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ABSTRACT 
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Machine Learning (ML), is a process of teaching an algorithm to learn. Algo-

rithms try to find patterns from data to generalise a rule or relation to predict fu-

ture unseen instances. Some of the popular results of machine learning sys-

tems are Google Translate, YouTube’s Video Recommendation System, Movie 

Recommendation System.  

The aim of the thesis was to introduce the readers the concept of ML and the 

phases of the ML model development process as well as their implementation 

in the Python programming language. 

Different categories of ML with examples, typical phases in an ML modelling 

have been explained in theory in the thesis. In addition, pre-processing data, 

training and testing models, optimization of a model in the supervised machine 

learning have been further elaborated using Linear Regression and K-Nearest 

Neighbor (KNN) as examples in Python programming language.  

The paper, as a result, can act as a starting tool and conventional guide to a be-

ginner ML practitioner for any ML algorithms other than presented in the paper. 

People with knowledge of Python can further benefit from the conventions and 

alternatives presented in the coding section of the paper.  

 

Keywords: Machine Learning, ML Phases, Supervised Machine Learning, Py-
thon Programming, Linear Regression, KNN 
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VOCABULARY 

ABBREVIATIONS 

 

CPU = Central Processing Unit 

FP = False Positive 

FN = False Negative 

IDE = Integrated Development Environment 

KNN = K-Nearest Neighbour 

MAE = Mean Absolute Error 

ML = Machine Learning 

MSE = Mean Squared Error 

RMSE = Root Mean Squared Error 

SVC = Support Vector Classification 

SVM = Support Vector Machine 

TN = True Negative 

TP= True Positive 
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TERMS 

 

Bias = ML model performance is not good, i.e. very low accuracy, at both train-

ing and testing data. This situation is referred to as Highly Biased or underfit-

ting. It indicates the model is not a good fit and/or data is not meaningful 

enough. During such a situation, it is recommended to use a complex ML algo-

rithm and play through data to make it more meaningful. 

Categorical Data / Qualitative Data = Data type that are non-numerical. 

Classes = Prediction Values in Classification Algorithms. 

Continuous Data / Quantitative Data = Data type that are numerical. 

Data-frame = Database represented in columns and rows with labelled columns 

and indexed rows. It is a Pandas object.   

Dependent Variable = Features column or target column to be predicted. 

Domain Knowledge = Expertise in a field. For instance, ML engineer working for 

Nokia 5g network projects can benefit from knowledge about internet network-

ing processes.  

Dummy-Variable Trap = It is a scenario created due to multicollinearity between 

column. In such a situation on the column can help in the prediction of another 

one so, there is no need for an algorithm to learn anything. To avoid such a situ-

ation, one of the multiple dummy variables created during conversion from cate-

gorical to dummy numerical variables is dropped. After dropping one column, 

the algorithm is forced to keep on guessing.  

False Negative = When the prediction result is False (or negative or 0) but the 

actual result is True (or positive or 1), it is called False Negative. It is also re-

ferred to as Type II error. 
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False Positive = When the prediction result is True (or positive or 1) but the ac-

tual result is False (or negative or 0), it is called False Positive. It is also referred 

to as Type I error.  

Features / Variables = A column in data frame. For instance, age column, sex 

column, price column.  

Feature Engineering = Processing raw data to make it ready to be used by al-

gorithms.  

Independent Variable = All the feature columns except the to be predicted col-

umns, that affect the result of prediction, are the independent column.   

Multivariate = More than one variable. 

Outliers = Data in a column that is exceptional from its siblings, in ML outliers 

can affect results negatively. For instance, A number 1000000 in the list of num-

bers less than 1000. (1, 200, 300, 999, 100, 25, 56, 465, 789, 1000000).  

Parameters = Input of the Estimators or algorithms, some of which can be de-

termined by the practitioner and some cannot. They determine the result.  

True Negative = When the prediction result is false (or negative or 0) and the 

actual value is also false (or negative or 0), it is called True Negative. 

True Positive = When the prediction result is true (or positive or 1) and the ac-

tual value is also true (or positive or 1), it is called True Positive. 

Univariate = Single features or variable. 

Variance = It is the situation when the model's performance is exceptionally 

good for training data, but poor results are achieved for unseen or test data. 

The situation indicates the use of complex ML model unnecessarily. It is also re-

ferred to as High Variance or Overfitting. The model tries to fit each data point 

rather than generalizing underlying pattern between points.  
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1 INTRODUCTION 

Human beings, can easily distinguish the tree from rock, can learn languages, 

learn to read and write, learn to drive. Everyday performance gets better and 

better. People learn, from their surroundings, from trails and success, from fail-

ures, from companions. Every time a task is performed people’s brain receives 

feedback, learns from feedbacks and saves them for future references. 

Similarly, Machine Learning (ML) is a process of teaching an artificial system to 

learn through enormous amounts of data. It is crucial to remember that the aim 

of the machine learning exercise is to produce a self-sufficient model for a spe-

cific task.   

With the development of technologies, several programming languages have 

been adopted by machine learning engineers and data scientists to solve ma-

chine learning problems. Some of the popular programming languages used are 

Python, R and Java. Python is one of the popular programming languages for 

machine learning practices. 

Python is a high level, general-purpose programming language developed in 

1991. Python has been used in several platforms such as desktop applications, 

server-side scripting, machine learning, data analysis, web development. [1] 

The thesis will review several phases in Machine Learning. It explains in brief 

the ML and ML phases carried out to obtain an optimal ML model. The thesis in-

troduces several packages available in the Python programming language used 

for different ML phases through examples of two supervised ML algorithms and 

their development in code. However, the codes and packages are more con-

ventions than rules. In coding, there can always be different methods and steps 

to perform the same operation. 
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2 MACHINE LEARNING 

Machine Learning is a field of computer science which uses statistical algo-

rithms and techniques to teach an artificial system an ability to learn feeding a 

huge amount of data. [2] 

The field of machine learning is huge and widespread, but there are some pop-

ular use cases successfully touching the lives of billions of people. 

1. Recommendation System: YouTube suggests your videos based on your 

personal history, likes and dislikes. Netflix users get movie recommenda-

tion based on the user profile and histories.  

2. Spam Detection: Gmail has a separate folder that says Spam, which 

holds all spam emails. This is a brilliant application of machine learning 

saving people from frauds. 

3. Google Translate: It detects language automatically and translates to the 

language of choosing instantly.  

4. Speech Recognition: Siri in Apple products and Alexa from Amazon are 

products of deep learning which is the field of machine learning. 

As shown in figure 1, the field of machine learning can be classified into three 

categories. [2] 

1. Supervised Learning 

2. Unsupervised Learning 

3. Reinforcement Learning 
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FIGURE 1. Types of machine learning [3] 

2.1 Supervised Learning 

Supervised learning in ML is the process in which prediction classes are already 

known. In supervised learning, a learning algorithm analyses rules and patterns 

using label input data, a group of dependent and independent variables during 

training and generalising rules to deduce future unseen instances of data [4]. 

For instance, if the sky is cloudy and the clouds are dark, the weather is more 

likely to be rainy than sunny. 

Supervised Learning has been further divided into two sub-types depending 

upon the desired data type of prediction, Regression and Classification 

2.1.1 Regression 

ML algorithms that are used to predict continuous data-type are categorized as 

regression learning algorithms, for instance, prediction of stock prices or real 

state housing prices. [5] 

Some examples of regression algorithms are Linear Regression, Polynomial 

Regression and Support Vector Machine (SVM).    
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Linear Regression 

 

Linear Regression is the type of learning algorithms where the dependent and 

independent variable has linear relations.  Figure 2 demonstrates a plot be-

tween training data and the prediction of the model. A linear slope is created be-

tween prediction and training data, where the difference is the error. 

 

FIGURE 2. An example of linear regression [6] 

A mathematical formula for a simple linear regression has been provided in for-

mula 1 below. 

y= m*x + c              FORMULA 1 

 y = predicted value,  

m = coefficient,  

x = independent variable  
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c = constant or intercept. 

A multivariate linear regression equation can be expanded as shown in formula 

2 below. 

y = m1*x1 + m2*x2+…+ mn *xn + c                                             FORMULA 2 

n = the number of independent columns. 

Hence, in terms of simple linear regression, it can be interpreted as: 

y = sum of m*x of n number of columns + c  

 

2.1.2 Classification 

Classification in ML is used to predict categorical data types (Vocabulary -

Terms – Categorical Features), for instance, prediction of weather or directions. 

Some examples of classification algorithms are Random Forest Classification, 

Decision Tree, Support Vector Classification (SVC) and Logistic Regression. 

Logistic Regression, unlike the name suggests, is a classification algorithm. [5] 

K-Nearest Neighbor 

 

K-Nearest Neighbor divides a data point among given categories based on the 

distance between a new data point and previously assigned data points. Figure 

3 is displaying the selection process in KNN through visual aid.  
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FIGURE 3. K-nearest neighbor [7] 

Typically, a K-Nearest Neighbors selection process can be explained in the fol-

lowing steps:  

1. The algorithm takes a new input data point (red point in figure 3), calcu-

lates the distance between the new data point and its neighbor data 

points (blue and green points in figure 3). Distance calculation metrics 

can be chosen, the default one in sklearn’s KNN algorithm is “Euclidean 

Distance” metric.   

2. Then, the KNN algorithm chooses a K number of data points among all 

previously assigned data points, fitting the distance metric. For instance, 

if k is 5, and distance metric is “Euclidean Distance”, it will pick 5 data 

points (among blue and green points in figure 3), closest to new data 

points in a straight line.   

3. Among the 5 chosen points, the category (dependent classes 1 and 2 in 

figure 3), consisting of the highest number of chosen data points or 

neighbors, is assigned a new data point. For instance, in figure 3 the 
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number of blue points is 3 and that of green is 2 which are the K = 5 clos-

est points represented inside the circle. Thus, the redpoint falls into Class 

2 in figure 3.  

2.2 Unsupervised Learning 

Unsupervised Learning is a category in ML where the prediction classes are un-

known, and prediction is done based on an analysed pattern from features 

available. There are situations in real life where features available are unclear 

or meaningless, in such scenario, unsupervised learning algorithms are used. In 

simple words, if it is not known, what is predicted, then use unsupervised learn-

ing techniques should be used [8]. Some examples of unsupervised algorithms 

are Clustering, Anomaly Detection, Dimension Reduction.  

Clustering 

 

As the name suggests, in clustering, predictions are clustered together in sev-

eral groups based on the patterns recognized from the relationship between in-

dependent variables. K-Means Clustering, Agglomerative Hierarchical Cluster-

ing are few examples of clustering algorithms. [8] 

2.3 Reinforcement Learning 

Reinforcement Learning is feedback-based learning, where algorithms receive 

feedbacks from the environment and adjust the parameters that affect the re-

sult. Some examples of the Reinforcement learning techniques are the Markov 

decision process, Q-learning, Temporal Difference methods, Monte-Carlo meth-

ods. [9] 

Hence, Machine learning is a process of teaching a machine how to learn by 

feeding a large amount of relevant data. ML can be divided into three catego-

ries, Supervised Learning, Unsupervised Learning and Reinforcement learning. 

The method is Supervised learning when dependent variables are labelled. The 

method is Unsupervised learning when dependent variables are unlabelled, 
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thus, it is the responsibility of algorithms to group prediction in several classes. 

In the coming chapters, details of Supervised ML phases are explained and im-

plemented using the Python programming language.  
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3 PYTHON FOR MACHINE LEARNING 

Python is a high level, general-purpose programming language developed in 

1991. Python has been used in several platforms such as desktop applications, 

server-side scripting, machine learning, data analysis, web development. [1] 

Python Modules and Packages 

 

Python modules are files in Python with “.py" extensions. Packages are collec-

tions of modules and packages are often referred to as namespaces [10]. Mod-

ules and Packages are a prewritten set of codes aimed for reuse to reduce the 

workload of developers. 

3.1 Python Packages for Machine Learning  

Python has been used widely in the field of ML. There are several packages in 

Python used for data analysis and machine learning. Some of them are as fol-

lows: 

3.1.1 NumPy 

A NumPy abbreviation for a Numerical Python is a package for scientific com-

putation. It is used for creation and manipulation of multi-dimensional arrays, 

mathematical operations, such as mean, medians, sum, maximum and mini-

mum values. [11] 

3.1.2 Pandas  

In machine learning, the data fetched from sources is converted into dataframes 

and further processed by desire. For Python, Pandas is an open source library 

used for creation and manipulation of dataframes. [12] 
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3.1.3 Scikit Learn 

Scikit-Learn, also known as sklearn, is an open source package for Python, be-

ing used for data mining, data analysis, machine learning and data science. The 

sklearn package offers various machine learning algorithms and tools for vari-

ous purposes, such as estimation, pre-processing and splitting. [13] 

3.1.4 Matplotlib 

Matplotlib is a Python library for data visualization. Many statistical diagrams, for 

instance, histogram, graph and scatterplot can be drawn using Matplotlib. Data 

Exploration is an essential part of machine learning, where data visualization li-

braries, such as Matplotlib, is used. [14] 

3.1.5 Seaborn 

Seaborn is a data visualization library based on Matplotlib. Statistical plots, such 

as heatmap, violin plot and time series can be constructed easily with seaborn. 

[15] 

This chapter was a very short introduction on Python Programming language 

and the packages available for ML. Further in chapter 5, several modules inside 

these packages were utilized to elaborate ML phases.  
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4 PHASES IN MACHINE LEARNING  

ML is a complicated process. Procedures mostly depend on the data, desired 

output, client or employer. Typical ML phases can be categorized as the follow-

ing: 

1. Fetching Data  

2. Data Pre-processing  

3. Data Splitting 

4. Modelling  

5. Model Optimization / Tuning  

Feature Engineering 

 

Sometimes, steps 1 to 3 (Data Fetching, Pre-processing and Splitting) in the list 

are also referred to combinedly as feature engineering. In short, Feature engi-

neering is a process where a raw data is processed and remodelled as per 

need of the project after the feature engineering data is ready to be fed to an al-

gorithm. Figure 4 demonstrates a lifecycle of data from a starting point to a 

trained model in ML. Feature engineering comprises a very important section in 

the flow of data. 

 
FIGURE 4. Logical flow of data in machine learning model building [16] 

In a real-world application, the size of data is huge. Data is generally referred to 

as big data. Not only the size but also the data type can be different, data can 

be in the form of video, audio, text or image. Feature engineering is applied to 

cut a meaningful portion of data randomly from a huge lump, make data more 

informative, the whole process faster and less memory intensive for the CPU 



 

21 

 

(Central Processing Unit). Hence, feature engineering is an iterative process. 

Domain knowledge can be a benefit when it comes to data pre-processing. [17] 

Basically, after being pre-processed data should be meaningful, free from outli-

ers and ready to be fed to algorithms. Table 2 is a table achieved from replac-

ing, removing and adding values from table 1 for further processing.  

TABLE 1. Raw data before pre-processing 
 

ID Age Salary per Year (In US 

$) 

1 NaN 150,000 

2 20 60,000 

3 30 175,000 

4 NaN 180,000 

5 35 120,000 

6 110 120,000 

 

TABLE 2. Data after pre-processing 

ID Age Salary per Year (In US 

$) 

1 28 150,000 

2 20 60,000 

3 30 175,000 
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4 28 180,000 

5 35 120,000 

 

However, some flaws of table 1 and table 2 are that in real-world data is not this 

simple and small. Also, if a table has a categorical feature column, it should be 

converted into numerical values since algorithms cannot take categorical values 

as an input.  

4.1 Fetching Data 

Data is often stored in clouds or hardware in companies. As mentioned earlier 

data can be in several forms such as video, audio, image and texts. In this the-

sis, all the data being used for experimentation is either freely available in Py-

thon sklearn libraries or has been created by the author. In Python, Pandas can 

be used to read the files in several formats. This will be handled in detail in 

Chapter 5. 

4.2 Pre-processing 

4.2.1 Missing Values 

As mentioned in section Feature Engineering, pre-processing is the phase 

where raw data is processed and cooked to be fed to the algorithm. Often in 

practice, many values in data are missing and it is an ML engineer’s responsibil-

ity to find a solution to that issue. [18] 

Often the mean or the median of a feature column is used as replacement value 

if the feature is continuous. However, extreme values can affect the quality of 

the mean or median [18]. For instance, 

 A set of numbers X= [12,5,6,7,100, 90000, missing_value] 

The formula for calculating mean is provided in formula 3 below. 
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 Mean = Sum of total numbers / Total numbers             FORMULA 3 

missing_value_1 (Mean of X) = (12+5+6+7+100+90000)/6 =15021.67 

 If the outlier is removed from the set. Then, 

missing_value_2 (Mean of X) = (12+5+6+7+100)/5 = 26  

 

The difference is huge and can affect the predictive quality of the model nega-

tively. Similar can be the case for the median. Hence, outliers should always be 

removed before performing operations, such as mean and median [18]. The 

mode operation can be used when the feature is a categorical value. The mode 

is a statistical method which returns the most occurring value in a list. 

An ML prediction method is also used by advanced practitioners. In this 

method, the feature columns with missing values are treated as dependent vari-

ables and values are predicted to fill in the missing value with the use of appro-

priate ML algorithm. [18] 

4.2.2 Normalizing Data 

Data as raw obtained from various sources is often of various units and unbal-

anced. Using the data without scaling down or neutralizing can affect the algo-

rithm. For instance, in table 2, the values in the “Age” column range from 20-30 

but values in the “Salaries” column range from 60,000 – 80,000 and the scale is 

quite unbalanced. Since algorithms are some form of mathematical operation of 

variables (formula 1 and formula 2) the unscaled variable will not produce a 

concise result.  Hence, it is a common practice to normalize continuous fea-

tures. Normalizing in an ML process is done before or after splitting data into 

training and testing dataset [19]. Two common methods used for normalizing 

data are as follows:   
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Normalization / Min-Max Scaling 

 

Normalization is the process of scaling numeric values within the range of 0 to 

1. It is done by subtracting the minimum value in the list by the given value and 

dividing the difference by the difference between the minimum and maximum 

value in that list (or feature column) as shown below in formula 4. [19] 

Normalization = (Given Number- Minimum Value) / (Maximum Value – Minimum 

value)                                                                          FORMULA 4 

Outliers can affect the normalized values since the calculation involves an up-

per and lower margin in the list. Hence, outliers should be removed before nor-

malizing a numeric column.  

Standardization 

 

In standardization, numbers are transformed in a manner where their mean is 

zero and the standard deviation. The formula for calculating standardization is 

shown below in formula 5. [19] 

Standardization = (Given Number In column – Mean of Column) / Standard De-

viation of Column                                                           FORMULA 5 

4.2.3 Feature Generation 

Some features in a data-frames can be highly correlated and some can be un-

necessary from the perspective of the algorithm.  

TABLE 3. Salary of employees in company x 

ID Age Salary per Year (In US 

$) 

1 25 150,000 
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2 20 60,000 

3 30 175,000 

4 58 180,000 

5 35 120,000 

 

In table 3, there are three columns of which the ID column is unnecessary from 

the perspective of the algorithm. It is only helpful for human eyes. Hence, it 

should be removed before using it for training the algorithm. There are often 

multiple features in data. Merging or removing the features often requires do-

main knowledge and experience. 

4.3 Data Splitting 

ML algorithms analyse the correlation between features and learn from them to 

generalize a rule from those patterns. If this model is trained and tested in the 

same data, the model will fail to generalize a relation which is the sole purpose 

of ML. Since future instances of test data in the real world after deployment are 

unknown, data that is already present is divided into train and test set. Hence, it 

is a common practice to divide data into a train set around 70 to 80 per cent and 

test set around 30 to 20 per cent of the original data. The key is to divide data 

randomly.   

4.4 Modelling  

Data can be normalized before or after splitting data to a train and test portion. 

However, the inevitable question is which algorithm should be used.  

Figure 5, provided by Sklearn, can be used as a guide to solving the query 

about estimator or algorithm. 
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FIGURE 5. Scikit-learn algorithm cheat-sheet [20] 

Hence, some key points that need to be considered while choosing an algorithm 

are: 

1. If the dependent feature is of a continuous data type, regression algo-

rithms must be used. 

2. If the dependent feature is of a categorical data type, classification algo-

rithms must be used. 

3. If feature columns are unknown (unlabelled) and dependent classes can-

not be identified, clustering algorithms must be used. 

4. In the beginning, a simple algorithm should be used and then climb up to 

more complex algorithms. For instance, if the result is excellent using 

simple linear or multi-linear regression algorithms then there is not any 

need to use polynomial or Support Vector Machine (SVM). 

5. Google search and forums can be used for the answers from experts. 
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After, the decision on an algorithm, in Python, sklearn package can be used to 

fetch algorithm. The algorithm comes with built-in methods to train and predict 

data. 

4.5 Model Optimization/ Tuning 

After the train and test of the model, several reports can be gathered depending 

upon the type of algorithms.  

In regression, the common error evaluation metrics are: 

1. Mean Absolute Error (MAE): Mean of the absolute value of errors 

2. Mean Squared Error (MSE): Mean of the squared value of errors. 

3. Root Mean Square Error (RMSE): Square root of mean squared errors.  

Here, the error is the difference between the real value and the predicted value. 

RMSE is a widely popular one because the unit of measurement of RMSE is the 

same as the unit of dependent value.  

For classification algorithms, a confusion matrix and a classification report can 

provide an evaluation report. 

1. Confusion Matrix: Figure 6 demonstrates an example of a confusion ma-

trix. It is a table consisting of True Positives (TP), True Negative (TN), 

False Positive (FP) and False Negative (FN). [21] 

 

FIGURE 6. Confusion matrix in binary classifier [22] 

Accuracy can be calculated as below in formula 6. 

(TP+TN) / (Total Number of Values)  FORMULA 6 
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2. Classification Report: A Classification Report is a table which provides 

several metrics of classification. A Classification Report table can be im-

ported from the metrics module of sklearn [23] [24]. From a Classification 

Report some metrics and their formula are shown in formula 7 and for-

mula 8 below. 

Precision can be calculated as: 

(True Positives / Predicted Positives) = TP / (TP + FP)    FORMULA 7 

 

Recall Can be calculated as: 

(True Positives / Actual Positives) = TP / (TP + TN)       FORMULA 8                                                                                           

 

The optimization of the model is done in various ways. Sometimes, the process 

restarts from point zero i.e. pre-processing, where, a column that seems unnec-

essary is removed. Other times, internal parameters of an algorithm, which can 

be altered, are altered. For instance, for KNN, the number of K-neighbors pa-

rameter or attribute can be altered to achieve better results. 

Elbow Method 

 

An elbow method can be used to determine the optimum number of K in K-

Nearest Neighbor or in K-Means Clustering (an unsupervised ML algorithm). In 

this method, an average error (mean of incorrect prediction) from a range of K, 

for instance, 1 to 10 number of K, is plotted in the graph. Theoretically, the line 

plot obtained is supposed to be in the shape of an elbow. From the plot, the K 

which gave the lowest error is chosen as the K for KNN. The K, in theory, is 

usually the point (sometimes its further below or above) where the elbow bents. 

Figure 7 displays an elbow method in theory created for demonstration. Accord-

ing to figure 7, the most suitable value for K is 6 since after that an error rate is 

not decreasing. Using K higher than 6 is not a good idea, it may force the algo-

rithm to fit every outlier that can result in a high variance. 
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FIGURE 7. Elbow method  

 

Hence, any output is as good as the input. If data is polished properly then only 

a good model can be achieved. Data is the basic need in the life of the ML 

model. An ML engineer is a chef that cleans, cuts and cooks the data. Only af-

ter that, the ML algorithm is fed with the data.  
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5 MACHINE LEARNING IN PYTHON 

The chapter demonstrates the Supervised ML phases in the Python program-

ming language. Linear Regression and K-Nearest Neighbors are the two algo-

rithms of type regression and classification algorithms respectively.  

For the pre-processing phase, a fake dataset was created. For the Regression 

algorithm, the Load Boston Dataset was used and the Iris Dataset for the KNN 

algorithm. Load Boston is a dataset about real state housing in Boston where 

the housing prices are predicted as a regression problem [25]. Iris Dataset is a 

collection of data about three Species of Iris flowers where three species of Iris 

flowers are predicted as a classification problem [26]. In sklearn, Datasets are 

of Bunch types (dictionary-like objects). Hence, it is required to convert to a data 

frame for further operations. (figure 21 and figure 22)  

GitHub 

 

All the source code used in the thesis can be found at the link 

https://github.com/nibukdk/Thesis. 

 

Importing Libraries and Packages 

 

Packages and Modules need to be installed and imported separately in each file 

since they are not part of the Python download package. Modules and Pack-

ages are sometimes imported whole or partial. The main reason behind partial 

importing is to save memory.  

A way to import is shown below: 

1. import package_name as conventional_short_form  

for instance,  

https://github.com/nibukdk/Thesis
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import numpy as np 

 

2. import package_name.family_name as conventional_short_form 

for instance,  

import matplotlib.pyplot as plt 

#It imports pyplot submodule from 

matplotlib library as plt.  

 

3. Instead of importing the whole package small modules and files are im-

ported whenever required. When working with large size files it helps 

save memory. Scikit-Learn which is known as sklearn in Python coding, 

importing package can like this.     

 

from sklearn.family_name import module_name 

for instance,  

from sklearn.model_selection import train_test_split 

#It imports the library to split dataframe. 

 

Short forms are used to save time, they have been adopted worldwide as a rule 

though it is just a convention. 

Importing Datasets 

 

The Pandas package is used for importing databases. Pandas support several 

formats, such as HTML, CSV (Comma Separated Values), TSV (Tab Separated 

Values). Data is imported and converted into a dataframe object in one step us-

ing Pandas. [27] 
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For instance, to import a CSV file,  

Dataframe_name = pd.read_csv(“Name of file”) 

 

5.1 Pre-processing in Python 

5.1.1 Information About Data 

The dataset used for pre-processing in this section is fake data. The dataset is 

supposedly data about the salary of anonymous IT employees in five different 

cities of Finland. The dataset has four columns. They are as follows: 

1. Years_of_Experience = Number of years of experience from employees 

with values ranging from 0 to 10.  

2. Cities= Five cities in Finland. They are 'Oulu', 'Tampere', 'Helsinki', 'Tur-

ku' and 'Rovaniemi'. 

3. Salaries = Fake Salaries of IT employees ranging between 2000 to 5000.  

4. Gender = Gender category with values “M” or “F”. However, this column 

is nearly empty. 

Since the dataset is fake and created randomly the correlation between col-

umns is not meaningful. For instance, the salary of an employee of 2 years of 

experience can be greater than that of 8 years of experience.  

The intention was to clean data so several values from the columns were re-

placed by “NaN” (not a number) values. This data was only created for prepro-

cessing, so dependent or independent values are not required to be distin-

guished. If the reader wants to train an algorithm with this data, “Salaries” col-

umn can be used as the dependent column for regression problem or “Cities” 

column can be used as the dependent column for the classification problem.   
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The tutorial on creating dataframe was not the actual motive of the thesis. But 

the reader can visit the source code at GitHub and follow through the code and 

comments for extra knowledge.  

5.1.2 Import the dataset 

The full version of the code to preprocess data can be found at GitHub resource 

provided earlier. 

 

FIGURE 8. Import pre-processing data 

In figure 8 In [1] which can also be referred to as cell number 1 or input line 1, 

imports related packages. The last line “%matplotlib inline” is used to display 

plots in a browser in Jupyter Notebook IDE (Integrated Development Environ-

ment). Line 2 imports the dataset and creates a new dataframe “df”. 

5.1.3 Info Method 

Since data is fake, the describe method (figure 23) and its statistical information 

are not useful. The result info method is shown below figure 9.  
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FIGURE 9. Result of info method on pre-processing data 

The Info method is very useful to check datatype of feature columns and their 

null value number. From figure 9, important key points are as follows: 

1. RangeIndex: It gives a total length which is 50 ranging from 0 to 49. 

2. Other Four Columns: Each column in the df has different lengths. For in-

stance, in Cities, it says 44 non-null objects. It means among 50 values, 

44 are non-null, 6 are null values and data-type is float64.  

In Pandas, the sum of null values can be calculated by combining methods as 

displayed below in figure 10. 

 

FIGURE 10. Pandas null value count 

  

1. df[['Years_of_Experience','Salaries', 'Cities','Gender']], selects the 

provided list of columns. 
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2. df[['Years_of_Experience', 'Salaries', 'Cities','Gender']].isna(), checks 

null values in these columns and provides an answer either True for null 

and False for non-null values and return a dataframe of given lists. 

3. df[['Years_of_Experience','Salaries', 'Cities','Gender']].isna().sum(), 

now calculates the sum of true values and outputs the result as shown in 

the image. 

Similarly, the visualization of the null value proportion in the heatmap is shown 

below in figure 11. 

 

FIGURE 11. Null value count visualization in seaborn 

The figure 11, “sns.heatmap(data=df.isnull(),annot=False, ytick-

labels=False, cmap='magma', cbar=False)”  can be understood as: 

1. df.isnull(), returns a dataframe like df.isna(), with values True for null  

and False for non-null values. 

2. annot=False, yticklabels=False, cbar=False, just for not displaying 

data values because correlation is not aim of the operation like in figure 

24.  

3. In the figure, four columns can be observed in black and yellow colour. 

The black part represents non-null values and the yellow part represents 

null-values.  
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Hence, in conclusion, from figure 10 and 11, the Gender column nearly empty. 

Since, the Gender column is almost empty, dropping the whole column is a via-

ble option. Gender column was dropped using the drop method provided by 

Pandas as displayed in figure 12.  

 

FIGURE 12. Info on data after dropping gender column 

In figure 12, the line 4 dropped the column and the new df, as a result, is dis-

played in line 5 without the Gender column. 

5.1.4 Dealing with Missing Continuous Values 

Imputing Using Sklearn 

 

Python provides the “Imputer” method in the Pre-processing module. The col-

umn “Years_of_Experience” from the data was used for imputation as shown 

in figure 13.  
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FIGURE 13. Setting up for imputing 

In figure 13, line 15 imported the Imputer function. The Imputer function takes a 

2D (2 Dimensions) array as an input. Thus, line 16 checks the type of the col-

umn type, which is a series, a Pandas object. However, the line 17 demon-

strates the values of a column can be extracted as an array. “Numpy.ndarray” 

means a NumPy array with n dimension where n is the number of dimensions. 

As mentioned earlier, an array must be 2D. Hence, a variable named “yrs_ex-

perience” was created and then assigned with an array of values of the column 

“Years_of_Experience” in line 18. In line 19, “np.shape()" provides the shape 

of the array which is 1D (1 Dimension). After that, in line 20 “name_of_array.re-

shape()”, a standard method provided by NumPy was used to reshape the 1D 

array to 2D [28]. The result of the operation is being displayed in line 21. 

The figure 14 begins with the imputing initialization. 
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FIGURE 14. Imputing column using imputer 

The figure 14 can be described as the following: 

1. The Imputer method is initialized and assigned to the variable name im-

puter. The attribute “strategy” is most important to note in line 22. The 

strategy basically implies the statistical operation to be used for replacing 

the missing values in the column. As mentioned in section “Missing Val-

ues” of chapter 4, statistical operations such as mean, median, mode can 

be used to replace missing values. So, it is important to provide such in-

formation to the imputer method while initializing the method. For this 

continuous feature column, the mean strategy was used.  

2. Line 23 fits and transforms the variable “yrs_experience” into imputer at 

once. This means all the missing values were replaced by the mean of 

the same columns. It is important to note while calculating mean that only 

non-null values are included.  

3. In line 24, “yrs_experience” variable gets reassigned a new list of im-

puted values. Similarly, in line 25, “Years_of_Experience” in the data-

frame df gets new imputed values without missing values. Line 26 is the 

proof of a successful operation because the length of “Years of Experi-

ence” column is 50 with non-null values. 
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Alternative To Impute Using Pandas 

 

It is also possible to use Pandas for imputing [29]. The whole imputing process 

from the sklearn can be replaced by a single line of code in figure 15, where the 

missing values were replaced using mean. 

 

FIGURE 15. Imputing using pandas 

Figure 15 can be described as the following: 

1. df['Years_of_Experience'].fillna(), checks whether the column has null-

values. 

2. df['Years_of_Experience'].mean(), is a function that calculates the 

mean of a given numerical column only using non-null values. 

3. df['Years_of_Experience'].fillna(value=df['Years_of_Experi-

ence'].mean()), fillna(), if finds null values and replaces them with the 

mean obtained from the procedure mentioned in step 2. However, not 

only mean, the value attribute can take any strings or integers as an in-

put. 

The last continuous column in the dataframe df is “Salaries”. From figure 9, it 

can be agreed that the Salaries column has only one value missing. There are 

two things that can be done here.  

1. The value can either be replaced with mean or median. 

2. The row with null values can be dropped. 

For versatility, the row with null value was dropped as shown below in figure 16. 
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FIGURE 16. Drop the row with a null value in salaries column 

In figure 16 Pandas “dropna()” method drops the null values if found [30]. The 

most important attribute is the axis. It determines whether to drop a row (axis = 

0) or a column (axis = 1). The whole method iterates through the dataframe 

searching for a null value. In the dataframe df, only null value now is in the Sala-

ries column. Hence, it drops the row with a null value in the Salaries column. 

Line 24 displays the new information about the dataframe with 49 rows with 0 

null values. 

5.1.5 Dealing with Missing Categorical Values  

Using Mode is a viable option for replacing categorical variables. The dataset df 

has a categorical column named “Cities”. The mode is the most repeated value 

in a list. For strings, there is no built-in function provided in Python. However, 

the Pandas “value_counts()” can be used to find the most repeated value. [31] 

In figure 17, value_counts() was used for counting the total value counts of each 

value in the City feature column. From line 20 the most repeated city in the “Cit-

ies” column is Rovaniemi. In line 21, the fillna() method was used to replace null 

values with Rovaniemi.  
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FIGURE 17. Use of value_count() for mode 

OneHotEncoder and LabelEncoder 

 

Preprocessing is not yet complete. The feature column, “Cities”, is still a cate-

gorical column. ML algorithm can only process numerical values. The Prepro-

cessing module in Python has two methods named LableEncoder and Oneho-

tEncoder. [32] [33] 

Figure 18 demonstrates the Label Encoding procedure. 

 

FIGURE 18. Label encoding 
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In figure 18, line 51 imports both OneHotEncoder and LabelEncoder. The Label 

Encoder requires the array data type as an input, not the dataframe. Hence, the 

values of the dataframe were extracted in the next line 52. After that, LabelEn-

coder is initialized with the name “cities_label_encoder” in line 53. Line 54 

checks the values of the city before encoding which is a column at position 1 in 

df. In line 56, the column Cities was fitted and transformed into a numeric col-

umn with “fit_trainsfrom()” and then reassigned. Line 57 proves the success of 

the operation.  

The LabelEncoder changes categorical values to numerical values. Since an 

ML algorithm does not know that encoded labels in df are categorical values 

changed into numerical, a dummy variable, the algorithm can treat values as an 

actual number. If that happens they might rank cities by order according to their 

value. For instance, Turku is ranked the highest with its value 4 and Helsinki the 

lowest with its value 0 (line 55, and 57 of figure 18).  

Hence, to prevent that situation OneHotEncoder is used. The OneHotEncoder 

creates one column for each encoded label, i.e. one column for each label en-

coded value for the city column. Since the categorical dummies are true and 

false rather than points, the onehotencoder takes care of that by providing val-

ues to newly create columns of either 0 or 1. For instance, after one-hot-encod-

ing,  

1. 'Oulu' will be a separate column with the values of either 1 or 0. 

2. All the rows before encoding, which have cities with value 'Oulu', will now 

have the value of 1 as it emphasizes true. 

3. All the rows before encoding, which did not have cities with value 'Oulu' 

will now have a value of 0 as it emphasizes false. 

4. Same is the case for each city. For the 5 cities in df, it will create 5 col-

umns. 
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Figure 19 demonstrates the process of one-hot encoding [33]. Line 59 is for ini-

tialization. The attribute “categorical_features” is for the position of the column 

that is to encode. For the dataframe df, the position of the “Cities” column is 1.  

 

FIGURE 19. One hot encode procedure 

In Line 60 transformed the label encoded X. The important thing to notice is that 

this time the input is whole array, not a single column unlike in LabelEncoder. 

“oneHotEncoder.fit_transform(X)” returns matrix object which is then again 

changed to an array by the "toarray()” function of Scipy [34]. After this opera-

tion, the categorical column “Cities” was converted to a dummy continuous vari-

able. 

Alternative To Label Encoder And One Hot Encoder Using Pandas 

 

Pandas “get_dummies()” method can also create dummy variables from cate-

gorical variables. Get Dummies returns a newly created dataframe with the 

number of columns equal to the number of values in the category column. [35]  
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FIGURE 20. Pandas get dummies 

Figure 20 demonstrates implementation of “get_dummies()”. A new dataframe 

“dummy_var” was created.  

The first attribute is the column to be converted. The second attribute “prefix" is 

to prefix the newly created column with the given value. The third attribute 

"drop_first” is set to true. This will drop the first column created after the con-

version of cities. The newly created dataframe has four cities and Helsinki is 

missing. It is done to prevent the dummy variable trap (Vocabulary – Terms - 

Dummy Variable Trap). For OneHotEncoder a column must be dropped manu-

ally after an encode operation.   

Now the dataframe df is clean and free of missing values and categorical varia-

bles. The other procedures, such as normalizing, more exploration and splitting 

of data will be demonstrated further in the Linear Regression and KNN section 

with different datasets. The reader can practice those methods in this data for 

the learning purpose. 
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5.2 Linear Regression 

Scikit Learn provides several datasets to practice. All the datasets available in 

the sklearn package is available under module name datasets. For the linear re-

gression, load_boston which is a dataset about housing price, was used to 

demonstrate ML phases. [25] [36] 

5.2.1 Loading and Creating Dataframe 

Figure 21 displays a screenshot of codes to load the Boston data however, the 

process is similar for any dataset available in the datasets module of the sklearn 

package.  

 

FIGURE 21. Importing load boston dataset 

In figure 21, line 3 imports dataset named load_boston from the “datasets” 

module of the sklearn library. The line 4 instantiates the imported library, the 

“boston_data” name is an arbitrary name and can be anything. However, it is 

recommended to provide a meaningful name. The input line 5 displays the list of 

keys available in the boston_data since boston_data is a dictionary object type 

in Python. The line 6 prints the description of Boston housing data. It was com-

mented in code to reduce the frame of the screenshot. The difference to notice 

here is between the codes, boston_data.DESCR and print(boston_data.DE-

SCR). Both print the same result, however, the latter one takes care of indents, 

line space, alignments and other things to make it more readable. 



 

46 

 

Figure 22 demonstrates the process for creating a data frame from the Boston 

data from figure 21.  

 

FIGURE 22. Creating dataframe from boston dataset 

In the dataset module, it is imperative to understand that the key data has val-

ues only for independent features, names of the columns are in the key col-

umns. The line 7 provides relevant values to attributes for the function “pd.Da-

taframe()” and creates dataframe object name df. 

In line 8, uses the header method in the Pandas and displays 3 rows of the da-

taframe df. Still, the dependent part which is the price column is missing. Since, 

as mentioned in the previous paragraph, only the independent features were 

provided earlier to create the df. In the datasets module, the key target is con-

sists of the dependent variable (Vocabulary - Terms – Dependent Variable and 

Independent Variable). The line 9 added the “Price” column to the dataframe 

“df” with the relevant target value. The “Price” column is the target column to 

predict for this regression problem. Hence, from the formula 1 and formula 2 in 
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the case of Load Boston Data, y is the “Price", x's are all other independent var-

iables. The Line 10 and 11, confirms the addition of the “PRICE” column to the 

df dataframe. 

5.2.2 Understanding the Dataset 

Exploring and getting proper knowledge of dataset (feature engineering) is one 

of the most important parts of ML.  

Pandas Describe and Info 

 

The Pandas library provides the “describe()” and the “info()” methods that help 

in an analysis of dataframe. The describe function performs statistical opera-

tions and displays the values for each numerical column. Pandas describe 

method has been demonstrated in figure 23. 

 

FIGURE 23. Pandas describe and info 

In figure 23, percentage values are first quartile (25%), median (50%) and third 

quartile (75%) in statistics. The describe method can be helpful to see the dis-

persion of data and to detect the outliers. [37] 
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The “info()” method prints information about a data frame, such as index, the 

memory usage, null-values, range and data-type of the columns (figure 7). Bos-

ton data, however, is already free from any null values. [38] 

Using Pyplot and Seaborn 

 

The graphical representation of data can elaborate on the relation of the data-

base. The figure 24 demonstrates a heatmap on the correlation between fea-

tures. 

 

FIGURE 24. Heatmap of features correlation 

Correlation values represent the interrelation between features with values 

ranging from -1 to 1. The higher the value, higher the correlation and vice-versa, 

a positive one interprets a positive relation (increment in one increases the 

other) and negative one indicates a negative relation (decrement in one de-

creases the other).  

Based on the heat map, it seems that the feature “RM” has a high correlation 

with the "Price” column in a positive way, whereas B has a very low correlation 
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with all other features. Also, “CRIM”, which is related to the crime rate, affects 

the price in a negative way as it should.  

The figures 25 and 26, both display the same information, the former in a graph-

ical form and the latter in a numerical form. It can be concluded that the age col-

umn (df[‘AGE’] from figures 25 and 26) has unbalanced value of 100, which is 

highly repeated in comparison to other values. 

  

FIGURE 25. Age count plot         FIGURE 26. Age value count 

Other graphical representations that can be used to explore and understand the 

relations between data are Joint plot, pair plot, KDE plot, Dist plot (a histogram) 

from Seaborn. Seaborn is built on top of Matplotlib, hence, it is always possible 

to use the “PyPlot” only. If the reader is more interested in learning exploration 

of data in Python, the Kaggle.com provides useful resources that can be helpful 

[39]. 

5.2.3 Splitting Data 

The sklearn package provides a module name "model_selection” with a sub-

module “tain_test_split” that can be used to split the data. [40] 

Figure 27 represents a portion of code used to split the Boston data. The 

train_test_split submodule divides the data into independent features for train-

ing (X_train), independent features for testing (X_test), dependent features for 
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training (y_train) and dependent data for testing (y_test). The important thing to 

note is the order of initiating these four variables. The naming of datasets are 

arbitrary, however, it is a convention of prefix the independent dataset with a 

capital “X”, followed by a suffix “_train” and “_test” for training and testing data 

respectively. Similarly, dependent or target features are named as the prefix of 

small “y” followed by suffixes “_train” and “_test”.  

 

FIGURE 27. Data splitting 

Pandas offer several methods for subsetting or slicing data frames. 

1. Iloc: It is an integer based locating method. [41]   

2. Loc: It is the Label (name of column and index) based locating method. 

[42]  

3. Cross Section (xs): It takes the key argument in the multilevel index. [43] 

  

Boston data was divided into train and test data with test data consisting of 35 

per cent of the original data extracted randomly.  The df.iloc[ : , :13] returns all 

rows and independent feature columns i.e. 0 to 12 columns from the beginning 

since in Python indexing starts from 0 and not from 1 and df.iloc[ : ,13] returns 

the dependent feature column “Price”. The attribute “random_state” provides 

the same value through random every time the code is run in a session. It is 

done for consistency. [40] 
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5.2.4 Scaling Data 

As mentioned in Chapter 4, data must be normalized before training.  Figure 28 

displays how X_train and X_test were scaled using "StandardScaler" provided 

by the module “preprocessing” of the package sklearn. [44] 

 

FIGURE 28. Data scaling 

Sometimes the “fit_transform()” method is also performed in two steps using 

“fit()” first and then “transform()” in the next line. Both steps provide the same 

result. [44]  

5.2.5 Train Model 

Sklearn has the module name “linear_model” which consists of “Line-

arRegression” estimator which is being imported as shown in figure 29. [45] 

FIGURE 29. Import and train linear model 

After importing any model, it is important to initialize the model. The Input cell 

22 initializes linear regression model with the name “lm”, which is an arbitrary 

name. The Model is trained by feeding training data in the input cell 23, with the 

method "fit()”, which takes two inputs, the independent feature “X_train” and the 
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dependent feature “y_train” of training data. The output 23 is the linear regres-

sion model that was trained. Other parameters, such as copy_x and fit_inter-

cept are default parameters that were not changed during the initialization. [45] 

FIGURE 30. Default vs custom attribute assignment order 

Figure 30 is for a demonstration that the order of the input matters. When the in-

put is not ordered, it is important to relate them to their proper attributes or else 

an error will occur.  

Exploring Results Of Trained Linear Model 

The result of the training model can be explored using several methods pro-

vided by the linear model package. [45] 

In figure 31, the coefficient of linear models was converted to a dataframe for 

better visualization.  

FIGURE 31. Linear model coefficient in dataframe 
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It is imperative to realize that algorithm takes one whole row as an input or mul-

tiple rows as one input if specified, for instance, in Neural Networks which are 

out of the scope of this thesis. But algorithms do not take one column at once 

as an input. From the formula of linear regression (formula 1 and formula 2), it 

implies that the coefficient plays a detrimental role in the value of y. The nega-

tive coefficient causes a decrease in value of prediction value and vice versa. 

The sign of coefficient and their effects are the same for all algorithms. For in-

stance, in the Boston dataset, the column CRIM has a coefficient, “ -0.749247” 

which is 1 unit, hence, every decrease in 1 unit of CRIM causes a decrease in 

the housing price. 

Now, for the intercept, i.e. “c” in the regression algorithm (formula 1 and formula 

2), “lm.intercept_”, though not in the figure 31, however, was calculated in the 

code section. When the intercept is zero the line is passing through the origin or 

vice-versa.  

5.2.6 Predictions and Errors 

The “predict()” method provided by linear regression can be used for the value 

prediction which takes the  X_test as an input. In figure 16, Plot “Real Vs Pre-

dict” displays the scatter plot of real and predicted values for Boston data. The 

almost straight slope observed in the scatter plot can be portrayed as the cor-

rect choice of using a regression model.  The second part of figure 32, errors, 

which is the difference between real and predicted values, is displayed as a his-

togram. The bell-shaped graph, also known as the “Bell curve” or the “Gaussian 

Distribution”, implies that outliers are not present in the data.  
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FIGURE 32. Predictions, errors and distribution 

 

5.2.7 Evaluation 

Prediction of the linear model for the Boston data was evaluated in figure 33.  

 

FIGURE 33. Evaluation of regression model 
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The “Metrics" sub-module provides a method “mean_squared_error()” to cal-

culate the mean square error [46]. In the cell 55, the RMSE was calculated us-

ing NumPy’s built-in function called “sqrt()” [47]. 

The “Explained Variance Score” can be interpreted as quality grading of the re-

gression model where the maximum possible value is 1. The higher the score, 

the better the model and vice-versa. [48] 

5.2.8 Optimization 

It is time to get back to the preprocessing phase again and observe what are 

the changes possible for data to improve the model if the decision was made to 

use the same model. Sometimes, if the evaluation implies that the model is not 

a good fit for this data, replacing the model with a more complex model is a 

good choice, too.  

In the case of Boston Data, as concluded in figure 24, the feature column "B” 

was dropped and the whole model development process was repeated as 

demonstrated in figure 34.  

 

FIGURE 34. Optimizing linear model for boston data 
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Pandas “drop()” can be used to drop columns. It is imperative to note that the 

“axis” attribute is used for targeting either the row or the column with values 0 

and 1 respectively.  

Dropping the column “B” had very little but still an improvement in the error rate 

since the difference in RMSE in phases 1 and 2 is positive. This still shows that 

there are lots of ways to improve the quality of the model, the domain 

knowledge plays a significant role in tuning. 

Figure 35 provides a tip on the different ways of using the drop function with its 

attribute “inplace” when its value is either True or False.  

 

FIGURE 35. Inplace parameter use case 

5.3 K-Nearest Neighbor 

The steps for Importing the Iris Dataset and Preparing the dataframe are similar 

to that of Load Boston Datasets that were demonstrated for Regression Algo-

rithm. The full code version provided at the beginning of this chapter demon-

strates the pre-processing phase for the Iris Dataset. 

5.3.1 Understanding Iris Dataset 

Figure 36 displays the plot between the petal length and petal width of all three 

classes. Apart from the lmplot, the pairplot can be used to plot all the numerical 

columns of data-frame at once to see the relations, but the bigger the database, 

more time is consumed for plotting. (see the full version of code for pairplot). 

[49]  
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FIGURE 36. Petal length vs. petal width 

The figure 36 demonstrates that the target Class 1 and Class 2, which are “Ver-

sicolor”, “Virginica” respectively, are more similar since they are gathered to-

gether. The target Class 0 “Setosa”, on the contrary, is quite far and distin-

guished from other classes. By replacing the values of x and y with the column 

sepal length and sepal width and running the code from figure 36, the graph will 

provide a similar result of correlation. 

The splitting and scaling of the data were done in a similar fashion as Linear 

Regression. Hence, the following section starts from Training and Testing Data. 
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5.3.2 Train Model 

 

FIGURE 37. Train knn model 

From the figure 37, “KNeighorsClassifier” is the name of the algorithm in the 

“neighbors” family of the sklearn package which is a KNN algorithm being im-

ported in line 24. The initialization of the model is done in the line 25, where the 

number of neighbors during the first training session is 5, which is also the de-

fault value of the “n_neighbors” parameter. In the line 26, the model was fitted 

with train data and the output 26 displays the KNN trained model with all its pa-

rameters and their values used by the model.  

5.3.3 Prediction and Errors 

In the figure 38, the line 27, the variable “y_pred” was declared in a similar 

fashion as the regression algorithm. The line 28, imports Classification Report 

and Confusion Matrix which are being executed in the line 29. The line 30 prints 

the tables. 
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FIGURE 38. Prediction and error knn model 

From the index column of the Classification Report, values 0,1 and 2, are the 

classes in the dependent variable or three species of Iris Flowers. The Classifi-

cation Report provides a classification report for prediction in each class. And at 

the bottom row, it gives an average of each metrics for all classes altogether. By 

looking at the score, the model is already very well trained. In the Confusion 

Matrix, the correct predictions are the main diagonal values, i.e. in matrix index 

values at position [0,0], [1,1], [2,2] and the misclassifications are the values 

other than that of main diagonals.  

Hence, the accuracy of KNN model is, Accuracy (formula 6) = (16+21+14) / 

(16+21+14 + 2) = 0.96 = 96%. 
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5.3.4 Elbow Method and Grid Search CV 

In figure 39, in the line 34 “avg_error_rates” has been initialized and calcu-

lated. The line 35 outputs the error the result. In classification algorithms, errors 

are misclassification or cases where the prediction values are incorrect from ac-

tual values.  

 

FIGURE 39. Error calculation for a range of k 

The operation calculates errors for values of K from the range(1,11) i.e. values 

1 to 10. In each iteration of the for loop, the KNN algorithm is initialized using 

the value of “i” which goes from 1 to 10. The train and prediction processes are 

the same as the model train and prediction section. What differs is the last code 

of the line 31, i.e. avg_error_rates.append(np.mean(y_test != y_pred)) ex-

plained as the following: 

1. y_test != y_pred checks the error, i.e. if y_test is not equal to y_pred 

and if not it returns the value Ture.   
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2. np.mean(y_test != y_pred)) calculates the mean of all errors, i.e. the 

mean of all cases where the value True was returned [50]. 

3. avg_error_rates.append(np.mean(y_test != y_pred)) adds each aver-

age values to avg_error_rates list which is initially empty. 

At the end of iteration of the for loop, the average error rates for algorithms, with 

k values ranging from 1 to 10 respectively are obtained.  

The elbow graph plot in figure 40 does not look like an elbow due to irregular er-

ror rates, however, it is indeed informative (Chapter 4, Elbow Method). In figure 

40, error rates in the y-axis are in an increasing order from bottom to top and k-

values in the x-axis are in an increasing order from left to right. As demon-

strated in the figure, the error rates from different values of K are not that huge 

and there is a very small difference. The error rates are very small and almost 

similar when k values are 1,3,4 and 6. When the value of K is 10, the error rate 

is the maximum among the given values of K. So, 3,4,6 are the values that can 

be tested to find optimum results. Using 1 as the value of K not a good idea 

since 1 number of neighbor can never compare the odds of the data point in 

question with more than one prediction class. 

 

FIGURE 40. Elbow method plot for iris dataset 
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Grid Search CV is a method of searching the best fit for an estimator. In the grid 

search, a list of values for different parameters of an algorithm is provided and 

then the grid iterates through each of them. After the end of execution, 

GridSearchCV provides the best fit based on the parameters and their value 

provided for the search. 

It is imperative to remember that 

1. GridSearchCV is for classification algorithms. 

2. It can be used for several Classification algorithms. 

3. Parameters to the input are different for different algorithms. The detail 

information on the parameters is provided on the documentation page of 

the algorithm. 

4. Grid Search uses default values of parameters if options are not pro-

vided. 

5. In Sklearn the “model_selection” module provides the “GridSearchCV” 

method. 

 

FIGURE 41. Grid search cv 
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In the figure 41 the cell 52 imports “GridSearchCV” from the module 

“model_selection” of the sklearn package. In the line 53, a dictionary Python 

object named “params” was created with it's key and value pairs. The params 

object has two keys “n_neighbors” and “weights”. These are the parameters 

of KNN algorithms. For this experiment, values of the attribute “k_neighbors” 

range from 1 to 8 and the value for the attribute “weights” are the two metrics 

“uniform” and “distance”. In the Cell 54, the GridSearchCV was initialized, 

where the attribute “estimator” takes the value of “KNearestClassifier()” which 

is the KNN algorithm. It is important to note that the "estimator" parameter can 

take a list of algorithms, not just one if there are other algorithms to search from.  

The “parma_grid” attribute takes the custom object “params”. The verbose 

displays the whole process in the console. 

The line 55, fits the GridSearchCV with the training data. After the training, in 

the line 56, outputs the “best_params_”, a built-in property of GridSearchCv, 

which gives the best parameters from the list of parameters and values pro-

vided for search. From the Grid Search, it can be said that the optimal number 

of K is 6 for the KNN model. In the line 57, the Grid provides the best estimator, 

a KNN estimator, since the only estimator provided for the “estimator” parame-

ter during initializing GridSearchCV was KNN.  As mentioned earlier, Grid uses 

default values for the attributes if their custom value is not provided. If the 

reader wants to try the result of Grid Search, it can be done in a similar fashion 

as the train and test processes described in the thesis.  
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6 CONCLUSION 

The thesis aimed to introduce novice readers to the world of Machine Learning 

and the process of development of Machine Learning model using the Python 

programming language.  

Both the objectives of the introduction to Machine Learning and the phases of 

Machine Learning in Python were achieved. After reading the paper, the reader 

will have a better understanding of ML fundamentals. However, unfortunately, 

the thesis sets a requirement that the reader should be fluent in Python pro-

gramming to get the best out of the thesis. The thesis used the Linear Regres-

sion and the K-Nearest Neighbor algorithms as examples. However, the intui-

tion and mathematical background of these formulae are still not explained in 

paper detail. Moreover, the algorithms used as examples, are supervised learn-

ing algorithms which is only one of the three categories of the ML.  

The truth about the “K” in the KNN algorithm was my take away from the paper. 

Before starting the thesis, I misunderstood the “K” as the number of prediction 

classes in the dependent column. However, the actual K turned out to be the 

number of data points to be used in the comparison.  

In conclusion, now, the readers can use the Python programming to build the 

ML models from not only two algorithms explained in the thesis, but a similar 

procedure can be carried out for any other supervised learning algorithms. The 

preprocessing phase both the theory and the code can be used to clean any 

data regardless of the type of estimator being used for the model development. 

Moreover, the Elbow method can also be used in K-Means Clustering algorithm, 

a popular unsupervised learning algorithm. Lastly, for the readers who practice 

Machine Learning using other programming languages, such as Java and R, 

still can use the concepts explained in the thesis as a basis.  
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7 FUTURE POSSIBILITIES 

Machine Learning is a huge field where lots of fields overlap, for instance, sta-

tistics, business, programming. Many years of relentless approach might not be 

enough to call yourself an expert in the field. 

The reader can start practising ML algorithms other than those provided in this 

thesis, such as Logistic Regression, Decision Trees and SVM (Support Vector 

Machine) based on the instructions in the paper. Moreover, Kaggle.Com is a 

website for Data Scientist and Machine Learning Engineers where many da-

tasets are available for practice, many experts in the field can provide tips and 

reviews about your codes.  

Readers who are interested in the mathematics and intuition of several algo-

rithms can take freely available tutorial of Andrew Ng on YouTube. In his tuto-

rial, he explains intuition about various ML algorithms. [51] 
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