

in any list are then considered not relevant and removed from the pool of recommendable

items. The ranking score for a relevant item is then calculated by summing up its availa-

ble similarity weight across lists, meaning that for the lists that do not contain the said

item its similarity weight is 0:

 �����(�) = aggregated available similarity weight of � across lists (19)

12

One advantage this approach has is its simplicity and low computational complexity. Be-

cause most of the irrelevant items are removed after applying the �-nearest neighbor

algorithm, the calculation is only required to operate on a limited set of items, whereas

the process in [7, p. 152] requires predictions to be made for all items in the testing set.

Content-based recommender systems are often useful in cold-start scenarios, where

other users’ ratings are of little use [7, p. 140], due to the fact that these systems do not

require other users’ ratings to make recommendations. However, recommendations pro-

duced by content-based systems are typically not as diverse as that of other systems [7,

p. 15]. The use of a content-centric similarity function for ranking the items results in

recommended lists consisting of highly similar items content-wise, reducing the diversity

of the recommendations.

2.4.4 Item-based collaborative filtering recommender system

A collaborative filtering recommender system makes use of multiple users’ ratings to

suggest recommendations [7, p. 8]. An item-based collaborative filtering (IBCF) recom-

mender system assumes that item � is similar to item � if they receive similar ratings

and if a user reacts positively to item �, she will like item � as well.

The process of building an IBCF system in this thesis is similar to that of building the

content-based system, with the only difference in choosing the similarity function. Instead

of a content-centric similarity function, the IBCF systems utilize a collaborative filtering

similarity function, which leverages items’ ratings in determining similarity.

Among available similarity functions, the adjusted cosine similarity has been reported to

offer better performance [10, p. 291], with the reason being that it takes users’ rating

scales into consideration [10, p. 288]. Let ��,� be the rating that user � gives to item �,

the adjusted cosine similarity that measures the similarity between item � and item � is

defined as follows:

 ���(�, �) =
∑ (��,� � ��)(��,�� ��)�∈�

�∑ (��,� � ��)�
�∈� �∑ (��,� � ��)�

�∈�

 (29)

where �� is the average of user �’s ratings and � is the set of users that have rated both

item � and item �.

13

IBCF systems boast good recommendation capacity, as their algorithms suggest highly

correlated items [1, p. 79]. A critical disadvantage of IBCF systems is their computation-

ally intensive operations [7, p. 44]. The number of users in � is often many times larger

than the number of items’ characteristics and consequently, the time it takes to compute

the collaborative filtering similarity between every pair of items is many times slower than

that of computing the content-centric similarity. Amazon addressed this problem by only

computing the similarity between items that are bought together [1, p. 79]. This thesis

provides a workaround that still allows the computation of similarity for every pair, but

comes with a different possible downside, which is further detailed in Chapter 3.

2.4.5 Hybrid recommender system

Generally, a hybrid recommender system is a combination of multiple other recom-

mender systems with the aim to achieve the best of all worlds [7, p. 19]. A hybrid sys-

tem’s assumption is a combination of different assumptions coming from the systems it

integrates. As a result, a hybrid system has access to more resources, based on which

it can provide more robust recommendations [7, p. 199]. However, an obvious down-

side to implementing a hybrid system is the extra computational complexity added for

operating multiple recommender systems simultaneously.

A common implementation of the hybrid approach is the weighted hybrid system, where

the scores of several systems are combined into a single score using a set of weights,

which are often determined through trial and error [7, p. 201]. In this thesis, a combination

of a content-based recommender system and an item-based collaborative filtering rec-

ommender system is experimented with different values of weights. It is worth noting that

the main focus of the experimentation is not about optimizing the system, but more about

examine the effects a hybrid system has over the evaluations of two stand-alone recom-

mender systems. The formula for the ranking score calculated by the hybrid system is

as follows:

 �����(�) = ��������(�) + � ⋅ ���������(�) (21)

where �������� and ��������� are respectively the ranking scores outputted by the con-

tent-based recommender system and the item-based collaborative filtering recom-

14

mender system. Equation 21 only uses a single weight � as there are only two sys-

tems being integrated and � can be set to a fraction if one wants to give greater im-

portance to the output of the content-based recommender system.

15

3 Implementation

3.1 Technology

3.1.1 Python

Python is a high-level and general-purpose interpreted programming language. The Py-

thon programming language is widely used in the field of scientific computing, due to its

suitability for developing algorithms and performing exploratory data analysis [11].

Some of Python’s key features are its beginner-friendliness, high-level data structures,

and elegant syntax, making it an appealing choice for fast development requirements

[12]. Python is highly popular, consistently making into the top 5 most popular program-

ming languages in various ranking indices, such as the TIOBE Index [13], the PYPL

Index [14] and the RedMonk Programming Language Rankings [15]. Its applications

span across many different areas, such as web development, database programming,

graphical user interfaces for desktop, and game development [16].

The version of Python used in this thesis project is 3.7.3, which is also the latest version

released. All coding works of this project were written in Python.

3.1.2 Jupyter Notebook

Jupyter Notebook is a web-based application that serves as a development environment,

whose important use cases include rapid experimenting, performing analysis, and com-

municating ideas and outcomes [17]. In this thesis project, the procedures of experiment-

ing and building recommender systems were done on Jupyter Notebook.

3.1.3 Pandas

Pandas is often considered the most popular data analysis and manipulation tool in Py-

thon. Pandas is a Python library that provides high-level data structures suitable for per-

forming data-related work. Pandas is widely used in the fields of finance, statistics, and

various engineering areas. [18.] Pandas is a core tool in this project. Tabular data, such

as the book dataset and the rating dataset, were stored, analyzed, and processed using

Pandas.

16

3.1.4 NumPy and SciPy

NumPy is an essential library for scientific computation in Python. This package offers

effective implementations of multi-dimensional arrays and matrices, as well as advanced

mathematical functions that operate on those data structures. [19.]

SciPy is a collection of mathematical algorithms and common numerical routines in sci-

ence and engineering. Its functions are built on top of NumPy’s data structures. [20.]

The scientific procedures in this project were operated using either NumPy or SciPy.

3.1.5 Scikit-learn

Scikit-learn is a Python machine learning library based on NumPy and SciPy [11, 21]. It

offers advanced implementations of popular machine learning algorithms, as well as a

user-friendly interface [11]. In this project, Scikit-learn was used for tasks that are in the

machine learning area.

3.2 Dataset

Goodbooks-10k is a relatively new public book dataset. The dataset includes six million

ratings for ten thousand books with the most ratings, as well as other data that are useful

for recommending items, such as book metadata and tag data [8]. The dataset is divided

into comma-separated values (CSV) files that store the sub-datasets:

 ratings.csv contains rating entries of the unique combinations of
user_id and book_id. The rating column is of the categorical range
[1, 2, 3, 4, 5].

 books.csv contains the metadata, such as title and authors, of books.

 tags.csv contains the list of tags and their identifier.

 book_tags.csv contains the number of user-voted counts corresponding
to unique combinations of book_id and tag_id. A count value implies the
importance and descriptiveness of a corresponding tag to a corresponding
book.

17

3.3 Testing methodology

To apply the evaluation strategy in Section 2.3, a testing set that is completely unknown

to the recommender systems must be defined. The rating dataset downloaded from [8]

was partitioned into a training set and a testing set. As the recommender systems were

tested on the ability to recommend items that have high chances of receiving 5-ratings,

the testing set only consists of 5-ratings. The recommender systems were then trained

on the training set and evaluated on the testing set.

It is highly likely that there is no official statement about what proportion of the dataset

should be used for testing, due to the heuristic nature of the machine learning field. In

this thesis project, an arbitrary value of one-third was used as the proportion of 5-ratings

to be used for testing. However, outside of this project, this proportion value should be

experimented based on the dataset and the business field that the recommender sys-

tems operate on. It is reasonable to assume that there is no one proportion value that

works well in every situation, and thus, the value should be derived through trial and

error.

3.4 Procedures

3.4.1 Starting Jupyter Notebook and importing Python libraries

After being installed, Jupyter Notebook could be started from the command line, shown

in Figure 3.

Figure 3. Command line when Jupyter Notebook was started.

18

The web application was then launched and is accessible using any web browsers. The

link to the application was displayed in the command line. In Figure 3, the link starting

with http://localhost:8888/?token= was the link used to access the application.

The current directory in the command line then appeared on the user interface of Jupyter

Notebook. The application could then be navigated by selecting the directory in-browser.

Figure 4 shows the user interface after it had been navigated to the directory of this

project.

Figure 4. Jupyter Notebook running on Google Chrome.

A new coding session, referred to as a notebook, could then be created through the user

interface, and saved with under the .ipynb file extension. As Figure 4 illustrated, there

were nine notebooks available in the project. An example of a blank notebook is depicted

in Figure 5.

19

Figure 5. An empty notebook.

The block that appears in Figure 5 is referred to as a cell, and a notebook usually has

many cells. Each cell is written and executed separately, but a variable that is defined

and modified in one cell can be reused in another cell, thus, allowing rapid experimenting

without having to re-run the whole notebook again. Figure 6 shows how codes in a note-

book are written and executed.

20

Figure 6. Example codes executed in Jupyter Notebook.

The first cell in Figure 6 is an example of importing a Python library into the notebook.

Because not all notebooks needed to use all the libraries mentioned in Section 3.1, in

this thesis, importing statements are only mentioned when it is necessary. Each block of

codes without outputs mentioned in this thesis was written in the same cell, and is shown

as a listing instead of a figure:

import pandas as pd
import numpy as np

Listing 1. Importing statements for Pandas and NumPy.

Listing 1 and Figure 6 show how Pandas and NumPy were imported into the notebook

with aliases pd and np, respectively. It is conventional in the scientific community that

Pandas and NumPy are imported under those aliases.

21

3.4.2 Analyzing the dataset

The goodbooks-10k dataset was stored under the data directory shown in Figure 4. List-

ing 2 shows how Pandas loaded CSV files into the notebook.

books = pd.read_csv('./data/books.csv')
ratings = pd.read_csv('./data/ratings.csv')
tags = pd.read_csv('./data/tags.csv')
book_tags = pd.read_csv('./data/book_tags.csv')

Listing 2. Importing the sub-datasets into the notebook using Pandas.

Before using the data, it is often helpful to perform some simple data analysis methods

to discover useful information, such as what the data looks like or which columns are

usable. In this thesis, not all analysis codes are shown due to the experimental nature of

data analyzing, and only a few meaningful analysis parts are mentioned.

The books dataset contains ten thousand books. Figure 7 shows the columns of the

books dataset.

Figure 7. List of columns of the books dataset.

There were only a few columns depicted in Figure 7 that the project makes use of,

namely book_id, goodreads_book_id, authors, and title. The rating-related data in

the books dataset are not derived from the ratings dataset and thus were ignored to

avoid inconsistency. Since none of the four columns above had a missing entry, there

was no need to remove invalid rows. Figure 8 shows the first five books in the ratings

dataset.

22

Figure 8. First five books listed in the books dataset.

It is worth noting in Figure 8 that the authors column was of type string, which means

that it is highly likely that the column needed to be pre-processed into another structure

that better represents multiple authors.

The ratings dataset contains almost 6 million rating entries. It could be found from the

ratings dataset that there are about 53 thousand users. One reason why this project

chose to implement an item-based collaborative filtering system instead of a user-based

one (a system that finds similarities between users instead of items) was that the number

of users is five times greater than the number of books. Finding pairwise user similarities

is then 25 times costlier than computing item similarities. The first five rating entries can

be seen in Figure 9.

Figure 9. First five rating entries and statistics about the number of ratings, books, and users.

Figure 9 illustrates how simple statistics such as the number of books and users could

be acquired using Pandas. As Figure 9 depicts, a rating entry consists of a user_id, a

23

book_id, and a rating. From the example entries, it is safe to state that the user with

user_id 1 likes the book with book_id 258, whereas the user with user_id 2 does not

enjoy the book with book_id 2318 as much.

Figure 10. Distribution of the ratings in the dataset.

It can be observed from Figure 10 that the ratings users give in this dataset is at the

higher end, which was expected as this dataset contains only popular books. It then

becomes more justified that an item was considered relevant only if a user gives it a 5-

rating. It is worth noting that this is not the case for every dataset. Different datasets with

different distributions have different requirements on how items are considered relevant.

Figure 11 shows the first five tag entries in the tags dataset.

Figure 11. First five tag entries.

24

It can be safely concluded from Figure 11 that the tags dataset needs to be filtered. Tag

names such as –1- and –10- do not make much intuitive sense, and it is reasonable to

remove them from the dataset.

Figure 12 shows the first five book-tag entries.

Figure 12. First five book-tag entries.

It is worth noting in Figure 12 that the book_tags dataset uses the goodreads_book_id

as the book identifier instead of book_id, which is why column goodreads_book_id of

the books dataset was considered usable previously.

3.4.3 Partitioning the data into a training set and a testing set

The partitioning of data is done according to Section 3.3. A helper function

train_test_split was imported from Scikit-learn to simplify the process. Because

one-third of the 5-ratings in the dataset was extracted for testing, it is reasonable to re-

move users with two or less 5-ratings in their profiles, since in those cases there are not

enough 5-ratings to divide to the testing set, rendering the evaluation process meaning-

less.

only_five_ratings = ratings[ratings.rating==5]
user_five_rating_counts = only_five_ratings.groupby('user_id').rating.count()
kept_users = user_five_rating_counts[user_five_rating_counts>2].index.tolist()
kept_ratings = ratings[ratings.user_id.isin(kept_users)]

Listing 3. Process of removing users with two or less 5-ratings

As shown in Listing 3, the ratings dataset was filtered to kept_ratings, which contains

only ratings for users who have three or more 5-ratings.

25

kept_4_and_less_ratings = kept_ratings[kept_ratings.rating<5]
kept_5_ratings = kept_ratings[kept_ratings.rating==5]
training_5_ratings, testing_ratings = train_test_split(
 kept_5_ratings,
 test_size=1/3,
 random_state=42,
 stratify=kept_5_ratings[['user_id']])
training_ratings = pd.concat([kept_4_and_less_ratings, training_5_ratings])

Listing 4. Routine of partitioning the ratings dataset into training_ratings and test-

ing_ratings.

The random_state parameter in Listing 4 is to ensure the deterministic nature of the

project, for it would be troubling to reach a conclusion if randomness was involved in the

experimentation. The partitioning was stratified on users to ensure that there was no

case that a user does not have a testing 5-rating.

3.4.4 Pre-processing tag-related data and making a content-centric similarity function

In this thesis project, tags and authors were considered content-centric keywords. As

mentioned in Section 3.4.2, the tags dataset was filtered based on the ranking of the

aggregated count each tag has. Figure 13 illustrates how the ranking of tags is deter-

mined.

Figure 13. Ranking of tags.

26

It can be observed from Figure 13 that popular tags have more recognizable names than

the example tags shown in Section 3.4.2. An arbitrary number of 300 was chosen as the

number of most popular tags to be kept for building the similarity function.

However, tags such as to-read, currently-reading, or books-i-own hardly have any

descriptive value in portraying qualities of books. From the 300 tags kept, 80 tags were

then manually removed based on intuitive common sense. The remaining 220 tags were

then used to filter the book_tags dataset, and the counts were normalized. The pro-

cessed book_tags dataset was then combined with the author data to form the content-

centric keyword dataset for building the similarity function.

Before the union of the book-tag data and author data is proceeded, the authors column

must be pre-processed into another suitable data structure, as mentioned in Section

3.4.2.

Figure 14. Routine of reformatting the authors column to type array.

As Figure 14 depicts, the new column authors_list is more suitable for comparing and

processing than the old authors column.

The book authors were then concatenated into the tags dataset, with their normalized

counts equal to the highest normalized counts of their books. It is reasonable to assume

that multiple authors are considered to have the same importance, and that author tags

are given the highest priority in computing similarities.

27

Figure 15. An example tag list after being processed and normalized.

Figure 15 illustrates the result tag list of the book Harry Potter and the Sorcerer’s Stone.

It can be observed from the figure that the tags of the two authors are given equal im-

portance to the fantasy tag, which is the most important tag excluding the author tags.

The similarity function was then formed by using the cosine function defined in Equation

10. Figure 16 shows the top 10 most similar books to the book Harry Potter and the

Sorcerer’s Stone.

28

Figure 16. Top 10 most similar books to the book Harry Potter and the Sorcerer’s Stone.

As Figure 16 illustrates, the results of the similarity function are intuitively reasonable. It

is safe to conclude from Figure 16 that the similarity function worked as intended since

it is normal that books of the same franchise (Harry Potter) are similar content-wise.

3.4.5 Building an evaluator

The evaluator was then built according to the evaluation strategy in Section 2.3. As the

full version of the evaluator code is long, it is made available in the appendix section.

The evaluator is a Python class called Evaluator that has a method to evaluate recom-

mender systems and a method to print the results of the evaluation. The constructor of

the evaluator takes �, the training set, the testing set, the content-centric similarity func-

tion, and the books’ novelty scores as the arguments.

evl = Evaluator(N=10,
 training_ratings=training_ratings,
 testing_ratings=testing_ratings,
 book_sim=book_sim,
 novelty_scores=novelty_scores)

Listing 5. Initialization of the evaluator.

It can be observed from Listing 5 that the evaluator is flexible in term of what value of �

to use. Although the testing in this thesis was only done with � = 10, typically different

29

values of � are used for a better view over the performance of tested recommender

systems.

n_users = len(training_ratings.user_id.unique())
rating_count = training_ratings.groupby('book_id').count()[['rating']]
rating_count.loc[:, 'novelty_score'] = np.log2(n_users / rating_count.rating)
novelty_scores = rating_count[['novelty_score']]

Listing 6. Routine to create the novelty score dataset.

Listing 6 shows how Equation 7 was implemented in the project. From the dataset, the

minimum and maximum values of novelty scores were determined as 1.48 and 12.68,

respectively. For consistency, the �� metric was cropped to the range [0, 10], which is

also the range for �� and ��.

It is also worth noting that due to computational resource limitation, in this project, the

pair-wise ��, defined in Equation 15, was only computed with an arbitrary value of 3000

as the number of users. A set of 3000 random users was chosen, and �� was calculated

pair-wise between those 3000 users only. Because ��� is calculated by averaging ��

across users, it is usually accepted that the user set is subsampled.

Figure 17 illustrates an example of an evaluating run using the evaluator.

30

Figure 17. Evaluation of the random-based and popularity-based recommender system.

As depicted in Figure 17, the evaluator’s methods were called to evaluate the random-

based and popularity-based recommender systems. Then the recommender systems

computed the recommendations for every user, and the evaluator computed the evalu-

ation metrics.

3.4.6 Implementing recommender systems

Except for a deviation in the process of building the item-based collaborative filtering

(IBCF) recommender system, the building of the five recommender systems was entirely

based on the procedures and formulas of Section 2.4. The codes of building the recom-

mender systems are available in the appendix section.

As mentioned in Section 2.4.4, the calculating of similarities between ten thousand items

pair-wise following Equation 20 requires powerful computation resources, which this pro-

ject did not possess. A simple workaround was attempted at solving this problem. By

31

utilizing the sparse matrix data structure from SciPy and the cosine_similarity func-

tion from Scikit-learn, the similarity matrix is then calculable within a reasonable

timeframe.

Firstly, the adjusted ratings for computing the adjusted cosine similarity were calculated.

Then the adjusted ratings were transformed into a sparse rating matrix.

from scipy.sparse import csr_matrix
from pandas.api.types import CategoricalDtype

user_c = CategoricalDtype(sorted(training_ratings.user_id.unique()), or-
dered=True)
book_c = CategoricalDtype(sorted(training_ratings.book_id.unique()), or-
dered=True)

row = training_ratings.user_id.astype(user_c).cat.codes
col = training_ratings.book_id.astype(book_c).cat.codes
sparse_matrix = csr_matrix((training_ratings["adjusted_rating"],(row, col)), \
 shape=(user_c.categories.size, book_c.categories.size))

Listing 7. Computation of the sparse adjusted rating matrix

In Listing 7, the sparse matrix proves to be a more efficient data structure, as the number

of ratings is only about 5.2 million (because the testing set is excluded) compared to the

dimension 52363x10000 of the matrix. The cosine_simlarity function was then ap-

plied directly to the sparse matrix. Because this function is optimized for sparse data

structure, the computation is fast and does not take as much random-access memory

compared to the dense data structure version.

However, by not following the original formula, this approach arises a new issue. The

implementation of function cosine_similarity considers missing entries in the sparse

matrix as 0. This imputation implies that the algorithm replaces every missing rating by

the mean ratings of users. The consequence of this replacement is that the similarity

values computed are skewed. To be precise, the algorithm is biased towards popular

items, meaning that it is more likely to recommend popular items, which are usually not

novel. It is unclear whether this bias is beneficial or detrimental, but it was expected that

the novelty and diversity evaluation of the IBCF system built in this project is lower than

that of the theory-based IBCF system.

32

4 Evaluations

The evaluations of the recommender systems are as follows:

 ��� �� ��� ��� ���

Random-based 0.04% 100% 7.62 7.36 9.99

Popularity-based 5.39% 0.47% 2.04 4.21 3.84

Content-based 7.18% 80.10% 6.31 2.47 9.88

Item-based Collabo-

rative Filtering (IBCF)

22.64% 85.54% 4.84 4.49 9.58

Hybrid (� = 1) 10.79% 81.78% 6.16 2.62 9.88

Table 1. Evaluations of the five recommender systems.

Table 1 illustrates the unique characteristics of different recommender systems built in

this thesis project. The random-based system has remarkably low accuracy, but in ex-

change, it excels in all other areas of the evaluation. The popularity-based recommender

system possesses a mediocre accuracy, and its recommendations are neither novel nor

personalized. The content-based system also has an average accuracy, but its high ten-

dency to recommend less popular items and high catalog coverage make it an available

choice for businesses, especially in the scenario of cold-start. The IBCF system exhibits

a far superior accuracy compared to the previous three, while its other areas are bal-

33

anced as well. The representative hybrid system with weight 1 is a balance of the con-

tent-based system and the IBCF system, with evaluations settling in the middle of those

from the two recommender systems.

34

5 Conclusions

From the numbers in Chapter 4, it is reasonable to state that the IBCF system is the most

performant system on the goodbooks-10k dataset. With its exceptional accuracy, it is not

surprising that the system is a target of interest for both academic research and practical

implementation.

However, the focus of this thesis project was on the process of building and evaluating

recommender systems. The evaluations in Chapter 4 are only valid in the context of this

thesis and do not confirm which recommender systems are more useful. It is advisable

that companies build and evaluate multiple recommender systems to determine which

ones are the most suitable systems for their requirements.

It can be safely concluded that the process of building and evaluating recommender

systems is highly customizable, meaning that the systems rely on many unique factors,

such as the dataset, the business area, the users’ expectation or the computational con-

straints. Decisions then must be made on the process of building the systems so that the

systems resulted is satisfactory. This thesis project is an example of how the process of

building recommender systems can be performed. The arbitrary values chosen in this

thesis, such as � = 10 or ������ �� ���� = 300, represent decisions that need to be

made. It is advisable that these decisions be made carefully after extensive experimen-

tation.

It is also worth noting the technical implementations of recommender systems can meet

unexpected computational constraints. There is not always a direct way from an algo-

rithm to an implementation of the said algorithm. Two examples in this thesis are Equa-

tion 15 and Equation 20. For datasets with millions of users, which is common, the two

formulas are highly likely to be unusable. It is then up to the business to find workarounds

or alternative solutions. It is advisable for businesses to plan the technical implementa-

tions along with the chosen theoretical algorithms.

35

References

1 Linden G, Smith B, York J. Amazon.com Recommendations: Item-to-Item Collab-
orative Filtering. IEEE Internet Computing 2003;January-February:76-80.

2 Schafer JB, Konstan J, Riedl J. Recommender Systems in E-Commerce. EC '99
Proceedings of the 1st ACM conference on Electronic commerce 1999:158-166.

3 Netflix. The Netflix Prize Competition [online]. URL: https://www.netflix-
prize.com/index.html. Accessed 20 May 2019.

4 Bennett J, Lanning S. The Netflix Prize. In KDD Cup and Workshop in conjunc-
tion with KDD 2007.

5 Davidson J, Nandy P, Liebald B, Van Vleet T, Liu J. The YouTube Video Recom-
mendation System. Proceedings of the fourth ACM conference on Recommender
systems 2010:293-296.

6 Spotify. Company Info [online]. URL: https://newsroom.spotify.com/company-
info/. Accessed 20 May 2019.

7 Aggarwal CC. Recommender Systems: The Textbook. Springer International
Publishing; 2016.

8 Zając Z. The goodbooks-10k dataset [online]. URL: https://git-
hub.com/zygmuntz/goodbooks-10k. Accessed 20 May 2019.

9 Zhou T, Kuscsik Z, Liu JG, Medo M, Wakeling JR, Zhang YC. Solving the appar-
ent diversity-accuracy dilemma of recommender systems. Proceedings of the Na-
tional Academy of Sciences of the United States of America 107 2010:4511-
4515.

10 Sarwar B, Karypis G, Konstan J, Reidl J. Item-Based Collaborative Filtering Rec-
ommendation Algorithms. WWW '01 Proceedings of the 10th international confer-
ence on World Wide Web 2001:285-295.

11 Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M,
Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D,
Brucher M, Perrot M, Duchesnay E. Scikit-learn: Machine Learning in Python.
The Journal of Machine Learning Research 2011;12:2825-2830.

12 Python Software Foundation. The Python Tutorial [online]. URL: https://docs.pyt-
hon.org/3/tutorial/index.html. Accessed 20 May 2019.

13 TIOBE Software BV. TIOBE Index for May 2019 [online]. URL: https://www.ti-
obe.com/tiobe-index/. Accessed 20 May 2019.

14 Carbonnelle P. PYPL PopularitY of Programming Language [online]. URL:
http://pypl.github.io/PYPL.html. Accessed 20 May 2019.

15 RedMonk. The RedMonk Programming Language Rankings: January 2019
[online]. URL: https://redmonk.com/sogrady/2019/03/20/language-rankings-1-19/.
Accessed 20 May 2019.

36

16 Python Software Foundation. About Python [online]. URL: https://www.pyt-
hon.org/about/. Accessed 20 May 2019.

17 Project Jupyter. The Jupyter Notebook [online]. URL: https://jupyter-note-
book.readthedocs.io/en/latest/notebook.html. Accessed 20 May 2019.

18 The Pandas Project. Package overview [online]. URL: http://pan-
das.pydata.org/pandas-docs/stable/getting_started/overview.html. Accessed 20
May 2019.

19 NumPy developers. NumPy [online]. URL: https://www.numpy.org/. Accessed 20
May 2019.

20 The SciPy community. Introduction [online]. URL:
https://docs.scipy.org/doc/scipy/reference/tutorial/general.html. Accessed 20 May
2019.

21 Project Scikit-learn. Scikit-learn: Machine Learning in Python [online]. URL:
https://scikit-learn.org/stable/index.html. Accessed 20 May 2019.

Appendix 1

 1 (2)

Appendix 1. Implementation of the evaluator

import numpy as np
import pandas as pd
import scipy.sparse as sp
from sklearn.metrics.pairwise import cosine_similarity
from tqdm import tqdm_notebook as tqdm

class Evaluator():
 def __init__(
 self,
 k=10,
 training_ratings=None,
 testing_ratings=None,
 book_sim=None,
 novelty_scores=None
):
 self.k = k
 self.book_sim = book_sim
 self.novelty_scores = novelty_scores
 if training_ratings is not None:
 self.training_ratings = training_ratings
 self.num_users = len(self.training_ratings.user_id.unique())
 self.num_books = len(self.training_ratings.book_id.unique())
 if testing_ratings is not None:
 self.testing_ratings = testing_ratings
 self.testing_idx = {}
 for user_id in tqdm(testing_ratings.user_id.unique()):
 self.testing_idx[user_id] = \
 testing_ratings[testing_ratings.user_id == user_id]\
 .book_id.values
 self.result = {}

 def _average_precision(self, pred, truth):
 in_arr = np.in1d(pred, truth)
 score = 0.0
 num_hits = 0.0
 for idx, correct in enumerate(in_arr):
 if correct:
 num_hits += 1
 score += num_hits / (idx + 1)
 return score / min(len(truth), self.k)

 def _novelty_score(self, pred):
 # Recommend the top 10 books in novelty score results in ~11
 # Crop the score to 10.0 for consistency
 return min(self.novelty_scores.loc[pred].novelty_score.mean(), 10.0)

 def _diversity_score(self, pred):
 matrix = self.book_sim.loc[pred, pred].values
 ils = matrix[np.triu_indices(len(pred), k=1)].mean()
 return (1 - ils) * 10

 def _personalization_score(self, preds, user_ids, book_ids):
 if len(user_ids) > 3000:
 np.random.seed(42)
 user_ids = np.random.permutation(user_ids)[:3000]
 df = pd.DataFrame(
 data=np.zeros([len(user_ids), len(book_ids)]),
 index=user_ids,
 columns=book_ids

Appendix 1

 2 (2)

)
 for user_id in user_ids:
 df.loc[user_id, preds[user_id]] = 1

 matrix = sp.csr_matrix(df.values)

 # calculate similarity for every user's recommendation list
 similarity = cosine_similarity(X=matrix, dense_output=False)

 # get indicies for upper right triangle w/o diagonal
 upper_right = np.triu_indices(similarity.shape[0], k=1)

 # calculate average similarity
 personalization = np.mean(similarity[upper_right])

 return (1 - personalization) * 10

 def evaluate(self, model):
 print("Calculating recommendations:")
 if len(model.preds) == 0:
 model.fit(self.training_ratings)
 preds = model.all_recommendation()
 user_ids = list(preds.keys())
 book_ids = np.unique(np.concatenate(list(preds.values())))
 ap_sum = 0
 nov_score_sum = 0
 div_score_sum = 0
 print("Calculating metrics:")
 for user_id in tqdm(preds.keys()):
 pred = preds[user_id]
 truth = self.testing_idx[user_id]
 ap_sum += self._average_precision(pred, truth)
 nov_score_sum += self._novelty_score(pred)
 div_score_sum += self._diversity_score(pred)

 self.result[model.name] = {}
 self.result[model.name]['Mean Average Precision'] = "%.2f%%" % (
 ap_sum / self.num_users * 100)
 self.result[model.name]['Coverage'] = "%.2f%%" % (
 len(book_ids) / self.num_books * 100)
 self.result[model.name]['Novelty Score'] = "%.2f" % (
 nov_score_sum / self.num_users)
 self.result[model.name]['Diversity Score'] = "%.2f" % (
 div_score_sum / self.num_users)
 self.result[model.name]['Personalization Score'] = "%.2f" % \
 self._personalization_score(preds, user_ids, book_ids)

 def print_result(self):
 print(pd.DataFrame(self.result).loc[[
 'Mean Average Precision',
 'Coverage',
 'Novelty Score',
 'Diversity Score',
 'Personalization Score']])

Appendix 2

 1 (1)

Appendix 2. Implementation of the random-based recommender system

class RandomRecommender():
 name = 'Random-based RS'

 def fit(self, training_ratings):
 user_ids = training_ratings.user_id.unique()
 book_ids = training_ratings.book_id.unique()
 self.preds = {}
 np.random.seed(42)
 for user_id in tqdm(user_ids):
 excluded_books = \
 training_ratings[training_ratings.user_id==user_id]\
 .book_id.unique().tolist()
 recommendable = book_ids[~np.in1d(book_ids, excluded_books)]
 self.preds[user_id] = np.random.permutation(recommendable)[:10]

 def recommendation_for_user(self, user_id):
 if user_id not in self.preds:
 return []
 return self.preds[user_id]

 def all_recommendation(self):
 return self.preds

Appendix 3

 1 (1)

Appendix 3. Implementation of the popularity-based recommender system

class PopularityRecommender():
 name = "Popularity-based RS"
 preds = {}

 def fit(self, training_ratings):
 user_ids = training_ratings.user_id.unique().tolist()
 five_ratings = training_ratings[training_ratings.rating==5]
 ranked_books = five_ratings\
 .groupby('book_id')\
 .count()[['rating']]\
 .rename(columns={'rating': 'weight'})
 ranked_books = ranked_books\
 .sort_values(by='weight', ascending=False)
 top_books = ranked_books[:200]
 book_ids = np.array(top_books.index.tolist())
 self.preds = {}
 for user_id in tqdm(user_ids):
 excluded_books = \
 training_ratings[training_ratings.user_id==user_id]\
 .book_id.unique().tolist()
 recommendable = book_ids[~np.in1d(book_ids, excluded_books)]
 self.preds[user_id] = recommendable[:10]

 def recommendation_for_user(self, user_id):
 return self.preds[user_id]

 def all_recommendation(self):
 return self.preds

Appendix 4

 1 (1)

Appendix 4. Implementation of the content-based recommender system

top_sim_books = {}
book_ids = book_sim.index
for book_id in tqdm(book_ids):
 top_sim_books[book_id] = book_sim.\
 loc[book_id].sort_values(ascending=False)[1:51]

list_of_5_ratings = training_ratings[training_ratings.rating==5]\
 .groupby('user_id')['book_id'].apply(list)

class ContentBasedRecommender():
 name = "Content-based RS"
 preds = {}

 def fit(self, training_ratings):
 user_ids = training_ratings.user_id.unique().tolist()
 self.preds = {}
 for user_id in tqdm(user_ids):
 excluded_books = \
 training_ratings[training_ratings.user_id==user_id]\
 .book_id.unique().tolist()
 most_similar_books = pd.Series([])
 for book_id in list_of_5_ratings[user_id]:
 most_similar_books = most_similar_books\
 .append(top_sim_books[book_id])

 most_similar_books = \
 np.array(\
 most_similar_books.groupby(most_similar_books.index)\
 .sum().sort_values(ascending=False).index\
)
 recommendable = \
 most_similar_books[~np.in1d(\
 most_similar_books,
 excluded_books\
)]

 self.preds[user_id] = recommendable[:10]

 def recommendation_for_user(self, user_id):
 if user_id not in self.preds:
 return []
 return self.preds[user_id]

 def all_recommendation(self):
 return self.preds

Appendix 5

 1 (1)

Appendix 5. Implementation of the item-based collaborative filtering recom-

mender system

top_sim_books = {}
book_ids = cf_sim.index
for book_id in tqdm(book_ids):
 top_sim_books[book_id] = cf_sim\
 .loc[book_id].sort_values(ascending=False)[1:51]

list_of_5_ratings = training_ratings[training_ratings.rating==5]\
 .groupby('user_id')['book_id'].apply(list)

class ItemCFRecommender:
 name = "Item-based CF RS"
 preds = {}

 def fit(self, training_ratings):
 user_ids = training_ratings.user_id.unique().tolist()
 self.preds = {}
 for user_id in tqdm(user_ids):
 excluded_books = \
 training_ratings[training_ratings.user_id==user_id]\
 .book_id.unique().tolist()
 most_similar_books = pd.Series([])
 for book_id in list_of_5_ratings[user_id]:
 most_similar_books = most_similar_books\
 .append(top_sim_books[book_id])

 most_similar_books = \
 np.array(\
 most_similar_books.groupby(most_similar_books.index)\
 .sum().sort_values(ascending=False).index
)
 recommendable = most_similar_books[~np.in1d(\
 most_similar_books, excluded_books)]

 self.preds[user_id] = recommendable[:10].tolist()
 def recommendation_for_user(self, user_id):
 if user_id not in self.preds:
 return []
 return self.preds[user_id]

 def all_recommendation(self):
 return self.preds

Appendix 6

 1 (1)

Appendix 6. Implementation of the hybrid recommender system

cf_top_sim_books = {}
book_ids = cf_sim.index
for book_id in tqdm(book_ids):
 cf_top_sim_books[book_id] = cf_sim\
 .loc[book_id].sort_values(ascending=False)[1:51]

cb_top_sim_books = {}
book_ids = book_sim.index
for book_id in tqdm(book_ids):
 cb_top_sim_books[book_id] = book_sim\
 .loc[book_id].sort_values(ascending=False)[1:51]

list_of_5_ratings = training_ratings[training_ratings.rating==5]\
 .groupby('user_id')['book_id'].apply(list)

class HybridRecommender:
 name = "Hybrid CF RS"
 preds = {}

 def __init__(self, rate=1):
 self.rate = rate
 self.name = "Hybrid CF RS (rate=" + str(rate) + ")"

 def fit(self, training_ratings):
 user_ids = training_ratings.user_id.unique().tolist()
 self.preds = {}
 for user_id in tqdm(user_ids):
 excluded_books = \
 training_ratings[training_ratings.user_id == user_id]\
 .book_id.unique().tolist()
 most_similar_books = pd.Series([])
 for book_id in list_of_5_ratings[user_id]:
 most_similar_books = most_similar_books.append(
 cb_top_sim_books[book_id])
 most_similar_books = most_similar_books.append(
 cf_top_sim_books[book_id] * self.rate)

 most_similar_books = np.array(most_similar_books.groupby(
 most_similar_books.index).sum()\
 .sort_values(ascending=False).index)
 recommendable = most_similar_books[~np.in1d(
 most_similar_books, excluded_books)]

 self.preds[user_id] = recommendable[:10].tolist()

 def recommendation_for_user(self, user_id):
 if user_id not in self.preds:
 return []
 return self.preds[user_id]

 def all_recommendation(self):
 return self.preds

