

Bogdan Moroz

UNIT TEST AUTOMATION OF A
REACT-REDUX APPLICATION WITH

JEST AND ENZYME

Bachelor’s thesis
Degree programme in Information Technology

2019

Author Degree

Time

Bogdan Moroz Bachelor of
Engineering

May 2019

Title

Unit Test Automation of a React-Redux Application with Jest
and Enzyme

108 pages
12 pages of appendices

Commissioned by

Observis Oy

Supervisor

Timo Hynninen

Abstract

The goal of this bachelor’s thesis was to evaluate the benefits of test automation and
determine an efficient unit testing strategy for React applications developed at the
commissioner company Observis. The thesis aimed at providing examples of units tested
according to the strategy and integrating the automated execution of the tests into the
deployment pipeline for the case study application – a dashboard application for workforce
management called MOWO. MOWO dashboard is written in TypeScript using React and
Redux.

The proposed strategy was formulated based on the findings of the literature review on test
automation, an overview of the technology stack of the application as well as a summary of
four testing strategies used by development teams in other software development
companies. The proposed testing strategy aims to improve the quality of React-Redux
applications developed by Observis, help developers understand the software under test
and reduce the risks of making changes to the existing code. The strategy identifies the
four types of units that need to be tested: utility functions, action creators, Redux reducers
and React components. The strategy provides instructions on how to structure the tests to
make them expressive, readable and maintainable.

In the practical part of the study, detailed examples of tests for each of the four types of
units are provided. The automatic execution of tests is achieved by configuring a Git hook
for the project as well as creating a project on the Jenkins automation server that executes
the tests every time a new merge request is created on GitLab and leaves a comment on
GitLab notifying whether the tests passed or failed.

Keywords

Testing, Unit testing, Test automation, Behaviour-driven development, React, Redux, Jest,
Enzyme, Typescript, Jenkins

CONTENTS

1 INTRODUCTION .. 5

2 AUTOMATED TESTING ... 7

2.1 Motivation ... 8

2.2 Types of automated tests ... 9

2.3 Goals of test automation ... 11

2.4 Code coverage ... 14

2.5 Behaviour-driven development and spec-style testing .. 17

2.6 Test doubles ... 19

3 TESTING TOOLS AND SUT TECHNOLOGIES ... 21

3.1 Jest ... 21

3.1.1 Test runner ... 22

3.1.2 Assertion library .. 24

3.1.3 Mocking library .. 25

3.1.4 Built-in code coverage .. 29

3.2 React .. 30

3.2.1 JSX ... 31

3.2.2 Component lifecycle methods ... 32

3.3 TypeScript .. 33

3.4 Redux ... 34

3.5 Shallow rendering with Enzyme .. 38

3.5.1 Snapshot testing React components with Jest and Enzyme 43

3.6 Jenkins, GitLab, Gitflow workflow and Git hooks .. 48

4 PROPOSED TESTING STRATEGY FOR A REACT-REDUX APPLICATION 50

5 PRACTICAL IMPLEMENTATION ... 59

5.1 Configuring the test environment .. 59

5.2 Example of testing a utility function ... 63

5.3 Examples of testing action creators .. 67

5.4 Example of testing a reducer .. 69

5.5 Examples of testing React components .. 72

5.5.1 Testing a stateless component ... 73

5.5.2 Testing a stateful component connected to Redux ... 79

5.6 Configuring pre-push test execution with Git hooks .. 90

5.7 Creating a Jenkins project to run tests for each merge request 91

5.8 Displaying a code coverage report on the Jenkins server 97

6 DISCUSSION ... 99

7 CONCLUSION .. 102

REFERENCES .. 109

APPENDICES

Appendix 1. Full test suite for generateDurationText() utility function

Appendix 2. Full test suite for the authentication action creators

Appendix 3. Full test suite for the authentication reducer

Appendix 4. Full test suite for the AccountForm component

Appendix 5. Full test suite for the AccountContainer component

5

1 INTRODUCTION

IT organizations strive to provide stable, reliable and secure services to their

customers (Kim et al. 2016, xxv). Production ready software requires testing

before it is released into production environments. Over the years, approaches to

software testing have matured. The fully manual process of testing applications

has largely been replaced with writing and executing automated tests. Automated

testing enables a fast feedback loop that allows developers to find and fix errors

soon after they make them. It also gives developers confidence to refactor the

code without breaking existing features. (Vocke 2018.)

However, given the test code is not what the customer is paying for, temptation

may arise to abandon testing, when the tests become difficult or expensive to

maintain (Meszaros 2007). It is therefore important to study and practice methods

and tools that make test automation efficient. The extra cost of writing and

maintaining automated tests must provide net benefits by reducing the amount of

manual testing and debugging (Meszaros 2007).

In the early days of test automation user interface testing was considered the

slowest and most complicated step of software testing. UI tests have been placed

at the top of the test pyramid when the concept was introduced by Cohn in 2009.

Nowadays, when single-page web applications built with frameworks and libraries

like React, Angular and Vue are widespread, this is no longer the case. UI can be

unit tested just like other applications. (Vocke 2018.) However, due to the

proliferation of available frameworks and tools, there is no one-size-fits-all

solution. In the world of front-end development in 2019 there are multiple

competing tools and strategies for software testing, and discussions on the right

approach can get opinionated and heated.

Observis Oy is committed to continuously improving its software development

process. Deployment pipelines are set up for most of the applications developed

by the company. However, most of these pipelines include little to no automated

tests. Observis is looking for ways to transform the development lifecycle of its

products to include thorough automated software testing.

6

One of the products developed at Observis is a dashboard application for

workforce management. It is a web application written in TypeScript using the

React and Redux libraries. A deployment pipeline is set up for the application

using the Jenkins automation server. Until this point, no tests have been written

for the application. The process of testing the application has been manual. The

manual approach, even though rigorous, has not been comprehensive. Software

bugs were seeping into the production environment as a result.

The goal of this bachelor’s thesis is to evaluate the benefits of test automation for

the commissioner company, determine an efficient unit testing strategy for React

applications developed at Observis, provide examples of units tested according

to the strategy and integrate the automated execution of the tests into the

deployment pipeline for the application. The thesis discusses the fundamental

concepts of test automation and unit testing and looks at how some of the

established industry patterns and techniques can be applied to React-Redux

applications. The thesis provides instructions for testing React-Redux

applications written in TypeScript using the Jest testing framework with the

Enzyme testing utility. The study aims at documenting the setup process of the

testing environment, as well as the design and creation of unit tests. The

automatic execution of the said tests will be achieved by integrating them into the

existing deployment pipeline for the client application described above. Moving

forward, this work can be used as a reference by software developers at

Observis. Moreover, the testing strategy presented here can be adopted by

developers and teams outside the company.

The thesis aims at answering the following research questions:

• How does test automation benefit a company?

• What unit testing strategy can be adopted for React applications?

• How should a testing environment be set up for the specific technology
stack of the case study (React, TypeScript, Redux, Jenkins)?

• How to evaluate the efficiency of a testing strategy?

The thesis discusses the key principles of automated testing, including the three

commonly used types of automated tests: unit, integration and end-to-end (see

e.g. Dodds 2017b; GitLab Documentation 2019b; Pittet 2019b; Wacker 2015).

7

However, the work focuses on unit tests only. Tools and methods for integration

and end-to-end testing are not the target of the study.

The thesis is structured as follows: Chapter 2 provides the theoretical background

on automated testing. Chapter 3 introduces the technologies that comprise the

SUT and the tools used to test it. Chapter 4 presents the proposed testing

strategy for the application. Chapter 5 documents the implementation of the

testing strategy. This includes the setup of the testing environment, examples of

tests and components under test, code coverage reports and how the tests are

integrated into the deployment pipeline. Chapter 6 discusses the results of the

study, while Chapter 7 provides the conclusion and suggestions for future

research.

2 AUTOMATED TESTING

The research method used for this thesis can be characterized as an illustrative

case study as defined by the Center of Innovation in Research and Teaching

(2019). The research is closely focused on the case study application MOWO

dashboard, including its technology stack, deployment pipeline and the

development workflow used by the team working on the application. The study

provides a high level of detail on the technologies of the case study application as

well as the tools used to test these technologies. In order to discuss a testing

strategy for the case study application, the study introduces the fundamental

concepts of automated testing and outlines the terminology, techniques and

practices used in the industry in the field of software testing. The study uses a

definition of testing provided by IEEE/ANSI as the theoretical framework: testing

is “a process of operating a system or component under specific conditions,

observing or recording the results, and making an evaluation of some aspect of

the system or component” (IEEE/ANSI, cited by Kit, 1995).

This chapter introduces the fundamental concepts of automated testing.

Motivation for automated testing is established and types of automated tests are

listed. The goals of unit test automation are presented. The following section lists

various types of code coverage and explains how code coverage reports can be

8

interpreted and used. Then, the behaviour-driven development (BDD) technique

and spec-style syntax for writing tests are introduced. Finally, various types of

test doubles are discussed.

2.1 Motivation

Traditionally, the process of software testing has largely been manual (Humble

2017a). Code changes made by one developer have been reviewed by another,

and the software product itself underwent manual regression testing by quality

assurance (QA) teams only after the development process has been completed.

Manual testers followed the software documentation step by step to verify that

new and existing features work as required. Any issues found by QA were then

forwarded back to the developers to fix. When software testing is separated from

development and conducted only several times a month or a year, developers

often learn about the errors they had made weeks or months after they made

them. By that point it is difficult to quickly recollect the logic of the code that has

an error, and the error becomes slow and hard to resolve and learn from.

(Humble 2017a; Kim et al. 2016, 123.) Aside from the slow feedback for

developers, manual testing slows down the pace at which new versions of the

software can be released to customers. The reliability of the manual approach

can also be questioned, as manual repetitive tasks are prone to human error.

Moreover, as the software system under test (SUT) grows and evolves, the

documentation used for manual testing requires to be continuously updated as

well, costing additional time and effort. (Humble 2017a.)

Automated testing addresses the problems described above. Nowadays, it is a

widely adopted practice for developers to write automated tests that fail the build

of an application if they discover regressions (Koskela 2013, 4). Running

automated tests locally allows developers to notice bugs early and fix them

quickly, oftentimes before the errors are checked into version control (Humble

2017c). Automated tests are faster to execute than their manual counterparts and

allow for a faster rate of new releases. These tests improve the productivity of

software development teams and allow gaining and sustaining a high speed of

development. Automated tests require no manual intervention while running.

9

Good tests are repeatable, meaning they always produce the same result given

the same input. This greatly reduces the risk of human errors that manual

regression testing is subject to. Automated tests can act as specification and

documentation for the software, as it will be demonstrated below. This

documentation is a living document updated along with the software and

constantly kept up-to-date. (Koskela 2013, 4; Meszaros 2007; North 2012.)

According to Gruver (2014, cited by Kim et al. 2016, 123), “without automated

testing, the more code we write, the more time and money is required to test our

code – in most cases, this is a totally unscalable business model for any

technology organization.”

2.2 Types of automated tests

Automated software testing can be performed at different levels, from the

simplest building blocks of an application to how the application operates as a

whole. The test pyramid, a concept popularized by Cohn, is a way of visualizing a

testing strategy that involves multiple layers of varying types of automated tests.

The pyramid provides a balance of speed and complexity by placing a large

number of small, fast-to-execute tests at the bottom, with increasingly slow and

complex tests towards the top. (Fowler 2012; Vocke 2018.) Figure 1 shows a

variation of the pyramid as presented by Google at the 2014 Google Test

Automation Conference (Wacker 2015). The three types of automated tests

mentioned in the pyramid are unit, integration and end-to-end tests. Multiple

terminologies exist that define different types of automated tests. The three

aforementioned types are commonly found in many of these terminologies (see

e.g. Dodds 2017b; GitLab Documentation 2019b; Pittet 2019b; Wacker 2015).

Figure 1. Testing pyramid (Wacker 2015)

10

A unit test is a term typically defined based on the specific context of the SUT,

and there is no single canonical definition (Vocke 2018). According to Johansen

(2010, 6), “a unit test is a piece of code that tests a piece of production code. It

does so by setting up one or a few more objects in a known state, exercising

them (e.g. calling a method), and then inspecting the result, comparing it to the

expected outcome”. A broader definition lists a set of common traits shared by all

unit tests. First, they are low-level, each focusing on a small part of the codebase.

Second, they are written manually by software developers. Third, they are

significantly faster to execute than other kinds of tests. According to Fowler

(2014), the variation in precise terminology stems from different definitions of a

unit by any given software team or an individual developer.

An integration test has a larger scope than a unit test. Once again, varying

definitions of the term exist. Essentially, the goal of an integration test is to verify

that different parts of an application work together correctly. According to Wacker

(2015), “an integration test takes a small group of units, often two units, and tests

their behaviour as a whole, verifying that they coherently work together” (Wacker

2015).

An end-to-end test “replicates a user behaviour with the software in a complete

application environment. It verifies that various user flows work as expected”.

(Pittet 2019b.) The effectiveness of this type of tests is most immediately

noticeable. By executing a complete user scenario with the software, it is easy to

spot deviations from the required outcome. However, there are strong

disadvantages to overly relying on end-to-end tests. First, end-to-end tests can

oftentimes be fragile and “flaky”. A flaky test is “a test that exhibits both a passing

and a failing result with the same code” (Micco 2016). Flakiness comes as a

result of the large scope of the test. Potential causes of test flakiness include

dynamic content, caching, concurrency and infrastructure issues (The Code

Gang 2017). Meszaros (2007) mentions behaviour, interface, data and context

sensitivity as reasons for fragile tests. This doesn’t mean that end-to-end tests

are the only tests subject to flakiness. However, due to their large scope they are

more vulnerable to this problem when compared to unit and integration tests.

11

Second, end-to-end tests can be slow to execute. As mentioned earlier, fast

feedback is important for software developers in order to reduce the errors that

make it into production environments. Idly waiting for slow tests to complete

reduces the efficiency of software development teams. Third, determining the

root cause of a failing end-to-end test can be a challenging and time-consuming

task, as smaller issues can be hiding behind larger ones. (Wacker 2015.)

The purpose of this study is to develop a unit testing strategy. From this point

onwards, the terms “test” and “automated test” will be used to refer to unit tests

unless otherwise specified.

2.3 Goals of test automation

In order to determine a unit testing strategy for an application, it is important to

set the goals that the strategy should help accomplish. Goals of test automation

established by Meszaros (2007) fit this purpose well. The first three goals focus

on the benefits that the automated tests should provide, while the final three

specify the qualities that the automated tests should possess.

1. Tests should help improve quality
2. Tests should help understand the SUT
3. Tests should reduce (and not introduce) risk
4. Tests should be easy to run
5. Tests should be easy to write and maintain
6. Tests should require minimal maintenance as the system evolves around

them

What benefits tests should provide

First, tests should improve the quality of the software. The quality of the software

can be determined by answering two questions: whether the software was built

correctly and whether the right software was built. A practice that helps

answering these questions independently from each other is writing tests before

writing software. This approach makes it is easier to consider what the software

should do separately from how it should do it. (Meszaros 2007.) The test-first

approach to writing tests where the tests help design the software is widespread

12

in the industry. By writing tests first it is easy to verify the behaviour of the system

before verifying its implementation. (Koskela 2013, 4.)

Test-driven development (TDD) is a software development technique where the

development process is guided by writing tests. Every time a new piece of

functionality needs to be implemented, a test for that functionality is written first.

Then, the feature itself is implemented and passes the test. Finally, both the

feature and the test are refactored for structure and clarity. (Fowler 2005.) Writing

tests before the software provides a clear definition of success. In this way, tests

act as specification for the software. (Meszaros 2007.) Meszaros refers to such

tests as the “executable specification”. By thinking through the specifications of

the software before starting the development, it is easy to spot and eliminate

inconsistencies and ambiguities. Improvement of the specification leads to

improved quality of the final product. (Meszaros 2007.) A study conducted by

Nagappan et al. (2008, cited by Kim et al. 2016, 135) found that software teams

using TDD developed code from 60 to 90% better in terms of defect density

compared to non-TDD teams, while spending only 15 to 30% longer on

development.

As new tests and features are implemented, all the previous tests are executed

repeatedly. Previous tests provide automated regression testing, making sure

that any new feature does not introduce harmful side effects. This makes sure

most bugs are noticed soon after being introduced, long before they make it to

version control or, worse, the production environment. (Meszaros 2007).

Second, automated tests should help understand the SUT. As mentioned above,

tests can be written in a way that provides specification of the software. A well

planned and clear test suite can act as a form of documentation for the software

– it should be clear what the application should do from reading the tests.

(Meszaros 2007.) This idea is taken further by a technique called behaviour-

driven development discussed in Section 2.5.

13

Third, tests should only reduce, not introduce risk. Automated tests reduce the

risk of breaking existing features by making modifications, giving developers

confidence to make changes to legacy code. Old code can be edited and

refactored, but if the tests still pass, a developer can be sure their changes did

not disrupt the required behaviour of the system. It is important to note that the

level of confidence directly depends on how detailed the test suite is, how

precisely it verifies the behaviour of the system. On the other hand, poorly

constructed tests can provide a false sense of confidence by giving false

positives. A test that overly relies on test doubles (a concept discussed in detail in

Section 2.6) can replace too much of the SUT. The result is a test that verifies the

behaviour of a test double that does not match the behaviour of the SUT.

Modifying the SUT in tests is a risk that must be avoided. (Meszaros 2007.)

What qualities tests should possess

This subsection discusses which qualities make an automated test good. Tests

should be easy to run. The TDD workflow requires continuously re-running all

tests as the software is developed. This is only feasible to do frequently if tests

are fast to run, as the point is to provide fast feedback. That said, even though

making tests as fast as possible is a good general guideline, its importance may

vary depending on the specific context. For certain tests extreme focus can be

more important than fast execution. (Koskela 2013, 15–16; Meszaros 2007.)

Executing the tests should require no manual intervention. Each test must also

be repeatable, meaning it produces the same results every time it is executed. If

that is not the case, each failure requires manual inspection in order to determine

whether the failure is caused by the flakiness of the test or by an actual error

caused by a recent change to the SUT. Re-running tests to verify that there really

is an issue increases the effort of running tests and evaluating their results, which

can lead to developer frustration and test results being ignored as unreliable. To

achieve repeatability, nondeterministic logic must be avoided in test code.

Asynchronous calls and code that depends on current time are two examples of

threats to repeatability. Such threats can be mitigated using test doubles, a

14

concept described in Section 2.6. (Kim et al. 2016, 135; Koskela 2013, 24–25;

Meszaros 2007.)

Tests should be simple to write and maintain. The test code itself should be

simple enough to not require any tests, as testing the test code is a cumbersome

task that should be avoided. Studies have shown a correlation between poor

code readability and the density of defects in the code (Buse & Weimer 2009,

cited by Koskela 2013, 17). Code that is hard to read and understand is also

difficult to modify in a meaningful way and therefore difficult to maintain. To

achieve readability only one condition should be verified per test as a general

guideline. Each feature under test should have a separate test method for each

unique combination of state and input before the test. In other words, each test

should exercise a single “code path” with the SUT. Moreover, tests should be

expressive. Code duplicated in multiple tests (e.g. setup code) should be moved

to centralized test utility methods. Using utility methods allows to communicate

the intent of the test more clearly. (Koskela 16–18; Meszaros 2007.)

Finally, tests should require minimal maintenance as the SUT evolves around

them. Obviously, changes to the SUT are inevitable during the development

process. Automated tests should give developers confidence to modify existing

code. Making changes to a single method or interface should not result in dozens

of failing tests, as that would discourage any modifications to the SUT. Large

amounts of failing tests caused by a single change to the SUT is a sign of

excessive duplication in the tests. To avoid this, test overlap should be

minimized. Reduced test duplication and verifying one condition per test make

sure only a few tests will require modification when a change is made to the SUT.

(Meszaros 2007; Fowler 2004b.)

2.4 Code coverage

Code coverage is a metric used to express which parts of the software are not

exercised by the tests, how much of the source code is tested (Meszaros 2007;

Pittet 2019a). The metric can be applied to various types of automated tests

including unit testing. The coverage is typically measured in per cent, a relation of

15

items tested to all items found (Pittet 2019a). Various tools exist to provide

different types of coverage reports (see e.g. Stackify 2017). Pittet (2019a) defines

five common metrics of test coverage based on different criteria:

• Function coverage – How many of the defined functions have been called
(Pittet 2019a)?

• Statement coverage – How many of the statements have been executed
(Pittet 2019a)?

• Branches coverage – How many branches of control structures (e.g. if
blocks) have been executed? In other words, whether the code was
driven through a code path where an if block was resolved as true, and a
code path where that if block was resolved as false. (Pittet 2019a.)

• Condition coverage – How many of the boolean sub-expressions have
been tested for a false and a true value? In other words, for each if block
where the condition consists of one or multiple boolean statements, was
every combination of statements in a condition resolved as true or false
used? (Pittet 2019a.)

• Line coverage – How many lines of source code have been executed
(Pittet 2019a)? Line coverage can be very close to statement coverage,
as typically developers place each new statement on a separate line.

Even though 100% test coverage may seem like a good goal, in reality it doesn’t

guarantee the lack of defects. 100% coverage only means that all of the code

under test was executed, not that the system behaves according to specification.

(Koskela 2013, 6.) According to Koskela (2013, 6–7), after a certain point in the

development process, the more unit tests are written, the less value they provide

compared to the effort required to write them. Typically, the first tests that are

written cover the crucial high-value high-risk functionality of the software. After

the vast majority of the codebase is covered with tests, the remaining untested

parts are the least likely to break. (Koskela 2013, 6–7.) Figure 2 illustrates this

pattern of diminishing returns.

Figure 2. Quality plateau of automated tests (Koskela 2013, 6–7)

16

Code coverage does not prevent faults of omission – bugs that can only be fixed

by adding new code (Marick 1997). Figure 3 provides an example of code under

test written in pseudocode.

Figure 3. Pseudocode under test (Marick 1997)

Tests with 100% branch coverage can be written for the code in Figure 3.

However, the code can still be wrong. For instance, perform_operation() can

return three status codes instead of the two handled by the code:

FATAL_ERROR, ALL_OK and RECOVERABLE_ERROR. The code in Figure 3

treats RECOVERABLE_ERROR as ALL_OK, and it is impossible to tell that

something is missing by looking at the code coverage. Test coverage tools can

only tell the user how much of the existing code has been exercised. The cause

of faults of omission is not limited to missing if conditions, but rather includes

entire missing if blocks, exception handlers and more advanced cases. (Marick

1997.)

This begs the question of how the coverage reports can be interpreted in a

meaningful way. Fowler (2012) and Marick (1997) believe that code coverage is

only helpful to find areas of the codebase that are not being tested. Requiring a

specific target of code coverage (e.g. 85%) on the management level is

discouraged. Strict coverage target incites developers to create low quality tests

in order to reach it. The worst example of this is an assertion-free test (also

known as the happy path test) which executes the code, but never verifies any of

its behaviour with assertions. (Fowler 2004a; Fowler 2012; Koskela 2013, 124;

Marick 1997.)

Significantly low code coverage can still hint at problems with the code and be

addressed (Fowler 2012). However, having a small number of reliable tests is

17

better than a large number of unreliable ones. Developers should be focused on

writing tests that genuinely verify the required behaviour of the software. Testing

things that are unlikely to break only to reach the coverage target is a distraction

from that goal. (Fowler 2012; Kim et al. 2016, 136.) According to Fowler (2012),

the two ways more reliable than coverage reports to tell whether there are

enough tests for the software are the rarity of bugs discovered in production

environments and the confidence that developers possess to modify existing

code without breaking it.

2.5 Behaviour-driven development and spec-style testing

The previous section introduced the concept of TDD. Tests were viewed as an

“executable specification” of the software. This perspective characterizes a

development approach derived from TDD – behaviour-driven development

(BDD). BDD emphasizes the behaviour of the software by stressing the

importance of keeping the tests expressive (Marston & Dees 2017). BDD was

first introduced by Dan North in 2006 as a means to improve the language of

TDD (North 2006; Justice 2018). In particular, the word “test” was replaced with

the word “behaviour”. According to North, this change in terminology provided a

better way of explaining TDD to beginners, as it gave them guidance on how to

name tests and where to start testing from. (North 2006.)

BDD advocates for using a single full sentence for each test method name. Using

full sentences allows producing software documentation that makes sense not

only to developers, but also to project managers, analysts, testers and other

business users. This way BDD can provide living up-to-date documentation for

the software. Automated tests are checked into version control together with the

code of the application, and developers who want to understand how the system

works can read the test suite as an example of how to use the API of the system.

Sticking to one sentence per test name makes tests more focused, as only a

relatively small piece of behaviour can be described in a sentence. Sentence

names are also helpful in cases when tests fail – the desired behaviour is clear

immediately. (Kim et al. 2016; North 2006; North 2012.)

18

According to North (2006), in BDD a failing test means one of the following:

• There is a bug. Test works as expected. The bug should be fixed.

• Specified behaviour is not correct anymore. Requirements for the SUT
changed. The test should be deleted.

• Specified behaviour has been moved elsewhere. The test should be
moved as well and possibly modified.

Example-driven specification-of-behaviour oriented ideas of North have been

widely adopted by the software development community and beyond. The

technique is used by business analysts and requirement teams responsible for

producing specifications for the software. (Koskela 2013, 13.)

One of the first testing frameworks based on BDD is RSpec for Ruby. RSpec

adopted the key BDD concept of driving software design by expressive tests,

while adding its own new conventions (Marston & Dees 2017; Meszaros 2007).

RSpec uses three terms to refer to tests: test, spec and example. These terms

have different emphasis. A test verifies that a piece of code is working correctly.

A spec describes the desired behaviour of the piece of code. An example

demonstrates how a particular API is intended to be used. (Marston & Dees

2017.) Figure 4 demonstrates a simple test written in RSpec according to BDD.

Figure 4. Simple RSpec test using BDD and spec-style (Marston & Dees 2017)

RSpec introduced the describe/it convention for naming tests and organizing

them into test suites. The commonly used method name “test” is replaced with

“it”, forcing developers to think in terms of the behaviour of the SUT – what “it”

should do or what “it” should be like. The describe/it convention is often referred

to as spec-style. Spec-style has since been adopted by JavaScript testing

libraries Mocha, Jasmine and Jest. (Justice 2018.)

19

Figure 5. The advantage of tests as a design tool (Koskela 2013, 7)

The single sentence test name convention of BDD and spec-style align well with

the goals defined in Section 2.2. TDD and especially BDD allow going beyond

using tests as a tool for quality assurance. Tests are instead perceived as a

design tool that guides the development process of the software. Tests that are

used as a design tool allow reaping greater benefits from test automation.

(Koskela 2013, 78.) Figure 5 shows the advantage the tests as design tools have

over tests as quality tools. Even though both functions reach a plateau discussed

in Section 2.3 (Figure 2), the design tool approach provides an advantage.

2.6 Test doubles

Software under test consists of many units. Each unit has a specified behaviour.

Some units are contained within a single class or function. However, most units

require interaction with other units. When testing a particular unit, this reliance on

other units (referred to as collaborators) can be problematic – either the

collaborator is not available, or the collaborator returns results not suitable for the

test, or executing the collaborator has unnecessary side effects. In these

situations, the collaborators can be replaced in order to gain full control of the

environment the unit under test is running in. A test double is a tool used to

isolate a unit from its collaborators in order to test it. (Koskela 2013, 28;

Meszaros 2007.)

20

Aside from isolating the code under test, Koskela (2013, 27–33) describes four

reasons to use a test double in a test:

• Speed up execution of tests. Test doubles help speed up a test in
situations when the test is relying on a slow collaborator. For instance, a
call to an asynchronous function or a complex database query can be
replaced with a predefined response returned almost immediately.

• Make execution deterministic. A typical example of nondeterministic
behaviour is code that relies on current timestamps. Such collaborators
would return a different value every time the test is executed, leading to
unreliable tests. Test doubles allow replacing such nondeterministic
collaborators with controlled values.

• Simulate specific conditions. By simulating specific conditions with a test
double, it is possible to test every edge case that would be hard to
reproduce with a real collaborator. For example, a test verifying that a unit
displays an error when the network connection is lost can be executed
using a test double, without having to disconnect from the network to test
this condition. As established earlier in Section 2.2, automated tests
should require no manual intervention to run.

• Access hidden information. Test doubles allow accessing hidden
information, such as private fields of a class or the details of how a certain
function was called (how many times, with which parameters).

Koskela (2013, 33–39) and Meszaros (2007) mention five types of test doubles:

• Dummy object – a placeholder passed to the SUT as a parameter or
attribute, but never used. Usually only used to fill parameter lists. (Fowler
2006; Meszaros 2007.)

• Stub – a simplest possible implementation of a collaborator. Calls to the
stub return predefined values. Typically defined ad hoc inside of a test.
(Koskela 2013, 34–35.)

• Fake object – a more elaborate version of a stub. An optimized version of
a collaborator that removes undesirable side-effects. Can be reused in
different tests. (Koskela 2013, 35.)

• Test spy – a test double that stores information about the way it was called
by the SUT (with which parameters, how many times etc.). Created to
record what happens to it in order to verify that the unit under test behaves
according to the specification. (Koskela 2013, 36–38; Meszaros 2007.)

• Mock object – the most elaborate variation of a test double. A spy that has
pre-defined behaviour and has pre-defined expectations of the calls it
should receive from the unit under test. (Fowler 2007x; Koskela 2013, 38)

Setup of test doubles is typically the first step in a test. An established pattern for

structuring unit tests is arrange-act-assert. First, the objects required by the test

are set up. Then, the behaviour under test is executed. Lastly, assertions are

made about the result of the execution. The same pattern is also described as a

21

Four-Phase test. The four steps are setup, exercise, verify and teardown. The

only addition to arrange-act-assert is the teardown step where any of the test

doubles that may affect later tests are reset to their original state. The teardown

step is omitted from arrange-act-assert as it is not always needed, depending on

the testing environment or specific test double used. (Fowler 2013x; Koskela

2013, 40–41; Meszaros 2007.)

3 TESTING TOOLS AND SUT TECHNOLOGIES

This chapter introduces the technologies comprising the system under test (SUT)

and the tools used for testing the SUT. Jest testing framework is introduced, and

the essential features of the framework are presented in detail. This is followed

by the introduction of the React library. Core concepts and features of React are

discussed. Afterwards, the TypeScript language is introduced, and the ways in

which TypeScript augments the development of React applications is explained.

In the next chapter, the Redux state management library is presented. Section

3.5 discusses the Enzyme testing utility as well as shallow rendering React

components with Enzyme and snapshot testing React components with Enzyme

and Jest. Finally, Section 3.6 describes the tools and the workflow relevant to the

deployment pipeline of the case study application, as well as ways in which

automated tests can be integrated into that pipeline.

3.1 Jest

Jest is an open-source JavaScript testing framework created and maintained by

Facebook. It is one of many JavaScript testing frameworks, alongside Mocha,

Jasmine, Karma and others. In the annual State of JavaScript survey for 2018

where over 20,000 developers were polled, Jest was rated most favourably

compared to its competitors in terms of satisfaction ratio over total usage, winning

the “Highest Satisfaction” award. 96.5% of the users of the Jest library stated that

they would like to use it again. (Greif et al. 2018a; Greif et al. 2018c; Greif et al.

2018d.) The most liked aspects of the framework mentioned in the survey include

good documentation, facilitation of elegant programming style and patterns, easy

22

learning curve, fast performance, as well as being a well-established testing

option backed by a good developer team/company (Greif et al. 2018e).

Jest is a test runner, an assertion library and a mocking library. Jest also provides

a built-in test coverage tool and a feature called snapshot testing. In contrast with

some of its predecessors such as Jasmine, Jest does not require a real browser

environment to run. Instead, it runs inside of a Node.js process where the

browser APIs are emulated with jsdom. A simulated browser environment speeds

up the execution of tests and allows to run tests on different systems with the

same results. The same tests can be executed on a developer’s machine and on

a continuous delivery server. (Burnham 2019.)

module.exports = {
 roots: ['<rootDir>/src'],
 preset: 'ts-jest',
 setupTestFrameworkScriptFile: '<rootDir>/setupTests.js',
 moduleNameMapper: {
 '\\.(css|scss|less|json)$': 'identity-obj-proxy'
 }
};

Figure 6. Example of a Jest configuration file

Jest configuration for a project can be provided either inside of the package.json

file for that project, or in a separate configuration file titled jest.config.js and

located at the root of the project. Figure 6 shows an example of a configuration

file for Jest. Jest can be used without a configuration file with default options, but

more complex applications require manual fine-tuning.

3.1.1 Test runner

As a test runner, Jest finds and executes tests. More specifically, it looks for test

files in a given project and executes the tests inside those files. By default, Jest

checks every file in the root directory of the project. A precise list of folders to

check can be provided as the roots property of the Jest configuration file. By

default, Jest interprets as test files every .js, .ts, .jsx and .tsx file inside of folders

called __tests__, as well as any file containing a .test or .spec suffix. Files called

spec.js and test.js will also be detected automatically. The glob pattern that Jest

23

uses to discover test files can be overridden from the testMatch property of the

Jest configuration file. (Jest API Reference 2019a.)

Jest CLI package is a command line runner used to execute tests with Jest. The

jest command is used to execute tests with the options specified in the Jest

configuration file, or with the default configuration options if no configuration file is

provided. (Jest API Reference 2019c.) Figure 7 shows what the output of this

command can look like. In this case Jest found one test suite. Jest failed to

execute the test suite because it did not contain any tests.

Figure 7. Output of the jest command when one empty test suite was found

The jest command accepts multiple options that specify how the tests should

be executed. These options can be combined for maximum precision. Each

command line option can also be specified in the Jest configuration. Command

line options can be useful to override or extend the configuration options for a

single test run. Jest CLI options include --watch and --watchAll, used to

automatically re-run tests when a file is modified. --watch re-runs only the tests

related to modified files, while --watchAll re-executes all tests every time any

file is changed. Running Jest with these options is referred to as running Jest in

watch mode. Another CLI option is --testNamePattern that can be shortened

to --t. This option re-runs the tests with names matching a provided pattern.

This option can be used to execute a specific test or group of tests. (Jest API

Reference 2019c.)

24

Jest runs each test in a separate process, providing isolation and speeding up

the execution. To further speed up developer feedback, Jest executes previously

failed tests first and re-organizes the order in which tests are run based on how

long each test takes. (Jest 2019.)

3.1.2 Assertion library

As an assertion library, Jest provides a set of tools to write tests in a simple,

human-readable way. These tools are functions called matchers. Matchers allow

testing values in different ways. In order to test a specific value, an expectation

object needs to be created. Then, a matcher is called on the expectation object.

Figure 8 shows an example of a matcher being used. The describe() function

defines a test suite, which is a group of tests. The first argument is the name of

the describe block, while the second is a function that contains one or multiple

tests. The it() function defines a test. The first argument is the name of the test,

the second argument is a function containing the code of the test. Finally, the

expect() function returns an expectation object. It takes a value as an argument

(commonly a value generated by a piece of code under test) and returns an

object that exposes a set of matchers. The toBe() matcher verifies strict equality

between the argument of expect() and the argument of its own. (Burnham 2019;

Jest API Reference 2019b; Jest Documentation 2019d.)

const sum = (a, b) => a + b;

describe('Summation function', () => {
 it('returns the sum of two numbers', () => {
 expect(sum(2, 2)).toBe(4);
 });
});

Figure 8. Jest test suite with a single test

Notice the way in which the name of the test suite and the name of the test form

a full sentence: “Summation function returns the sum of two numbers”. The

required behaviour of the function is clear from reading the test suite. Figure 9

displays the output that Jest prints to the console after the test suite from Figure 8

is executed.

25

Figure 9. Jest console output

Jest provides multiple matchers, such as toEqual() for deep object comparison,

toBeNull(), toBeDefined(), toHaveReturned(), toMatchObject() and many more

specified in the documentation (Jest API Reference 2019b.) These matchers

allow creating highly customizable tests and will be used extensively throughout

this study.

3.1.3 Mocking library

As a mocking library, Jest provides a tool called mock functions to create test

doubles. Mock functions allow replacing dependencies inside of a unit test with

something that can be controlled and inspected. This includes erasing and/or

replacing the actual implementation of a function or a module inside of a test,

setting a return value for a function, capturing function calls and parameters

passed in those calls. With Jest, mock functions can be created in two ways:

either a mock function is created within a test, or a manual mock is set up to

substitute a module dependency. (Hanlon 2018; Jest Documentation 2019a.)

A mock function can be created by calling jest.fn(). Figure 10 shows a very

simple case of a mock function being used. This test is impractical but allows to

introduce the behaviour of a mock function. In the example, a mock function

called mockFunction is created and called with a string argument ‘arg’. Three

assertions are then made about the mock function and one assertion about the

result. Jest captures calls to the function and can verify that the function was

called, as well as how many times it was called and what arguments were

supplied. The mock function has no implementation, so the returned value

result is undefined. (Hanlon 2018; Jest Documentation 2019a.)

26

it('Calls mock function and returns undefined', () => {
 const mockFunction = jest.fn();
 const result = mockFunction('arg');

 expect(mockFunction).toHaveBeenCalled();
 expect(mockFunction).toHaveBeenCalledTimes(1);
 expect(mockFunction).toHaveBeenCalledWith('arg');
 expect(result).toBeUndefined();
});

Figure 10. Simple usage of a mock function

Each mock function has a mock property. That property stores the information

about how the function was called and what it returned. It also stores the value of

the “this” keyword, which is the context in which the function was called. Calls to

toHaveBeenCalled() access the mock property of the mock function under the

hood, but that property can also be accessed directly. (Jest Documentation

2019a.) Figure 11 shows how the mock function can be inspected in closer detail.

 // The function was called exactly once
 expect(mockFunction.mock.calls.length).toBe(1);

 // The first arg of the first call to the function was 'arg 1'
 expect(mockFunction.mock.calls[0][0]).toBe('arg 1');

 // The second arg of the first call to the function was 'arg 2'
 expect(mockFunction.mock.calls[0][1]).toBe('arg 2');

 // The return value of the first call to the function was 'value'
 expect(mockFunction.mock.results[0].value).toBe('value');

 // This function was instantiated exactly twice
 expect(mockFunction.mock.instances.length).toBe(2);

Figure 11. Accessing the mock property of the mock function to run assertions (Jest
Documentation 2019a)

It is possible to mock the implementation of a function or just a returned value of

a function. Figure 12 demonstrates how this can be achieved. The function

mockFunction1 mocks only the value returned by the function. The functions

mockFunction2 and mockFunction3 demonstrate two different ways to mock

the implementation of a function. The mock implementation can either be

supplied as an argument to jest.fn() or to

jest.fn().mockImplementation(). It is possible to mock a returned value

or implementation of a function only once by calling

mockReturnedValueOnce(). The function mockFunction4 returns “3” the

27

first time it is called and returns “undefined” after each following call. It is possible

to chain the calls to mockReturnedValueOnce()so that each following call

returns a different value. (Jest Documentation 2019a.) The function

mockFunction5 returns “2” the first time it is called, “true” the second time and

“3” after each call that follows. It is also possible to mock the implementation of a

function once using mockImplementationOnce(). Calls to

mockImplementationOnce() can be chained the same way.

 const mockFunction1 = jest.fn().mockReturnValue(3);
 const mockFunction2 = jest.fn(() => 3);
 const mockFunction3 = jest.fn().mockImplementation(() => 3);
 const mockFunction4 = jest.fn().mockReturnValueOnce(3);
 const mockFunction5 = jest
 .fn()
 .mockReturnValueOnce(2)
 .mockReturnValueOnce(true)
 .mockReturnValue(3);

Figure 12. Mocking returned value and implementation of a function

Jest allows to mock entire modules. This can either be done entirely within test

code or in a separate file called manual mock. Consider the example of a unit

under test in Figure 13. Class Users has a static method all() that makes an

asynchronous request via the imported axios module.

// users.js
import axios from 'axios';

class Users {
 static all() {
 return axios.get('/users.json').then(resp => resp.data);
 }
}

export default Users;

Figure 13. Unit under test using a module to make an asynchronous call (Jest Documentation
2019a)

In order to avoid accessing a real API within the test to speed up test execution

and prevent undesirable side effects, the axios module can be replaced with a

mock function. Figure 14 displays an example of a test for the class in Figure 13.

First, the real axios module is imported. Then, the module is mocked by calling

jest.mock(‘axios’). At this point the module is replaced with a mock

28

function the returned value of which can be mocked. Jest allows to mock a

resolved value of a promise using the mockResolvedValue() function. The

get() method of axios is replaced with a mock function returning a canned

response that does not require making a request to the real API. Just like with

any mock function, it is also possible to mock the implementation of the module

methods by calling mockImplementation(). (Jest Documentation 2019a.)

// users.spec.js
import axios from 'axios';
import Users from './users';

jest.mock('axios');

it('should fetch users', () => {
 const users = [{name: 'Bob'}];
 const resp = {data: users};
 axios.get.mockResolvedValue(resp);
 return Users.all().then(resp => expect(resp.data).toEqual(users));
});

Figure 14. Test using jest.mock() to mock an imported module (Jest Documentation 2019a)

The alternative to creating mock functions directly within test code is manual

mocks. Manual mocks are used to replace the functionality of collaborator

modules with test doubles. Both custom user modules and Node modules can be

manually mocked. In order to mock a user module, a __mocks__ subdirectory

must be created in the directory containing the module. A file with the same name

as the mocked module must be placed into the __mocks__ subdirectory. To

replace the module with the manual mock within the test, the line

jest.mock(‘./name_of_module’) must be added to the test. In order to

mock a Node module, the manual mock must be placed in the __mocks__

directory located in one of the root directories specified by the roots property of

the Jest configuration. If the roots option is not specified, the __mocks__ folder

must be placed in the same directory as the node_modules folder. Explicit call to

jest.mock(‘./name_of_module’)is not required for mocking Node

modules. The Node module will be replaced with the mock automatically. (Jest

Documentation 2019a.)

29

3.1.4 Built-in code coverage

Jest includes the Istanbul library for JavaScript code coverage. Istanbul provides

a number of coverage reporters that allow to generate reports in different formats.

Reporters can be specified using the coverageReporters option of the Jest

configuration. The default value of this option is ["json", "lcov", "text",

"clover"].

• Text option means the coverage report will be printed directly to the
console. Figure15 shows an example of such a report. The rest of the
options generate files with the code coverage and place it in the coverage
directory. The default location of the coverage directory is at the root of the
project, but it can be overridden using the coverageDirectory

configuration option of Jest.

• Clover option generates a report in XML format.

• JSON option generates a report in JSON format.

• LCOV option generates an LCOV coverage file with an associated HTML
report. (Jest API Reference 2019a; Istanbul Documentation 2019.)

Figure 15. Text coverage report generated with Istanbul and printed to the command line. The
percentage in each column represents the fraction of executed code.

Jest produces statement, branches, function and line coverage numbers.

30

3.2 React

React is a JavaScript library and framework for building user interfaces. As of

2018, React is the most popular framework for front-end development (Greif et al.

2018b). Tyler McGinnis, a prominent educator of React, lists the following biggest

benefits of React: its composition, unidirectional data flow, declarative approach

and explicit mutations (McGinnis 2017). Dan Abramov, one of the members of

the React team at Facebook and creator of Redux, mentions three of these

strengths as well (Abramov 2015). These aspects provide a solid overview of

what React is.

• Composition. React applications are built from components. Large
complex applications can be constructed from small reusable pieces.
(React API Reference 2019a; React Documentation 2019d.) A component
is a function or a class that optionally accepts input and returns a React
element. A React element is an object representation of a DOM node.
(McGinnis 2016.) React elements can be thought of as descriptions of
what will be displayed on the screen. React constructs the DOM from
these objects and keeps it updated. (React Documentation 2019f.) React
resolves what the user interface of an application should look like based
on the state of the application. State is a central concept in React. The
state consists of component-specific data that might be changed over
time. The state is defined by the user and it is a plain JavaScript object.
(React API Reference 2019a; React Documentation 2019b.)

• Unidirectional data flow. Also referred to as the “top-down” data flow,
this is the term for the way state is shared between components in a React
application. Any state is always owned by a specific component. This state
can only be passed to child components of this parent component. In other
words, changes to the state of a component can only affect components
“below” that component in the DOM tree. (React Documentation 2019g.)
React components share their state with their children via an object called
props (short for “properties”). One of the few strict rules in React is that
every component must act as a pure function with respect to its props,
meaning a component cannot modify the props that it receives. React
component state is similar to props, but the state is private and fully
controlled by the component. While components cannot modify the props
they receive, they do have full control over their state. Some components
have no state of their own and only receive props. Such components are
called stateless, as opposed to stateful. Parent components have no
knowledge of whether their children are stateful or stateless, and vice
versa. (React Documentation 2019a; React Documentation 2019g.)

• Declarative approach. React minimizes the amount of changes to the
real DOM. Instead, it provides an abstraction called the Virtual DOM. The
Virtual DOM stores the virtual representation of the DOM in memory and
synchronizes the actual DOM to match it (the process referred to as
reconciliation). This feature allows to define the user interface of an

31

application in a declarative way. React receives the state of the application
and makes sure the actual DOM displays that state. (React
Documentation 2019c.) Instead of describing how the result needs to be
achieved step by step (the imperative approach), it is enough to specify
what the result needs to look like and let React handle the rest.
Applications built with jQuery are a good example of the imperative
approach to building user interfaces. With jQuery, attributes and events of
the actual DOM are accessed and manipulated directly. Compared to the
imperative approach, the declarative method reduces side effects,
minimizes the amount of state mutations and results in more readable
code with fewer bugs. (McGinnis 2017.)

• Explicit mutations. React components provide a setState() API that is
used to update component state. When a component calls setState(),
setState() puts the specified changes into a queue and lets React know
that this component and the children of this component need to be
rendered again with the modified state. The changes to state are not
applied immediately, and multiple calls to setState() can be grouped
together to optimize performance. The explicit calls to setState() make it
clear when and how the user interface is updated. (React Documentation
2019g; McGinnis 2017.)

3.2.1 JSX

React provides a syntax extension of JavaScript called JSX, visually similar to a

template language such as HTML or XML. JSX expressions are compiled into

JavaScript function calls that evaluate JavaScript objects – React elements.

(React Documentation 2019e.) Figure 16 shows two identical ways to declare a

React element.

const element = (
 <h1 className="greeting">
 Hello, world!
 </h1>
);

const element = React.createElement(
 'h1',
 {className: 'greeting'},
 'Hello, world!'
);

Figure 16. React element declaration with and without JSX (React Documentation 2019e)

The first declaration uses the JSX syntax and is internally compiled into the

function call in the second declaration. It is possible to write React applications

without JSX, but it is uncommon. JSX acts as visual aid when building user

32

interfaces and allows React to display clearer warning and error messages.

(React Documentation 2019e.)

3.2.2 Component lifecycle methods

React provides a number of lifecycle methods that are triggered at different

stages during the process of adding a component to the DOM (the process

referred to as “mounting”), updating the component in the DOM and removing

(“unmounting”) it from the DOM. These methods allow for finer control over the

behaviour of components throughout their lifecycle. (React API Reference 2019a;

React Documentation 2019g.) Figure 17 shows an overview of the lifecycle of a

React component and the most commonly used lifecycle methods for React

version 16.4.

Figure 17. React component lifecycle and common lifecycle methods (React API Reference
2019a)

The following is the summary of the commonly used lifecycle methods:

• The method render() is the only required method when defining a React
component as a class. The method is a pure function that returns a React
element based on props and state.

• The method constructor() is used for initializing the state controlled by the
component and for binding event methods to the instance of the
component. The method is called before mounting the component.

• The method componentDidMount() is called immediately after the
component is added to the DOM (mounted). Loading data from remote
end points and adding subscriptions is typically done within this method.

• The method componentDidUpdate() is called every time state or props of
the component are changed. The method receives previous state and
previous props as arguments, and it is possible to compare them to the

33

current state and props and only execute certain logic if a particular piece
of state or a prop is different from the previous value.

• Method componentWillUnmount() is called before the component is
removed from the DOM. This method is the place to remove network
requests or subscriptions set up in componentDidMount(). (React API
Reference 2019a.)

It is important to understand the component lifecycle methods in order to create

unit tests for React components. The methods componentDidMount() and

componentWillUnmount() may require using test doubles in tests, as the

subscriptions to remote data sources are typically added and removed in these

methods.

3.3 TypeScript

TypeScript is a superset language of JavaScript created by Microsoft that

addresses common issues that may arise when building large-scale applications

in JavaScript. One of the core issues is the lack of strict types. In JavaScript,

types of variables can change with each new assignment. Moreover, types of

dynamically typed variables can be changed on the fly while executing an

expression. To give an example, when concatenating a string with a number, the

number is coerced into the string type. When a string or a number value is used

in a logical operation, certain rules determine whether the value is converted into

a true or a false boolean value. Such cases are referred to as “type juggling” and

can introduce unexpected behaviour. The lack of strict types also hinders the

development of software development tools. Strict types allow for improved

autocompletion and features like type hinting. (Fenton 2014.)

It is important to note that the use of strict types in an application does not

eliminate the need for tests. A static type system does not verify that the system

behaves according to its specification. It only ensures internal consistency of the

source code of the system. A static type system can also strengthen the

expressiveness and readability of the code. It eliminates certain errors caused by

type ambiguity that can be missed by tests. However, every bit of the required

behaviour of the system still has to be covered with tests. (Martin 2017.)

34

3.4 Redux

This section bases on the official Redux documentation (Abramov et al. 2018).

Redux is a predictable state container for JavaScript applications. It is common

for React applications to use Redux for state management, as the state is the

central concept in both libraries. However, Redux is independent from React and

can be used with non-React applications. Redux is a library that provides a

centralized way to store the state of an application and propagate that state along

the application as well as patterns for modifying the state. In Redux, the entire

state of an application is kept as an object tree in a centralized store. The only

way to update the state is to dispatch an action – a plain object specifying what

kind of change needs to be applied to the state. Pure functions called reducers

describe how the state needs to be modified when each action is dispatched.

A Redux action is a plain object that is used to send information to the store. An

action is emitted using the store.dispatch() command. A common pattern to

make new actions is to use action creators. An action creator is a function that

optionally accepts input and returns an action. The action can then be dispatched

to the store. Figure 18 shows an example of an action created with an action

creator and dispatched to the store. The example uses a simple productivity

application for maintaining a list of tasks to do.

Each action must have a specified type, in the case of the example it is

‘ADD_TODO’. Reducers use the action type to determine how to modify the

state. The recommended approach is to keep action types stored as constants,

but this is unnecessary for smaller applications. Aside from the type, there are no

restrictions on how an action should be structured. The constant addTodoAction

is a plain object that contains the action type and the text for the new task as the

payload. Function addTodo() is an action creator that accepts the text for a new

task as an argument and returns an action with the ADD_TODO type and the

supplied text. The action is then dispatched to the store.

35

const ADD_TODO = 'ADD_TODO';

const addTodoAction = {
 type: ADD_TODO,
 text: 'Build my first Redux app'
}

function addTodo(text) {
 return {
 type: ADD_TODO,
 text
 }
}

store.dispatch(addTodo('This is a new todo!'));

Figure 18. Action created with an action creator and dispatched to the store (Abramov et al. 2018)

Reducers are pure functions describing how the state should change after

receiving each action. Figure 19 shows an example of the default state of a task

management application and a reducer responsible for modifying that state. The

example uses a Redux pattern called reducer composition – separate reducers

manage separate branches of the application state tree. The todos() reducer is

responsible for the list of tasks. It can add new tasks to the list and mark existing

tasks as completed or not completed. The visibilityFilter() reducer makes certain

tasks hidden based on their completed or not completed status. Each reducer

accepts a piece of current state and an action as arguments. Each reducer

contains a switch statement based on action type. If the type of the supplied

action matches any of the cases of the switch, the appropriate transformation is

made to the state. If none of the cases are satisfied, the original state is returned.

Reducers never modify the original state object supplied as the first argument,

but rather take a copy of that object, make modifications to it and return it. The

copy is most commonly taken using the object spread syntax (see …state in the

Figure 19) but can also be made via the Object.assign() method.

36

const initialState = {
 visibilityFilter: VisibilityFilters.SHOW_ALL,
 todos: [],
};

function todos(state = [], action) {
 switch (action.type) {
 case ADD_TODO:
 return [
 ...state,
 {
 text: action.text,
 completed: false
 }
]
 case TOGGLE_TODO:
 return state.map((todo, index) => {
 if (index === action.index) {
 return Object.assign({}, todo, {
 completed: !todo.completed
 })
 }
 return todo
 })
 default:
 return state
 }
}

function visibilityFilter(state = SHOW_ALL, action) {
 switch (action.type) {
 case SET_VISIBILITY_FILTER:
 return action.filter
 default:
 return state
 }
}

Figure 19. Two reducers managing separate parts of the state tree (Abramov et al. 2018)

Separate reducers are then combined into a single root reducer using the

combineReducers() method of Redux. As applications grow, individual reducers

can be placed into separate files and directories, each responsible for a single

branch of the state tree. Figure 20 shows the two reducers combined and

exported.

const todoApp = combineReducers({
 visibilityFilter,
 todos
})
export default todoApp

Figure 20. Reducers combined into a root reducer (Abramov et al. 2018)

Redux store is an object that contains the full state tree of an application and

connects actions to reducers. A Redux application must contain only one store.

Figure 21 shows a store created from the root reducer using the createStore()

method of Redux. Now, actions can be emitted using the dispatch() method of

37

the store object. It is also possible to get the current state of an application by

calling store.getState().

import { createStore } from 'redux'
import todoApp from './reducers'
const store = createStore(todoApp)

Figure 21. Redux store created from a root reducer (Abramov et al. 2018)

React-Redux is a library used to connect React components to the Redux store.

To connect certain props of a component to the values in the global application

state a mapStateToProps() function is required. The component is then

connected to the store using the connect() function. Figure 22 shows how a Filter

component maps the visibilityFilter property of the global state to its own filter

prop.

import { connect } from 'react-redux';
import Filter from '../components/Filter';

const mapStateToProps = state => {
 return {
 filter: state.visibilityFilter,
 };
};

export default connect(mapStateToProps)(Filter);

Figure 22. Connecting a React component to the Redux store

import React from 'react'
import { render } from 'react-dom'
import { Provider } from 'react-redux'
import { createStore } from 'redux'
import todoApp from './reducers'
import App from './components/App'

const store = createStore(todoApp)

render(
 <Provider store={store}>
 <App />
 </Provider>,
 document.getElementById('root')
)

Figure 23. Passing the store to the application using the Provider component (Abramov et al.
2018)

38

Finally, in order for components to be able to subscribe to the store in this way,

the root component of the application must be wrapped into a Provider

component. The provider component supplies the store to the application. Figure

23 shows the root component wrapped in a Provider.

3.5 Shallow rendering with Enzyme

Enzyme is testing utility for React developed by Airbnb. It allows testing the

output of the render() method of React components – React elements. Enzyme

provides tools to manipulate and traverse the component output and simulate

various events. Enzyme API imitates jQuery in the way it allows to query and

manipulate elements. (Airbnb 2019.) At the time of this writing, Enzyme is the de

facto standard library for testing React components (Burnham 2019).

Shallow rendering is a feature provided by the React development team as part

of their react-test-renderer library. With shallow rendering a component can be

rendered “one level deep”, and assertions can be made about the output of its

render method. A DOM environment is not required to shallow render React

components. Enzyme provides an improved higher-level API for shallow

rendering, the Shallow Rendering API. (React API Reference 2019b.)

The shallow rendering feature of Enzyme allows to render a single component in

isolation, modify the state and props of the component, simulate events and see

how the render tree changes. Shallow rendering makes it possible to test each

component as an individual unit, making sure no assertions are run on the

behaviour of the children of the component. This way changes to the children of

the component are less likely to break the tests of the parent. Shallow rendering

only allows to see the props that the children receive but doesn’t render the

output of the children recursively. (Abramov et al 2018; Airbnb 2019; Burnham

2019.)

Figure 24 shows an example in TypeScript of a parent ToDoList component that

renders a number of ToDoItem children. Normally these components would be

39

declared in separate files, but here they are placed together for the sake of the

example. ToDoList only renders the tasks that are not yet done.

import * as React from 'react';

interface ToDo {
 id: number;
 text: string;
 done: boolean;
}

interface ToDoListProps {
 todos: ToDo[];
}

interface ToDoItemProps {
 todo: ToDo;
}

export class ToDoItem extends React.Component<ToDoItemProps> {
 public render() {
 return <li key={this.props.todo.id}>{this.props.todo.text};
 }
}

export class ToDoList extends React.Component<ToDoListProps> {
 public render() {
 return (
 <ul className="todo-list">
 {this.props.todos.map(todo => {
 if (!todo.done) {
 return <ToDoItem key={todo.id} todo={todo} />;
 }
 return;
 })}

);
 }
}

Figure 24. ToDoItem and ToDoList components

Enzyme allows to test ToDoItem and ToDoList components individually. For

instance, it is possible to test that a ToDoItem correctly displays a single list item

with the text of the task that it received as a prop. To accomplish that, the

ToDoItem can be shallow rendered using the shallow() method of Enzyme.

This method returns an object called shallow wrapper – a wrapper around the

root node of the component. It is then possible to use Enzyme’s find() method

together with Enzyme’s selectors in order to find specific nodes within a rendered

40

component and run assertions about those nodes. (Airbnb 2019.) Figure 25

provides an example of such a test for the ToDoItem component.

import { shallow } from 'enzyme';
import * as React from 'react';

describe('<ToDoItem />', () => {
 it('displays a single list item with correct todo text', () => {
 const todo: ToDo = {
 id: 1,
 text: 'First item,
 done: false,
 };
 const wrapper = shallow(<ToDoItem todo={todo} />);
 const listItemWrapper = wrapper.find('li');
 expect(listItemWrapper.length).toBe(1);
 expect(listItemWrapper.text()).toBe('First item');
 });
});

Figure 25. Test for the ToDoItem component

First, a todo object is created during the setup (or “arrange”) step of the test.

Then, the ToDoItem component is shallow rendered using the shallow()

method of Enzyme with the todo object passed as a prop (the “act” or “execute”

step of the test). Finally, assertions are run against the shallow wrapper returned

by the call to the shallow() method (the “assert” or “verify” step of the test).

The list item node of the component’s render tree is found using the find()

method of Enzyme. This method accepts an Enzyme selector, in this case a valid

CSS selector using the li element tag name syntax. The find() method

selects every node in the render tree that matches the selector and returns all of

the nodes wrapped in a new shallow wrapper. (Airbnb 2019.)

The test runs two assertions against the render tree of the ToDoItem component.

First, it verifies there is only one list item in the tree by running

wrapper.find(‘li’). This returns a new shallow wrapper containing every

list item that Enzyme could find in the render tree of ToDoItem. The wrapper is

saved into a listItemWrapper constant, and an assertion is run on the length

property of the wrapper. The assertion

expect(listItemWrapper.length).toBe(1) verifies that the component

only renders one list item.

41

The second assertion verifies the component displays the text of the todo that it

received is a prop. In order to get the rendered text, the text() method of

Enzyme is used. The text() method returns a string of the rendered text of the

current render tree. This method can only be called on a wrapper that contains a

single node. The assertion expect(listItemWrapper.text()).toBe

('First item') verifies that the rendered text of the list item matches the text

property of the todo object passed to ToDoItem as a prop. Another way to test

the same thing would be

expect(listItemWrapper.text()).toBe(todo.text). (Airbnb 2019.)

The find() method of Enzyme accepts four types of Enzyme selectors.

1. A valid CSS selector. This includes class selectors (e.g. .className), id
selectors (e.g. #id), element tag name selectors (e.g. input), attribute
selectors (e.g. [href="link"]) and universal syntax (*).

2. A React component constructor (e.g. wrapper.find(ToDoItem)).

3. The displayName of a React component. React allows to set the
displayName property of class components. The property is used in
debugging messages. The property is set by default to match the name of
a function or a class that defines the component, but can be overridden for
class components. For instance, ToDoItem.displayName = ‘To Do

Item’ would set the display name and allow Enzyme to select the root

node of the component’s render tree by calling wrapper.find(‘To Do

Item’). This selector only works if the displayName is a string that starts

with a capital letter.
4. Object property selector allows to select nodes based on parts of their

properties. Figure 26 shows an example of such a selector. The span
node can be selected by each of its object properties. (Airbnb 2019.)

const wrapper = shallow((
 <div>

 </div>
));

wrapper.find({ foo: 3 });
wrapper.find({ bar: false });
wrapper.find({ title: 'baz' });

Figure 26. Using object property selector to find nodes in a render tree

The parent component ToDoList can be tested independently from its ToDoItem

children. The component is supposed to only display the tasks that are not yet

completed. Figure 27 provides an example of a test suite for the ToDoList

42

component – or, in other words, the specification of its behaviour by example.

The test suite uses the beforeEach() method of Jest for test setup. The method

allows to repeat the same setup process for every test in the test suite (the parent

describe block). An array of tasks is created inside beforeEach(), and the

ToDoList component is shallow rendered with the array as the todos prop. The

wrapper is then used in two tests. The first test verifies that the component

renders anything by calling expect(wrapper.exists()).toBeTruthy().

The Enzyme method exists() checks whether the shallow wrapper contains

any nodes. (Airbnb 2019.)

The second test verifies that the component only displays the tasks that are not

completed. It contains three assertions. First, it finds the list node using its class

name .todo-list. Then it uses the children() method of Enzyme that

returns a new wrapper around the children of the list node. Finally, the test

verifies that there are only two child nodes. There should only be two child nodes

as the todos array passed to ToDoList as a prop contained one already

completed task and two incomplete ones. (Airbnb 2019.)

The next assertion verifies that the first child of the list (the first ToDoItem

component in the list) receives the task with correct text as its prop. It does so by

first selecting the list node by class name and then using the childAt() method

of Enzyme, which returns a child node at specified number. It then uses a

prop() method of Enzyme that accepts the prop name as the argument and

returns the value of that prop – in this case a ToDo object. The assertion is then

run against the text property of the ToDo object – the toBe() matcher is used to

compare the value of the prop to a specific string. (Airbnb 2019.)

The last assertion checks the second child of the list node. This time, instead of

only asserting the value of one property of the todo prop, the entire ToDo object

(the value of the todo prop) is compared to a specific object using the toEqual()

matcher. The toEqual() matcher of Jest conducts a deep object comparison,

meaning it compares each property of the objects recursively. (Airbnb 2019; Jest

API Reference 2019b.)

43

let todos: ToDo[] = [];
let wrapper: ShallowWrapper;

describe('<ToDoList />', () => {
 beforeEach(() => {
 todos = [
 {
 id: 1,
 text: 'Study Enzyme',
 done: true,
 },
 {
 id: 2,
 text: 'Finish thesis',
 done: false,
 },
 {
 id: 3,
 text: 'Graduate university',
 done: false,
 },
];
 wrapper = shallow(<ToDoList todos={todos} />);
 });

 it('renders', () => {
 expect(wrapper.exists()).toBeTruthy();
 });

 it('only displays todos that are not completed', () => {
 expect(wrapper.find('.todo-list').children()).toHaveLength(2);

 expect(wrapper.find('.todo-list').childAt(0).prop('todo').text)
 .toBe('Finish thesis');

 expect(wrapper.find('.todo-list').childAt(1).prop('todo'))
 .toEqual({
 id: 3,
 text: 'Graduate university',
 done: false,
 });
 });
});

Figure 27. ToDoList component test suite

The examples in this subsection presented a number of Enzyme methods that

can be used when shallow rendering components. The list if far from complete as

the API of Enzyme provides a vast variety of methods in its documentation.

However, the documentation of Enzyme does not provide strict guidelines for

testing React components – it only provides the tools.

3.5.1 Snapshot testing React components with Jest and Enzyme

Snapshot testing is a Jest tool used to detect unexpected changes to the user

interface of an application. The tool was originally introduced by Jest specifically

for the purpose of testing React components. Snapshot testing allows to save a

44

rendered React element into a file (“take a snapshot”) and then compare what the

component renders to the contents of that file each time the tests are executed.

(Jest Guides 2019b; Pojer 2016.) Figure 28 shows an example of a snapshot test

for the ToDoList component. The test is added to the test suite in Figure 27 and

therefore the setup is handled in the beforeEach() method of that figure. The

component is shallow rendered and then compared against a snapshot using the

toMatchSnapshot() matcher of Jest. The toJson() helper method from the

enzyme-to-json library is used to make the snapshot more readable.

 it('matches snapshot', () => {
 expect(toJson(wrapper)).toMatchSnapshot();
 });

Figure 28. Snapshot test for the ToDoItem component

The first time this test is executed, it creates a new folder called __snapshots__

inside of the __specs__ folder containing the file with the test suite. Inside that

folder Jest creates a new file called ToDoList.spec.tsx.snap – the full name of the

test suite file with the .snap appended at the end. This file contains a snapshot of

the render tree of this component. Figure 29 shows the output Jest prints to the

console after the first time the snapshot test is executed and a new snapshot is

written, while Figure 30 presents the contents of the snapshot file. Notice the

ToDoItem component in the snapshot – its output is not rendered recursively.

Shallow rendering only allows to see that a child component was rendered with

certain props.

Figure 29. Jest output after executing a snapshot test for the first time

45

Figure 30. Snapshot of the ToDoList component – ToDoList.spec.tsx.snap

After the snapshot is saved, the test will fail if the render output of the ToDoList

component changes. For instance, a small change can be made to the

component so that it renders only completed tasks instead of only the incomplete

ones. The component will then only render a ToDoItem for the first task from the

todos array and will fail the snapshot test. Figure 31 displays the output that Jest

prints to the console when a snapshot test fails. Jest marks the differences

between expected and received snapshots in green and in red. The expected

value stored in the snapshot file is marked in green, while the deviated received

value is marked in red. As figure 31 shows, Jest expected a list of two tasks with

numbers 2 and 3 but received only task number 1.

46

Figure 31. Failed snapshot test

A failing snapshot test means one of two things: either the change to the

component was accidental and there is a bug that needs to be corrected, or the

change is intentional, and it is necessary to update the snapshot. If the change to

a component’s output is intentional, its snapshot can be updated. This is possible

by running the jest command with the --updateSnapshots CLI option, which

can be shortened to --u. This will re-run every test and overwrite every failing

snapshot. If several snapshots are failing, but only one of them needs to be

overwritten, the --u option can be combined with the --testNamePattern (--

t) option mentioned above. When running Jest in watch mode, pressing the `u`

47

key will update every failing snapshot, while pressing the `i` key will enter the so-

called Interactive Snapshot Mode, which allows to view each snapshot

individually and decide which of them to update. (Jest Guides 2019b.)

The documentation of Jest provides a list of best practices for efficient use of

snapshots. First, snapshots should be treated as code and committed into

version control. Keeping snapshots in version control helps during the code

review process. The snapshots should be relatively short and focused. Second,

snapshot tests should be deterministic, meaning they are repeatable and provide

the same results every time they are executed. Nondeterministic code such as

code dependant on current timestamp or a randomly generated value needs to

be made deterministic via test doubles. For instance, a call to Date.now() can

be mocked to always return a predetermined value in the test. Using

nondeterministic code in snapshots can lead to scenarios where developers get

used to always updating the snapshots when they fail, without looking into the

underlying reasons for the failure – which defeats the purpose of using snapshots

altogether. Third, snapshot names should be descriptive. This goes along with

the principles of BDD described above. (Jest Guides 2019b.)

In general, however, snapshot testing is not compatible with the principles of TDD

and BDD. Snapshots are created after the code that they are supposed to test,

and therefore the design of the code cannot be driven by snapshot tests. Even

though it is possible to write snapshots manually before writing the code that will

match the snapshot (one tutorial from Toptal (Ortega 2019) does exactly that),

this is cumbersome and requires learning the internal implementation of snapshot

syntax, which takes developers’ attention away from the behaviour of the actual

SUT. Snapshot tests verify that the output of React components or other units

under test has not changed. They can be combined with Enzyme unit tests. (Jest

Guides 2019b.)

Snapshot tests make the process of running the tests require manual intervention

in cases when snapshots need to be updated. This goes against one of the goals

of test automation as established by Meszaros (2007) and already mentioned in

48

Chapter 2. Jest attempts to mitigate this by disabling the writing of snapshots by

default when running tests on a Continuous Integration / Continuous Delivery

server. Running tests locally still requires the manual update of snapshots when

necessary. (Jest Guides 2019b.)

3.6 Jenkins, GitLab, Gitflow workflow and Git hooks

The final Section of Chapter 3 introduces the tools and the workflow used to

enable the continuous delivery of the case study application. Continuous delivery

(CD) is a set of principles and practices to reduce the cost, time, and risk of

delivering incremental changes to users (Humble 2014). The foundational

practices advocated by CD are configuration management, continuous

integration and continuous testing (Humble 2017). Software that is developed in

accordance with the CD discipline can be deployed into production at any time

(Fowler 2013).

The key pattern that enables CD is the deployment pipeline (Humble 2017d). The

deployment pipeline splits the build and deployment of an application into multiple

steps. Each step supplies an increasing level of confidence, typically at the cost

of taking more time as a result of more thorough inspection. The goal is to detect

any issues that will result in failures in the production environment. (Fowler

2013a; Fowler 2013b.)

Jenkins is an open-source automation server that can be used to enable the

continuous delivery of an application. Jenkins can automate various tasks related

to building, testing and delivering software. The server provides a user interface

for configuring various projects, but also supports a text-based pipeline syntax.

(Jenkins Documentation 2017.)

GitLab is an open-source version control system. Used by over 100,000

organizations, GitLab also includes a variety of tools for CD. It is possible to set

up the entire build process of an application using GitLab, but it can also be used

for version control only and combined with an automation server such as Jenkins.

49

(GitLab 2019.) Both GitLab and Jenkins provide tools for integration with each

other.

Gitflow is a workflow design for enterprise software projects that have a

scheduled release cycle. Gitflow defines a set of branches that a git project

should have and the order in which these branches should be created and

merged. With Gitflow, a develop branch is created from the master branch at the

beginning of the development process. The develop branch becomes the central

branch where all new features are integrated. When a new feature needs to be

developed, a feature branch is made from the develop branch. When the feature

is complete in the feature branch, the feature branch can be merged into develop.

Features are never merged into the master branch directly. Once the develop

branch is ready for a release, a new release branch with a specific release

number is created from the develop branch. After the release branch is created, it

can be tested and perfected with bug fixes and additional documentation. When

the release branch is ready, it is merged into the master branch and tagged with

the release number, freezing the tagged version in time. The release branch is

also merged back into develop at this point, if any commits were made directly

into the release branch. (Atlassian Bitbucket. Tutorials. Gitflow Workflow 2019.)

Figure 32 provides an illustration of a Gitflow workflow.

Figure 32. The Gitflow workflow (Atlassian Bitbucket. Tutorials. Gitflow Workflow 2019)

50

Gitflow provides a number of places to incorporate code review into the

development cycle. For instance, the develop branch can be protected from

being directly pushed into, and every feature branch can be merged via a merge

request. According to the GitLab documentation (2019a), “a merge request is a

request to merge one branch into another”. Merge requests allow comparing the

differences between the code in the two branches, leaving comments and having

a discussion, resolving merge conflicts, as well as assigning the request to be

reviewed by a particular developer (GitLab Documentation 2019a). Each feature

branch can be manually reviewed by one or multiple developers before being

merged into develop. Moreover, automated tests can be executed every time a

merge request is opened or modified.

Git hooks are commands or scripts executed by Git after a certain command

such as push, commit or branch. Husky is a library that simplifies the addition and

configuration of Git hooks for a project. With Husky, the hooks for each Git

command can be added to the package.json file of the project. Adding Git hooks

to a project can help make sure developers execute tests before submitting a

merge request and that all tests pass. (Burnham 2019.)

4 PROPOSED TESTING STRATEGY FOR A REACT-REDUX APPLICATION

In this chapter a testing strategy for React applications at Observis is proposed.

The proposal is based on the theoretical background discussed in Chapters 2

and 3, testing instructions provided by the Redux documentation, as well as an

overview of four testing strategies used by developer teams at modern software

development companies. The four companies were chosen based on the quality

of the documentation they provide for their strategies, as well as the accordance

with goals of test automation and the BDD technique described in Chapter 2. The

four strategies used as a basis for this proposal come from the teams working at

Djangostars (see Pysarenko 2019), Selleo (see Bak 2019), Commercetools (see

Molinari 2018) and Willowtree (see Fishwick 2018).

51

Overall goals of the strategy

The strategy aims to conform with the goals of test automation as formulated by

Meszaros (2007) and established in Section 2.3. That means the goal of the

strategy is to improve the quality of React-Redux applications developed by

Observis, help developers understand the software under test and reduce the

risks of making changes to the existing code. The tests recommended by this

strategy are easy to run, expressive, readable and easy to maintain as the

codebase evolves around them. The strategy also aims to follow the principles of

the BDD technique where each test acts as specification for a bit of behaviour of

the application. For this reason, tests should be referred to as specs, as this

shifts the emphasis to describing the desired behaviour of a piece of code. The

test suites should act as examples of how a particular API under test is intended

to be used. (Marston & Dees 2017.)

How should spec files be named and organized?

Specs should be placed close to the units they are testing. As the application

grows, this helps keep specs organized and easy-to-find for each unit. (Bak

2019.) A folder called __specs__ should be created in the directory that contains

the unit under test. The file containing the test suite for the unit must be placed in

the __specs__ folder. The name of the test suite file must be the same as the

name of the unit under test, with the .spec suffix appended. For example, a

component called Timeline must have a test suite file called

Timeline.spec.tsx. A utility function file timeUtils.ts must have a test

suite file called timeUtils.spec.ts.

components
└───ContactList
│ | ContactList.tsx
│ └───__specs__
│ ContactList.spec.tsx
└───DeleteDialog
| | index.tsx
│ │ DeleteButton.tsx
│ └───__specs__
│ DeleteDialog.spec.tsx
| DeleteButton.spec.tsx
...

Figure 33. Spec file organization in a project

52

If a directory contains multiple units that must be tested, each unit must have a

separate test suite file in the __specs__ folder. Sometimes when the name of the

component matches the name of the directory where it is located (e.g

DeleteDialog.tsx component inside a DeleteDialog directory), the

component is named index.tsx to simplify the relative path when importing this

component into other files. In this case, the spec for that component should use

the name of the class or a function that declares the component as the basis for

the spec name. Figure 33 provides an example of such spec organization.

How should specs be structured?

To keep tests focused and expressive, a single sentence must be used to name

each test. Together with the name of the test suite, the test name must form a

cohesive sentence that describes an example of how the unit under test should

behave. As a whole, each test suite must provide a complete example of how the

API of the unit under test is intended to be used. Each test should follow the

arrange-act-assert pattern. “Happy path” tests must be avoided, and each test

must make at least one assertion. The Commercetools testing strategy (Molinari

2018) emphasizes the usefulness of sticking to a single assertion per test. Using

a single assertion in each test makes the test code more readable and focused

and allows to quickly identify problems from the Jest output when tests fail.

(Molinari 2018.) Meszaros (2007) also recommends verifying only one condition

in each test as a general guideline (see Section 2.3). To improve readability and

expressiveness of tests, duplication of setup data in multiple tests should be

avoided. The two ways to remove duplication are the following:

• Code shared between multiple tests or test suites should be moved to
centralized test utility methods. As established in Section 2.3, using utility
methods allows to communicate the intent of the test more clearly.
(Koskela 2013, 16–18; Meszaros 2007.) The centralized utility methods
can be used for commonly used setup code such as creating certain test
doubles.

• Tests within one test suite should use a shared, possibly parametrized
setup function. A beforeEach() hook of Jest can be used when identical
setup is required for every test in the test suite. Bak (2019) stresses the
usefulness of using parametrized setup functions. Tests using setup
functions are provided in the official Redux documentation (Abramov et al.
2018) as well.

53

What parts of the application should be tested?

The four types of units that must be tested are React components, Redux action

creators, Redux reducers and utility functions.

What parts of the application should not be tested?

The behaviour of third-party libraries should not be tested (Pysarenko 2019).

Whenever a unit under test relies on a third-party library, mock functions or

manual mocks should be used to replicate the output of the third-party code. This

includes the Redux and the React-Redux libraries as well, the behaviour of the

libraries should not be tested. The Willowtree strategy does not recommend

testing Redux-React methods such as mapStateToProps() (Fishwick 2018).

Creating tests that verify the correctness of data types is not necessary, even

though the Djangostars strategy recommends doing so. The internal consistency

of the data types in the code of the application is already verified by TypeScript.

As mentioned above, according to Martin (2017), types do not specify the

behaviour of the system, but rather provide internal consistency to the system’s

code. As the focus of the strategy is BDD, tests for data types are not necessary.

What tools are used for testing the units?

Jest is used as the test runner for every test written for the application. The test

runner provided by Jest makes the tests easy and quick to run. Each test is

executed in a separate process, and the tests that have previously failed are

prioritized to provide faster feedback. Moreover, the order of test execution is

determined by how long each test took during previous executions. (Jest 2019.)

The vast assertion library of Jest allows creating readable and expressive tests,

while its mock functions and manual mocks allow to configure deterministic test

doubles, spy on unit interactions with collaborators and test each unit in isolation.

Enzyme is used for each test for a React component. The shallow rendering

feature of Enzyme allows traversing the output of React components, re-render

components in various states and see how the render tree changes. Together

with the snapshot testing feature of Jest, Enzyme provides a powerful tool to

54

detect unexpected changes in React elements. Moreover, shallow rendering

allows to test each component in true isolation, as the children of the shallow

rendered component are not rendered recursively. Shallow rendering makes the

tests easier to maintain, as changes to child components do not result in failing

tests for their parent components.

How to test a React component?

A React component should be covered with tests in the following order:

1. Test that the component renders
2. Test each prop of the component
3. Test each state variable of the component (stateful components only)
4. Test event handlers

a. Simulate each event and expect the appropriate handler to be
called

b. Verify the correct behaviour of each event handler defined within
the component

i. If the event handler updates component state (calls
setState())

ii. If the event handler dispatches an action
iii. Other behaviour of the event handler (e.g. interactions with

Firebase)
5. Test lifecycle methods
6. Test conditions
7. Take a snapshot

According to Bak (2019), a minimal component test verifies that a component

renders. This kind of test is referred to as a “smoke test”. A smoke test can be

conducted by shallow rendering the component and expecting the shallow

wrapper to contain at least one node. (Bak 2019.) Figure 34 shows an example of

testing the rendering of a component in this way. The component is shallow

rendered in a setup function that returns a wrapper. The exists() method of

Enzyme is called on the wrapper, and the returned value of this method is

expected to be `true`.

An alternative solution for testing component rendering is to take a snapshot.

Both Bak (2019) and Pysarenko (2019) suggest taking a snapshot of the shallow

wrapper as the first step when testing a component. Although this approach

works when covering existing code, this can quickly become frustrating when

55

designing new components through tests. As the component is developed, the

snapshot requires to be continually updated. Therefore smoke testing using

exists() should be preferred over snapshot testing when developing new

components, and a snapshot test should be added as the final step, when the

component is ready.

test('renders', () => {
 const { wrapper } = setup();
 expect(wrapper.exists()).toBe(true);
 })

Figure 34. Smoke testing a component

Each prop of the component under test needs to be tested individually. As

established earlier, React components act as pure functions with respect to their

props. The component under test should be shallow rendered with a specific prop

value, and an assertion should be executed on the wrapper to verify that the prop

was received by the component. Pysarenko, Bak and Abramov et al. all provide

example of such component tests. If the component is stateful, each variable of

the component state needs to be tested in the same way as well. The component

under test should be shallow rendered with a specific state, and an assertion

should be executed on the wrapper to verify that the state variable has been used

by the component correctly.

Next, if a component under test includes event handlers, each event handler

needs to be tested. Djangostars, Selleo and Willowtree all provide examples of

event handler tests.

1. For each event handler, if the event handler is not a private method, create
a spy on the event handler, simulate the event and expect the event
handler has been called. If the event handler accepts parameters: expect
the event handler has been called with correct parameters.

2. Specify the behaviour of each event handler, if this event handler is
defined within the component under test and not passed to the component
under test as a prop.

a. If the event handler of a stateful component makes a call to
setState(), expect the state to be updated correctly.

b. If the event handler dispatches an action, expect the correct action
to be dispatched.

c. If the event performs any other operation, test the operation. For
example, if the event handler interacts with Firebase, use the

56

manual mock for Firebase to specify the correct interaction. If an
event handler updates a document in a collection, setup a mock
collection and expect it to be updated correctly.

Next, if the component uses lifecycle methods, the lifecycle methods need to be

tested. For instance, it is common for components to make subscriptions and

asynchronous requests from componentDidMount(). In this case, the

asynchronous code must be replaced with a mock function and the correct

behaviour of the component upon the successful resolution of the request must

be verified.

Next, all possible conditions must be tested. Testing conditions is a step

recommended by the Djangostars strategy. If a React component relies on

conditional rendering to determine the render output, component must be shallow

rendered with different props / in different states and assertions must be run on

the wrapper to verify certain parts of the render tree are visible or hidden. It is

possible to completely cover this step while testing individual props and state

variables in steps 2 and 3, however this is a good place to make sure no

condition has been skipped. Viewing the branch code coverage of the component

under test can hint at certain conditions being omitted.

Finally, a snapshot test for a component must be added. Both Djangostars and

Selleo recommend limited use of snapshot tests. Djangostars suggests only

keeping one snapshot per component as a general rule. If a component uses

conditional rendering based on certain props or state to hide or show parts of the

render tree, a snapshot can only be taken of one of the states. Other conditions

are tested during the “testing conditions” step.

How to test action creators?

Action creators should be tested according to the official Redux documentation.

As established earlier, an action creator is a function that returns an action – a

plain object. In order to test an action creator, the action creator is called with

certain parameters. The object it returns is then compared to a correct action.

57

import * as actions from '../../actions/TodoActions'
import * as types from '../../constants/ActionTypes'

describe('actions', () => {
 it('should create an action to add a todo', () => {
 const text = 'Finish docs'
 const expectedAction = {
 type: types.ADD_TODO,
 text
 }
 expect(actions.addTodo(text)).toEqual(expectedAction)
 })
})

Figure 35. A test for an action creator of a task management application (Abramov et al. 2018.)

Figure 35 shows an example of a test for an action creator. (Abramov et al.

2018.)

How to test reducers?

Reducers should be tested according to the official Redux documentation. A

reducer is a pure function that accepts an action and the state of an application

and returns the appropriately updated state. Each reducer should be tested in the

following steps:

1. Setup a state object with initial state.
2. Call the reducer with an action of an unsupported type and the initial state

and expect the reducer to return the initial state unchanged.
3. Write a separate test for each action type handled by the reducer. In each

test, call the reducer with the action of this type and the initial state as
parameters.

4. Expect the reducer to return the state updated in the right way. (Abramov
et al. 2018.)

How to test a utility function?

Utility functions are typically pure functions that accept parameters and return

values. When testing a utility function, a full list of possible behaviours of the

function needs to be planned. If the function accepts multiple parameters,

different combinations of the parameters must be considered.

1. Test that the function throws exceptions if any of the parameters are
undefined or incorrect.

2. Test that the function returns correct values when all parameters are
defined. (Pysarenko 2019.)

58

What metrics should be collected?

The two metrics that should be collected for the application are the test coverage

report and the number of issues with the software discovered by the customer in

the production environment or during exploratory testing in the staging

environment. As mentioned in Section 2.3, the code coverage only shows the

percentage of the codebase that is exercised in tests. It does not speak to the

quality of the tests, but only illuminates the parts of the codebase that are not

covered. Still, it is a useful tool for developers to choose which areas to focus the

testing efforts on, and significantly low coverage is a sign that there are issues

with the software. Fowler (2012) argues the only two metrics signifying that there

are enough tests for the code are the rarity of bugs in production and the

confidence that developers have to change existing code. The confidence is

difficult to measure by means other than a survey, but the number of discovered

bugs is easy to collect and analyse via project management tools such as JIRA.

As more tests are written for the software, the number of discovered bugs should

decrease.

How are tests integrated into the deployment pipeline?

Developers should be running Jest in watch mode while developing the software.

In order to make sure that the software checked into version control passes the

tests, a Git hook should be configured to run tests every time the software is

pushed. If the tests fail, the push is cancelled. Additionally, a merge request

inspector project should be set up on the Jenkins server. The inspector project

will be triggered every time a merge request is opened or modified. The project

will leave a comment on the GitLab merge request, and if the tests are failing, the

code should not be merged into the target branch. Automatic execution of tests

for each merge request speeds up the feedback that developers receive on the

merge requests that they open. Moreover, it saves time for developers that have

to perform manual code review on the merge request – the manual review can

only begin when the merge request passes the tests, meaning developers don’t

have to spend time reviewing malfunctioning code.

59

How should incidents with the software be managed?

If a bug is discovered in the application either by the customer in the production

environment or during exploratory testing in the staging environment, a bug

report must be filed in the project management software (JIRA for the case

study). A unit test (or several tests) addressing the bug must be created.

5 PRACTICAL IMPLEMENTATION

This chapter is structured as follows: Section 5.1 documents the setup process of

the testing environment. The following sections provide detailed examples of

tests for utility functions, action creators, reducers and React components. Next,

a Git hook is configured to execute tests locally before each push event. Section

5.7 describes the configuration of a Jenkins project that automatically executes

tests for every merge request and leaves a comment on GitLab notifying

developers whether the tests passed or failed. Finally, Section 5.8 explains how

the HTML code coverage report generated by Jest is displayed on the Jenkins

server.

5.1 Configuring the test environment

All the required Node modules need to be installed. Yarn is used as the package

manager. Figure 36 shows the yarn command required to install the packages

required for testing. Because all of these are development dependencies that are

not required in production, the --dev tag is used. The required packages are:

• jest

• enzyme

• enzyme-adapter-react-16. An adapter required by Enzyme to work with a
specific version of React. MOWO dashboard uses React 16.

• ts-jest. A TypeScript pre-processor that allows to use Jest together with
TypeScript (Ts-Jest 2019).

• identity-object-proxy. A library used for mocking webpack imports. In
particular, it can be used to mock styles declared in a separate file and
imported into a component. (Identity-obj-proxy 2019.)

• Ts-Mock-Firebase. A library that provides a mock implementation of
Google’s Firebase (Ts-Mock-Firebase 2019).

• mockdate. A library to set specific dates within tests.

• Type definitions for several of the libraries.

60

yarn add --dev jest @types/jest enzyme @types/enzyme enzyme-adapter-react-16
@types/enzyme-adapter-react-16 ts-jest identity-obj-proxy ts-mock-firebase mockdate
@types/mockdate

Figure 36. Installation of the required packages

{
 "name": "mowo-dashboard",
 "version": "0.1.0",
 "private": true,
 "scripts": {

 "test": "jest",
 "test:watch": "jest --watch --verbose",
 ...
 },
 "dependencies": {
 ...
 "firebase": "5.8.2",
 "moment": "2.22.2",
 "react": "16.6.0",
 ...
 "react-dom": "16.6.0",
 ...
 "react-redux": "5.1.1",
 "react-router-dom": "5.0.0",
 ...
 "ts-date": "2.1.7",
 "ts-form-validation": "1.1.5",
 ...
 },
 "devDependencies": {
 ...
 "@types/enzyme": "3.1.17",
 "@types/enzyme-adapter-react-16": "1.0.3",
 "@types/jest": "23.3.9",
 ...
 "@types/mockdate": "2.0.0",
 "@types/react-dom": "16.0.10",
 ...
 "@types/react-redux": "6.0.10",
 "@types/react-router-dom": "4.3.1",
 "@types/redux": "3.6.0",
 ...
 "awesome-typescript-loader": "5.2.1",
 ...
 "enzyme": "3.8.0",
 "enzyme-adapter-react-16": "1.9.1",
 "enzyme-to-json": "3.3.5",
 ...
 "identity-obj-proxy": "3.0.0",
 "jest": "23.6.0",
 "mockdate": "2.0.2",
 ...
 "ts-jest": "23.10.5",
 "ts-mock-firebase": "^2.1.3",
 "tslint": "5.12.0",
 "typescript": "3.2.2"
 }
}

Figure 37. The package.json file of the project (libraries not relevant to the study redacted)

The packages are installed into the devDependencies section of the

package.json file. Figure 37 shows the package json file of the project with the

versions of the packages used during the study. Packages not relevant to the

61

thesis work are redacted – replaced with ellipses in the figure. Scripts “test” and

“test:watch” are configured to run the tests from the command line.

Next, Jest needs to be configured. A configuration file called jest.config.js is

created at the root of the project. Figure 38 displays the contents of the

configuration file. The following properties were configured:

• roots. An array of paths where Jest will look for test files and source files.
The two paths configured are the src folder in the root directory of the
MOWO dashboard project and the @shared project located outside of the
root directory for MOWO dashboard. The @shared project contains utility
functions used both by MOWO dashboard and the MOWO mobile
application that is outside of the scope of this study.

• preset. A preset that is used as a basis for the configuration. Configured to
point to the ts-jest Node module installed above.

• collectCoverage. If true, Jest collects coverage information and generates
coverage reports.

• coverageReporters. An array of coverage reporter names. The text
reporter is required to print tests to the console, while the LCOV HTML
report will be used to display the coverage report on Jenkins.

• setupFiles. An array of paths to files that will be executed before each test
file. This allows to avoid duplication of setup code in every test file. The file
specified is setupTests.js in the root directory of the project. Enzyme is
configured in this file. Figure 39 shows the contents of the file. Enzyme
and the Enzyme adapter are imported in the file, and Enzyme is
configured with the adapter.

• modulePaths. An array of paths to locations that Jest will check when
resolving modules. The src directory in the root of the project as well as
the root of the entire mowo repository are specified.

• moduleNameMapper. A map of regular expressions to module names.
Used to stub out resources such as files and styles. A regular expression
matching any file with .css, .scss, .less., .jpg, .jpeg or .png extension is
configured to replace the imports of files with these extensions with stubs
provided by the identity-object-proxy library installed above.

module.exports = {
 roots: ['<rootDir>/src', '<rootDir>/../@shared/'],
 preset: 'ts-jest',
 collectCoverage: true,
 coverageReporters: ['text', 'lcov'],
 setupFiles: ['<rootDir>/setupTests.js'],
 modulePaths: ['<rootDir>/src', '<rootDir>/../'],
 moduleNameMapper: {
 '\\.(css|scss|less|jpg|jpeg|png)$': 'identity-obj-proxy',
 },
};

Figure 38. Jest configuration for the project

62

const Enzyme = require('enzyme');
const EnzymeAdapter = require('enzyme-adapter-react-16');

Enzyme.configure({ adapter: new EnzymeAdapter() });

Figure 39. Configuring Enzyme in the setupTests.js file

Lastly, a manual mock has to be made for Firebase – a cloud database service

provided by Google and used by the MOWO dashboard application. NPM

package Ts-Mock-Firebase is used for that purpose. The library emulates the

functionality of Firebase. As explained in Section 3.1.3, in order to create a

manual mock for a Node module a __mocks__ folder needs to be created in one

of the roots of the project, and a file with the same name as the Node module

needs to be placed into the __mocks__ folder. Figure 40 shows the file called

firebase.ts in the __mocks__ folder located in the src folder. The src folder is one

of the roots specified in the Jest configuration (Figure 38).

Figure 40. Manual mock file for Firebase

The documentation provided on the GitHub page of Ts-Mock-Firebase provides

instructions for configuring the manual mock. It is enough to import the

mockFirebase() method from Ts-Mock-Firebase, call it to create a new instance

of mock Firebase and export the instance. (Ts-Mock-Firebase 2019.) Figure 41

shows the contents of the manual mock for Firebase. When the Firebase mock is

set up, Jest will automatically use the mock instead of the actual library (Jest

Guides 2019a; Ts-Mock-Firebase 2019).

import { mockFirebase } from 'ts-mock-firebase';

const firebase = mockFirebase();

export = firebase;

Figure 41. Code of the manual mock for Firebase (Ts-Mock-Firebase 2019)

Having established a testing strategy and set up the testing environment, units of

the software can now be tested according to the strategy. The benefits of writing

63

tests before the software were emphasized in Chapter 2. However, the core

functionality of the MOWO dashboard project has largely been completed by the

time the test automation efforts commenced. It is therefore necessary to

retroactively cover existing software with tests. Even though the tests in the

following examples are written after the SUT, they are structured with the BDD

technique in mind and can be used for reference when developing new parts of

the software moving forward.

5.2 Example of testing a utility function

The function displayDurationText() is responsible for generating a human-

readable string that communicates the duration of a certain task. It accepts a

number representing the duration in minutes and returns a string. Figure 42

contains the code of the function. The function determines the correct format for

the duration string based on three parameters: hours, minutes and seconds.

First, it checks whether the input is a number and whether the input is non-

negative and throws errors if either of the conditions fail. Then, it determines the

number of hours, minutes and seconds in the provided duration. The function

then generates a variation of a human-readable duration string based on whether

the provided duration includes a full number of hours, minutes or seconds.

64

export function displayDurationText(timeInMinutes: number): string {
 if (typeof timeInMinutes !== 'number') {
 throw new Error('Expected number, received ' + typeof timeInMinutes);
 }

 if (timeInMinutes < 0) {
 throw new Error('input is negative: ' + timeInMinutes);
 }
 const hours = Math.floor(timeInMinutes / 60);
 const minutes = Math.floor(timeInMinutes % 60);
 const seconds = Math.floor((timeInMinutes * 60) % 60);
 const hourText = hours !== 1 ? i18n().time.hours : i18n().time.hour;
 let result: string;

 if (hours < 1) {
 result = `${minutes} min ${seconds} s`;
 } else {
 if (minutes === 0 && seconds === 0) {
 result = `${hours} ${hourText}`;
 } else {
 if (minutes !== 0) {
 result = `${hours} ${hourText} ${minutes} min ${seconds} s`;
 } else {
 result = `${hours} ${hourText} ${seconds} s`;
 }
 }
 }
 return result;
}

Figure 42. Utility function displayDurationText()

It is possible to document the required behaviour by making a table as shown in

Table 1. A cross in each column represents whether the duration in minutes

contains a full number of hours, minutes or seconds. A test can be written for

each line of the table. Figure 43 shows a test suite for the displayDurationText()

function with a test for the first line of the table – the case when the input duration

is zero.

 Hours Minutes Seconds

1

2 X

3 X

4 X

5 X X

6 X X

7 X X

8 X X X

Table 1. Possible variations of the displayDurationText() function input

65

describe('displayDurationText will generate human readable duration text from
duration provided in minutes', () => {
 it('Will return an empty string if duration is 0', () => {
 const timeInMinutes: number = 0;
 expect(displayDurationText(timeInMinutes)).toMatch('');
 });
});

Figure 43. The first test for the displayDurationText function()

It is now possible to go through the table line by line and write the remaining

tests. The tests in Figure 44 cover the cases 2 through 4 where the input duration

contains only seconds, only minutes or only hours. The test for the variation 4

specifies the behaviour in two cases: when the duration is less than two hours

long and when the duration is more than two hours long. Different strings should

be generated in these cases: “hour” and “hours” respectively.

 it('Will return only seconds if duration is under 1 minute', () => {
 const timeInMinutes: number = 0.5;
 expect(displayDurationText(timeInMinutes)).toMatch('30 s');
 });

 it('Will only return minutes if the duration is an exact number of minutes under 1
hour', () => {
 const timeInMinutes: number = 30;
 expect(displayDurationText(timeInMinutes)).toMatch('30 min');
 });

 it('Will only return hours if the duration is an exact amount of hours', () => {
 let timeInMinutes = 60;
 expect(displayDurationText(timeInMinutes)).toMatch('1 hour');

 timeInMinutes = 120;
 expect(displayDurationText(timeInMinutes)).toMatch('2 hours');
 });

Figure 44. Tests for input variations 2–4

Now the cases 5 through 8 can be specified where the input duration contains

only minutes and seconds, only hours and seconds, only hours and minutes, and

lastly hours, minutes and seconds. Figure 45 contains these tests. Finally, tests

should be written to specify that the function throws errors when the input is

negative or not a number, as this is also a part of the function’s behaviour. These

tests are presented in Figure 46.

66

 it('Will only return minutes and seconds if the duration is less than 1 hour', ()
=> {
 const timeInMinutes = 15.5;
 expect(displayDurationText(timeInMinutes)).toMatch('15 min 30 s');
 });

 it('Will only return hours and seconds if minutes are 0', () => {
 let timeInMinutes = 60.5;
 expect(displayDurationText(timeInMinutes)).toMatch('1 hour 30 s');

 timeInMinutes = 120.5;
 expect(displayDurationText(timeInMinutes)).toMatch('2 hours 30 s');
 });

 it('Will only return hours and minutes if seconds are 0', () => {
 let timeInMinutes = 65;
 expect(displayDurationText(timeInMinutes)).toMatch('1 hour 5 min');

 timeInMinutes = 125;
 expect(displayDurationText(timeInMinutes)).toMatch('2 hours 5 min');
 });

 it('Will display hours, minutes and seconds if none of them are 0', () => {
 let timeInMinutes = 65.5;
 expect(displayDurationText(timeInMinutes)).toMatch('1 hour 5 min 30 s');

 timeInMinutes = 125.5;
 expect(displayDurationText(timeInMinutes)).toMatch('2 hours 5 min 30 s');
 });

Figure 45. Tests for input variations 5–8

 it('Will throw an error if the input is not a number', () => {
 const timeInMinutes: any = { duration: 120 };
 expect(() => displayDurationText(timeInMinutes)).toThrowError();
 });

 it('Will throw an error if the input is negative', () => {
 const timeInMinutes: number = -120;
 expect(() => displayDurationText(timeInMinutes)).toThrowError();
 });

Figure 46. Specifying the cases where displayDurationText() should throw errors

Figure 47. Jest console output when displayDurationText() tests pass

67

The full test suite for the displayDurationText() function is presented in Appendix

1. Figure 47 shows the output that Jest prints to the console when all the tests for

displayDurationText() pass. Notice how making the test names expressive by

using full sentences makes it easy to grasp the full behaviour of the function by

reading the Jest output.

5.3 Examples of testing action creators

Action creators should be tested according to the official Redux documentation.

authActions.ts file contains the action creators responsible for handling

application state related to the user authentication status. The five action types it

includes are:

1. AUTH_FIREBASE_USER_STATE_CHANGED
2. AUTH_APP_USER_INFO_UPDATED
3. AUTH_APP_USER_ACTIVE_ORG_CHANGED
4. AUTH_FIREBASE_SET_ERROR
5. AUTH_FIREBASE_SET_AUTHENTICATING

As established above, in order to test an action creator, the action creator needs

to be called with certain parameters and the output of the action creator has to be

compared to the correct action object. Figure 48 presents the code of the action

creator 1. The action this creator produces is dispatched when the user logs in or

logs out of the system. The creator accepts either undefined or a User object as

the payload.

export interface FirebaseUserAuthStateChangedAction extends AnyAction {
 type: AuthActionType.AUTH_FIREBASE_USER_STATE_CHANGED;
 payload: firebase.User | undefined;
}

export const firebaseUserStateChanged: ActionCreator<
 FirebaseUserAuthStateChangedAction
> = (user: firebase.User | undefined) => ({
 type: AuthActionType.AUTH_FIREBASE_USER_STATE_CHANGED,
 payload: user,
});

Figure 48. firebaseUserStateChanged() action creator

The tests for both types of the payload can be written. Figure 49 contains the test

suite for the firebaseUserStateChanged() action creator. The test suite imports

68

the action creators that need to be tested and a getFirebaseUser() centralized

utility method. The method returns a test double which is a fake object of type

firebase.User. Figure 50 shows the code of the utility method. The firebase.User

type required a number of methods that are all replaced with mock functions.

Defining this object directly within test code would make the test code longer and

take away the focus from the primary goal of the test. Moving the definition of the

firebase.User object into a utility method allows to make the test more

expressive.

Both tests begin by setting up a user object that will be passed to the action

creator and a correct action that is expected from the action creator. Then, both

tests call the imported action creator with the user object as argument and

compare the returned action to the expected action using the toEqual() matcher

of Jest.

import { getFirebaseUser } from '__specs__/__helpers__/firebaseHelpers';
import * as actions from '../authActions';

describe('authAction creator', () => {
 it('firebaseUserStateChanged returns correct action when user is undefined', () =>
{
 const user = undefined;
 const correctAction: actions.FirebaseUserAuthStateChangedAction = {
 type: actions.AuthActionType.AUTH_FIREBASE_USER_STATE_CHANGED,
 payload: user,
 };
 expect(actions.firebaseUserStateChanged(user)).toEqual(correctAction);
 });

 it('firebaseUserStateChanged returns correct action when user is defined', () => {
 const user = getFirebaseUser();
 const correctAction: actions.FirebaseUserAuthStateChangedAction = {
 type: actions.AuthActionType.AUTH_FIREBASE_USER_STATE_CHANGED,
 payload: user,
 };
 expect(actions.firebaseUserStateChanged(user)).toEqual(correctAction);
 });
});

Figure 49. Test suite for the firebaseUserStateChanged() action creator

69

export const getFirebaseUser = (): firebase.User => {
 return {
 displayName: 'Tester',
 email: 'test@test.test',
 phoneNumber: '0',
 photoURL: null,
 providerId: 'providerId',
 isAnonymous: false,
 reauthenticateWithPhoneNumber: jest.fn(),
 metadata: {},
 providerData: [],
 uid: 'uid',
 delete: jest.fn(),
 emailVerified: true,
 getIdTokenResult: jest.fn(),
 getIdToken: jest.fn(),
 linkAndRetrieveDataWithCredential: jest.fn(),
 linkWithCredential: jest.fn(),
 linkWithPhoneNumber: jest.fn(),
 linkWithPopup: jest.fn(),
 linkWithRedirect: jest.fn(),
 reauthenticateAndRetrieveDataWithCredential: jest.fn(),
 reauthenticateWithCredential: jest.fn(),
 reauthenticateWithPopup: jest.fn(),
 reauthenticateWithRedirect: jest.fn(),
 refreshToken: "token",
 reload: jest.fn(),
 sendEmailVerification: jest.fn(),
 toJSON: jest.fn(),
 unlink: jest.fn(),
 updateEmail: jest.fn(),
 updatePassword: jest.fn(),
 updatePhoneNumber: jest.fn(),
 updateProfile: jest.fn(),
 };
}

Figure 50. getFirebaseUser() utility method

The rest of the action creators can be tested in the same way. The full test suite

for the authentication action creators is provided in Appendix 2.

5.4 Example of testing a reducer

Reducers should be tested according to the official Redux documentation. The

authReducer.ts file contains the reducer responsible for updating the state upon

receiving any of the authentication actions. The file also contains the definition of

the initial authentication state. Figure 51 shows the initial authentication state,

while Figure 52 contains the source code of the authentication reducer.

70

export interface AuthState {
 readonly firebaseUser: firebase.User | undefined;
 readonly appUser: User | undefined;
 readonly activeRole: UserRole | undefined;
 readonly firebaseError: firebase.auth.Error | undefined;
 readonly authenticating: boolean;
}

export const defaultAuthState: AuthState = {
 firebaseUser: undefined,
 appUser: undefined,
 activeRole: undefined,
 firebaseError: undefined,
 authenticating: false,
};

Figure 51. Initial authentication state

export const authReducer: Reducer<AuthState> = (
 state = defaultAuthState,
 action: AuthAction,
) => {
 switch (action.type) {
 case AuthActionType.AUTH_FIREBASE_USER_STATE_CHANGED: {
 return {
 ...state,
 firebaseUser: action.payload,
 firebaseError: undefined,
 authenticating: false,
 };
 }
 case AuthActionType.AUTH_APP_USER_INFO_UPDATED: {
 const appUser = action.payload as User;
 let activeRole;
 if (appUser) {
 if (appUser.systemAdmin) {
 activeRole = UserRole.SYSTEM_ADMIN;
 } else if (
 appUser.companies &&
 appUser.home &&
 appUser.companies[appUser.home] !== undefined
) {
 activeRole = appUser.companies[appUser.home];
 }
 }
 return {
 ...state,
 appUser: action.payload,
 activeRole,
 };
 }
 case AuthActionType.AUTH_FIREBASE_SET_ERROR: {
 return {
 firebaseError: action.payload,
 authenticating: false,
 ...state,
 };
 }
 case AuthActionType.AUTH_FIREBASE_SET_AUTHENTICATING: {
 return {
 authenticating: action.payload,
 ...state,
 };
 }
 default:
 return state;
 }
};

Figure 52. Authentication reducer

71

The reducer can now be tested in four steps defined in Chapter 4. First, a state

object with the initial state must be set up. Second, a test should be written that

verifies the reducer does not modify the state when receiving an action that it

does not recognize. Figure 53 provides the setup and the first test for the

authentication reducer. The beforeEach() hook of Jest is another spec-style

feature originating from RSpec. The setup code inside beforeEach() is executed

before each of the tests within the test suite. (Justice 2018.) For this reducer test,

beforeEach() sets the initialState object to equal the defaultAuthState object

imported from the authReducer.ts file. The first test verifies that the reducer does

not modify the state if the supplied action is not recognized. An action object is

set up with an ‘UNSUPPORTED_ACTION’ type – a type that is not included in

the switch in the code of the reducer. The authReducer is then called with the

initial state and the action as parameters and expected to return the original state

object.

import * as actions from '../authActions';

import { authReducer, AuthState, defaultAuthState } from '../authReducer';

describe('authReducer', () => {
 let initialState: AuthState;
 beforeEach(() => {
 initialState = defaultAuthState;
 });

 it('does not modify state if action is not recognized, () => {
 const action: AnyAction = {
 type: 'UNSUPPORTED_ACTION',
 };
 expect(authReducer(initialState, action)).toEqual(initialState);
 });
});

Figure 53. Setup of the initial state and testing the authReducer with an unsupported action

Next, each action supported by the reducer must be tested. Figure 54 shows the

test that verifies the reducer updates the state correctly upon receiving the

AUTH_FIREBASE_USER_STATE_CHANGED action. The initial state for the

test is set up in beforeEach(), while the rest of the setup is done within the code

of the test. A user object is set up using the getFirebaseUser() utility method

already used in the action creator test. Next, the correct action object and the

state expected to be returned by the reducer are set up. Finally, the reducer is

72

called with the initial state and the action as parameters and expected to return

the correct state object.

it('upon receivig AUTH_FIREBASE_USER_STATE_CHANGED updates user in state, sets
"firebaseError" to "undefined" and "authenticating" to "false"', () => {
 const user = getFirebaseUser();
 const action: actions.FirebaseUserAuthStateChangedAction = {
 type: actions.AuthActionType.AUTH_FIREBASE_USER_STATE_CHANGED,
 payload: user,
 };
 const expectedState = {
 ...initialState,
 firebaseUser: action.payload,
 firebaseError: undefined,
 authenticating: false,
 };
 expect(authReducer(initialState, action)).toEqual(expectedState);
 });

Figure 54. Testing the behaviour of the reducer upon receiving a supported action

The rest of the actions supported by the reducer can be tested in the same way.

The full test suite for the authentication reducer is provided in Appendix 3.

5.5 Examples of testing React components

This section provides examples of testing React components according to the

strategy. It uses two components for that purpose: AccountForm and

AccountContainer. The AccountForm component allows logged in users to view

their account data and edit certain fields (currently, only the display name is

editable). The AccountForm component is wrapped into the AccountContainer

component. The AccountForm is a stateless component that receives three

props: the account data, a change event handler and a submit event handler. It is

responsible for displaying the account data and triggering the event handlers with

correct data. Figure 55 shows how the two components are displayed to the user.

The AccountContainer component:

• is responsible for passing account data to AccountForm.

• contains the implementation of the event handlers triggered by
AccountForm.

• is connected to Redux to get the global authentication state.

• interacts with Firebase to get the data for the currently logged in account.

• displays the avatar of the account.

73

Figure 55. The AccountForm component wrapped into AccountContainer

The components can now be tested according to the strategy.

5.5.1 Testing a stateless component

Figure 56 contains the source code of the AccountForm component. The styles

object at the bottom is redacted from the figure as the component style is not

being tested. The first step of testing the component is to verify that it renders.

Figure 57 displays the code of the smoke test as well as the code of the setup

function for the test. As established in Chapter 4, the setup function is used to

remove duplication within test code and make the tests more expressive. The

usefulness of the function will become increasingly apparent as more tests are

written. In Figure 57, the setup function accepts an optional parameter

propOverrides. The function contains a declaration of the default props object

that is overwritten if the propOverrides argument is supplied. The Object.assign()

method is used to copy enumerable properties from the propOverrides object into

the props object. This way it is possible to only override certain fields of the

default props without supplying the entire required props object to the setup

function. The setup function uses a utility method getUser() to generate a default

object of type User. The user object is set to be the default value of the

initialValues prop. The onSubmit and onUpdateAccount props are replaced with

mock functions to spy on the way they are called.

Next, the component is shallow rendered with the resolved props. The setup

function returns an object containing both the props and the shallow wrapper of

the component. The first test then calls the setup function and assigns the

wrapper returned by the function to a local constant. It uses the destructuring

74

assignment syntax in order to only take the wrapper from the object returned by

the setup function, as the props are not required for the rendering test. The test

then verifies that the shallow wrapper contains at least one node by calling

wrapper.exists() and expecting it to be true.

import { Button, TextField } from '@material-ui/core';
import { i18n } from '@shared/locale/index';
import { User } from '@shared/schema';
import * as React from 'react';
export interface AccountProps {
 initialValues: User;
 onSubmit: () => void;
 onUpdateAccount: any;
}
class AccountForm extends React.Component<AccountProps> {
 constructor(props: AccountProps) {
 super(props);
 this.state = {};
 this.handleChange = this.handleChange.bind(this);
 }
 public handleChange(event: any) {
 const { initialValues, onUpdateAccount } = this.props;
 const editedAccount = {
 ...initialValues,
 displayName: event.target.value,
 };
 onUpdateAccount && onUpdateAccount(editedAccount);
 }
 public render() {
 const {
 initialValues: { displayName = '', email = '', home = '' },
 onSubmit,
 } = this.props;
 return (
 <div style={styles.container}>
 <h4>{i18n().ui.account}</h4>
 <TextField
 name="displayName"
 placeholder={i18n().ui.name}
 onChange={this.handleChange}
 value={displayName} />
 <TextField
 disabled={true}
 name="email"
 placeholder={i18n().ui.email}
 value={email} />
 <TextField
 disabled={true}
 name="home"
 placeholder={i18n().ui.company}
 value={home} />
 <Button
 type="submit"
 onClick={onSubmit}
 style={styles.submit} >
 {i18n().ui.save}
 </Button>
 </div>
); }}
const styles = { ... };
export default AccountForm;

Figure 56. Source code of the AccountForm component before any tests are written

75

import { User } from '@shared/schema';
import { getUser } from '__specs__/__helpers__/specHelpers';
import { shallow } from 'enzyme';
import * as React from 'react';
import AccountForm, { AccountProps } from '../AccountForm';

const setup = (propOverrides?: any) => {
 const user : User = getUser();
 const props: AccountProps = Object.assign(
 {
 initialValues: user,
 onSubmit: jest.fn(),
 onUpdateAccount: jest.fn(),
 },
 propOverrides,
);
 const wrapper = shallow(<AccountForm {...props} />);
 return {
 props,
 wrapper,
 };
};

describe('<AccountForm />', () => {
 it('renders', () => {
 const { wrapper } = setup();
 expect(wrapper.exists()).toBe(true);
 });
});

Figure 57. Setup function and a smoke test for AccountForm

The second step of testing the component is to test each prop. Two of the props

that AccountForm receives are event handlers, they will be tested separately

during step four. The initialValues prop is an object of type User that contains

information about the user account. Three properties of initialValues are

displayed in three TextField components. These properties are displayName,

email and home. A separate test should be written to verify that each of these

properties is displayed in the correct text field. Each test will find the correct

TextField node in the component’s render tree and verify that the value prop of

the TextField matches the right property of initialValues.

In order to easily find the right TextField nodes with the find() selector of Enzyme,

data attributes can be added to every text field. Dodds (2017a) recommends

using data attributes to make the tests resilient to future changes. The layout of

the component or the class names of the nodes can be modified, but as long as

the data attributes remain intact the tests are less likely to break. (Dodds 2017a.)

Figure 58 shows the TextField component for displayName with a data-test

76

attribute “displayName” added. Data-test attributes are also added to the email

and home TextField components, as well as the submit button.

<TextField
 name="displayName"
 placeholder={i18n().ui.name}
 onChange={this.handleChange}
 value={displayName}
 data-test="displayName" />

Figure 58. TextField component with a data-test attribute

The setup function can now be updated to find and return each of the text fields,

as shown in Figure 59. Finding the nodes within the setup function has an

advantage over finding the nodes within each test in cases when the same node

needs to be used in multiple tests. In the case of the AccountForm test suite, the

displayNameTextField node will be used again when testing the change event

handler. The email and home nodes are currently only used in one test each.

However, if the functionality of the component is expanded in the future and

change handlers are added to the email and home text fields, the tests will

require no restructuring.

 const wrapper = shallow(<AccountForm {...props} />);
 const displayNameTextField = wrapper.find('[data-test="displayName"]');
 const emailTextField = wrapper.find('[data-test="email"]');
 const homeTextField = wrapper.find('[data-test="home"]');
 const submitButton = wrapper.find('[data-test="submitButton"]');

 return {
 props,
 wrapper,
 displayNameTextField,
 emailTextField,
 homeTextField,
 submitButton,
 };

Figure 59. Updated setup function finds and returns nodes of the shallow wrapper

Figure 60 presents the tests for each of the initialValues properties. In each test,

the props object and the found TextField node are returned from the setup

function. The value of the ‘value’ prop of each TextField is then compared against

the corresponding initialValues property.

77

 it('displays the displayName property of the initialValues prop', () => {
 const { props, displayNameTextField } = setup();
 expect(displayNameTextField.prop('value')).toBe(
 props.initialValues.displayName,
);
 });

 it('displays the email property of the initialValues prop', () => {
 const { props, emailTextField } = setup();
 expect(emailTextField.prop('value')).toBe(props.initialValues.email);
 });

 it('displays the home property of the initialValues prop', () => {
 const { props, homeTextField } = setup();
 expect(homeTextField.prop('value')).toBe(props.initialValues.home);
 });

Figure 60. Testing that the initialValues properties are displayed in correct text fields

Step 3 is to test each property of the component’s state. AccountForm is a

stateless component, so this step is not required. Step 4 is to test the event

handlers of the component. Figure 61 shows the test of the submit event handler.

The component is setup and the props object and the submit button wrapper are

returned from the setup function. A click event is simulated on the wrapper using

the simulate(‘click’) method of Enzyme. The onSubmit prop is then

expected to have been called. The behaviour of the submit handler cannot be

tested, as the AccountForm component receives the handler as a prop from the

parent component AccountContainer. The behaviour of the handler will be tested

in section 5.5.2 when specifying the behaviour of AccountContainer.

it('calls the onSubmit callback prop when the submit button is clicked', () => {
 const { props, submitButton } = setup();
 submitButton.simulate('click');
 expect(props.onSubmit).toHaveBeenCalled();
 });

Figure 61. Testing the submit handler of the AccountForm component

Figure 62 contains the test of the change event handler of the displayName text

field. First, a spy is created on the handleChange method of the AccountForm

component. Then, the component is setup and the displayName TextField node

is returned from the setup function. A change event is then simulated on the node

using the simulate(‘change’) method of Enzyme. The value of the target of

the event is supplied as the second argument to the simulate function. Finally, the

spy is expected to have been called with the value of the event target.

78

it('calls handleChange with updated account data when the displayName is edited', ()
=> {
 const handleChangeSpy = jest.spyOn(AccountForm.prototype, 'handleChange');
 const { displayNameTextField } = setup();
 displayNameTextField.simulate('change', { target: { value: 'new name' } });
 expect(handleChangeSpy).toHaveBeenCalledWith({
 target: { value: 'new name' },
 });
 });

Figure 62. Testing the change event handler of the displayName text field

The AccountForm component includes the implementation of the handleChange

method. Therefore, it is not enough to test that the method has been called with

correct parameters. The behaviour of the handler method needs to be tested as

well. The test is presented in figure 63. Once again, a change event is simulated

on displayName text field. However, this time the onUpdateAccount prop of

AccountForm is expected to have been called with the correctly updated account

data.

it('calls onUpdateAccount from handleChange if onUpdateAccount is defined', () => {
 const { displayNameTextField, props } = setup();
 displayNameTextField.simulate('change', { target: { value: 'new name' } });
 expect(props.onUpdateAccount).toHaveBeenCalledWith({
 ...props.initialValues,
 displayName: 'new name',
 });
 });

Figure 63. Testing the behaviour of the handleChange() method

AccountForm component does not make use of lifecycle methods and does not

include conditional rendering, therefore steps 5 and 6 are not needed. The final

test required by the strategy is a snapshot test. The snapshot test is presented in

Figure 64. The enzyme-to-json library is used to make the snapshot more

readable.

 it('matches snapshot', () => {
 const { wrapper } = setup();
 expect(toJson(wrapper)).toMatchSnapshot();
 });

Figure 64. Snapshot testing AccountForm

The test suite of the AccountForm component is provided in full in Appendix 4.

79

5.5.2 Testing a stateful component connected to Redux

Next, the AccountContainer component is tested. Figure 65 contains the source

code of the AccountContainer component with the componentDidMount() and

render() methods redacted. Those methods are provided in full in figures 66 and

67 respectively. The styles object is also redacted as the styles of the component

are not being tested.

export interface AccountContainerProps extends Partial<DispatchProp<any>> {
 auth: any;
}
interface State {
 isLoading: boolean;
 account: User;
}
export class AccountContainer extends React.Component<
 AccountContainerProps,
 State
> {
 constructor(props: AccountContainerProps) {
 super(props);
 this.state = {
 isLoading: true,
 account: {
 id: '',
 displayName: '',
 email: '',
 photoURL: '',
 home: '',
 },
 };
 }
 public componentDidMount() { ... }
 public render() { ... }

 private handleAccountChange = (account: ShortUserInfo) => {
 this.setState({ account });
 };
 private handleSubmit = () => {
 firebaseApp
 .firestore()
 .collection(Schema.USERS)
 .doc(this.state.account.id)
 .update(this.state.account);
 };
}
const mapStateToProps = (
 state: ApplicationState,
 ownProps: Partial<AccountContainerProps>,
) => {
 return {
 ...ownProps,
 auth: state.auth,
 };
};
const styles = { ... };
export default withRouter<any>(connect<any>(mapStateToProps)(AccountContainer));

Figure 65. AccountContainer component

80

public componentDidMount() {
 if (
 this.props.auth.appUser !== undefined &&
 this.props.auth.appUser.id !== undefined
) {
 firebaseApp
 .firestore()
 .collection(Schema.USERS)
 .doc(this.props.auth.appUser.id)
 .get()
 .then(snapshot => {
 const account: any = snapshot.data();
 if (account) {
 this.setState({
 isLoading: false,
 account,
 });
 }
 })
 .catch(error => {
 console.log(error);
 });
 }
 }

Figure 66. The componentDidMount() method of the AccountContainer component

public render() {
 if (this.state.isLoading) {
 return <LoadingSpinner data-test="loadingSpinner" />;
 }
 return (
 <div style={styles.container}>
 <Paper style={styles.pane}>
 <div style={styles.settings}>
 <div style={styles.avatar}>
 <img
 data-test="avatarImage"
 style={styles.avatar}
 src={
 this.state.account && this.state.account.photoURL
 ? this.state.account.photoURL
 : defaultUserImageUrl
 }
 />
 </div>
 <div style={styles.meta}>
 <AccountForm
 onSubmit={this.handleSubmit}
 onUpdateAccount={this.handleAccountChange}
 initialValues={this.state.account}
 data-test="accountForm"
 />
 </div>
 </div>
 </Paper>
 </div>
);
 }

Figure 67. The render() method of the AccountContainer component

The AccountContainer component is wrapped in a Redux state provider and a

Router. The component uses the mapStateToProps() function of Redux in order

81

to get the auth property of the global application state and maps it to its own auth

prop. AccountContainer is a stateful component. It contains two variables in its

state: an “isLoading” boolean representing whether the component is loading

data from the database, and an “account” object of type User that represents the

user account data fetched from the database. The constructor method initializes

the component with the default state – “isLoading” is true and the “account” prop

has all the fields as empty strings.

The lifecycle method componentDidMount() is called immediately after the

component is added to the DOM. AccountContainer fetches the account

information from the database from its componentDidMount(), as shown in Figure

66. The component tries to get a document from the “users” collection with the id

of the user that is currently logged in. The call to firebaseApp()

.firestore().collection(Shema.USERS).doc(this.props.auth

.appUser.id).get() returns a promise. That promise is resolved when a

document snapshot with user data is returned from the database. The returned

user data is then set to the state of the component, and the “isLoading” state

variable is changed to false.

Finally, the render method in Figure 67 returns a LoadingSpinner component until

the account data is loaded from the database. When the account is fetched from

the database and “isLoading” is set to “false”, the render method returns a user

avatar and the AccountForm component with the account data. The avatar

displays the user account avatar if the account data contains a photoURL

property and a default image otherwise. The conditions affecting the rendering of

AccountContainer are presented in Figure 68.

As this component relies on Firebase database when rendering, the setup

function for the tests needs to be adjusted to setup a mock for the Firebase

database. The setup function for AccountContainer is displayed in Figure 69. Ts-

Mock-Firebase documentation (2019) provides instructions for the setup of a

mock Firebase application with a mock database.

82

Figure 68. Conditions affecting the rendering of AccountContainer

When Firebase is configured for a project, the entry point for the Firebase SDK is

setup using the FirebaseApp class (Google 2019). In MOWO dashboard, the

firebase application is setup in a firebaseApp.ts file located at the root of the src

directory. The Firebase library itself has already been manually mocked when

setting up the environment (Section 5.1), and the firebaseApp already uses the

mock library to initialize the app. However, in order to set up the database of

firebaseApp with custom data required for tests, the mock interface has to be

exposed. This is achieved on the first line of the setup function in Figure 69. The

firebaseApp module is imported from the src directory, and the

exposeMockFirebaseApp() method of Ts-Mock-Firebase is called with the

firebaseApp as the argument. The method returns an instance of firebaseApp

with the interface exposed – the constant mockApp. Now, custom data can be

placed into the database. (Ts-Mock-Firebase 2019.)

The object “database” of type MockDatabase defines the fake database that will

be used in tests. The object contains one collection (users) with one document

(one user). The Firebase application is configured to use that fake database by

calling mockApp.firestore().mocker.fromMockDatabase(database).

(Ts-Mock-Firebase 2019.)

83

const setup = async (propOverrides?: any) => {
 const mockApp = exposeMockFirebaseApp(firebaseApp);
 const database: MockDatabase = {
 users: {
 docs: {
 '1000': {
 data: {
 displayName: 'Tester',
 id: '1000',
 email: 'test@test.test',
 photoURL: 'photoURL',
 home: 'home',
 }, }, }, }, };

 mockApp.firestore().mocker.fromMockDatabase(database);

 const authState: AuthState = {
 firebaseUser: undefined,
 appUser: {
 displayName: 'User',
 id: '1000',
 email: 'test@test.test',
 photoURL: 'UserUrl',
 },
 activeRole: UserRole.USER,
 firebaseError: undefined,
 authenticating: false,
 };

 const props: AccountContainerProps = Object.assign(
 { auth: authState },
 propOverrides,
);

 const wrapper = await shallow(<AccountContainer {...props} />);
 const accountForm = wrapper.find('[data-test="accountForm"]');
 const avatar = wrapper.find('[data-test="avatar"]');

 return { mockApp, wrapper, props, accountForm, avatar };
};

Figure 69. The setup function for AccountContainer tests

Next in the setup function the default props of the component are set up. The

same approach is used as with the AccountForm setup function. The setup

function defines the default props and accepts prop overrides in cases when the

default props need to be modified for any given test. The default value for the

auth prop of AccountContainer is configured to equal the authState object, which

has the property appUser defined. The id of the appUser is equal to the id of the

user that was placed in the mock database. This way, by default when

AccountForm is shallow rendered in the setup function it will find the user in the

database from componentDidMount() and place it into state.

84

Finally, the setup function shallow renders the component, finds the AccountForm

component and the avatar component using data attributes, and returns the

wrapper, the found nodes, props and mockApp. In this case the shallow()

method is called like an asynchronous function. As mentioned above, when the

AccountForm component fetches the user from the database in

componentDidMount(), it waits for a promise to resolve in order to set the account

data to state. Calling the shallow() method with the await operator makes the

function wait for the promise to resolve. Since await is used within the setup

function, the setup function is made asynchronous (the async operator on the

first line of Figure 69).

Now that the setup function is complete, the component can be tested according

to the strategy. First, component rendering is tested. The test is presented in

Figure 70. The wrapper is set up with defaultAuthState as the prop. This is the

default authentication state imported into the test from authReducer. As the test

uses the asynchronous setup function, the test must be asynchronous as well –

hence the async operator is added to the test function.

export const defaultAuthState: AuthState = {
 firebaseUser: undefined,
 appUser: undefined,
 activeRole: undefined,
 firebaseError: undefined,
 authenticating: false,
};

describe('<AccountContainer />', () => {
 it('renders', async () => {
 const { wrapper } = await setup({ authState: defaultAuthState });
 expect(wrapper.exists()).toBe(true);
 });
});

Figure 70. Smoke testing AccountContainer

Step 2 is to test each prop of the component. The AccountContainer only has one

prop: auth. The prop contains a copy of the global authentication state. The only

place where the prop is used by the component is within componentDidMount().

Because of this, step 2 can be combined with step 5 – testing component

lifecycle methods. The first test for the auth prop and the componentDidMount()

85

lifecycle method is presented in Figure 71. The test verifies that AccountConainer

uses the id of the auth prop to get the account data from the database in

componentDidMount() and puts it to state. The test begins by creating a spy on

the setState method of AccountContainer. Then, the wrapper is setup with the

default props. The state of the wrapper is then expected to equal the

expectedState object where “isLoading” is false and “account” is equal to the

account stored in the mock database. The spy is also expected to have been

called with the expectedState. This test contains two assertions to demonstrate

different ways the update of the state can be tested. Only one of these assertions

is necessary for the test to function. It would be enough to keep the second

assertion and remove the spy and the first assertion.

it('uses the id of the auth prop to get the account data from database on
componentDidMount and puts it to state', async () => {
 const setStateSpy = jest.spyOn(AccountContainer.prototype, 'setState');
 const { wrapper } = await setup();
 const expectedState = {
 isLoading: false,
 account: {
 displayName: 'Tester',
 id: '1000',
 email: 'test@test.test',
 photoURL: 'photoURL',
 home: 'home',
 },
 };

 expect(setStateSpy).toHaveBeenCalledWith(expectedState);
 expect(wrapper.state()).toEqual(expectedState);
 });

Figure 71. Testing that AccountContainer gets the user from database by auth.id

The second test for the auth prop and the componentDidMount() lifecycle method

is presented in Figure 72. The test verifies that the component does not update

the initial state and keeps isLoading variable “true” if the user account is not

found in the database. The test sets up a user object with an id that does not

exist in the mock database. The user is then placed into an authState prop that is

passed to the setup function to override the default value of the auth prop. The

shallow wrapper returned by the setup function is expected to still have the

“isLoading” state variable true. This means that the component never stops

loading if the user is not found in the database.

86

it('keeps the "isLoading" state variable true if the account is not found in
database', async () => {
 const user = {
 displayName: 'Tester',
 id: 'wrongId',
 email: 'test@test.test',
 photoURL: 'photoURL',
 home: 'home',
 };

 const authState: AuthState = {
 firebaseUser: undefined,
 appUser: user,
 activeRole: UserRole.USER,
 firebaseError: undefined,
 authenticating: false,
 };

 const { wrapper } = await setup({ auth: authState });
 expect(wrapper.state('isLoading')).toBe(true);
 });
Figure 72. Testing that AccountContainer does not modify the default value of “isLoading” if the
user is not found in the database

Step 3 is to test each state variable of the component. AccountContainer has two

variables in its state: “isLoading” and “account”. The test in Figure 73 verifies that

the component renders a LoadingSpinner component if the “isLoading” variable is

true. The test sets up the wrapper with the default props, updates the state of the

wrapper so that “isLoading” is true, finds the LoadingSpinner component by the

data-test attribute and expects it to exist.

it('renders a loading spinner if the "isLoading" state variable is true', async () =>
{
 const { wrapper } = await setup();
 wrapper.setState({ isLoading: true });
 expect(wrapper.find('[data-test="loadingSpinner"]').exists()).toBe(true);
});

Figure 73. Testing that a LoadingSpinner is displayed when “isLoading” is true in state

The rest of the tests cover the case when “isLoading” is false. They can be

grouped into a single nested describe block to make the structure clearer. The

first two tests in the new block (see Figure 74) verify that AccountContainer

renders the AccountForm component and passes the “account” state variable as

the initialValues prop to the AccountForm component.

87

describe('when "isLoading" state variable is false', () => {
 it('renders an AccountForm component', async () => {
 const { accountForm } = await setup();
 expect(accountForm.exists()).toBe(true);
 });

 it('passes the "account" state variable to AccountForm as a prop', async () => {
 const { wrapper, accountForm } = await setup();
 expect(accountForm.prop('initialValues')).toEqual(
 wrapper.state('account'),
);
 });
 });

Figure 74. Testing AccountForm rendering and its initialValues prop

Step 4 is to test the event handlers. The AccountContainer contains two event

handler methods: handleAccountChange() and handleSubmit(). Both event

handlers are dispatched from the child AccountForm component. The fact that

the handlers are dispatched by AccountForm was verified when testing

AccountForm in Section 5.1. Now, the goal is to verify the correct behaviour of

each event handler.

it('updates the account in state when AccountForm triggers onUpdateAccount', async ()
=> {
 const { accountForm, wrapper } = await setup();
 const changedAccount: ShortUserInfo = {
 displayName: 'Changed name',
 id: '1000',
 email: 'test@test.test',
 photoURL: 'photoURL',
 };

 accountForm.simulate('updateAccount', changedAccount);

 expect(wrapper.state('account')).toEqual({
 displayName: 'Changed name',
 id: '1000',
 email: 'test@test.test',
 photoURL: 'photoURL',
 });
 });

Figure 75. Testing state update when AccountForm triggers onUpdateAccount() event handler

Figure 75 presents the test for the handleAccountChange() handler. The test sets

up the wrapper with default props. The AccountContainer wrapper and the

AccountForm wrapper are returned by the setup function. The test then sets up a

new user object changedAccount with a changed displayName property. Then,

88

an ‘updateAccount’ event is simulated on the accountForm node wrapper. The

changedAccount object is provided as the target for the simulated event. Finally,

the test expects the “account” state variable of AccountContainer to equal

changedAccount, meaning the handleAccountChange() handler method

successfully updated the state with the modified account.

The handleSubmit() event handler is triggered on submit event of the

AccountForm and updates the user information in the database. This behaviour

can be verified using the mock Firebase application mockApp. Figure 76 presents

the test for the handleSubmit() event handler.

it('updates the account in the database when AccountForm triggers onSubmit', async ()
=> {
 const { accountForm, mockApp, wrapper } = await setup();

 wrapper.setState({
 account: {
 displayName: 'Updated name',
 id: '1000',
 email: 'test@test.test',
 photoURL: 'photoURL',
 home: 'home',
 },
 });

 accountForm.simulate('submit');

 return mockApp
 .firestore()
 .collection(Schema.USERS)
 .doc('1000')
 .get()
 .then(updatedDocument => {
 expect(updatedDocument.data()).toEqual({
 displayName: 'Updated name',
 id: '1000',
 email: 'test@test.test',
 photoURL: 'photoURL',
 home: 'home',
 });
 });
 });

Figure 76. Testing database update when AccountForm triggers handleSubmit() event handler

The test sets up the wrapper with default props. The setup function returns the

AccountContainer wrapper, the AccountForm wrapper and mockApp. The

“account” state variable of the AccountContainer is then updated with a different

89

account object. The ‘submit’ event is then simulated on the AccountForm

wrapper. Finally, the test fetches the user from the mock database and expects

the user in the database to be updated. The call to the mock database is

asynchronous, as it involves a promise. In order for Jest to wait for the promise to

resolve, the promise has to be returned from the test. (Jest Documentation

2019c.) The test returns mockApp.firestore().collection(Schema.

USERS).doc('1000').get() promise that makes a request to the mock

database to get a user with a specified id. The assertion is added to the callback

of the promise.

Step 5 is to test component lifecycle methods, but as mentioned earlier, in the

case of AccountContainer this step was performed at the same time as testing

props. Step 6 is to test conditions. Multiple conditions have already been covered

while testing the state variables. However, looking back at Figure 68 reveals that

one condition that affects the rendering of the component has not yet been

tested. That condition is the image of the user avatar.

it('renders the avatar of the account if account.photoURL is defined', async () => {
 const { wrapper } = await setup();
 expect(wrapper.find('[data-test="avatarImage"]').prop('src')).toBe(
 'photoURL',
);
 });

it('renders the default avatar if account.photoURL is not defined', async () => {
 const { wrapper } = await setup();
 wrapper.setState({
 account: {
 displayName: 'Updated name',
 id: '1000',
 email: 'test@test.test',
 photoURL: undefined,
 home: 'home',
 },
 });
 expect(wrapper.find('[data-test="avatarImage"]').prop('src')).toBe(
 defaultUserImageUrl,
);
 });
 });

Figure 77. Testing user avatar image rendering

Figure 77 contains the two tests that verify avatar rendering. The first test verifies

that if a user has a photoURL defined, the avatar displays an image with that

90

URL. The second test verifies that if photoURL is not defined, the avatar displays

the default image.

it('matches snapshot', async () => {
 const { wrapper } = await setup();
 expect(toJson(wrapper)).toMatchSnapshot();
});

Figure 78. Snapshot testing AccountContainer

Finally, a snapshot test is made for the component. The component is rendered

with default props and a snapshot is taken. Figure 78 contains the snapshot test.

The test suite of the AccountContainer component is provided in full in Appendix

5.

5.6 Configuring pre-push test execution with Git hooks

First, the Husky library needs to be installed with yarn (see Figure 79). A hook

can now be added to the Git push event that will execute the tests before

allowing to push the changes to version control. Figure 80 shows a pre-push

Husky hook added in the package.json file of the MOWO dashboard application.

yarn add --dev husky

Figure 79. Installing Husky

"husky": {
 "hooks": {
 "pre-push": "yarn test"
 }
 }

Figure 80. Configuring a pre-push command with Husky in package.json

Figure 81. Husky executes tests upon push event

91

The pre-push hook will be executed every time a developer attempts to push the

changes into version control. This behaviour is displayed in Figure 81. After a

git push command is entered in the terminal, Husky automatically runs the

yarn test command that executes every test for the application. If any of the

tests fail, the push command is cancelled.

5.7 Creating a Jenkins project to run tests for each merge request

Jenkins provides a user interface that simplifies the creation of new projects. A

new project can be created by going to the main page of the Jenkins server and

choosing “New item” in the menu on the left. “Freestyle project” is selected from a

number of project presets that the automation server provides. The name chosen

for the project is “mowo-dashboard-merge-inspector”. Figure 82 shows the name

and the description of the project configured on the Jenkins server.

Figure 82. Project name and description configured

Next, GitLab integration needs to be configured in the Source Code Management

section of the project settings. Jenkins Git Plugin is required for the Git integration

options to be available. Figure 83 shows the Source Code Management settings

for the mowo-dashboard-merge-inspector project. “Git” should be chosen from

the list of the available version control systems. Next, the repository needs to be

provided for Jenkins to check out. The repository URL and the correct credentials

for GitLab are required. In the advanced options for the repository, a name for the

repository can be specified and a refspec provided. The refspec allows to map

remote refs in the repository to the local refs on the Jenkins server. The name

specified is “origin” and the refspec is

92

+refs/heads/*:refs/remotes/origin/* +refs/merge-

requests/*/head:refs/remotes/origin/merge-requests/* .

The next step is to specify which branch the merge inspector should build. The

specified branch is the feature branch: merge-requests/${gitlabMergeRequestIid}.

Lastly, an additional behaviour “Merge before build” is added. This option makes

Jenkins merge the feature branch into the target branch before executing the

tests. This way the merge inspector can verify that the tests will still pass after the

merge request is accepted and the feature branch is merged into the target

branch.

Figure 83. Git integration configured

93

Next, Build Triggers are configured for the project. For this step to work, a

webhook needs to be added to the repository on GitLab. The webhook can be

configured by going to the repository on the GitLab server, and then selecting

“Settings/Integrations/Add webhook” from the menu. Figure 84 shows the

webhook settings for the MOWO repository. The Jenkins mowo-dashboard-

merge-inspector project URL is provided and the types of events that trigger the

webhook are specified. The repository is configured to trigger the webhook on

every merge request event, comment and push event.

Figure 84. Webhook configured on GitLab

Now, the build trigger is also configured on Jenkins as shown in Figure 85. The

option “Build when a change is pushed to GitLab” is checked and types of events

that trigger the build are specified as well. The events chosen are “Opened

Merge Request Events”, “Accepted Merge Request Events”, “Closed Merge

Request Events” and “Comments”. The option “Rebuild open Merge Requests

On push to source or target branch” makes sure the build will run if either the

source or the target branch is updated in the repository. A regex pattern is

94

provided for the comment string that would trigger a build. The string is currently

set to the default “Jenkins please retry a build”. Leaving a comment with this text

on a merge request on GitLab will trigger the build, but regular comments will not

trigger the build.

Figure 85. Build triggers configured

Figure 86. Commands executed during the build

Then, the build itself is configured. The build step “Execute shell” is added as

shown in Figure 86. The shell script switches from the root directory of the

MOWO repository into the mowo-dashboard directory, executes yarn install

95

to get the Node modules and finally executes tests by running yarn test – the

script configured in the package.json of MOWO dashboard in Section 5.1.

Finally, custom messages can be configured for Jenkins to display on merge

requests after the build is completed. This is done in the “Post-build Actions”

section. Two custom messages are created: one for success and one for failure.

The comments use GitLab’s built-in emoji syntax to display a green check mark

when tests are complete and a red cross when the tests fail. The comments also

contain a link to the console output of the Jenkins build that ran the tests. This

makes it easier to quickly see why the tests failed. Figure 87 presents the

comment configuration.

Figure 87. Configuring GitLab comments post-build

Figure 88 displays how Jenkins comments are displayed on a GitLab merge

request. When the merge request was first open, the tests for the utility function

96

timeUtils failed. The reason for that was that timeUtils is located outside the

mowo-dashboard directory, in a directory called @shared. Node modules were

not installed in that directory when the mowo-dashboard-merge-inspector project

was executed. In order to fix the issue, the “Build” step of the merge inspector

project was updated to run yarn install in the @shared directory, then switch

to the mowo-dashboard directory and run the tests (the changes are shown in

Figure 89).

Figure 88. GitLab merge requests with Jenkins comments after two builds of the merge inspector

97

Figure 89. Updated build step of the merge inspector

After the change was made, a comment with the text “Jenkins please retry a

build” was left on the merge request. That comment triggered another build of the

merge inspector project. This time the tests succeeded, and the appropriate

comment was made on the merge request.

5.8 Displaying a code coverage report on the Jenkins server

Finally, the HTML code coverage report generated by Jest can be displayed on

the Jenkins server. Another post-build action needs to be added to the mowo-

dashboard-merge-inspector project for that purpose. The configuration of the new

post-build action is displayed in Figure 90. The action is added by clicking “Add”

and choosing “Publish HTML reports” from the dropdown. The path to the

directory where Jest generates the report and the name of the index page is

provided. The title for the report is set to Code Coverage.

98

Figure 90. Publish HTML reports post-build action

Figure 91. Merge inspector project page with a link to Code Coverage

99

Figure 92. HTML coverage report generated by Jest displayed on Jenkins

After the build is executed one more time, a link to the code coverage report

appears on the page of the mowo-dashboard-merge-inspector project. The page

is shown in Figure 91. The HTML report generated by Jest is available by clicking

the link. A sample of the contents of the HTML report is presented in Figure 92.

The page always displays the code coverage for the latest build.

6 DISCUSSION

What follows is the summary of the work conducted for this thesis.

• The literature on the motivation for and the benefits of test automation was
reviewed.

• The literature on the established industry patterns and techniques for
writing automated tests was reviewed.

• The technology stack of the case study application was reviewed
alongside the tools for testing the applications with this technology stack.

• A testing strategy for the case study application was formulated based on
the findings of the literature review as well as an overview of four testing
strategies used by software developer teams in modern companies. The
strategy prioritized the view of the tests as an executable specification of
the system.

• The strategy documented the way the test files should be named and
organized and the way the tests should be structured. Four types of units
that need to be tested were identified.

• The strategy set limitations on what should be tested and provided the
motivation for excluding certain aspects of the application from tests.

100

• The strategy described how the automatic execution of the tests should be
integrated into the deployment pipeline of the application.

• The strategy mentioned how the incidents with the software should be
managed and what metrics should be collected to evaluate the efficiency
of the strategy.

• The testing environment for the application was set up.

• Detailed examples were provided for testing each of the unit types:
namely, utility functions, action creators, reducers and React components.
Two examples were provided for testing React components: a stateless
component and a stateful component connected to Redux and Firebase.

• A Git hook was configured using Husky to verify the local execution of the
automated tests before the changes are pushed into version control.

• A Jenkins project was created to run the automated tests for every merge
request opened on GitLab and leave a comment on GitLab notifying
whether the tests passed.

• A code coverage report for each merge request was configured to be
displayed on the Jenkins server.

The benefits that test automation brings to software development companies

were determined. A testing strategy was proposed for applications

with the technology stack of the case study. The setup process of a testing

environment was documented. As established in Section 2.4, quantifying the

effectiveness of the proposed testing strategy cannot be achieved by viewing the

code coverage numbers alone. Instead, the development process of the

application has to be monitored over a period of time to see whether the number

of discovered bugs is decreasing. As the testing strategy was only fully revealed

to the development team at the end of this study, the data on the long-term

effectiveness of the strategy could not be collected. The strategy requires to be

evaluated over time in order to notice a trend in the number of bugs, or lack

thereof.

However, the strategy was formulated based on established industry patterns

and techniques which have already been proven useful over time. Attention was

paid to the expressiveness of the tests, and the BDD technique with spec-style

was recommended to make sure tests help understand the SUT, provide an

executable specification of the software. Moreover, the use of parametrized setup

functions, utility methods and the arrange-act-assert pattern with a single

assertion per test as a general guideline was recommended to make sure tests

101

are easy to read, write and maintain as the codebase evolves around them. All in

all, the foundation for the strategy to be effective is solid.

Of the four units recommended for testing, React components provided the

biggest challenge for determining the testing approach, largely due to the high

degree of flexibility in the structure of each component. Observis does not have

documented conventions for structuring React components. Therefore, there is a

limit to the precision with which the testing process suitable for every component

can be described. The proposed strategy aims at targeting every aspect of a

component from basic rendering to props, state, event handlers, lifecycle

methods and conditional rendering. As shown in the examples of component

tests in Sections 5.1 and 5.2, some of these steps can be combined or skipped

based on the structure of the component under test.

However, having an established strategy for component tests will influence the

development of the components in the future. The strategy argues for the BDD

technique where the development of the software is driven by the creation of

tests. The test suite examples provided in the practical part of this thesis were

written after the SUT. Developing new components test-first and according to the

strategy will influence the component structure and provide a higher level of

consistency to the codebase. That said, the testing strategy proposed in this

study can be augmented by establishing stronger coding conventions for the

application.

The strategy proposed in Chapter 4 satisfied the commissioner company and will

be adopted for React-Redux applications developed at Observis. The strategy

will be extracted into a separate document and shared with the software

developers of the company. Moreover, a coaching session will be conducted with

the developers to better familiarize them with the strategy.

102

7 CONCLUSION

The original problem that motivated this thesis was the complete lack of

automated unit tests in the development process of React-Redux applications at

Observis. The goal of the work was to establish the benefits of automated testing

for the commissioner company, determine the tools and the strategy that can be

adopted for testing and integrate the automatic execution of the tests into the

deployment pipeline of the case study application. At the end of the study, a

testing strategy was formulated based on the overview of the established industry

patterns and techniques and an examination of the technology stack of the case

study. Four types of units that must be tested were identified and detailed

examples of tests for each unit type were provided. The automated tests were

integrated into the deployment pipeline of the application by configuring a Jenkins

project to execute the tests for each merge request.

The testing strategy proposed by the study was based on literature on test

automation, unit testing patterns and the behaviour-driven development

technique. The writings of Humble (2017a; 2017b; 2017c; 2017d), Fowler (2013a;

2013b; 2014), Kim et al. (2016), Vocke (2018) and several other referenced

authors were used to provide an overview of the fundamental concepts of

automated testing, explain the benefits of automated testing for a technology

organization, as well as reflect on the role of the tests in a deployment pipeline.

“xUnit Test Patterns” by Gerard Meszaros (2007) described a number of patterns

for test organization and structure as well as a summary of the goals that test

automation should accomplish. The goals and patterns outlined by Meszaros

were supported by the publications by Fowler (2004b; 2005), Koskela (2013) and

Kim et al. (2016).

Together with the aforementioned sources, the work of Koskela (2013), North

(2006; 2012), Marston & Dees (2017) and Justice (2018) was used to evaluate

the benefits of the behaviour-driven development technique and spec-style for

making tests expressive and providing an “executable specification” for the

software. Moreover, the proposed strategy was based on a summary of four

testing strategies used by development teams in modern companies. The

103

strategies were documented by Pysarenko (2019), Bak (2019), Fishwick (2018)

and Molinari (2018). The practical part of the study was largely based on the

documentation of the testing tools and the technologies of the case study

application.

A single detailed publication that would document a complete testing strategy for

a React-Redux application was not found during the research, which adds value

to the strategy documented in this study. This thesis combines an overview of the

established industry concepts, patterns and techniques with the understanding of

the technology stack of the case study application in order to produce a precise

testing strategy that can be adopted by software companies as is. That said, the

efficiency of the testing strategy is yet to be fully evaluated by collecting the data

on the number of bugs discovered with the software over time after the strategy is

adopted by the development team.

Next, the original research questions are addressed in turn.

How does test automation benefit a company?

Automated testing significantly speeds up the feedback that developers receive

on the software that they are building. Faster feedback allows to notice

regressions early and fix them quickly. Automated testing is faster than manual

testing and allows for more frequent releases. Automated tests increase the

productivity of software developer teams and allow gaining and sustaining a high

speed of development. Such tests are less error-prone and more repeatable than

the manual tests. Moreover, automated tests can provide a continuously updated

specification for the software. Without automated testing, the financial and time

investments in development and testing of applications keep increasing as

applications grow.

104

What unit testing strategy can be adopted for React-Redux applications?

Establishing a specific testing strategy for React and Redux applications requires

a solid understanding of both technologies, as well as an understanding of the

tools available to test them. Moreover, established industry techniques and

patterns need to be reviewed in order to justify the choices made in the strategy

proposal. A strategy that can be adopted for React-Redux applications was

presented in Chapter 4. The strategy is based on the goals of test automation as

formulated by Meszaros (2007) and the behaviour-driven development technique.

Automated tests created according to the strategy help understand the SUT by

being expressive and acting as specifications of unit behaviour. Tests created

according to the strategy are easy to read, write and execute and require minimal

maintenance as the software grows and evolves around them. The readability

and focus of the tests are achieved by using full sentences as test names,

reducing duplication of setup code by relying on centralized utility methods and

parametrized setup functions and using expressive matchers provided by Jest.

When testing React-Redux applications, four types of units require to be tested.

These types are React components, Redux action creators, Redux reducers and

various utility functions used by the application under test. A React component

can be tested in 7 steps. Some of these steps can be omitted based on the

structure of the component. First, basic component rendering must be verified.

Second, each prop of the component needs to be tested by shallow rendering the

component with a specific value for the prop and making an assertion about the

shallow wrapper that verifies that the component received the prop. Third, for

stateful components each state variable needs to be tested the same way as

props. The next step is to test the event handlers. For each event handler, an

event needs to be simulated and the appropriate handler expected to be called.

In cases when the event handler is defined within the component under test and

not passed down to the component as a prop, the behaviour of the handler needs

to be verified as well. For instance, for a handler that updates the state of the

component, a test needs to be written that verifies that the state was updated

after the event handler was called. Step five is to specify the behaviour of the

105

lifecycle methods of the component, such as data subscriptions and removal of

those subscriptions. Step six is to test various conditions that affect the rendering

of the component under test and to make a separate test for each condition.

Finally, a snapshot needs to be created for the component in order to detect

unexpected changes to its output. A single snapshot is recommended for each

component, as various rendering results are already verified when testing

conditions in step 6.

Redux action creators and reducers need to be tested according to the official

Redux documentation. For each action creator, the action creator needs to be

called with parameters and a correct action object expected to be returned. For

each reducer, a test needs to be written that specifies that the reducer does not

update the initial state when it receives an action of an unsupported type. Next,

for each action type supported by the reducer, the reducer needs to be called

with the initial state of the application and an action of that type and expected to

update the state correctly. Lastly, in order to test a utility function, a full suite of

function behaviours needs to be planned ahead. Then, the function should be

expected to throw exceptions when any of its parameters are undefined or

incorrect and to return correct values when all parameters are correct.

Creating tests that specify the behaviour of third-party libraries is not

recommended, as the providers of those libraries are expected to test their code.

Instead, third-party libraries should be replaced with test doubles within tests

using the mocking functionality of Jest. Moreover, tests for the internal

consistency of data types are not recommended if the React-Redux application

under test uses tools to verify type consistency. The case study application uses

TypeScript for that purpose, and other technologies such as PropTypes are

available.

The metrics that need to be collected according to the strategy are the code

coverage report generated by Jest and the number of bugs discovered with the

software over time. The code coverage report illuminates the areas of the

codebase that are not yet covered by tests, while the number of bugs serves as

106

the metric for the efficiency of the strategy. For each bug discovered with the

software, a new issue needs to be opened in the project management software

used by the development team, and a unit test or several tests addressing the

bug need to be created.

How should a testing environment be set up for the specific technology

stack of the case study (React, TypeScript, Redux, Jenkins)?

The set up of the testing environment for the aforementioned technology stack

was documented in the practical implementation part of the study, specifically in

Sections 5.1, 5.6, 5.7 and 5.8. The libraries necessary to install are Jest,

Enzyme, an adapter for Enzyme to work with a specific version of React and the

ts-jest Jest preset that lets Jest work with TypeScript. Several libraries need to be

installed to extend the mocking capabilities provided by Jest out of the box. The

libraries are identity-obj-proxy for mocking imported files, mockdate to set a

custom date within tests and Ts-Mock-Firebase for a precise and well-typed

Firebase mock. Lastly, type definitions for the libraries need to be installed.

Jest requires to be set up from its configuration file. Directories for Jest to search

the test files in need to be specified, ts-jest preset provided and code coverage

collection enabled with text and HTML coverage reporters. A setup file needs to

be created where Enzyme is configured to work with the specific version of React

for the project using the Enzyme adapter. Jest configuration should point to the

setup file in order to execute the setup before each test. Next, module paths need

to be configured for Jest to correctly resolve dependencies, and specific file

extensions need to be set for identity-obj-proxy to mock the imports with those

extensions. If the application uses Firebase as a cloud database, a manual mock

for Firebase needs to be configured using the Ts-Mock-Firebase library. The

library closely emulates Firebase. The manual mock can be configured as shown

in Section 5.1. The configuration is performed according to the official Jest guide

for creating manual mocks for Node modules, and the setup specific to Ts-Mock-

Firebase is provided in the documentation of the library.

107

In order to allow spotting and fixing errors before they are checked into version

control, a Git hook needs to be configured for every push event. The Husky

library can be used for the setup of the hook. Once configured, the hook will

execute tests every time a developer attempts to push changes into version

control. To integrate the automated execution of tests into the deployment

pipeline for the application, a Jenkins job should be configured that verifies that a

feature branch can be safely merged into the target branch.

How to evaluate the efficiency of a testing strategy?

The proposed strategy suggests two metrics to be collected for the case study

application: a code coverage report and the number of bugs discovered with the

application. The study found that code coverage reports cannot verify the

efficiency of the strategy, but rather only point out the areas of the codebase that

are not yet covered by tests. The only quantifiable metric for strategy efficiency

found by the study is the number of bugs discovered with the software either in

the production environment or during exploratory testing in the staging

environment. In order to evaluate the efficiency of a testing strategy, it needs to

be observed over time to see if there is a decreasing trend in the number of bugs.

Further research can be conducted to enhance the test automation efforts at

Observis and improve the proposed strategy. The list of topics is as follows:

• Other levels of automated tests can be considered. This study focused on
unit tests and did not cover integration and end-to-end tests. React-
testing-library is an increasingly popular solution for writing integration
tests for React applications, while tools like Cypress and Robot-
Framework can be used for end-to-end testing. The analysis of strengths
and disadvantages of each of these tools needs to be conducted and a
testing strategy proposed.

• Coding conventions for developing React components should be
documented. Having a consistent structure and a set of guidelines for
component development would allow standardizing the testing process of
the components more strictly.

• In addition to the case study application MOWO dashboard, Observis is
developing a MOWO mobile application using React Native. A testing
strategy for the React Native application needs to be researched and
established. It can be evaluated how well the testing strategy proposed in
this study is applicable to React Native applications, and what
modifications are required for the strategy to support mobile development.

108

• The proposed testing strategy focused on component behaviour. However,
style of the components was not tested. Given that style is an important
aspect of a user interface, proper techniques can be established for testing
the style of React components. Libraries like Jest-Styled-Components and
tools for visual regression testing should be considered.

• Even though the proposed strategy aims to make the tests as simple,
readable and expressive as possible, in certain edge cases debugging the
tests can be beneficial. The official Jest documentation provides
instructions for setting up the environment for debugging and the
debugging process for tests. These instructions should be reviewed and
debugging set up.

All in all, Jest and Enzyme provide a powerful and flexible set of tools for testing

React-Redux applications. Jest and Enzyme allow creating tests that satisfy the

goals of test automation. Jest makes the tests easy and fast to execute, with the

order of test execution prioritized to maximize the speed. The vast assertion

library of Jest allows for readable and expressive tests, while its mocking

functionality increases the maintainability of tests by enabling developers to

create deterministic test doubles, spy on the way units under test interact with

their collaborators and test every unit in isolation. The spec-style used by Jest

facilitates thinking of the behaviour of the SUT when creating tests. Enzyme

provides a flexible set of features to traverse the output of React components,

render components with specific props and simulate events. The shallow

rendering functionality of Enzyme allows testing React components in isolation by

rendering each component one level deep, without rendering child components

recursively. The isolation provided by shallow rendering makes the tests for

React components easier to maintain as the codebase grows and evolves, as

changes to child components do not affect the tests for their parent components.

Together with the snapshot testing feature of Jest, Enzyme helps detect

unexpected changes in React elements.

The proposed testing strategy will be applied to all React-Redux applications

developed at Observis and can be used by other companies. With frameworks

like Electron that allow using web technologies to develop desktop applications,

this testing strategy can be adopted for desktop application development as well.

109

REFERENCES

Abramov, D. 2015. You’re Missing the Point of React. WWW document. Updated
22 January 2015. Available at: https://medium.com/@dan_abramov/youre-
missing-the-point-of-react-a20e34a51e1a [Accessed 4 March 2019].

Abramov et al. 2018. Redux Documentation. WWW document. Available at:
https://redux.js.org/ [Accessed 19 May 2019].

Airbnb. 2019. Enzyme Documentation. WWW document. Updated 17 February
2019. Available at: https://airbnb.io/enzyme/ [Accessed 24 April 2019].

Atlassian Bitbucket. Tutorials. Gitflow Workflow. WWW document. Available at:
https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow
[Accessed 24 April 2019].

Bak, T. 2019. Testing React Components Best Practices. WWW document.
Updated 3 February 2019. Available at: https://medium.com/selleo/testing-react-
components-best-practices-2f77ac302d12 [Accessed 24 April 2019].

Burnham, T. 2019. Test-Driven React. Beta. Ebook. Pragmatic Bookshelf.
Available at: https://pragprog.com/ [Accessed 26 March 2019].

Center for Innovation in Research and Teaching. 2019. Case Study Method.
Available at:
https://cirt.gcu.edu/research/developmentresources/research_ready/descriptive/c
ase_study [Accessed 23 May 2019].

Dodds, K. 2017a. Making your UI tests resilient to change. WWW document.
Available at: https://kentcdodds.com/blog/making-your-ui-tests-resilient-to-change
[Accessed 5 May 2019].

Dodds, K. 2017b. Write tests. Not too many. Mostly integration. WWW document.
Available at: https://kentcdodds.com/blog/write-tests [Accessed 24 April 2019].

Fenton, S. 2014. Pro TypeScript: Application-Scale JavaScript Development.
Erfurt: Apress.

Fishwick, J. 2018. Best practices for unit testing with a React/Redux approach.
WWW document. Available at: https://willowtreeapps.com/ideas/best-practices-
for-unit-testing-with-a-react-redux-approach [Accessed 24 April 2019].

https://medium.com/@dan_abramov/youre-missing-the-point-of-react-a20e34a51e1a
https://medium.com/@dan_abramov/youre-missing-the-point-of-react-a20e34a51e1a
https://redux.js.org/
https://airbnb.io/enzyme/
https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow
https://medium.com/selleo/testing-react-components-best-practices-2f77ac302d12
https://medium.com/selleo/testing-react-components-best-practices-2f77ac302d12
https://pragprog.com/
https://cirt.gcu.edu/research/developmentresources/research_ready/descriptive/case_study
https://cirt.gcu.edu/research/developmentresources/research_ready/descriptive/case_study
https://kentcdodds.com/blog/making-your-ui-tests-resilient-to-change
https://kentcdodds.com/blog/write-tests
https://willowtreeapps.com/ideas/best-practices-for-unit-testing-with-a-react-redux-approach
https://willowtreeapps.com/ideas/best-practices-for-unit-testing-with-a-react-redux-approach

110

Fowler, M. 2004a. AssertionFreeTesting. WWW document. Available at:
https://martinfowler.com/bliki/AssertionFreeTesting.html [Accessed 24 April
2019].

Fowler M. 2013a. ContinuousDelivery. WWW document. Available at:
https://martinfowler.com/bliki/ContinuousDelivery.html [Accessed 24 April 2019].

Fowler M. 2013b. DeploymentPipeline. WWW document. Available at:
https://martinfowler.com/bliki/DeploymentPipeline.html [Accessed 24 April 2019].

Fowler, M. 2013c. ExtremeProgramming. WWW document. Updated 11 July
2013. Available at: https://martinfowler.com/bliki/ExtremeProgramming.html
[Accessed 3 March 2019].

Fowler, M. 2004b. Mocks Aren’t Stubs. WWW document. Updated 2 January
2007. Available at: https://martinfowler.com/articles/mocksArentStubs.html
[Accessed 3 March 2019].

Fowler, M. 2005. TestDrivenDevelopment. WWW document. Available at:
https://martinfowler.com/bliki/TestDrivenDevelopment.html [Accessed 24 April
2019].

Fowler, M. 2014. UnitTest. WWW document. Updated 5 May 2014. Available at:
https://martinfowler.com/bliki/UnitTest.html [Accessed 20 November 2018].

GitLab. 2019. About Gitlab. WWW document. Available at:
https://about.gitlab.com/company/ [Accessed 24 April 2019].

GitLab Documentation. 2019a. Merge requests. WWW document. Available at:
https://docs.gitlab.com/ee/user/project/merge_requests/ [Accessed 24 April
2019].

GitLab Documentation. 2019b. Testing levels. WWW document. Available at:
https://docs.gitlab.com/ee/development/testing_guide/testing_levels.html
[Accessed 24 April 2019].

Google. 2019. Firebase Documentation. FirebaseApp. WWW document.
Available at:
https://firebase.google.com/docs/reference/android/com/google/firebase/Firebase
App [Accessed 6 May 2019].

Greif, S., Benitte, R. & Rambeau, M. 2018a. The State of JavaScript 2018:
Awards. WWW document. Available at: https://2018.stateofjs.com/awards/
[Accessed 27 January 2019].

https://martinfowler.com/bliki/AssertionFreeTesting.html
https://martinfowler.com/bliki/ContinuousDelivery.html
https://martinfowler.com/bliki/DeploymentPipeline.html
https://martinfowler.com/bliki/ExtremeProgramming.html
https://martinfowler.com/articles/mocksArentStubs.html
https://martinfowler.com/bliki/TestDrivenDevelopment.html
https://martinfowler.com/bliki/UnitTest.html
https://about.gitlab.com/company/
https://docs.gitlab.com/ee/user/project/merge_requests/
https://docs.gitlab.com/ee/development/testing_guide/testing_levels.html
https://firebase.google.com/docs/reference/android/com/google/firebase/FirebaseApp
https://firebase.google.com/docs/reference/android/com/google/firebase/FirebaseApp
https://2018.stateofjs.com/awards/

111

Greif, S., Benitte, R. & Rambeau, M. 2018b. The State of JavaScript 2018: Front-
End Frameworks - Conclusion. WWW document. Available at:
https://2018.stateofjs.com/front-end-frameworks/conclusion/ [Accessed 3 March
2019].

Greif, S., Benitte, R. & Rambeau, M. 2018c. The State of JavaScript 2018:
Introduction. WWW document. Available at:
https://2018.stateofjs.com/introduction/ [Accessed 27 January 2019].

Greif, S., Benitte, R. & Rambeau, M. 2018d. The State of JavaScript 2018:
Testing – Conclusion. WWW document. Available at:
https://2018.stateofjs.com/testing/conclusion/ [Accessed 27 January 2019].

Greif, S., Benitte, R. & Rambeau, M. 2018e. The State of JavaScript 2018:
Testing – Jest. WWW document. Available at:
https://2018.stateofjs.com/testing/jest/ [Accessed 27 January 2019].

Hanlon, R. 2018. Understanding Jest Mocks. WWW document. Updated 8 March
2018. Available at: https://medium.com/@rickhanlonii/understanding-jest-mocks-
f0046c68e53c [Accessed 28 February 2019].

Humble, J. 2017a. Continuous Delivery. Continuous Testing. WWW document.
Available at: https://continuousdelivery.com/foundations/test-automation/
[Accessed 24 April 2019].

Humble, J. 2017b. Continuous Delivery. Foundations. WWW document. Available
at: https://continuousdelivery.com/foundations/ [Accessed 24 April 2019].

Humble, J. 2017c. Continuous Delivery. Principles. WWW document. Available
at: https://continuousdelivery.com/principles/ [Accessed 24 April 2019].

Humble, J. 2017d. Continuous Delivery. Implementing. Patterns. WWW
document. Available at: https://continuousdelivery.com/implementing/patterns/
[Accessed 19 May 2019].

Identity-obj-proxy. 2019. GitHub. WWW document. Available at:
https://github.com/keyz/identity-obj-proxy#readme [Accessed 19 May 2019].

Istanbul Documentation. 2019. WWW document. Available at:
http://gotwarlost.github.io/istanbul/public/apidocs/ [Accessed 24 April 2019].

Jenkins Documentation. 2017. WWW document. Available at:
https://jenkins.io/doc/ [Accessed 24 April 2019].

https://2018.stateofjs.com/front-end-frameworks/conclusion/
https://2018.stateofjs.com/introduction/
https://2018.stateofjs.com/testing/conclusion/
https://2018.stateofjs.com/testing/jest/
https://medium.com/@rickhanlonii/understanding-jest-mocks-f0046c68e53c
https://medium.com/@rickhanlonii/understanding-jest-mocks-f0046c68e53c
https://continuousdelivery.com/foundations/test-automation/
https://continuousdelivery.com/foundations/
https://continuousdelivery.com/principles/
https://continuousdelivery.com/implementing/patterns/
https://github.com/keyz/identity-obj-proxy#readme
http://gotwarlost.github.io/istanbul/public/apidocs/
https://jenkins.io/doc/

112

Jest. 2019. Home page. WWW document. Available at: https://jestjs.io/en/
[Accessed 19 May 2019].

Jest API Reference. 2019a. Configuring Jest. WWW document. Available at:
https://jestjs.io/docs/en/configuration [Accessed 24 April 2019].

Jest API Reference. 2019b. Expect. WWW document. Available at:
https://jestjs.io/docs/en/expect [Accessed 19 February 2019].

Jest API Reference. 2019c. Jest CLI Options. WWW document. Available at:
https://jestjs.io/docs/en/cli [Accessed 24 April 2019].

Jest API Reference. 2019d. Mock Functions. WWW document. Available at:
https://jestjs.io/docs/en/mock-function-api [Accessed 24 April 2019].

Jest Documentation. 2019a. Mock Functions. WWW document. Available at:
https://jestjs.io/docs/en/mock-functions.html [Accessed 24 April 2019].

Jest Documentation. 2019b. Setup and Teardown. WWW document. Available at:
https://jestjs.io/docs/en/setup-teardown [Accessed 24 April 2019].

Jest Documentation. 2019c. Testing Asynchronous Code. WWW document.
Available at: https://jestjs.io/docs/en/asynchronous [Accessed 24 April 2019].

Jest Documentation. 2019d. Using Matchers. WWW document. Available at:
https://jestjs.io/docs/en/using-matchers [Accessed 27 January 2019].

Jest Guides. 2019a. Manual Mocks. WWW document. Available at:
https://jestjs.io/docs/en/manual-mocks [Accessed 24 April 2019].

Jest Guides. 2019b. Snapshot Testing. WWW document. Available at:
https://jestjs.io/docs/en/snapshot-testing [Accessed 24 April 2019].

Johansen, C. 2010. Test-Driven JavaScript Development. 1st edition.
Crawfordswille: Pearson Education, Inc.

Justice, J. 2018. Why Do JavaScript Test Frameworks Use describe() and
beforeEach()? WWW document. Available at:
https://www.bignerdranch.com/blog/why-do-javascript-test-frameworks-use-
describe-and-beforeeach/ [Accessed 24 April 2019].

Kim, G., Humble, J., Debois, P. & Willis, J. 2016. The DevOps Handbook. How to
create world-class agility, reliability, & security in technology organizations. 1st
edition. Portland: IT Revolution Press, LLC.

https://jestjs.io/en/
https://jestjs.io/docs/en/configuration
https://jestjs.io/docs/en/expect
https://jestjs.io/docs/en/cli
https://jestjs.io/docs/en/mock-function-api
https://jestjs.io/docs/en/mock-functions.html
https://jestjs.io/docs/en/setup-teardown
https://jestjs.io/docs/en/asynchronous
https://jestjs.io/docs/en/using-matchers
https://jestjs.io/docs/en/manual-mocks
https://jestjs.io/docs/en/snapshot-testing
https://www.bignerdranch.com/blog/why-do-javascript-test-frameworks-use-describe-and-beforeeach/
https://www.bignerdranch.com/blog/why-do-javascript-test-frameworks-use-describe-and-beforeeach/

113

Kit, E. 1995. Software Testing in the Real World: Improving the Process. Ebook.
Addison-Wesley. Available at: https://www.amazon.com/ [Accessed 23 May
2019].

Koskela, L. 2013. Effective Unit Testing. Shelter Island: Manning Publications Co.

Marick, B. 1997. How to Misuse Code Coverage. WWW document. Available at:
http://www.exampler.com/testing-com/writings/coverage.pdf [Accessed 24 April
2019].

Marston, M. & Dees, I. 2017. Effective Testing with RSpec 3. Ebook. Pragmatic
Bookshelf. Available at: https://pragprog.com/ [Accessed 26 March 2019].

Martin, R. 2017. Types and Tests. WWW document. Available at:
https://blog.cleancoder.com/uncle-bob/2017/01/13/TypesAndTests.html
[Accessed 24 April 2019].

McGinnis, T. 2016. React Elements vs React Components. WWW document.
Updated 15 December 2016. Available at: https://tylermcginnis.com/react-
elements-vs-react-components/ [Accessed 3 March 2019].

McGinnis, T. 2017. Why React? An overview of React, Webpack 2, React Router
v4, and Babel. Video clip. Available at:
https://www.youtube.com/watch?v=ul0tRkeu5CE [Accessed 3 March 2019].

Meszaros, G. 2007. xUnit Test Patterns: Refactoring Test Code. Ebook. Addison-
Wesley. Available at: https://www.amazon.com/ [Accessed 26 March 2019].

Micco, J. 2016. Flaky Tests at Google and How We Mitigate Them. WWW
document. Available at: https://testing.googleblog.com/2016/05/flaky-tests-at-
google-and-how-we.html [Accessed 24 April 2019].

Molinari, N. 2018. Testing in React: best practices, tips and tricks. WWW
document. Updated 20 June 2018. Available at:
https://techblog.commercetools.com/testing-in-react-best-practices-tips-and-
tricks-577bb98845cd [Accessed 24 April 2019].

North, D. 2012. BDD is like TDD if… WWW document. Available at:
https://dannorth.net/2012/05/31/bdd-is-like-tdd-if/ [Accessed 23 May 2019].

North, D. 2006. Introducing BDD. WWW document. Available at:
https://dannorth.net/introducing-bdd/ [Accessed 23 May 2019].

https://www.amazon.com/
http://www.exampler.com/testing-com/writings/coverage.pdf
https://pragprog.com/
https://blog.cleancoder.com/uncle-bob/2017/01/13/TypesAndTests.html
https://tylermcginnis.com/react-elements-vs-react-components/
https://tylermcginnis.com/react-elements-vs-react-components/
https://www.youtube.com/watch?v=ul0tRkeu5CE
https://www.amazon.com/
https://testing.googleblog.com/2016/05/flaky-tests-at-google-and-how-we.html
https://testing.googleblog.com/2016/05/flaky-tests-at-google-and-how-we.html
https://techblog.commercetools.com/testing-in-react-best-practices-tips-and-tricks-577bb98845cd
https://techblog.commercetools.com/testing-in-react-best-practices-tips-and-tricks-577bb98845cd
https://dannorth.net/2012/05/31/bdd-is-like-tdd-if/
https://dannorth.net/introducing-bdd/

114

Ortega, A. 2019. Test-driven React.js Development: React.js Unit Testing with
Enzyme and Jest. WWW document. Available at:
https://www.toptal.com/react/tdd-react-unit-testing-enzyme-jest [Accessed 24
April 2019].

Pittet, S. 2019a. An introduction to code coverage. WWW document. Available at:
https://www.atlassian.com/continuous-delivery/software-testing/code-coverage
[Accessed 24 April 2019].

Pittet, S. 2019b. The different types of software testing. WWW document.
Available at: https://www.atlassian.com/continuous-delivery/different-types-of-
software-testing [Accessed 24 April 2019].

Pojer, C. 2016. Jest 14.0: React Tree Snapshot Testing. WWW document.
Available at: https://jestjs.io/blog/2016/07/27/jest-14.html [Accessed 24 April
2019].

Pysarenko, A. 2019. What and How to Test with Jest and Enzyme. Full
Instruction on React Components Testing. WWW document. Updated 17 April
2019. Available at: https://djangostars.com/blog/what-and-how-to-test-with-
enzyme-and-jest-full-instruction-on-react-component-testing/ [Accessed 24 April
2019].

React API Reference. 2019a. React.Component. WWW document. Available at
https://reactjs.org/docs/react-component.html [Accessed 4 March 2019].

React API Reference. 2019b. Shallow Renderer. WWW document. Available at:
https://reactjs.org/docs/shallow-renderer.html [Accessed 23 May 2019].

React Documentation 2019a. Components and Props. WWW document.
Available at: https://reactjs.org/docs/components-and-props.html [Accessed 19
May 2019]

React Documentation. 2019b. FAQ. Component State. WWW document.
Available at: https://reactjs.org/docs/faq-state.html [Accessed 19 May 2019]

React Documentation. 2019c. FAQ. Virtual DOM and Internals. WWW document.
Available at: https://reactjs.org/docs/faq-internals.html#what-is-the-virtual-dom
[Accessed 4 March 2019].

React Documentation. 2019d. Hello World. WWW document. Available at
https://reactjs.org/docs/hello-world.html [Accessed 4 March 2019].

React Documentation. 2019e. Introducing JSX. WWW document. Available at
https://reactjs.org/docs/introducing-jsx.html [Accessed 3 April 2019].

React Documentation. 2019f. Rendering Elements. WWW document. Available at
https://reactjs.org/docs/rendering-elements.html [Accessed 19 May 2019]

https://www.toptal.com/react/tdd-react-unit-testing-enzyme-jest
https://www.atlassian.com/continuous-delivery/software-testing/code-coverage
https://www.atlassian.com/continuous-delivery/different-types-of-software-testing
https://www.atlassian.com/continuous-delivery/different-types-of-software-testing
https://jestjs.io/blog/2016/07/27/jest-14.html
https://djangostars.com/blog/what-and-how-to-test-with-enzyme-and-jest-full-instruction-on-react-component-testing/
https://djangostars.com/blog/what-and-how-to-test-with-enzyme-and-jest-full-instruction-on-react-component-testing/
https://reactjs.org/docs/react-component.html
https://reactjs.org/docs/shallow-renderer.html
https://reactjs.org/docs/components-and-props.html
https://reactjs.org/docs/faq-state.html
https://reactjs.org/docs/faq-internals.html#what-is-the-virtual-dom
https://reactjs.org/docs/hello-world.html
https://reactjs.org/docs/introducing-jsx.html
https://reactjs.org/docs/rendering-elements.html

115

React Documentation. 2019g. State and Lifecycle. WWW document. Available at
https://reactjs.org/docs/state-and-lifecycle.html [Accessed 4 March 2019].

Stackify. 2017. The Ultimate List of Code Coverage Tools: 25 Code Coverage
Tools for C, C++, Java, .NET, and More. WWW document. Available at:
https://stackify.com/code-coverage-tools/ [Accessed 24 April 2019].

The Code Gang. 2019. Flaky Tests - A War that Never Ends. WWW document.
Available at: https://hackernoon.com/flaky-tests-a-war-that-never-ends-
9aa32fdef359 [Accessed 24 April 2019].

Ts-Mock-Firebase. 2019. GitHub. WWW document. Updated 24 April 2019.
Available at: https://github.com/mindhivefi/ts-mock-firebase [Accessed 4 May
2019].

Ts-Jest. 2019. GitHub. WWW document. Available at:
https://kulshekhar.github.io/ts-jest/ [Accessed 19 May 2019].

Vocke, H. 2018. The Practical Testing Pyramid. WWW document. Updated 26
February 2018. Available at: https://martinfowler.com/articles/practical-test-
pyramid.html [Accessed 25 November 2018].

Wacker, M. 2015. Just Say No to More End-to-End Tests. WWW document.
Available at: https://testing.googleblog.com/2015/04/just-say-no-to-more-end-to-
end-tests.html [Accessed 24 April 2019].

https://reactjs.org/docs/state-and-lifecycle.html
https://stackify.com/code-coverage-tools/
https://hackernoon.com/flaky-tests-a-war-that-never-ends-9aa32fdef359
https://hackernoon.com/flaky-tests-a-war-that-never-ends-9aa32fdef359
https://github.com/mindhivefi/ts-mock-firebase
https://kulshekhar.github.io/ts-jest/
https://martinfowler.com/articles/practical-test-pyramid.html
https://martinfowler.com/articles/practical-test-pyramid.html
https://testing.googleblog.com/2015/04/just-say-no-to-more-end-to-end-tests.html
https://testing.googleblog.com/2015/04/just-say-no-to-more-end-to-end-tests.html

116

Appendix 1/1
APPENDIX 1. Full test suite of the displayDurationText() function

import { displayDurationText } from '../timeUtils';

describe('displayDurationText will generate human readable duration text from
duration provided in minutes', () => {
 it('Will return an empty string if duration is 0', () => {
 const timeInMinutes: number = 0;
 expect(displayDurationText(timeInMinutes)).toMatch('');
 });

 it('Will return only seconds if duration is under 1 minute', () => {
 const timeInMinutes: number = 0.5;
 expect(displayDurationText(timeInMinutes)).toMatch('30 s');
 });

 it('Will only return minutes if the duration is an exact number of minutes under 1
hour', () => {
 const timeInMinutes: number = 30;
 expect(displayDurationText(timeInMinutes)).toMatch('30 min');
 });

 it('Will only return hours if the duration is an exact amount of hours', () => {
 let timeInMinutes = 60;
 expect(displayDurationText(timeInMinutes)).toMatch('1 hour');

 timeInMinutes = 120;
 expect(displayDurationText(timeInMinutes)).toMatch('2 hours');
 });

 it('Will only return minutes and seconds if the duration is less than 1 hour', ()
=> {
 const timeInMinutes = 15.5;
 expect(displayDurationText(timeInMinutes)).toMatch('15 min 30 s');
 });

 it('Will only return hours and seconds if minutes are 0', () => {
 let timeInMinutes = 60.5;
 expect(displayDurationText(timeInMinutes)).toMatch('1 hour 30 s');

 timeInMinutes = 120.5;
 expect(displayDurationText(timeInMinutes)).toMatch('2 hours 30 s');
 });

 it('Will only return hours and minutes if seconds are 0', () => {
 let timeInMinutes = 65;
 expect(displayDurationText(timeInMinutes)).toMatch('1 hour 5 min');

 timeInMinutes = 125;
 expect(displayDurationText(timeInMinutes)).toMatch('2 hours 5 min');
 });

117

Appendix 1/2

 it('Will display hours, minutes and seconds if none of them are 0', () => {
 let timeInMinutes = 65.5;
 expect(displayDurationText(timeInMinutes)).toMatch('1 hour 5 min 30 s');

 timeInMinutes = 125.5;
 expect(displayDurationText(timeInMinutes)).toMatch('2 hours 5 min 30 s');
 });

 it('Will throw an error if the input is not a number', () => {
 const timeInMinutes: any = { duration: 120 };
 expect(() => displayDurationText(timeInMinutes)).toThrowError();
 });

 it('Will throw an error if the input is negative', () => {
 const timeInMinutes: number = -120;
 expect(() => displayDurationText(timeInMinutes)).toThrowError();
 });
});

118

Appendix 2/1

APPENDIX 2. Full test suite for the authentication action creators

import { CompanyId, User } from '@shared/schema';
import { getFirebaseUser } from '__specs__/__helpers__/firebaseHelpers';
import { getUser } from '__specs__/__helpers__/specHelpers';
import * as actions from '../authActions';

describe('authAction creator', () => {
 it('firebaseUserStateChanged returns correct action when user is undefined', () =>
{
 const user = undefined;
 const correctAction: actions.FirebaseUserAuthStateChangedAction = {
 type: actions.AuthActionType.AUTH_FIREBASE_USER_STATE_CHANGED,
 payload: user,
 };
 expect(actions.firebaseUserStateChanged(user)).toEqual(correctAction);
 });

 it('firebaseUserStateChanged returns correct action when user is defined', () => {
 const user = getFirebaseUser();
 const correctAction: actions.FirebaseUserAuthStateChangedAction = {
 type: actions.AuthActionType.AUTH_FIREBASE_USER_STATE_CHANGED,
 payload: user,
 };
 expect(actions.firebaseUserStateChanged(user)).toEqual(correctAction);
 });

 it('appUserStateChanged returns correct action when user is undefined', () => {
 const user = undefined;
 const correctAction: actions.AppUserAuthStateChangedAction = {
 type: actions.AuthActionType.AUTH_APP_USER_INFO_UPDATED,
 payload: user,
 };
 expect(actions.appUserStateChanged(user)).toEqual(correctAction);
 });

 it('appUserStateChanged returns correct action when user is defined', () => {
 const user: User = getUser();
 const correctAction: actions.AppUserAuthStateChangedAction = {
 type: actions.AuthActionType.AUTH_APP_USER_INFO_UPDATED,
 payload: user,
 };
 expect(actions.appUserStateChanged(user)).toEqual(correctAction);
 });

 it('appUserActiveOrganizationChanged returns correct action', () => {
 const companyId: CompanyId = 'TestCompany';
 const correctAction: actions.AppUserActiveOrganizationChangedAction = {
 type: actions.AuthActionType.AUTH_APP_USER_ACTIVE_ORG_CHANGED,
 payload: companyId,
 };
 expect(actions.appUserActiveOrganizationChanged(companyId)).toEqual(
 correctAction,
);
 });

119

Appendix 2/2

 it('updateFirestoreAuthError returns correct action', () => {
 const firebaseError: firebase.auth.Error = {
 code: 'test',
 message: 'test error',
 };
 const correctAction: actions.FirebaseAuthSetErrorAction = {
 type: actions.AuthActionType.AUTH_FIREBASE_SET_ERROR,
 payload: firebaseError,
 };

 expect(actions.updateFirestoreAuthError(firebaseError)).toEqual(
 correctAction,
);
 });

 it('updateFirestoreAuthenticatingState returns correct action when authenticating
state is true', () => {
 const correctAction: actions.FirebaseAuthSetAuthenticatingAction = {
 type: actions.AuthActionType.AUTH_FIREBASE_SET_AUTHENTICATING,
 payload: true,
 };
 expect(actions.updateFirestoreAuthenticatingState(true)).toEqual(
 correctAction,
);
 });

 it('updateFirestoreAuthenticatingState returns correct action when authenticating
state is false', () => {
 const correctAction: actions.FirebaseAuthSetAuthenticatingAction = {
 type: actions.AuthActionType.AUTH_FIREBASE_SET_AUTHENTICATING,
 payload: false,
 };
 expect(actions.updateFirestoreAuthenticatingState(false)).toEqual(
 correctAction,
);
 });
});

120

Appendix 3/1

APPENDIX 3. Full test suite for the authentication reducer

import { User, UserRole } from '@shared/schema';
import { getFirebaseUser } from '__specs__/__helpers__/firebaseHelpers';
import { getUser } from '__specs__/__helpers__/specHelpers';
import { AnyAction } from 'redux';
import * as actions from '../authActions';
import { authReducer, AuthState, defaultAuthState } from '../authReducer';

describe('authReducer', () => {
 let initialState: AuthState;
 beforeEach(() => {
 initialState = defaultAuthState;
 });

 it('does not modify state if action is undefined', () => {
 const action: AnyAction = {
 type: 'UNSUPPORTED_ACTION',
 };
 expect(authReducer(initialState, action)).toEqual(initialState);
 });

 it('upon receivig AUTH_FIREBASE_USER_STATE_CHANGED updates user in state, sets
"firebaseError" to "undefined" and "authenticating" to "false"', () => {
 const user = getFirebaseUser();
 const action: actions.FirebaseUserAuthStateChangedAction = {
 type: actions.AuthActionType.AUTH_FIREBASE_USER_STATE_CHANGED,
 payload: user,
 };
 const expectedState = {
 ...initialState,
 firebaseUser: action.payload,
 firebaseError: undefined,
 authenticating: false,
 };
 expect(authReducer(initialState, action)).toEqual(expectedState);
 });

 it('upon receiving AUTH_APP_USER_INFO_UPDATED with admin user payload updates user
and sets activeRole to admin', () => {
 const user = getUser();
 user.systemAdmin = true;
 const action: actions.AppUserAuthStateChangedAction = {
 type: actions.AuthActionType.AUTH_APP_USER_INFO_UPDATED,
 payload: user,
 };
 const expectedState = {
 ...initialState,
 appUser: action.payload,
 activeRole: UserRole.SYSTEM_ADMIN,
 };
 expect(authReducer(initialState, action)).toEqual(expectedState);
 });

121

Appendix 3/2

 it('upon receiving AUTH_APP_USER_INFO_UPDATED updates user and role for a non-admin
user', () => {
 const user: User = getUser();
 user.companies = {
 home: UserRole.USER,
 };
 const action: actions.AppUserAuthStateChangedAction = {
 type: actions.AuthActionType.AUTH_APP_USER_INFO_UPDATED,
 payload: user,
 };
 const expectedState = {
 ...initialState,
 appUser: action.payload,
 activeRole: UserRole.USER,
 };
 expect(authReducer(initialState, action)).toEqual(expectedState);
 });

 it('upon receiving AUTH_FIREBASE_SET_ERROR sets firebaseError and changes
"authenticating" to false', () => {
 const firebaseError: firebase.auth.Error = {
 code: 'test',
 message: 'test error',
 };
 const action: actions.FirebaseAuthSetErrorAction = {
 type: actions.AuthActionType.AUTH_FIREBASE_SET_ERROR,
 payload: firebaseError,
 };
 const expectedState = {
 firebaseError: action.payload,
 authenticating: false,
 ...initialState,
 };
 expect(authReducer(initialState, action)).toEqual(expectedState);
 });

 it('upon receiving AUTH_FIREBASE_SET_AUTHENTICATING updates "authenticating" to
payload', () => {
 const action: actions.FirebaseAuthSetAuthenticatingAction = {
 type: actions.AuthActionType.AUTH_FIREBASE_SET_AUTHENTICATING,
 payload: true,
 };
 const expectedState = {
 authenticating: true,
 ...initialState,
 };
 expect(authReducer(initialState, action)).toEqual(expectedState);
 });
});

122

Appendix 4/1

APPENDIX 4. Full test suite for the AccountForm component

import { User } from '@shared/schema';
import { getUser } from '__specs__/__helpers__/specHelpers';
import { shallow } from 'enzyme';
import toJson from 'enzyme-to-json';
import * as React from 'react';
import AccountForm, { AccountProps } from '../AccountForm';

const setup = (propOverrides?: any) => {
 const user: User = getUser();

 const props: AccountProps = Object.assign(
 {
 initialValues: user,
 onSubmit: jest.fn(),
 onUpdateAccount: jest.fn(),
 },
 propOverrides,
);

 const wrapper = shallow(<AccountForm {...props} />);
 const displayNameTextField = wrapper.find('[data-test="displayName"]');
 const emailTextField = wrapper.find('[data-test="email"]');
 const homeTextField = wrapper.find('[data-test="home"]');
 const submitButton = wrapper.find('[data-test="submitButton"]');

 return {
 props,
 wrapper,
 displayNameTextField,
 emailTextField,
 homeTextField,
 submitButton,
 };
};

describe('<AccountForm />', () => {
 it('renders', () => {
 const { wrapper } = setup();
 expect(wrapper.exists()).toBe(true);
 });

 it('displays the displayName property of the initialValues prop', () => {
 const { props, displayNameTextField } = setup();
 expect(displayNameTextField.prop('value')).toBe(
 props.initialValues.displayName,
);
 });

 it('displays the email property of the initialValues prop', () => {
 const { props, emailTextField } = setup();
 expect(emailTextField.prop('value')).toBe(props.initialValues.email);
 });

123

Appendix 4/2

 it('displays the home property of the initialValues prop', () => {
 const { props, homeTextField } = setup();
 expect(homeTextField.prop('value')).toBe(props.initialValues.home);
 });

 it('calls the onSubmit callback prop when the submit button is clicked', () => {
 const { props, submitButton } = setup();
 submitButton.simulate('click');
 expect(props.onSubmit).toHaveBeenCalled();
 });

 it('calls handleChange with updated account data when the displayName is edited',
() => {
 const handleChangeSpy = jest.spyOn(AccountForm.prototype, 'handleChange');
 const { displayNameTextField } = setup();
 displayNameTextField.simulate('change', { target: { value: 'new name' } });
 expect(handleChangeSpy).toHaveBeenCalledWith({
 target: { value: 'new name' },
 });
 });

 it('calls onUpdateAccount from handleChange if onUpdateAccount is defined', () => {
 const { displayNameTextField, props } = setup();
 displayNameTextField.simulate('change', { target: { value: 'new name' } });
 expect(props.onUpdateAccount).toHaveBeenCalledWith({
 ...props.initialValues,
 displayName: 'new name',
 });
 });

 it('matches snapshot', () => {
 const { wrapper } = setup();
 expect(toJson(wrapper)).toMatchSnapshot();
 });
});

124

Appendix 5/1
APPENDIX 5. Full test suite for the AccountContainer component

import { Schema, ShortUserInfo, UserRole } from '@shared/schema';
import { getUser } from '__specs__/__helpers__/specHelpers';
import { shallow } from 'enzyme';
import toJson from 'enzyme-to-json';
import firebaseApp from 'firebaseApp';
import * as React from 'react';
import { AuthState, defaultAuthState } from 'reducers/auth/authReducer';
import defaultUserImageUrl from 'static/User.png';
import { exposeMockFirebaseApp, MockDatabase } from 'ts-mock-firebase';
import { AccountContainer, AccountContainerProps } from '../AccountContainer';

const setup = async (propOverrides?: any) => {
 const mockApp = exposeMockFirebaseApp(firebaseApp);
 const database: MockDatabase = {
 users: {
 docs: {
 '1000': {
 data: {
 displayName: 'Tester',
 id: '1000',
 email: 'test@test.test',
 photoURL: 'photoURL',
 home: 'home',
 },
 },
 },
 },
 };

 mockApp.firestore().mocker.fromMockDatabase(database);

 const authState: AuthState = {
 firebaseUser: undefined,
 appUser: {
 displayName: 'Tester',
 id: '1000',
 email: 'test@test.test',
 photoURL: 'photoURL',
 },
 activeRole: UserRole.USER,
 firebaseError: undefined,
 authenticating: false,
 };

 const props: AccountContainerProps = Object.assign(
 {
 auth: authState,
 },
 propOverrides,
);

 const wrapper = await shallow(<AccountContainer {...props} />);
 const accountForm = wrapper.find('[data-test="accountForm"]');
 const avatar = wrapper.find('[data-test="avatar"]');

125

Appendix 5/2

return {
 mockApp,
 wrapper,
 props,
 accountForm,
 avatar,
 };
};

describe('<AccountContainer />', () => {
 it('renders', async () => {
 const { wrapper } = await setup({ authState: defaultAuthState });
 expect(wrapper.exists()).toBe(true);
 });
it('uses the id of the auth prop to get the account data from database on
componentDidMount and puts it to state', async () => {
 const setStateSpy = jest.spyOn(AccountContainer.prototype, 'setState');

 const { wrapper } = await setup();

 const expectedState = {
 isLoading: false,
 account: {
 displayName: 'Tester',
 id: '1000',
 email: 'test@test.test',
 photoURL: 'photoURL',
 home: 'home',
 },
 };

 expect(setStateSpy).toHaveBeenCalledWith(expectedState);
 expect(wrapper.state()).toEqual(expectedState);
 });

 it('keeps the "isLoading" state variable true if the account is not found in
database', async () => {
 const user = getUser();
 user.id = 'wrongId';

 const authState: AuthState = {
 firebaseUser: undefined,
 appUser: user,
 activeRole: UserRole.USER,
 firebaseError: undefined,
 authenticating: false,
 };

 const { wrapper } = await setup({ auth: authState });
 expect(wrapper.state('isLoading')).toBe(true);
 });

 it('renders a loading spinner if the "isLoading" state variable is true', async ()
=> {
 const { wrapper } = await setup();

126

Appendix 5/3

 wrapper.setState({ isLoading: true });
 wrapper.update();
 wrapper.instance().forceUpdate();
 expect(wrapper.find('[data-test="loadingSpinner"]').exists()).toBe(true);
 });

 describe('when the "account" state variable is defined', () => {
 it('renders an AccountForm component with account, onSubmit and onUpdateAccount
props', async () => {
 const { accountForm } = await setup();
 expect(accountForm.exists()).toBe(true);
 });

 it('passes the "account" state variable to ApplicationForm as a prop', async ()
=> {
 const { wrapper, accountForm } = await setup();
 expect(accountForm.prop('initialValues')).toEqual(
 wrapper.state('account'),
);
 });

 it('updates the account in state when AccountForm triggers onUpdateAccount',
async () => {
 const { accountForm, wrapper } = await setup();
 const changedAccount: ShortUserInfo = {
 displayName: 'Changed name',
 id: '1000',
 email: 'test@test.test',
 photoURL: 'photoURL',
 };

 accountForm.simulate('updateAccount', changedAccount);

 expect(wrapper.state('account')).toEqual({
 displayName: 'Changed name',
 id: '1000',
 email: 'test@test.test',
 photoURL: 'photoURL',
 });
 });

 it('updates the account in the database when AccountForm triggers onSubmit',
async () => {
 const { accountForm, mockApp, wrapper } = await setup();

 wrapper.setState({
 account: {
 displayName: 'Updated name',
 id: '1000',
 email: 'test@test.test',
 photoURL: 'photoURL',
 home: 'home',
 },
 });

127

Appendix 5/4

 accountForm.simulate('submit');

 return mockApp
 .firestore()
 .collection(Schema.USERS)
 .doc('1000')
 .get()
 .then(updatedDocument => {
 expect(updatedDocument.data()).toEqual({
 displayName: 'Updated name',
 id: '1000',
 email: 'test@test.test',
 photoURL: 'photoURL',
 home: 'home',
 });
 });
 });

 it('renders the avatar of the account if account.photoURL is defined', async ()
=> {
 const { wrapper } = await setup();
 expect(wrapper.find('[data-test="avatarImage"]').prop('src')).toBe(
 'photoURL',
);
 });

 it('renders the default avatar if account.photoURL is not defined', async () => {
 const { wrapper } = await setup();
 wrapper.setState({
 account: {
 displayName: 'Updated name',
 id: '1000',
 email: 'test@test.test',
 photoURL: undefined,
 home: 'home',
 },
 });

 expect(wrapper.find('[data-test="avatarImage"]').prop('src')).toBe(
 defaultUserImageUrl,
);
 });
 });

 it('matches snapshot', async () => {
 const { wrapper } = await setup();
 expect(toJson(wrapper)).toMatchSnapshot();
 });

});

	1 INTRODUCTION
	2 AUTOMATED TESTING
	2.1 Motivation
	2.2 Types of automated tests
	2.3 Goals of test automation
	2.4 Code coverage
	2.5 Behaviour-driven development and spec-style testing
	2.6 Test doubles

	3 TESTING TOOLS AND SUT TECHNOLOGIES
	3.1 Jest
	3.1.1 Test runner
	3.1.2 Assertion library
	3.1.3 Mocking library
	3.1.4 Built-in code coverage

	3.2 React
	3.2.1 JSX
	3.2.2 Component lifecycle methods

	3.3 TypeScript
	3.4 Redux
	3.5 Shallow rendering with Enzyme
	3.5.1 Snapshot testing React components with Jest and Enzyme

	3.6 Jenkins, GitLab, Gitflow workflow and Git hooks

	4 PROPOSED TESTING STRATEGY FOR A REACT-REDUX APPLICATION
	5 PRACTICAL IMPLEMENTATION
	5.1 Configuring the test environment
	5.2 Example of testing a utility function
	5.3 Examples of testing action creators
	5.4 Example of testing a reducer
	5.5 Examples of testing React components
	5.5.1 Testing a stateless component
	5.5.2 Testing a stateful component connected to Redux

	5.6 Configuring pre-push test execution with Git hooks
	5.7 Creating a Jenkins project to run tests for each merge request
	5.8 Displaying a code coverage report on the Jenkins server

	6 DISCUSSION
	7 CONCLUSION
	REFERENCES

