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1 INTRODUCTION AND OBJECTIVES 

The focus of this thesis is the energy absorption of a slow, non cutting impact that simu-

lates a collision at sea. With the results of the tests and application of a simplified mo-

mentum model it is possible to predict the necessary sandwich laminate energy absorp-

tion for the hull of a watercraft of a certain intended mass and speed.  

This thesis applies the equations for kinetic energy and Hooke’s law to determine the 

necessary thickness of the sandwich laminate needed for the hull to survive impact. The 

assumption being that the laminate behaves like a spring up until the point of skin rup-

ture. 

The objectives of this thesis are  

1) Develop a mathematical model that would predict the behaviour of the sandwich 

laminates and to prove the model works to a reasonable degree. 

2) Show that the results from the energy absorption abilities of the foams correlate 

with the stated compressive modulus and shear modulus values for each foam 

core. 

2 LITERATURE SURVEY  

2.1 COMPOSITES AND THEIR BEHAVIOUR 

Due to the nature of composite structures defining energy absorption abilities for com-

posites is different from structures made from traditional homogenous materials. (Saare-

la, O. Airasmaa, I. Kokko, J. Skrifvars, M. Komppa, V. 2003) 

Although the principle behind composite structures is to combine the benefits from two 

distinct materials they also suffer from weaknesses related to both or all the materials 

included in the composite structure. Defects and flaws may originate in any of the indi-

vidual components of the composite, in their interface or in the way the matrix and rein-

forcement components are distributed in the structure by producing areas with either too 

much resin or not enough resin. In addition, manufacturing conditions play a role in the 
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integrity of the final composite structure. Moisture, various chemicals etc. can affect the 

coupling of the fibres and resin. Scratching the fibres may lead to unexpected failure. It 

is also important to understand that design features such as joints, holes, ply drops in 

laminates etc. can contribute to failure. When a failure occurs it is always due to an ac-

cumulation or combination of various sorts of damage such as instantaneous, impact 

type to creep or slow crack propagation and fatigue. (Ezrin, Myer, 1996).  

2.2 MATHEMATICAL MODEL 

Since the parameters in focus in this thesis work are the relation of the boats speed and 

mass to the amount of energy its hull needs to absorb without penetration during a colli-

sion it is necessary to start from the equation of kinetic energy of a moving body (I.S. 

Grant, W.R. Phillips 2001). 

�� � 12 ���	 � �
 

Equation 1: Kinetic energy of a moving body 

When the boat collides with the object, momentum is converted to velocity �� 
through 

the following function (I.S. Grant, W.R. Phillips 2001): 

�� � �
�
 � ��  �
 

Equation 2: Conversion of momentum during collision 

By inserting the �� 
value into the kinetic energy equation with the new mass of both the 

boat and the collided object it is possible to determine the kinetic energy after collision.  

�� � 12 �
 ��	 

Equation 3: Kinetic energy after collision 

The change in energy ( ∆� �  �
 � ��) can be found to be:  
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 ∆� � 12 �
 ��
	 � � �
�
 � ���	 �
	� � 12 �
�
	�1 � � �
�
 � ���	� 

Equation 4: Change in energy 

The amount of energy absorbed by the composite can be found by integrating the force 

over distance. Here k is the equivalent spring constant describing the elastic part of the 

energy absorption before the fibres start to absorb the energy by rupturing. It can be 

seen as the slope of force over distance needed to penetrate the sandwich. Small x is 

used to denote the total displacement of the collision into the sandwich laminate (I.S. 

Grant, W.R. Phillips 2001).  

∆� � � � � � �� � 12 ��	
 

Equation 5: Integrating force over distance 

Since the change in energy is known the equation can be seen as: 

� � �∆��	 �  2 

Equation 6: solving for constant 

Or when solving for the displacement of the collision into the foam: 

� � ��∆�  2��  

Equation 7: Solving for displacement 

In the above equation x  max is the full thickness of the laminate, k a constant, ∆E is 

dependent on ��, �� and �
. Equation 8 is relevant when determining the maximum 

allowable speed of the watercraft since �� is the only variable that can be affected when 

the boat is at sea.  

�� �  2  ∆���  �1 � ! 11 � "#	� 

Equation 8: Solving for maximum allowable speed 
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2.3 Three-point-bending 

In order to produce a total penetration the sandwich laminates were place on top of a 

cylindrical object as can be seen in Figure 5 with a of 76,5mm diameter hole that would 

allow for the steel balls to be pushed through the laminate. This method attempts to 

avoid three-point-bending. Figure 1 shows how forces act on a test piece in three point 

bending. 

 

Figure 1: Sketch of three point bending 

 

When three point bending is introduced into the test process it allows the structure to 

flex over an area that is larger than the ball used for testing (Deflection of beams 2010) 

and would affect the results obtained. Figure 5 shows the test setup at ARCADA lab. 

3 METHOD 

In the practical experiment done for this thesis the materials used have been: bi-axial -

45/45 E-glass 300 fibre 430g/�$, Atlac 580 AC 300 vinyl ester (tensile strength 

78MPa) and 7 different types of 10 mm thick Divinycell foam (DIAB). Figure 2 shows 

a schematic of a foam core sandwich laminate. On top and bottom are the fibre and 

resin skins and in between them is the foam core. 
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Figure 2: Schematic of a foam core sandwich laminate 

 

3.1 Foam cores 

Seven different foam cores were used in the laminates. The foam cores differed in mate-

rial composition with the cores denoted by P being recyclable. Cores denoted by H have 

a high strength to density ratio and are widely used in various applications including 

marine applications (APPENDIX 1). 

Table 1: Foam core properties 

Material Tensile strength 

MPa 

Compressive strength 

MPa 

H250 9,2  6,2  

H100 3,5  2,0  

H80GS (grid-scored) 2,5  1,4  

P150 2,45  2,30  

H60 1,8  0,9  

H45GS (grid-scored) 1,4  0,6  

P60 1,10  0,55  
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The actual laminates were formed by applying four layers of glass on top of the foam 

core and four layers on the bottom. Figure 3 shows H45GS foam core with grooves to 

assist resin flow. These grooves will affect the compressive strength of the foam due to 

added resin columns. Some foam cores used in this test had grooves cut right through 

the foam. When laminated, the resin will form a column between the top and bottom 

skin affecting compressive strength of the structure. All the laminates were laminated 

with bi-axial -45/45 E-glass fibre 430g/, Atlac 580 AC 300 vinyl ester. 

 

Figure 3: Divinycell H45GS foam core before lamination 

Vacuum infusion was used as the construction method of the sandwich laminates. A 

vacuum of -0.8 Bar was used during the one shot infusion of all of the foam cores si-

multaneously resulting in a uniform laminate. In Figure 4 the vacuum line can be seen at 

the top left of the image.  

 

Figure 4: Vacuum infusion of cores 



14 

 

The foam cores are lined up on top of a glass plate with the glass fibres wrapped around. 

Resin injection line can be seen to the right of the glass plate. After infusion the lami-

nates were cut to size so that they can be subjected to force tests on the Testometric ma-

chine at the ARCADA lab.  

 

 

Figure 5: Test setup at ARCADA lab 

Figure 5 shows the testometric machine with the metal sphere at the end of a conical die 

that was pushed into the sandwich laminates. The cylindrical holder for the sandwich 

laminates can be seen at the base of the machine  

Figure 6 shows the edge of one of the laminates that were cut to size. It was decided that 

it was unlikely that the peel ply affected the results significantly and so it was left on the 

laminates. 
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Figure 6: Edge detail of H100 foam core sandwich laminate 

3.2 Energy absorption in recreational water craft 

Buster X and Nautor Swan 60 models were chosen as representatives of totally different 

types of recreational boat.  

The Buster X is made from aluminium and is a planning hull motorboat with a maxi-

mum weight with a Honda 75 Hp outboard engine of 1168kg. (APPENDIX 2), (Honda 

BF75 Outboard Engine – 75 hp boat motor specs and features 2010). Both boats are 

manufactured in Finland.  

Nautor Swan 60 is a sailing yacht with a mass of almost 20 000 kg (Technical Details 

Swan 60 2010). 

Figure 7 shows the respective kinetic energies of both boats at various speeds in knots 

on a logarithmic scale. It is notable that for the Swan sailboat speeds beyond 25 knots 

will not be achieved under normal operation due to the fact that it is a semi displace-

ment hull and has a maximum speed relating to the hull length. 
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Figure 7: Kinetic energies (Ek) of Swan and BusterX 

 

 

3.3 Sea Containers as colliding objects 

Sea containers were chosen as the colliding object. These range from less than 20 000 

kg to around 40 000 kg masses when fully laden. (Dimensions Of Sea Containers 2010) 

Figure 8 uses Equation 7: Solving for displacement to determine the effective deflection 

a roughly 24000 kg sea container would cause in theory to P60 foam core if it were used 

as the hull material of either a Swan or a Buster boat. The graph implies at the necessary 

thickness required to survive the collision. 
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Figure 8: Displacement of collision in P60 foam core 

4 RESULTS 

Each foam core laminate was cut out with a band saw from the one shot laminate struc-

ture. They were then subjected to a destructive force test on the Testometric machine at 

ARCADA engineering lab. The range of the machine is from 4,00N to 5000N with a 

load Cell / Amplification of 500kgf. (Calibration Certificate 2007, Testometric materials 

testing machines) 

The 21mm diameter sphere did not manage to penetrate any of the laminates so the re-

sults are included only for the 13,5mm sphere penetration tests. In this case penetration 

was achieved in all laminates except with H250 foam core. 

4.1 Equivalent model 

It is necessary to understand what is happening to the sandwich laminate during the ap-

plication of force. Figure 9 shows the force distribution in P60 foam sandwich laminate 

as the sphere penetrates through the laminate. The model graphed in Figure 9 can be 

applied to all laminates with the exception of H60 where it was not possible to deter-

mine the force redistribution point without reasonable doubt. 
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Figure 9: Critical points during testing of P60 foam core sandwich laminate 

The stages in Figure 9 are: 

1.  In the first stage the force is taken up by the whole 

laminate structure which goes into compression as 

the top skin stiffness distributes the force. 

2.  The second point is the end of the saddle, where 

the top skin no longer absorbs the force but is now 

beginning to bend and the force is distributed into 

the foam core, which is in compression during 

stages 2 and 3. 

 

 

3.  Force redistribution point. Small notches in the 

graph indicate fibre delamination in the top skin 

and foam interface. 
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4.  End of elastic deformation means that the foam 

core is no longer elastically absorbing the force. 

From this point on the core is plastically damaged. 

The surface skin has suffered delamination and the 

core will suffer water damage from this point on-

wards. 

5.  At this point the load is now absorbed by the bot-

tom skin. As the graph progresses, notches denote 

fibre delamination in the same way as after point 3. 

The hull can no longer be considered watertight. 

6.  The end of the lower surface deformation. The die 

used for the test has now fully penetrated the 

sandwich laminate. 

The notable portion of Figure 9 is between stages 2 and 4 where a relatively straight line 

can be seen. This is the portion that indicates that the behaviour of the sandwich lami-

nate follows the behaviour of a simplified spring constant.  

The following figures (Figure 10 to Figure 16) illustrate portions between point 2 and 

point 4 of the same graph as in Figure 9.  

A trend line has been calculated with the %	 value displayed. The %	 value describes 

how closely the trend line follows the chart data. A value of 1 would mean a perfect re-

lationship. Visible in the charts is also the y value or slope of the line. This slope can be 

related to the modulus of the foam core as the k value. The unit of this value is N/mm 

due to data scale. It is notable that this is the same data as used in Figure 9 and Figure 

17 but with fewer data points. The graphs have been corrected to start from the end of 

the saddle point at the x-axis. 
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Figure 10: H250 laminate with y = 725,68 at an occurrence rate of 99,48% 

 

Figure 11: H100 laminate with y = 530,24 at an occurrence rate of 99,36%. 

 

 

Figure 12: H80GS laminate with y = 507,15 at an occurrence rate of 99,28% 
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Figure 13: P150 laminate with y = 574,5 at an occurrence rate of 99,21% 

 

 

Figure 14: H60 laminate with y = 446,62 at an occurrence rate of 99,86% 

 

 

Figure 15: H45GS laminate with y = 362,31 at an occurrence rate of 99,1% 
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Figure 16: P60 laminate with y = 460,18 at an occurrence rate of 98,38% 

Figures 10 to 16 show that between the saddle point and the end of elastic deformation 

point the force distribution over distance forms in almost 99% of the cases a straight 

line. The exception is P60 laminate, with 98% rate. This makes it reasonable to assume 

that a simple spring model can be used in determining the performance of these foam 

cores in a collision situation. 
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4.2 Comparison of laminates 

Below is a graph of the force over distance distribution of all the laminates. It is notable 

that the data for H250 is not complete due to the inability to fully penetrate the laminate. 

What is visible, however, is that the force distribution curves are similar between all the 

laminates with the aforementioned H250 as an exception 

 

Figure 17: Force distribution of sandwich laminates 

This can be seen as confirmation that the laminates behave in a similar way regardless 

of the type of foam core used in them. Importantly, it is visible that the graphs of all 

laminates contain a straight line from the end of the saddle until the force redistribution 

point. Confirmation that it is reasonable to use a simplified model for a spring constant 

to describe the behaviour of a sandwich laminate can be seen from Figure 10 to Figure 

16.  
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Figure 18: Energy absorption of laminates 

Figure 18 displays the amount of energy absorbed by each laminate as the ball is pushed 

through during the testing. In this graph it is notable that the values for y-axis are in 

thousandth of Joule. It is also notable that the distance exceeds well beyond the 10 mm 

average thickness of the laminates. This is due to the fact that the ball was allowed to go 

through the laminate instead of the laminate being held on a solid surface. Thus the 

laminate has the ability to keep absorbing energy until the ball has penetrated right 

through the laminate (see Figure 5 for the test setup). 

Table 2: Energy absorbed by laminates during penetration test 

    Start 1st.  Force  end of  Inner Inner 
      Saddle redist. elastic surf.  surf.  
      point def. start end 
P150 s (mm) 2,76 3,64 6,65 9,23 17,23 22,22 
  E (J) 559 6 945 134 228 387 031 1 065 868 1 473 994 
P60 s (mm) 3,23 4,40 8,29 10,16 16,46 22,57 
  E (J) 502 8 097 151 797 321 746 672 591 1 070 065 
H60 s (mm) 3,19 4,16   18,52 20,67 24,13 
  E (J) 533 7 113   1 134 867 1 345 917 1 674 897 
H100 s (mm) 3,08 4,07 9,49 11,02 14,85 21,64 
  E (J) 494 7 110 323 377 500 977 765 856 1 317 281 
H250 s (mm) 2,72 3,47 8,48 10,28 10,62 16,44 
  E  (J) 518 6 005 395 008 692 730 735 117 1 584 810 
H45GS s (mm) 3,69 4,97 10,87 14,54 22,66 25,23 
  E (J) 646 9 525 281 484 664 938 1 302 623 1 524 865 
H80GS s (mm) 2,62 3,56 8,87 10,16 14,88 19,54 
  E  (J) 518 7 268 311 852 459 571 821 548 1 244 002 
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Table 2 displays the data used for drawing the graphs shown from Figure 10 to Figure 

16. It is notable that E stands for energy and the values are in thousandth of a Joule. The 

values for inner surface start and end for H250 laminate are in yellow due to the inabil-

ity to fully penetrate the laminate. 

5 ANALYSIS 

As shown in Figure 17, the force distribution in the laminates is rather straight until the 

end of the elastic deformation stage (stage 4). This would imply that these laminates 

behave in a spring like fashion to a certain measureable point. 

Although Figure 8 would imply that a thickness of over 40 cm of P60 foam core is 

needed for a Swan 60 to survive a collision with a 24000 kg container at 20 knots speed 

it is not necessarily the case in practice due to the actual amount of reinforcement mate-

rial used. The graph in Figure 8 is based on the P60 foam compression strength value 

from DIAB datasheet (APPENDIX 1)  

Figure 19 shows the relationship between the manufacturers stated compression and 

shear modulus values and the k –value derived from the actual tensile test of the lami-

nates (Figure 10 to Figure 16). The graph for compressive modulus occurs at a rate of 

90,5%. In the case of shear modulus the rate of occurrence is 88,34%.  

It is evident that most of the datasheet values correlate with the y-slope (k-value) from 

the actual tests. There are a few exceptions however: H45GS, P60 and H80GS respec-

tively. 

It would be reasonable to expect better performance from foams that have grooves in 

them or even cuts through them due to their ability to hold more resin and especially 

when the resin connects both top and bottom skins. The data would imply such per-

formance for H80GS and P60 but not so for H45GS. It is notable that the die used for 

the penetration is smaller than the individual foam squares formed by the cuts and 

grooves so the full benefit of the interconnection of the laminates might not be reached 

in this test. 
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Figure 19: Compressive and Shear modulus of laminates 

5.1 Practical application 

In order for the work to have practical meaning it should be possible to determine the 

maximum allowable speed of the vessel. 

 

�� �  2  ∆���  �1 � ! 11 � "#	� 

Equation 9: Solving for maximum allowable speed 

In the above equation: �� denotes the maximum allowable speed for the vessel in ques-

tion, the z value is a mass ratio:  " � ���� 

Equation 10: Mass ratio 
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5.1.1 Buster and Nautor Swan at sea 

In a hypothetical situation where the captain of a Buster X would have reason to expect 

to encounter sea containers of 23956kg mass they would calculate according to Hooke’s 

law for potential stored energy: 

∆� � 12  �  �	 

The data used in this thesis needs to be normalised for k in the following way: � � & � �'()* +%,� -*�-�  1000  ��  100� 

11: Normalising k-value 

Here k is the y –value taken from the graphs of Figure 10 to Figure 16 and multiplied 

with 1000 to correct for scale. The thickness of the foam in metres is denoted by x times 

100 to get a multiplier assuming the foams behave in the same way regardless of thick-

ness.  

This value is then used in the final formula to produce the maximum allowable speed 

for the water craft before the foam core reaches the end of elastic deformation (Equation 

9), which in all practical sense means a breach of the hull. 

Below are two tables that illustrate the calculation and result for maximum allowable 

speed for both Buster X and Nautor Swan boats when colliding with a sea container in 

the hypothetical case where the boats would be made of the same laminates as tested in 

this thesis. 

Table 3: Maximum allowable speed for Buster X with tested laminates 

  H250 P150 H100 H80GS P60 H60 H45GS 

k 725,68 547,50 530,24 507,15 460,18 446,62 362,31 

k*(x*100)*1000 

725 

680,00 

547 

500,00 

530 

240,00 

507 

150,00 

460 

180,00 

446 

620,00 

362 

310,00 

∆E 36,28 27,38 26,51 25,36 23,01 22,33 18,12 

m/s 0,26 0,22 0,22 0,21 0,20 0,20 0,18 
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Table 4: Maximum allowable speed for Nautor Swan with tested laminates 

  H250 P150 H100 H80GS P60 H60 H45GS 

k 725,68 547,50 530,24 507,15 460,18 446,62 362,31 

k*(x*100)*1000 

725 

680,00 

547 

500,00 

530 

240,00 

507 

150,00 

460 

180,00 

446 

620,00 

362 

310,00 

∆E 36,28 27,38 26,51 25,36 23,01 22,33 18,12 

m/s 0,08 0,07 0,07 0,07 0,07 0,07 0,06 

 

 

 

 

In Table 3 the values for Buster X are as follows:  �� � 1168 ��1� �� � 23956 ��1� � � 0,01 ��� 

In Table 4 the values for Nautor Swan are as follows:  �� � 18700 ��1� �� � 23956 ��1� � � 0,01 ��� 

The maximum allowable speed for the vessels differs rather due to the difference in 

masses. The Nautor Swan at almost 20 000 kg would impart a lot more energy for the 

laminate hull to absorb during a collision and has lower maximum allowable speeds as a 

result. 

A secondary calculation was done to see what the figures would look like if the mass of 

the colliding object was lesser and the hull thicknesses larger.  

A Buster X was chosen to be the colliding object (��) and the hull thickness (x) as 0,04 

m (four times the thickness of the tested laminates).  
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Table 5: Buster X colliding with Buster X 

  H250 P150 H100 H80GS P60 H60 H45GS 

k 725,68 547,50 530,24 507,15 460,18 446,62 362,31 

k*(x*100)*1000 

2 902 

720,00 

2 190 

000,00 

2 120 

960,00 

2 028 

600,00 

1 840 

720,00 

1 786 

480,00 

1 449 

240,00 

∆E 

2 

322,18 

1 

752,00 

1 

696,77 

1 

622,88 

1 

472,58 

1 

429,18 1 159,39 

m/s 2,82 2,45 2,41 2,36 2,25 2,21 1,99 

 

Table 6: Nautor Swan colliding with Buster X 

  H250 P150 H100 H80GS P60 H60 H45GS 

k 725,68 547,50 530,24 507,15 460,18 446,62 362,31 

k*(x*100)*1000 

2 902 

720,00 

2 190 

000,00 

2 120 

960,00 

2 028 

600,00 

1 840 

720,00 

1 786 

480,00 

1 449 

240,00 

∆E 

2 

322,18 

1 

752,00 

1 

696,77 

1 

622,88 

1 

472,58 

1 

429,18 1 159,39 

m/s 2,06 1,79 1,76 1,72 1,64 1,61 1,45 

 

With a thicker hull and a lighter object to collide with both boats have higher allowable 

maximum speeds for all laminates.  

In Table 3 the values for Buster X are as follows:  �� � 1168 ��1� �� � 1168 ��1� � � 0,04 ��� 

In Table 4 the values for Nautor Swan are as follows:  �� � 18700 ��1� �� � 1168 ��1� � � 0,04 ��� 

6 DISCUSSION 

To relate the formulation and the results of the calculations to the actual tests made on 

the completed sandwich laminates it is important to realise the difference in the struc-

tural properties of a composite laminate and the foam. In the composite laminate the 

purpose of the fibre reinforcement is to distribute the force over a large area in order to 

create a strong structure. The matrix resin has a certain compression strength and the 
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fibres will react differently once delamination occurs. What this means is that the per-

formance of the laminate in a collision situation will change depending on the type of 

reinforcement, the resin and the way the laminate has been manufactured. This means 

that these results are not directly applicable as such on any given laminate. It is advis-

able to conduct a test run on a laminate made out of the intended materials for calibra-

tion purposes.  

The laminates studied in this thesis had four layers of glass fibre on each side of the 

foam core. All tests were conducted in room temperature. A future study should deter-

mine how the sandwich laminates behave with different reinforcement and matrix mate-

rials and at different temperatures. This could be done either as a separate thesis work or 

as coursework by students. 

Some of the foam cores had grooves and cuts in them e.g. to make it easier to wrap the 

foam onto a curved form and for the final structure to hold more resin. Especially when 

a cut or groove extends through the foam connecting the top and bottom skin the com-

pression properties of the laminate change when compared to a smooth surfaced foam 

core of the same foam material. This increases the mass of the completed structure. 

How this affects performance is only inferred by some of the data collected by this the-

sis but not studied in depth. 

For maritime application, tests that simulate a cutting, glancing collision as when the 

boat hits a submerged rock or an iceberg could be advisable to produce information on 

how the foam and fibre laminates behave.  

It is notable that so far there are few reliable ways to pre-determine the final strength of 

a composite laminate in a way that would allow for estimates between varying amounts 

of fibre layers. The manufacturing nature of composite structures is one major influence 

in this. However, future research into developing systems that could be fibre and resin 

specific in determining the resulting strength of the structure would be useful  
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7 CONCLUSIONS 

 

This thesis has shown that  

1) the foam core sandwich laminates do under a penetrative non-cutting and non-

bending test, display a straight section, that can mathematically be predicted be-

tween 98, 38% and 99,86% rate of occurrence.  

2) The tested energy absorption abilities of the foam cores do in correlate with the 

stated compressive modulus at a rate of 90,5% statistical probability and shear 

modulus values at a rate of 88,34%. 

This means that not only is it reasonable to use the tested energy absorbing values for 

the foam cores but that for statistical probability of between 90,5 and 88,34% the values 

could be taken directly from the datasheet and used for predicting the behaviour of the 

foam. 
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