
Evaluating Approaches for Detecting and
Eliminating Memory Safety Errors in Linux
Kernel Programming

Ilja Sidoroff

Master’s Thesis
June 2019
School of Technology, Communication and Transport
Degree Programme in Information Technology
Cyber Security

Description
Author(s) Type of publication Date
Sidoroff, Ilja Master’s Thesis June 2019

Language of publication
English

Number of pages 77 Permission for web publi-
cation: yes

Title of publication
Evaluating Approaches for Detecting and Eliminating
Memory Safety Errors in Linux Kernel Programming
Degree programme

Information Technology
Supervisor(s)

Mika Rantonen
Mika Karjalainen
Assigned by

-
Abstract

Memory Safety means that a program cannot access unintended memory
regions. Lack of memory safety continues to be a major source of security
related software errors.

The problems arising from the use of memory unsafe C programming
language are reviewed, both in general and Linux kernel programming context.
Various methods for detecting and eliminating memory safety problems
are then evaluated. Methods chosen for testing were static and dynamic
analysis, and using a memory safe language as a programming language.
The methods were tested during a process of writing a Linux kernel module.

Unfortunately, none of the methods tested proved to be a comprehensive
solution to the problem of memory unsafety. Each method had their own
strengths. Static analysis is easy to include in the development process;
however, it does not detect problems very efficiently. Dynamic analysis,
on the other hand, is good at finding bugs; yet it requires manual testing.
Memory safe languages are very promising; however, they would require
significant, changes to the existing code which can be difficult to achieve
in practice both due to economic and social reasons.
Keywords/tags

Memory Safety, Spatial and Temporal Memory Safety, C-programming
Language, Rust Programming Language, Linux Kernel Programming
Miscellaneous

Kuvailulehti
Tekijä(t) Julkaisun laji Päivämäärä
Sidoroff, Ilja Opinnäytetyö, ylempi

AMK
Toukokuu 2019

Julkaisun kieli
Englanti

Sivumäärä 77 Verkkojulkaisulupa myön-
netty: kyllä

Työn nimi
Muistiturvallisuudesta johtuvien virheiden havaitseminen
ja ehkäisy Linux-kernel-ohjelmoinnissa
Tutkinto-ohjelma

Insinööri (YAMK), Kyberturvallisuus
Työn ohjaaja(t)

Rantonen, Mika (JAMK)
Karjalainen, Mika (JAMK)
Toimeksiantaja(t)

-
Tiivistelmä

Muistiturvallisuus tarkoittaa sitä, että ohjelma ei voi käyttää väärää
muistialuetta. Muistiturvallisuuden puute on edelleen merkittävä
tietoturvaa vaarantavien ohjelmistovirheiden lähde.

Opinnäytteessä tutkittiin ongelmia, jotka aiheutuvat C-ohjelmointikielen
muistiturvattomuudesta, niin yleisellä tasolla kuin Linux-kernel
ohjelmoinnin-yhteydessä. Lisäksi tutkittiin erilaisia menetelmiä, joilla
muistiturvattomuutta voidaan havaita ja ehkäistä. Tutkittavat menetelmät
olivat staattinen ja dynaaminen analyysi, sekä muistiturvallisen ohjelmointi-
kielen käyttäminen. Menetelmiä testattiin Linux-kernel modulin ohjelmointi-
prosessissa.
Valitettavasti mikään testatuista menetelmistä ei osoittautunut kaikenkatta-
vaksi ratkaisuksi muistiturvattomuuden aiheuttamiin ongelmiin. Jokaisella
testatulla menetelmällä oli omat vahvat puolensa. Staattinen analyysi voidaan
integroida helposti ohjelmistokehitysprosessiin, mutta se ei havaitse ongelmia
kovin tehokkaasti. Dynaaminen analyysi on tehokas menetelmä virheiden
löytämiseen mutta edellyttää erillistä testausta. Muistiturvalliset ohjelmointi-
kielet ovat erittäin lupaavia, mutta niiden käyttö edellyttäisi suuria
muutoksia olemassa olevaan koodiin, mikä voi olla käytännössä vaikeaa sekä
taloudellisisten että sosiaalisisten tekijöiden vuoksi.
Avainsanat

Muistiturvallisuus, Paikallinen ja ajallinen muistiturvallisuus
C-ohjelmointikieli, Rust-ohjelmointikieli, Linux-kernel -ohjelmointi
Muut tiedot

1

Contents

1 Introduction 4

1.1 Motivation and Overview . 4

1.2 Security in Linux Kernel Development 5

1.3 Research Problem and Methodology 6

2 Memory Safety as Security Problem 8

2.1 Definition of Memory Safety . 8

2.2 Unsafe features of C Programming Language 10

2.3 Stack Corruption and Arbitratry Code Execution 12

2.4 Heap misuse and corruption . 19

2.5 Other Types Common of Vulnerabilities 23

2.6 Code Reuse Attacks . 27

3 Memory Safety Issues in Linux Kernel 30

3.1 Linux Kernel Specific Considerations 30

3.2 Stack and Buffer Overflows . 31

3.3 Dynamic Memory Allocation . 35

3.4 Data Races . 36

3.5 Other Vulnerability Classes . 38

4 Detecting and Eliminating Memory Safety Violations and Other
Errors 39

4.1 A Faulty Kernel Module . 40

4.2 Static analysis . 42

4.3 Dynamic Analysis . 46

4.4 Memory-Safe Languages . 48

5 Conclusions 54

2

References 56

Appendices 68

Figures

Figure 1 Spatial memory safety violation 9

Figure 2 Temporal memory safety violation 9

Figure 3 Eliminated null pointer check in Linux kernel 12

Figure 4 An example of stack overflow 13

Figure 5 Stack overflow . 14

Figure 6 A program spawning shell 14

Figure 7 Assembly code for shell-spawning program 15

Figure 8 Shellcode as Cstring . 16

Figure 9 Stack canary . 17

Figure 10 Heap and stack layout . 20

Figure 11 Heap and stack layout with guard page 20

Figure 12 An example of use after free 21

Figure 13 Heap with three empty bins 23

Figure 14 Heap with two empty and one used bin 23

Figure 15 Examples of stack layouts in format string attacks 25

Figure 16 Stack in return-to-libc -attack. 28

Figure 17 Partial patch for CVE-2017-1000251 31

Figure 18 Kernel process stack . 33

Figure 19 Virtually mapped stack . 34

Figure 20 Slab allocator . 36

Figure 21 A patch adding lock for CVE-2018-1000004 38

Figure 22 A Partial KASAN output for stack buffer overflow 49

Figure 23 Redefinitions of C constants and functions in Rust 52

3

Figure 24 Stack buffer overflow in Rust 53

Tables

Table 1 Fault types . 40

Table 2 Fault detection by basic static analysis 44

Table 3 Tool versions used for static analysis 44

Table 4 Fault detection by dynamic analysis 48

Table 5 Faults prevented in Rust port of C module and reasons for
unsafety . 54

4

1 Introduction

1.1 Motivation and Overview

Operating systems and their kernels are one of the central points of attacks in the
computing environment. They control access to the underlying hardware, and with
hardware assistance, they also enforce the separation between user space processes,
and privileged kernel code. If the operating system or its kernel is compromised
or subverted, the applications running on the operating system can no longer
guarantee their confidentially, integrity nor availability.

Current operating systems and their kernels are typically very complex. The Linux
kernel currently consists of approximately 20 million (Löhner 2017) lines of C
and assembly code. The complexity means that it is very difficult to ensure that
there are no security critical bugs in the kernels (see below for a brief discussion
on kernel security).

There have been various attempts to create kernels, which can provide more secu-
rity guarantees. On the one end of the spectrum, there is seL4, which a formally
verified microkernel (G. Klein et al. 2009). OpenBSD, on the other hand, is a
more traditional, monolithic kernel and operating system, which states explicitly
its goal to be security oriented (OpenBSD Developers 2017). However, the most
popular and widely used operating system kernels remain to be based on the tra-
ditional monolithic and complex architecture. The most prominent examples are
various versions of Microsoft Windows and Linux kernels, but even Apple’s macOS
and iOS, although partly based on Mach microkernels, share the same monolithic
architecture (Chisnall 2010).

Since the operating systems landscape moves slowly and current operating systems
are not likely to be replaced by e.g. seL4, OpenBSD or other variants, securing the
current operating systems will probably have more short term utility, than creating
new systems, and there is interest in exploring and implementing techniques, which
can make the traditional systems more secure.

The purpose of this thesis is to review and compare some of the mitigations that
can be used to eliminate some of the bug classes in the Linux kernel. Linux was
chosen as the target of this study for two reasons. First, following the growing
number of security critical bugs in the Linux kernel, there has been an increasing
interest in developing new solutions for eliminating different error classes, and not

5

just single bugs (see below for more discussion). Secondly, since the Linux kernel is
free and open source software, testing these solutions is much easier than it would
be in the case of Microsoft Windows or Apple macOS.

1.2 Security in Linux Kernel Development

Safety and security were previously widely considered as the advantages of GNU/Linux
operating system over the competition, which consisted mostly of different ver-
sions Microsoft Windows. Versions of Windows and other Microsoft products
contained indeed a plethora of exploitable vulnerabilities during the 1990s and
2000s. Whether this was due to the overwhelming popularity of Windows over
Linux, which allowed for bugs to be found more easily, or better code quality in
Linux, is difficult to estimate and open to debate.

The perception of the security situation has, however, changed. Already in 2002,
Microsoft began to divest resources in making the Windows operating system more
secure (Howard & Lipner 2003) and has since implemented many exploitation
mitigation techniques in the operating system, e.g. Address Space Layout Ran-
domization, Data Execution Protection (Howard 2006). Hall, Méndez, and Lich
(2017) provide an overview of the current situation.

Even though Linux also implements many of the same, quite standard exploita-
tion mitigation techniques (Stack canaries, Writable or executable memory, Ad-
dress space randomization etc.), and has two different mandatory access control
mechanisms, SELinux (Smalley, Vance, & Salamon 2001) and AppArmor (Ap-
pArmor Authors 2017), the security performance of the GNU/Linux has not been
as stellar as its former reputation would imply. There has been a steady flow of
exploitable security vulnerabilities in the Linux kernel, and the perception of the
kernel development community’s attitude to security problems has grown negative.

Torvalds and other prominent kernel developers have stated on several occasions
that they do not consider security to be something that needs special attention
from the kernel community. An often-cited quote from Torvalds summarises this
attitude well: “I personally consider security bugs to be just ’normal bugs’. I don’t
cover them up, but I also don’t have any reason what-so-ever to think it’s a good
idea to track them and announce them as something special” (Andrews 2008).

It is difficult to say if the general attitude to security or the inherent complexity
of the Linux kernel have been contributing factors to high impact security vulner-

6

abilities, found in the kernel. For a recent example, see e.g. exploitable bug in
unsafe_put_user function (Corbet 2017b), tracked by CVE-2017-5123.

In 2015, Washington Post published a feature article on the perceived faults on
kernel developer’s attention to security problems, which brought out the issues in
Linux kernel security to wider audience. (Timberg 2015). The article succeeded
in creating controversy. It also prompted efforts, which try to increase the security
of the kernel. One of the efforts is called Kernel Self Protection Project (KSPP),
which was announced by Kees Cook in November 2015 (Cook 2015). The aims of
the project include taking a more pro-active approach to security, and instead of
fixing security critical bugs as they are found, the project tries to eliminate whole
bug classes that can appear in the Linux kernel. (Corbet 2015). The project
also tries to incorporate its changes directly in the mainline kernel, unlike an
earlier Grsecurity/PaX project (Grsecurity 2017), which while providing several
advanced hardenings as a separate patch, has never kept high priority in trying to
merge them into mainline kernel (Edge 2009).

KSPP and Grsecurity/PaX try to harden the kernel systematically, and in the
best case, hope to eliminate whole bug classes. However, there has been another
approach to improve the quality of kernel code by improving toolings for finding
programming errors. This work has been carried out both within the academic
and kernel communities. Examples for such work include Trinity system call fuzz
tester (Jones 2013), used for random testing of Linux system calls, Kernel Address
Sanitizer KASAN, Linux Kernel Developers (2017) for detecting out-of-bounds
memory accesses and lately, an implementation of Control Flow Integrity for kernel
(kCFI; Moreira, Rigo, Polychronakis, & Kemerlis 2017). There are also efforts to
utilize protections provided by newer hardware, in e.g. Reshetova, Liljestrand,
Paverd, and Asokan (2017). A more complete list of security oriented initiatives
and tools, although not exclusively limited to Linux kernel in scope, is found in
(ibid., 7).

1.3 Research Problem and Methodology

In this thesis, the focus is on the problems caused by the memory unsafety. Mem-
ory safety is defined below; however, it can be noted here, that the term is used
in inclusive meaning, namely, when using the term memory safety, on the occa-
sion, problems are discussed which either arise as a result of memory unsafety (e.g.
format string bugs), or problems, which can be used in the conjunction of mem-

7

ory unsafety problem (e.g. integer overflows or information leaks). This slightly
inaccurate terminology is used in order to avoid cumbersome expressions such as
“memory safety and related issues”. The context should always provide enough
information to discern the exact meaning of the terms used.

Initially, the author wanted to concentrate on the security problems dealing with
the lowest levels on computing, i.e. operating system interfacing with the hard-
ware. During the writing of this thesis, two serious bug classes surfaced, which
invalidated the security assumptions about trusted hardware. Meltdown and Spec-
tre attacks showed that microprocessors cannot isolate the memory from reading
when there are multiple execution processes running at the same time (Kocher
et al. 2019; Lipp et al. 2018). This discovery opened a new avenue for research in
memory safety problems. Spectre and Meltdown related hardware problems are
not discussed in this work to keep the already large scope manageable; however,
it is noted that even if all the security issues discussed in this work were solved, to
achieve complete memory safety, also the issues brought forward by the two dis-
coveries must be solved. This in the author’s opinion underlines the importance
of the research in the area of memory safety issues.

The structure of the thesis is the following. In this introductory chapter, a general
overview of the state of security in Linux kernel development is given.

The second chapter provides a broad overview of different bug classes and low-
level exploitation techniques, which are enabled partly by lack of memory safety
in C programming language. Exploitation techniques and their mitigations are
surveyed widely. The third chapter discusses how the exploits presented in the
previous chapter can manifest in the Linux kernel context. The first three chapters
form the theoretical part of this thesis.

The fourth chapter describes a simple kernel module written by the author, which
illustrates some of the bug classes described in the previous chapters. Some static
and dynamic analysis techniques are then tested, to see if they can detect the bugs
implanted in the module, written in C language, using the normal kernel tooling.
Finally, Rust, a relatively new memory safe language is used to rewrite the kernel
module. The then analyzed if this approach is generally feasible. This chapter
forms the practical part of the thesis. Finally, conclusions are presented in the
chapter five.

While discussing the exploitation of the memory unsafety quite widely in the chap-
ters two and three, the exploitation techniques are not discussed in the practical

8

part of the thesis, again to keep the scope of the thesis manageable. Some tar-
gets are, however, included here for exploitation to the code produced in conjuction
with this thesis and the reader is encouraged to study the exploitation possibilities.

The research methodology used in this thesis has two parts. The theoretical part
of the thesis follows a systemization of knowledge (SoK) approach. Even though
there is much literature on different bug classes caused by memory unsafety and
exploitation techniques, the study attempts to comprehensively summarize most of
them, including their mitigations. A minor contribution of this thesis is to gather
information about the applicability of the memory safety bugs to the Linux kernel
context, and discussion of the mitigations currently in place. The second part of
the thesis follows experimental, prototyping, methodology. As simple prototype
as possible is built, which should contain the properties under study. The author
tries to inductively form knowledge from the study of this prototype. The novel
contribution in this thesis is an experience report of using Rust code in Linux
kernel module.

Finally, a note on used terminology follows. Usually operating system means a
program that manages and abstracts hardware resources and provides system calls
to user space programs; whereas operating system kernel is the part of the operating
system that deals with the hardware. However, in the Linux community, Linux
kernel is often used of the whole the operating system program, and operating
system in conjunction with Linux, is used to denote also user space utilities tightly
coupled with the kernel, such as C library. The term Linux kernel is used in the
latter sense. (Linux Information Project 2017)

2 Memory Safety as Security Problem

2.1 Definition of Memory Safety

Informally, a violation of memory safety usually means usually a buffer or stack
overflow, caused by absence of bounds checking in programs written in C, C++,
or assembly programming language. Security bugs caused by buffer overflows have
usually high impact, and can allow arbitrary code execution in remote targets. One
of the earliest examples of a malicious program using memory safety violations,
is Morris Worm from 1988, which used a buffer overflow in fingerd-daemon to
gain remote code execution (Spafford 1989). Different types of memory safety

9

Memory Legal reference inside object memory boundaries

Illegal reference outside object memory boundaries

Figure 1. Spatial memory safety violation

Memory Legal memory reference at t0, during object’s lifetime

Illegal memory reference at t1, after object is freed

Figure 2. Temporal memory safety violation

errors have since caused countless security incidents, and memory safety bugs are
still found regularly. For recent examples, there is e.g. CVE-2018-6789 (2018),
a buffer overflow in popular Exim-mailer program, or a heap overflow in Windows
operating system CVE-2018-0825 (2018), both allowing remote code execution.
An overview and history of memory corruption bugs is provided in Meer et al.
(2010).

The term memory safety is used various way in the literature and industry. This
thesis follows Szekeres, Payer, Wei, and Song (2013) and defines two cases of
memory safety: spatial and temporal memory safety. A violation of spatial memory
occurs when a pointer dereferences memory outside of the memory area allocated
to the object (cf. Figure 1).

A temporal memory safety violation occurs, when the pointer dereferences object’s
memory area correctly, but after the object has been released or freed (cf. Figure
2). There are two common types of temporal violations are use after free and
double-free referring to library function free, which is used to free memory in C
language. (Szekeres et al. 2013, section II.A, Note: refers only to use after free).

Violations of memory safety can lead to multiple kinds of vulnerabilities. Reading
memory outside of proper application context can lead to violations of confiden-
tiality, whereas writing can lead to loss of integrity. Illegal memory accesses most

10

of the time also leads to the crashing of the program, which can lead to a loss of
availability.

Memory safety violations can occur, when the programming language does not
validate memory accesses or defers the tasks of managing memory to the program-
mer. In exchange for the loss of safety, the programmer gets more performance
and can control memory usage directly. Non-memory safe languages are typically
used for performance reasons. They also can offer direct, non-abstracted access to
the underlying hardware. Specifically, operating system kernels, such as kernels
of Linux and Windows, are written in non-memory safe languages, in this case C,
C++ and assembly, making them susceptible to memory safety violations.

In the rest of this chapter, the focus is on C programming language used in Linux
kernel, and an overview of its unsafe features is given, which can directly or in-
directly cause memory safety violations. Then the main bug classes related to
memory safety in the general setting, and their possible mitigations are covered.
Finally the chapter discusses how the bug classes manifest themselves in the Linux
kernel concentrating on the kernel specific features and variations.

2.2 Unsafe features of C Programming Language

Writing secure programs in C programming language (Kernighan & Ritchie 1978)
has proven to be quite a difficult task. The C programming language was devel-
oped from BCPL and B languages the main purpose of which was to facilitate
writing compilers and operating systems usually earlier written in assembly lan-
guage (Ritchie 1993, 2). C was first used to write successfully utilities for UNIX
operating system under development in the Bell Labs and later, when it proved to
be successful in this task, the whole operating system was rewritten in C (Ritchie
& Thompson 1974, 366). Due to its and UNIX’s relatively easy availability and its
good portability, C language soon became the language of choice in the systems
and low-level programming.

C language, however, was not written with safety in mind and does not give spatial
or temporal memory safety guarantees, when used incorrectly. The main drivers in
C’s evolution were features, which were deemed necessary in implementing UNIX
utilities, and later the whole operating system, which its authors freely admit
(Ritchie 1993, 6-8). For instance, C’s descendance from unityped BCPL and B
languages resulted in rather weak typing system in the C language itself – early C

11

language did not check types of structure members or function signatures (Ritchie
1993, 9-10) and even the latest ISO C standard (C11) allows much freedom in
casting between types (Information technology - Programming languages - C
2011, chapters 6.3 and 6.3.2.3).

Due to C’s informal evolution, which took place partly due to a creation of compiler
and standard library ports to different processor architectures, later standardisa-
tion process also became difficult. While the overall language was the same under
different architectures and compilers, the behavior for various corner cases, such
as integer overflows and pointer arithmetic differed between implementations, and
in many cases, it was deemed better to leave varying behavior unstandardized, or
in more familiar terms, undefined, unspecified or implementation-defined behavior
(Information technology - Programming languages - C 2011, chapters 3.4.3, 3.4.4,
3.4.1).

Undefined behavior is a code execution setting for which the standard does not
impose any requirements how the code should be compiled to executed at the
runtime. For instance, the standard does not define, what happens when the result
of an integer calculation is too big to fit to the allocated data type. In practice,
this means that the compiler or runtime system can handle the compilation or
execution in any way it deems desirable.

Unspecified and implementation defined behaviors are more restricted forms of re-
laxing specification, which are typically less problematic in the terms of predictabil-
ity. When encountering unspecified behavior, the compiler or runtime system can
choose between some possible behaviors and in the case of implementation defined
behavior, the implementor is mandated to specify the behavior by themselves. An
example of unspecified behavior is evaluation order of function arguments, and an
example of implementation specific behavior is the propagation of the high-order
bit in signed integer right-shift (Information technology - Programming languages
- C 2011, chapters 3.4.3, 3.4.4, 3.4.1).

Another example of undefined behavior is division by zero. In x86 processor archi-
tecture, division by zero will result in hardware exception. However, in PowerPC
processor architecture, the processor will ignore the instruction (X. Wang et al.
2012, chapter 2.1). By leaving the language behavior undefined, the C standard
committee makes the language implementation easier, when for instance, Pow-
erPC architecture is not required to generate code for checking potential divisions
by zero.

12

1static unsigned int tun_chr_poll(struct file *file, poll_table *wait)
2{
3struct tun_file *tfile = file->private_data;
4struct tun_struct *tun = __tun_get(tfile);
5struct sock *sk = tun->sk;
6unsigned int mask = 0;
7

8if (!tun)
9return POLLERR;

Figure 3. Eliminated null pointer check in Linux kernel

Initially, C’s trade-off between simpler implementations and full semantical defi-
nitions was deemed acceptable or even beneficial to the language, because besides
easier portability, undefined behavior enabled better performance in some cases
(Lattner 2011a). However, as compilers evolved and became more efficient in
optimizing C and C++ programs, undefined behavior combined with aggressive
optimizations produced can lead to surprising code generation and even potentially
introduce security vulnerabilities (Lattner 2011b; X. Wang, Zeldovich, Kaashoek,
& Solar-Lezama 2013, chapter 2.3).

An example of a security vulnerability introduced by an optimizing compiler is
shown in Figure 3. The example is from Linux kernel 2.6.30. In TUN tunneling
network device driver (/dev/net/tun), there is a potential NULL pointer deref-
erence, which causes later check for NULL pointer to be optimized away. More
specifically, the pointer tun, which gets assigned in line 4 and dereferenced in line
5, causes the compiler erroneously to believe that the value of tun cannot be zero,
since dereferencing NULL is undefined behavior and should not happen (Infor-
mation technology - Programming languages - C 2011, chapter 6.5.3.2). However,
since the compiler now believes that tun is not zero, it can optimize away the
NULL pointer check in lines 8-9. This error can then be exploited further for
privilege escalation (Corbet 2009; CVE-2009-1897 2009).

2.3 Stack Corruption and Arbitratry Code Execution

The most serious class of security vulnerabilities that the C language makes pos-
sible are illegal memory accesses, often via buffer under- or overflow. Unifying
the concept of arrays and memory pointers was actually one of the innovations
of the C language (Ritchie 1993, 7). However, when combined to the fact that
the array access is not checked for boundaries, this leads to the fact; that access-

13

#include <stdio.h>
#include <string.h>

void restricted()
{

// execution should not normally come here
}

void vulnerable (const char *attacker_controlled)
{

char buffer[8];
strcpy(buffer, attacker_controlled); // allows overwriting return

address
}

int main (int argc, char **argv)
{

vulnerable(argv[1]);
}

Figure 4. An example of stack overflow

ing non-intended memory locations or creating spatial or temporal memory access
violations is very easy to do either by accident or by design.

There are many variants of buffer overflow exploits. A hacker using pseudonym
Aleph One popularized a stack corruption exploit strategy, which uses a stack
buffer overflow, which can allow an attacker to execute arbitrary code (Levy
1996).

A simple example of a C program vulnerable to stack buffer overflow is shown in
Figure 4. The function vulnerable allocates 8 bytes of memory from the stack
to variable buffer and fills it with contents of string attacker_controlled given
to function as a parameter, which is user supplied. The return address of the
function, along with the frame pointer, which is not important in this case, resides
also in the stack, below the buffer-variable. Since neither the C language, nor
the example program does not do automatic bounds checking, function will accept
strings longer than 8 bytes, and allow spatial memory access violation. The lack
of bounds checking allows user to supply input that overwrites function’s return
address, for example with address to restricted-function, where the programs
execution would continue.

Figure 5 illustrates the described situation showing the contents of the stack during
different program executions. In the first case (a), the program is passed a string
input, which occupies 6 bytes of memory (five for the text and sixth byte for

14

...

’i’ - ’n’ - ’p’ - ’u’

’t’ - ’\0’ - ... - ...

frame pointer

return address

...

(a) Normal stack

...

aa - aa - aa - aa

aa - aa - aa - aa

aa - aa - aa - aa

ba - da - dd - e5

...

(b) Overflown stack

Figure 5. Stack overflow

#include <unistd.h>

int main() {
char *name[2];
name[0] = "/bin/sh";
name[1] = NULL;
execve(name[0], name, NULL);

}

Figure 6. A program spawning shell

string terminator). Six bytes fit in the allocated memory and the program runs as
expected. However, in the second case (b), the program is passed an at least 24-
byte long string. In the example, the input contains first 18 bytes with hexadecimal
value ’aa’, followed by function’s new return address (ba-da-dd-e5, ignoring here
the endianness issues).

In this example, stack corruption was used to subvert the program control flow.
Stack corruption can be also used in other ways to gain attacker supplied code
execution. One could, for instance, supply input data, which could be interpreted
as machine code instructions. The function’s return address should be overwritten
to be the starting address of the user supplied ’program’, which gets executed when
the function returns.

For example, the following program in Figure 6 can be considered. The program
spawns a shell and does nothing else. The code is slightly modified version of
Aleph Null’s original example (Levy 1996).

When compiled to machine code, the program can translate for instance into fol-

15

main:
0: 55 pushq %rbp
1: 48 89 e5 movq %rsp, %rbp
4: 48 83 ec 20 subq $32, %rsp
8: 64 48 8b 04 25 28

00 00 00 movq %fs:40, %rax
11: 48 89 45 f8 movq %rax, -8(%rbp)
15: 31 c0 xorl %eax, %eax
17: 48 8d 05 00 00 00

00 leaq (%rip), %rax
1e: 48 89 45 e0 movq %rax, -32(%rbp)
22: 48 c7 45 e8 00 00

00 00 movq $0, -24(%rbp)
2a: 48 8b 45 e0 movq -32(%rbp), %rax
2e: 48 8d 4d e0 leaq -32(%rbp), %rcx
32: ba 00 00 00 00 movl $0, %edx
37: 48 89 ce movq %rcx, %rsi
3a: 48 89 c7 movq %rax, %rdi
3d: e8 00 00 00 00 callq 0 <main+0x42>
42: b8 00 00 00 00 movl $0, %eax
47: 48 8b 55 f8 movq -8(%rbp), %rdx
4b: 64 48 33 14 25 28

00 00 00 xorq %fs:40, %rdx
54: 74 05 je 5 <main+0x5B>
56: e8 00 00 00 00 callq 0 <main+0x5B>
5b: c9 leave
5c: c3 retq

Figure 7. Assembly code for shell-spawing program (GCC 7, GNU/Linux,
x86_64)

16

char shellcode[] = "\x55\x48\x89\e5 .../bin/sh";

Figure 8. Shellcode as Cstring

lowing form, where assembly code is on the right, and corresponding opcodes, or
program representation in the memory, on the left in Figure 7. The memory rep-
resentation can be converted to following string representation in Figure 8, which
is usually called shellcode (Levy 1996). Jump instruction must be added, which
directs the program flow to the start of our shellcode in the place of function’s re-
turn address. If one then inputs the constructed shellcode to our program, instead
of returning from function vulnerable, one executes the code, which spawns a
shell for user.

To make this attack actually work against the given code, there are a few technical
details. First, since function strcpy is used to copy the shellcode, it cannot contain
any NULL-bytes, which act as string terminators. This can be accomplished by
slightly modifying the code spawning the shell. Second, one needs to be able to
place the jump to the start of the shellcode at the right position in the stack,
which can be done by calculating the stack layout in the attacked machine, and
padding the shellcode with NOP-instructions (so called NOP-sled). An explanation
of technical details can be found in Levy (1996).

There are many proposed mitigations against stack corruption, the most common
and generic mitigation techniques are outlined here. An overview of specific de-
fenses is presented in e.g. Cowan, Wagle, Pu, Beattie, and Walpole (1999) and
Kuperman, Brodley, Ozdoganoglu, Vijaykumar, and Jalote (2005).

The first mitigation technique is called stack canary. It works by writing a special
value before the function’s return address. This special value is checked before
returning from the function, and if the check fails, the program aborts. Figure 9
presents an example of stack layout with canary. Canary value can either be a value
which is difficult to write by usual exploit techniques (e.g. a null or cr/linefeed
character) or a random value generated when the program starts and stored in a
location, which is difficult for the attacker to access (Cowan et al. 1999, chapter
3.4.2).

A downsize of stack canary is a slight performance penalty, which means that
canary protection might not be turned on for all functions (Edge 2014). There
are ways of bypassing stack canary. The first and simplest way is to try to brute

17

...

’i’ - ’n’ - ’p’ - ’u’

’t’ - ’\0’ - ... - ...

frame pointer

0xababababstack canary

return address

...

Figure 9. Stack canary

force the stack canary value as long as the attack succeeds, which can be feasible in
32-bit architectures, but is not generally doable in a 64-bit environment. Another
way is to utilize information leaks, which can reveal the stack canary values. Third,
the most generic way, is to avoid overwriting the stack canary at all, or to rewrite
it after it first has been overwritten as further discussed in e.g. Strackx et al.
(2009).

Another mitigation approach is to make the execution of the shellcode more diffi-
cult. One way of doing this is to randomize the address space layout, i.e. address
space layout randomization, ASLR, so that the attacker cannot know in advance
what the memory addresses of running programs or shared libraries are. Origi-
nally developed for Linux by PaX team (PaX Team 2001), Address space layout
randomization is now implemented in most current systems. Address space layout
randomization does not make the execution of the shellcode impossible but rather
forces the attacker to try several times to mount a successful attack, which can
potentially allow easier detection of attacks. The effectiveness of address space
layout randomization is hampered by the low amount of entropy some 32-bit sys-
tems can use to generate different address layouts. In some cases, the address
space layout can only get 8 bits of entropy (i.e. 256 different choices), which is
easy to bypass with brute force techniques. In 64-bit systems the available en-
tropy is much higher and address space layout randomization techniques are more
effective. However, various information leaks about the memory structure can
still reduce the effectiveness of address space layout randomization even in 64-bit
systems (Marco-Gisbert & Ripoll 2014). To be effective, address space layout

18

randomization requires that there are no information leaks, which give away in-
formation about randomized structures, and that the randomization is done with
enough randomness or entropy (Jang, Lee, & Kim 2016).

Both stack canary and address space layout randomization are probabilistic mitiga-
tion techniques, which means that the attacker cannot be guaranteed to absolutely
fail. A third mitigation technique, which does not rely on random data, is to make
stack and possibly other memory areas either executable or writable. This means
that if a malicious process can inject shellcode into memory, it can only do it to
such memory areas, which cannot be used in executing the program code. Con-
versely any executed program code cannot be modified by a malicious program.
This technique is called Write XOR execute or W ⊕ X. The first software imple-
mentations were RedHat’s ExecShield (van de Ven 2004) and OpenBSD’s W^X
(de Raadt 2004). W ⊕ X can also be implemented in hardware if the processor
supports NX (no execute) bit for page table or similar memory management ob-
jects (NX bit has various marketing names, e.g. Intel uses XD, ARM has eXecute
Never, XN bit, while AMD’s term is Enhanced Virus Protection, EVP). NX pro-
tection is reasonably fast compared to software implementations, however, it is
unfortunately incompatible with just-in-time-compilation method, which is used
e.g. in modern Javascript and Java implementations, which sometimes causes sit-
uations where it cannot be fully used (Szekeres et al. 2013, section II.B). Another
way of circumventing NX is to reuse already executable code in the program, which
is further discussed below. A related mitigation, Relocation read only, relro, done
at link time, should also be mentioned. In relro, when binaries are loaded before
execution, some (partial relro) or all possible sections full relro) of the binary are
marked read only (Vermeulen 2011). Unfortunately, full relro is seldom used due
to high runtime penalty, and the mitigation partial relro gives is limited (T. Klein
2009).

A final countermeasure mentioned here is control flow integrity (CFI). It means
controlling the program’s control flow in such a way, that any unexpected devi-
ations from the usual program control flow are detected and prevented. We will
also discuss this mitigation below when discussing code reuse attacks, since while
control flow integrity is in principle effective against stack buffer overflows, it aims
for more general protection.

There are also other proposed and implements mitigations, such as shadow stacks,
where function’s return address is stored in a separate memory area, which the
attacker cannot access. For this and details on other mitigations, see e.g. Burow,

19

Zhang, and Payer (2018), Szekeres et al. (2013).

2.4 Heap misuse and corruption

Heap corruption or misuse is another vulnerability class in C programs. It is closely
related to stack corruption, but takes place in the dynamically allocated memory,
or heap. Whereas stack corruption attacks usually result in spatial memory access
violations, corrupting or misusing the heap memory can result in both spatial and
temporal violations.

Heap is the memory area that can be dynamically allocated and freed by using C
functions malloc, free, calloc and realloc. The implementation of the heap is
left unspecified in the standard (Information technology - Programming languages
- C 2011, chapter 7.22.3), but is typically implemented as a contiguous memory
area that is divided into blocks by user demand, as seen Figure 10 (case a) (Arpaci-
Dusseau & Arpaci-Dusseau 2014, Chapters 14.1, 14.2, 14.3). Depending on the
implementation, blocks also typically contain bookkeeping information on the state
of the heap and addresses of adjacent blocks. Since there is no bounds checking
when accessing dynamically allocated memory, it is possible to overwrite contents
of adjacent dynamic variables, or even the stack area, since the stack and heap
typically reside in the same memory area, as seen in Figure 10 (case b), leading to
spatial memory access violation.

To prevent heap and stack collisions, one can insert a guard page between the
memory areas, which will trigger a segmentation fault when accessed. However,
this guard page can be bypassed in various ways, for instance forcing a new alloca-
tion for variable length array allocated in stack, or using alloca (nonstandard) C
library function, when the new allocation is larger than the guard page, usually 4
or 8 kilobytes. Delalleau demonstrated these attacks in Delalleau (2005) and they
are discussed in Qualys (2017a, 2017b) and illustrated in Figure 11. Bypassing
guard page can be mitigated by increasing its size to make creation of the mem-
ory allocation more difficult, however, this does not remove the root cause of the
vulnerability, which is using the same address space for stack and heap, without
enforcing memory safety.

There is also another avenue for heap exploitation, which uses programming logic
errors in allocating and freeing memory. Use after free error occurs when the ap-
plication uses memory, which has already been released by the application. This

20

...

Stack area

Allocated variable

Empty memory

Stack frame

Heap area

...

(a) Co-existing heap and stack

...

Stack area

Allocated variable

Overrun memory

Corrupted stack frame

Heap area

...

(b) Stack overrun by heap

Figure 10. Heap and stack layout

...

Stack area

Empty memory

Guard page

Empty memory

Heap area

...

(a) Co-existing heap and stack,
with guard page

...

Stack area

New allocation

Allocation
removes guard

page

Empty memory

Heap area

...

(b) Stack overrun by heap

Figure 11. Heap and stack layout with guard page

21

#include <stdio.h>
#include <stdlib.h>

struct user_t {
unsigned int uid;
unsigned int token;

};

void check_token(struct user_t *user) {
if (user->token == 1) {

printf("Token ok\n");
} else {

printf("Token not ok\n");
}

}

int main(int argc, char** argv) {
// user with 'token'
struct user_t *user = malloc(sizeof (struct user_t));
user->uid = 1;
user->token = 1;

check_token(user);

// free allocated memory
free(user);

// memory is still usable
check_token(user);

}

Figure 12. An example of use after free

situation can lead to program crash, or other attacker controlled code execution
(CWE-416 2019). Double-free can occur, when the program frees the same allo-
cated memory area more than once (CWE-415 2019). In this case, the internal
bookkeeping structures of the heap can be manipulated so that the attacker can
overwrite arbitrary memory locations. Double-free errors can be seen as a special
case of errors or attacks against the memory allocator implementation. Exploita-
tion of many of these errors require other incorrect uses of memory allocator func-
tions and possibly spatial memory safety violations in the program in question.
Even though the term double-free is often used as a catch-all term for these kinds
of errors, which can be used to attacks the heap memory, they are referred to as
heap corruption errors and discussed further below. Both use after free and heap
corruption errors can be classified as temporal memory safety violations.

Figure 12 shows a simplified example of use after free bug. In the example program
the user is allocated a memory entity with a ’token’, which remains valid even after

22

the memory entity is freed. In realistic programs the actual errors and exploits are
more complicated, but the idea is the same. For example Evans (2017) discusses
more realistic examples of use after free errors in further detail.

Heap corruption vulnerabilities are much more complicated bugs to classify as stack
overflows or use after free, since they depend on the implementation details of the
memory allocators. However, in practice, there have been attacks on all widely
used platforms, and exploits for the bug class seem to be widely generalizable.

The name double free comes from the situation, where the same memory object is
incorrectly freed two times. The second invocation of the free function overwrites
some non-heap memory, possible controllable by the attacker. There are many
variations of these attacks, and they do not always rely on incorrect calls to free,
but can occur when there is e.g. a buffer overflow, which allows overwriting some
of the bookkeeping data in the heap.

Heap corruption was first popularized in Peslyak (2000) and the techniques were
further developed e.g. in Anonymous (2001) and Phantasmal Phantasmagoria
(2005). Here, an early attack is illustrated, which works on Doug Lea’s malloc
-implementation (dlmalloc; Lea & Gloger 1996), which has since been patched.
However, even the current Linux glibc malloc implementation (ptmalloc; Loose-
more, McGrath, Oram, & Stallman 2001) is based on Lea’s work, and there are
similar but more complicated current attacks (Xie, Zhang, Li, Liu, & Gu 2016).

Figure 13 shows slightly simplified memory layout of heap, as implemented in glibc,
with three empty memory bins. Heap area is implemented as doubly-linked list of
free memory bins with pointers to previous and next free bins. When memory is
allocated, a pointer to a bin is given as a result of malloc-call, and adjacent free
memory bin pointers are updated, as shown in Figure 14 (Lea & Gloger 1996).

If an attacker is able to modify the memory which contains either a pointer to a
free bucket, by either overflowing a buffer located in adjacent memory location,
or if the program contains a free function call to the same memory address, the
attacker can cause the free-function to modify not a cell in the doubly-linked list,
but another memory location of attacker’s choosing.

The specific mechanism of the attack varies, however, for instance, if the attacker
can modify the memory shown in red in Figure 14 and then cause some bin man-
agement operation to be triggered, memory bins are incorrectly marked as used,
split or combined, and as a side effect, the operation will write an arbitrary value

23

…

size/status

empty
space
size

size/status

empty
space
size

size/status

empty
space
size

…

Figure 13. Heap with three empty bins

…

size/status

empty
space
size

size/status
user
data

size/status

empty
space
size

…

Figure 14. Heap with two empty and one used bin

to an arbitrary memory location. For instance Anonymous (2001), Kaempf
(2001, 3), Phantasmal Phantasmagoria (2005) describe the details of the original
and similar attacks.

The main ways of mitigating the heap corruption vulnerabilities is to ensure the
integrity of the heap metadata, for instance with similar methods as stack canaries.
Heap allocation can also contain randomness to make exploiting the corruption
harder (Szekeres et al. 2013, sections V.A, VII.A). Heap exploitation is, however,
highly implementation dependent and there is no generally applicable mitigation
technique against it. M. Miller (2009) and M. Miller (2013) provide an overview
of heap corruption problems on Windows platform. Eckert et al. (2018) informs
about a static analysis technique for evaluating heap implementations from security
viewpoint.

2.5 Other Types Common of Vulnerabilities

Buffer overflows and stack or heap corruption present common and well-known type
of vulnerabilities, however, C language offers more techniques for creating memory
safety violations. They are present them here in less detail as the stack and heap
corruption. Some of them are used in the practical section of the thesis, and serve
as an example of showing how difficult it is to combine the aspects of safety and
perceived efficiency in the implementation of the programming languages.

24

Format string vulnerabilities is a class of vulnerabilities related to printf-family
of functions (Information technology - Programming languages - C 2011, chapter
7.19.6). printf and its siblings can convert numerical and other values into strings
for printing. The functions perform this by taking a format string that contains
formatting directives that are placeholders for the printed values (e.g. %d for digits,
%c for characters etc.). For each directive, the function takes a corresponding
argument, and converts it to specified string format.

C does not have function overloading for different number of parameters, instead
it has variadic functions, for which the number and types of parameters are left
unspecified (Information technology - Programming languages - C 2011, 6.9.1).
Combined with the possibility that format string can be controlled by the attacker
opens an attack opportunity (Cowan et al. 2001).

In practice, this means supplying format strings with more formatting directives
than supplied parameters. The missing directives use values placed in the stack as
their input, which can lead to information disclosure. In addition, printf-family
of functions has also directive %n, which writes the number of characters written
so far to the location given as parameter (Information technology - Programming
languages - C 2011, 7.19.6.1.8). With crafted format string and this directive, the
user can write an arbitrary value to a chosen memory location.

Figure 15 illustrates some possible format string attacks. In figure 15a a possible
stack layout for printf-function is shown. The pointer to format string is stored
to the top of the stack, other parameters are stored below it. A printf-call
corresponding to the layout could be for instance printf("%d %d", a, b), which
prints the values of variables a and b. However, if the attacker can change the
format string to, for instance %d %d %d %d, printf would print in addition the
value stored in the stack cell 1, unrelated to the printf-function call.

Reading arbitrary memory location can be done by first writing a memory address
to the stack, followed by directive %s, which will fetch the address of a string
from the stack and print it. printf’s internal stack counter must be matched
with correct number of ’%08x’, which moves it four bytes towards the top of
the stack. For instance, printf("\xab \xab \xab \xab%08x%08x%x08%08x%s"),
would write an address 0xabababab to the stack, four %08xs move printf’s internal
pointer to that address, and %s prints contents of the address, until NULL byte is
encountered (Newsham 2001, chapter 3.3.2). Figure 15b illustrates this.

Similarly, writing to memory can be implemented with directive %n. By replacing

25

...

format string address

parameter 1 (a)

parameter 2 (b)

stack cell 1

...

(a) Reading stack

...

format string address

stack cell

...

...

...

Each %08x
moves printf’s

pointer

0xababababparameter for
%s or %n

rest of the format str.

...

(b) Reading/Writing memory

Figure 15. Examples of stack layouts in format string attacks

the %s with %n in the same format string as the above example, address 0xabababab
would get written with some small integer value (the exact value depends on the
number of bytes output with the printf function). Newsham (2001, chapter
3.3.4) discusses this in more detail, e.g. on writing large values.

While the C compilers will typically emit warnings on mismatched between format
strings and function parameters, the C runtime offers no protection, if the format
string is supplied at the run time.

Integer over- or underflows are another potential source of vulnerabilities in C
programs. Integer values are stored in fixed size memory locations. The size
of memory allocated for an integer is implementation and platform dependent.
Integer type can, for instance, be stored in 32 bits of memory, which means that
an unsigned integer value can store values from 0 to 232−1 (UINT_MAX), and signed
values from −231 to 231 − 1. If the result of an arithmetic operation cannot fit in
this value range, there are several things, that can occur. In the case of unsigned
integer, the result is wrapped, for instance the result of addition UINT_MAX + 1
would be 0 (Information technology - Programming languages - C 2011, chapter
6.2.5.9). In the case of signed integer, the behavior is left unspecified (Information
technology - Programming languages - C 2011, chapter 6.5.5), which means that
the compiler is free to assume that signed overflows will not occur and optimize

26

accordingly as described in e.g. Taylor (2008).

It is possible that integer over/underflows can be used to maliciously control the
program logic, but in practice over/underflow bugs are utilized in conjunction with
other bugs or memory management to cause temporal or spatial memory access
violations. For instance, the program can be tricked to create zero-length memory
allocation, which can be used as a building block to more complex exploits (see e.g.
Vanegue (2010). Dietz, Li, Regehr, and Adve (2012, section VI) also argue that
undefined behavior caused by signed over/underflows represent “time bombs”, as
the compilers will use more aggressive optimization strategies, while assuming that
undefined behavior will never happen.

Integer over/underflows can mainly be mitigated by detecting them either with
software or hardware. Both methods incur some performance penalty and they are
not universally used as described in Dietz et al. (2012, V). It is also possible to
use static program analysis for finding over/underflows. Even though the problem
is generally undecidable, this approach can detect a subset of over/underflow bugs
as seen in e.g. Rodrigues, Campos, and Pereira (2013)

As a final bug class data races or race conditions are discussed. A data race occurs,
when two or more concurrent instructions try to write the same memory location
at the same time, whereas a race condition will occur, when timing or ordering
issues affect a program’s correctness. The use of terms data race and race condition
vary in the literature, but this thesis follows usage in Netzer and Miller (1992)
However, instead of general race, race condition is used as above. In some contexts,
the term race condition is also used for data races. Regehr (2011) discusses and
defines the terms.

Race conditions and data races are not unique to C programs, but are present
in any concurrent programming. C programming language leaves the behavior
of data races undefined (Information technology - Programming languages - C
2011, chapter 5.1.2.4), which means programs with data races can run in an un-
predictable manner. Security bugs due to data races are especially problematic
with programs with high concurrency, such as operating system kernels.

Data race detection, similarly to integer over/underflowing is in general an unde-
cidable problem, however, static analysis tooling can detect some race conditions,
as described in e.g. Serebryany and Iskhodzhanov (2009).

27

2.6 Code Reuse Attacks

The bug classes and related exploits surveyed above are all well known, and even if
they still occur frequently, they have relatively mature mitigation techniques. Es-
pecially the use of no-execute bit makes exploiting ordinary buffer overflows much
more difficult than it was when the exploit was first found (Roemer, Buchanan,
Shacham, & Savage 2012). However, there is a final class of exploits, which utilize
memory safety bugs as a first step, but can bypass the common defenses. These
exploits reuse the attacked program’s own program code in the attacks, and can
generally be called code reuse attacks (Bletsch 2011, chapter 2.1). In the context
of binary exploitation, the current state-of-the-art code reuse attacks is generally
known as return-oriented programming (Shacham 2007).

The concept behind the current code reuse attacks was first presented in Peslyak
(1997) to counter the non-executable stack memory and was then called return-
to-libc-attack. The main idea is, instead of writing executable shellcode direction
into stack, to fill stack with pointers to suitable parts of program’s own code and
linked libraries, which will function similarly as direct shellcode would have. Figure
16 illustrates the concept. The original return address of the current function is
replaced with address of system-function call from libc. On top of it is the return
address for it and its parameter. When the original function returns, instead of
resuming the program flow from the calling point, the subverted program instead
calls function system, with parameter /bin/sh, which spawns a shell, and if the
system-function returns, resumes the program flow from attacker supplied return
address. More complete details are described in Peslyak (1997).

Return-to-libc -attack has some limitations. First, after calling the first function,
the attacker can only call functions, which do not have any parameters. Also, since
the parameters are supplied usually by string functions, which cannot transmit
NULL-byte. Unfortunately, these limitations can be overcome in certain contexts
(Wojtczuk 2001, section 3.1). Mitigations for return-to-libc include stack canary,
for detecting stack corruption, address space layout randomization for making the
address of libc functions harder to find, and “ASCII armoring” the linked libraries,
which means locating them to memory area with a NULL byte in their addresses,
which makes it difficult to get their address into stack. There are also other ways
of mitigating the attack, and ways of circumventing the mitigations as seen in e.g.
Rocha (2016).

The transition to 64-bit architecture also provides another complication for return-

28

...

pointer to ”/bin/sh”

return address

pointer to system()

...

Parameter to system

Overwritten original return address

Figure 16. Stack in return-to-libc -attack.

to-libc -attacks. In 32-bit (and earlier) x86-architecture’s calling convention dic-
tated that the parameters to functions were passed in stack, where they were easy
to corrupt by buffer overruns. However, in 64-bit x86-64 there are more available
registers, which are used for passing parameters (Fog 2018, 6,7). To modify a
function parameter, the attacker would first need to move it to a correct regis-
ter. This can be achived by first returning to a code snippet, which performs a
suitable mov-instruction followed by a ret-instruction (cf. Wojtczuk 2001, section
3.2). This insight can be generalized as exploit technique known as return-oriented
programming, or ROP.

Return-oriented programming was first presented in Shacham (2007) and its
feasibility is partly based in the facts, that the Intel’s instruction set used in x86
architecture is dense, and that the instructions are encoded in varying amount of
bytes. This means that if a random byte sequence is taken, it can be interpreted
as a valid byte sequence with a high probability (Shacham 2007, chapter 1.2.1).
The main idea of return-oriented programming is to find byte sequences which
end in byte value 0xc3 (ret-instruction), and the bytes preceding the ret can be
interpreted as valid assembly instruction sequences. The byte sequences are called
gadgets and they can be chained to perform arbitrary computations (Roemer
et al. 2012; Shacham 2007, 1). A concrete example of ROP-exploitation is given
in Reece (2013).

The root cause enabling the ROP-style of exploitation remains in the memory
unsafety. Spatial memory violations allow the attacker to subvert the program flow,
which is enough to gain complete control of the attacked system. The main idea
behind return-oriented programming is the insight that it is not enough to contain
malicious code execution, but the defenders must also protect against malicious
computation (Roemer et al. 2012, 1). It is not surprising that return-oriented

29

programming has been generalized into various other techniques, which try to
introduce ways to subvert the intended computations the programs are supposed
to do. Bletsch (2011, 2) provides a brief overview and an example of similar
technique called jump-oriented programming. The main insight in jump-oriented
programming is to subvert the program flow with indirect jump instructions instead
of ret.

There are ways of mitigating code-reuse attacks. The first technique, which can
be applied is address space layout randomization (ASLR), which can also be used
to make ordinary stack overflow type attacks more difficult. In the ROP-case,
address space layout randomization makes finding the gadgets and stack addresses
more difficult; however, it does not increase the essential complexity of the attack.
If the attacker can attempt the attack repeatedly, they are likely to succeed even
with address space layout randomization in place. However, as seen above, attacks
trying to bypass address space layout randomization can be more easily detected
by the defender and can help in building defense-in-depth. Instruction set ran-
domization, originally proposed as a counter to code-injection attacks (Gaurav,
Keromytis, & Prevelakis 2003) has also been proposed as a counter code-reuse
(Bletsch 2011, chapter 2.2), however, to the author’s knowledge, this has never
been implemented in practice.

A generic and currently most used mitigation against code reuse attacks is control
flow integrity (CFI) (Abadi, Budiu, Erlingsson, & Ligatti 2009). It was proposed
approximately at the same time as ROP-attacks were popularized, hence the orig-
inal paper does not consider defenses which specifically target ROP; nevertheless,
the techniques still apply.

The main idea in CFI is to ensure, either dynamically at runtime or statically at
compile-time, that the program flow does not take paths which are not intended
by the programmer. There are various techniques to achieve this, with varying
compile or runtime cost. Abadi et al. (2009, section 4.1) proposed instrumenting
assembly instructions which transfer the control flow to include checks of source
or destination addresses with known ID values.

Another generic approach to mitigate or eliminate ROP attacks is to recompile
all the program code in such a way, that the resulting instructions cannot be
used (Onarlioglu, Bilge, Lanzi, Balzarotti, & Kirda 2010). This approach is
called G-Free. The limitation of this approach is that all the code executed by the
program must be compiled with G-Free; modified return instructions have some

30

performance overhead and compiled executables are bigger than the ones compiled
without G-Free (Onarlioglu et al. 2010, 7).

There are also many other mitigation techniques, which vary from specific defenses
to ROP to more generic CFI type of techniques. At the same time, there are attacks
which bypass old defenses as seen in e.g. Onarlioglu et al. (2010, 3), Bletsch
(2011, 6), Ionescu (2017) and Pierce (2016).

The rapid changes in code reuse exploitation/mitigation landscape make it difficult
to assess which particular exploitation and mitigation techniques will have the most
lasting impact and need to be considered more carefully. Academic and commercial
authors have incentives to publish new techniques and products whereas exploit
authors usually do not want their latest techniques in public, and it remains to
be seen whether the different code reuse attacks continue to be a serious threat.
There is, however, no shortfall of more complex exploits which combine various
techniques presented here, the root enabler of which is either the lack of temporal
or spatial memory safety.

3 Memory Safety Issues in Linux Kernel

3.1 Linux Kernel Specific Considerations

In the previous chapter, an overview of common memory safety violations, which
can occur in programs written in C, was given. This chapter we discusses how the
same violations can occur in Linux kernel.

The Linux kernel is written mostly in C, and partly in Assembly language, which
means that it is susceptible to the issues discussed in the previous chapter. How-
ever, there are some differences when dealing with vulnerabilities in the operating
system kernel, contrasted to user application programs.

The first difference is the absence of C Standard Library in the kernel space.
Kernel supplies its own memory management, string handling and other functions.
In some cases, the functions provided are similar to their C Standard Library
counterparts, as is the case with string handling functions, but in other cases, as
with memory management, the functions and interfaces provided are very different
(Linux Kernel API 2018).

31

-static void l2cap_add_conf_opt(void **ptr, u8 type, u8 len, unsigned
long val)

+static void l2cap_add_conf_opt(void **ptr, u8 type, u8 len, unsigned
long val, size_t size)

{
struct l2cap_conf_opt *opt = *ptr;

BT_DBG("type 0x%2.2x len %u val 0x%lx", type, len, val);

+ if (size < L2CAP_CONF_OPT_SIZE + len)
+ return;

Figure 17. Partial patch for CVE-2017-1000251

The second difference is the processor privilege level. The program code in the ker-
nel mode runs with higher privileges than the user mode code, and compromising
the kernel can yield bigger rewards for the attacker than attacking user programs.

The third factor is the high concurrency in the kernel. Typical user mode programs
do not have high or complex concurrency but the kernel, which controls system
multitasking and interaction with the hardware is highly concurrent with complex
interactions. In some cases, this can make practical exploitation more difficult,
but in other cases, it can open possibilities for new vulnerabilities.

In this chapter, the vulnerability classes introduced above are revisited and ex-
amples are given of occurrences in the Linux kernel. Later on, a kernel module
containing similar vulnerabilities is implemented. The module is later used to
analyze the detection methods of the same vulnerabilities.

3.2 Stack and Buffer Overflows

Linux kernel is vulnerable to ordinary stack corruption as well as other types
of buffer overflows. In this section, the stack buffer overflow discussed above is
revisited. A separate error condition, stack overflow, which occurs when the stack
runs out of space can happen more easily in the kernel context than in user mode
programs; and is also discussed in this chapter. Finally, specific mitigations the
kernel takes to guard against buffer overflows in some settings are discussed.

An example of a stack buffer overflow due to the lack of bounds checking is CVE-
2017-1000251 (2017), which occurred in the Linux Bluetooth subsystem. Vulner-
able code would read a configuration packet from the network and store it into
stack variable, which could be overflown.

32

The root cause for the vulnerability is shown in Figure 17, in a patch format,
where ’-’s indicate removed lines and ’+’s code lines added. The full patch can be
found in Seri (2017). The reason for error is the lack of bounds checking of input
data, which is read from the network, and thus attacker controlled. The impact of
the possible exploit can either be a denial of service, where malformed packet can
corrupt the kernel stack and crash the system or the attacker can also manipulate
the stack to run arbitrary code, in a similar way as demonstrated above.

Linux kernel implements several of the stack buffer overflow mitigations discussed
in the previous chapters. Kernel can be configured to use stack canaries but they
are not included in every function, for performance reasons. Depending on the ker-
nel configuration options, they can not be used at all, used in functions, which de-
clare a character array of eight bytes or more (CONFIG_STACKPROTECTOR), or used in
functions using any arrays at all, or use local variables assigned (CONFIG_STACKPROTECTOR_STRONG),
as seen in Cook (2014), Edge (2014). One should note that the kernel option
names have changed during the development process and sources may refer to old
option names.

A generic protection against buffer overflows is implemented in functions copy_to_user
and copy_from_user which copy data between user and kernel space. Configura-
tion option HARDENED_USERCOPY can be enabled to check for buffer overruns when
those functions are used, with a small runtime penalty. The feature was originally
developed by PaX team with name of PAX_USERCOPY (Edge 2016).

Linux also implements kernel address space layout randomization (KASLR, config
option CONFIG_RANDOMIZE_BASE), although its implementation is more complex
than user space address space layout randomization and benefits are smaller. To
be effective, address space layout randomization needs to guard against informa-
tion leaks about the randomization and that the entropy used must be sufficient.
In the case of kernel, there are multiple entities, the location of which must be
randomized such as, the actual kernel code, kernel’s data structures, modules and
other kernel objects (Edge 2013a, 2013b). Currently, only the kernel code, or
text-section, and modules are randomized. The entropy for kernel text depends on
the processor architecture and memory configuration, and can be between 8 and
30 bits (Biesheuvel 2016). For kernel modules this is currently 10 bits; however,
a patch has been proposed to extend it to 17 bits (Edgecombe 2018).

Another class of problems is the information leakage from the kernel. Local users
can be assumed to gain knowledge of randomized kernel location and kernel ad-

33

stack memory

…

thread_info

Memory
allocated to stack
and thread_info

stack memory

...

Memory
allocated for

another process

Figure 18. Kernel process stack

dress space layout randomization has been critiqued on these grounds to be ‘cargo
cult‘ security (Spender 2013). However, the kernel address space layout ran-
domization is usually considered an effective mitigation against remote attackers
(Edge 2013a).

Information leaks can also be indirect. An attack was developed, which broke the
confidentiality of kernel address space layout randomization with processor feature
called Intel’s Transactional Synchronization Extensions (TSX). TSX allowed a user
to probe kernel memory via timing side channel and allowed the attacker to deran-
domize KASLR in few seconds (Jang et al. 2016). This problem was mitigated
by separating the kernel and user mode address spaces (Gruss et al. 2017). As a
side note, the mitigation presented was not implemented in Linux kernel to guard
against KASLR derandomization, but as a countermeasure to widely published
Meltdown processor vulnerability; nevertheless, it effectively helps in the previous
problem as well.

Kernel process stacks are relatively small, usually only 8 or 16 kilobytes of size,
which means that they can overflow more easily than user mode stacks. The
memory area reserved to the process stack contains also thread_info-structure,
which contains information about the current process, so if the attacker can control
the stack content, they also has a known target for modification (Corbet 2016;
Horn 2016), as seen in Figure 18.

The figure also shows another possible attack method. The kernel is used to
allocate memory reserved for stack allocations in so-called directly mapped memory
range, which is a physically contagious memory area. This means that besides
clobbering thread_info structure, a malicious process can also access the stack
area of another process (Corbet 2016). This has been mitigated since Linux

34

stack memory

…

thread_info

Memory
allocated to stack
and thread_info

guard page

Figure 19. Virtually mapped stack

version 4.9 by moving stack to memory area allocated with vmalloc as seen below,
where memory is allocated one page at a time. In this case, accessing the memory
area outside of the allocated stack will hit the guard page, which will trigger a
kernel oops and kill the offending process (Corbet 2016). See also figure 19). This
feature is controlled by kernel config option CONFIG_VMAP_STACK and is currently
available for x86-64 and arm64 architectures. Unfortunately, the option cannot be
used together with Kernel Address Sanitizer (KASAN) as discussed below, which
can be used to dynamically instrumentate kernel to detect memory violations.

There are also a few other hardenings against stack misuse. Kernel configuration
option CONFIG_THREAD_INFO_IN_TASK, available since kernel version 4.9, moves
the sensitive parts of the thread_info structure from the stack to the task_struct
structure, which is allocated elsewhere. Kernel stack is also susceptible to Gaël
Dulalleau’s and the Stack Clash attacks as seen above, which leads to bypassing
the guard page or memory gap (Corbet 2017a). This can be mitigated with
recent STACKLEAK patch, available since 4.20. STACKLEAK also zeroes stack
memory after each system call to prevent information leaks (Popov 2018). Linux
kernel has also recently removed most of the variable length arrays, which have
could have been used to jump over the stack boundaries (Larabel 2018).

There are several examples of bypassing the stack boundaries in the kernel, as seen
in e.g. CVE-2010-2240 (2010), where a bug in X.org allowed clashing the heap
and stack, and resulted in implementing a guard page between them (Packard
2010). Another well-known example is (CVE-2010-3848 2010), a vulnerability in
ECONET network driver documented in Pingios (2010).

35

3.3 Dynamic Memory Allocation

Dynamic memory allocation in Linux kernel is susceptible to similar problems
as the user mode memory allocation, even though the overall memory allocation
process is much more complex than in the user mode programs. The most basic
way of allocating memory in kernel is to allocate memory by fixed size memory
pages, which is in described e.g. in Gorman (2004, chapter 6). When the kernel
tries to access the memory outside of the allocated page, the kernel will print a
kernel error message, or so called kernel oops and kill the process which was running
when the illegal memory access happened, or in some cases hung the whole system
as seen in Corbet, Rubini, and Kroah-Hartman (2005, 94-98), with more details
and also in Duarte (2009) for description of virtual and physical memory omitted
here.

Illegal page access can be used to bring the whole system down, causing a denial of
service attack. Kernel’s dynamic memory allocation can also be attacked similarly
as the heap in user mode programs, however, the details are different. Besides the
page allocation, kernel provides a mechanism to allocate memory chunks of fixed
size, called slab allocator. The idea of slab allocator is to allocate large memory area
called slab, which is partitioned into fixed size memory areas and return pointers
to these areas as responses to memory allocation requests. By keeping the size of
the allocated memory areas fixed, memory allocation can be kept efficient, since a
free memory area can be returned from the slab and no new allocation is needed. If
the slab does not provide allocations for multiple objects at once, there is no need
to split or expand the slab objects, which does not incur memory fragmentation
(Bonwick & Sun Microsystems 1994).

Figure 20 shows a schematic view of Slab allocator memory management. Different
slab areas are allocated in memory pages, which contain objects of similar size.
The slab allocation is controlled by control or metadata, which is stored outside
of slab areas. Each slab also contains some metadata for used and free objects.
Allocator implementations may also contain caches and reserved objects for fast-
path allocation, separate allocators for physical processors and other optimizations
(J. Kim 2012).

The slab allocator was originally developed for SunOS 5.4, however, implemented
in other operating systems as well, including Linux. Linux has since gained two
other variants of the SLAB allocator (SLAB is usually spelled with capitals when
referring the Linux kernel implementation, and in lower case, when referring to

36

A slab area 1
x x x

A slab area 2
x x

Slab
metadata,

cache

Used objects Free objects

Figure 20. Slab allocator

the general concept), which provide allocators optimized for different situations.
The SLOB allocator is optimized for resource constrained devices (Mackall 2005)
and the SLUB allocator is a more performant, but also a more complex variant
of the original SLAB allocator (Lameter 2007). One difference between the slab
implementations is the location of each slab area’s metadata. In SLAB, it is stored
at the start of the slab area, in SLUB, it is stored in the underlying memory page’s
control structure and in SLOB’s case, the metadata is stored in the slab area itself,
much like in user space heap allocator (Argyroudis 2012). There are also other
proposed allocators such as SQLB and SLEB, but they are not currently included
in the mainline kernel (ibid.) and not considered here.

The most straightforward way the memory unsafety can lead to exploitable bugs is
to have one slab object overflow to an adjacent object. In the same way, it is also
possible to corrupt adjacent memory page of a slab object, if one is mapped. The
third and the most complex way of exploiting the slab allocation is the corruption
of the slab metadata, in a similar way as the heap corruption in the user mode
programs, but the actual details of the attack are different and depend on the
allocator used (Argyroudis 2012). No detailed account is provided of the possible
ways to exploit different allocators, which can be found e.g. for SLAB in sgrakkyu
and twiz (2007, section 2.2), SLOB in Rosenberg (2016) and SLUB in Perla
and Oldani (2011, 160-177).

3.4 Data Races

The third major problem caused by the memory unsafety in the kernel is the
problem of data races and race conditions. The problem with data races is much
more severe in the kernel than in the user mode programs, since the kernel is by
nature much more concurrent than a typical user mode program.

37

A data race can typically be exploited when the attacker can control two processes,
which compete for the same resource, for instance a memory buffer, which has no
concurrent access control. Linux kernel has different mechanisms for controlling
concurrent access in critical code sections. The most common one is a semaphore,
which allows only a certain number of readers or writers to access the critical
section. When a semaphore is available, or up, a process can access the critical
section. When the semaphore is unavailable, or down, the process trying to acquire
the semaphore and access the critical section will sleep until the semaphore is
again available. Semaphores can allow for different number of readers and only
one writer, but the most common type of scenario is a mutual exclusion or mutex,
which will allow only one process to access the critical section (Corbet et al. 2005,
109-114).

An alternative to semaphore is a spinlock. The functionality of a spinlock is similar
to a semaphore, however, when failing to acquire the lock to the critical section,
the calling process will not go to sleep, but will instead try to acquire the lock again
in a tight loop. Spinlocks are used when the calling process cannot go to sleep for
some reason (e.g. code in interrupt handlers), they have higher performance, but
they are limited to mutual exclusion locks, and they need a pre-emptive kernel
scheduling to avoid resource starvation (Corbet et al. 2005, 116-121).

There are two problems with locking. First, a programmer must manually acquire
and release locks in the code, since C and other low-level languages do not give
guidance to the programmer when they should use locks, and consequently, the
locks are easy to miss. A recent example of a missing lock can be seen in CVE-
2018-1000004 (2018). Almost the whole patch fixing the race condition is shown in
Figure 21, omitting only the declaration of ioctl_mutex structure (Iwai 2018).

In this particular case the data race can lead to a deadlock, which is another
problem when using locks. A deadlock can occur, when two or more processes
compete for the same resources. For instance, if both the processes P1 and P2
want to acquire resources R1 and R2, and process P1 has acquired resource R1,
and process P2 the resource R2, both the processes will sleep to and wait for the
resources the other process has, causing a deadlock. The above bug is caused by
the same underlying problem, however, the actual details are more complex and,
in practice, easy to miss. E.g. Quan (2018) describes this in further detail.

The complex logic of concurrent kernel programming and the lack of support from
the programming language level has been a constant source for data race bugs.

38

rwlock_init(&client->ports_lock);
mutex_init(&client->ports_mutex);
INIT_LIST_HEAD(&client->ports_list_head);

+ mutex_init(&client->ioctl_mutex);

/* find free slot in the client table */
spin_lock_irqsave(&clients_lock , flags);

// ... code omitted ...
return -EFAULT;

}

+ mutex_lock(&client->ioctl_mutex);
err = handler->func(client, &buf);

+ mutex_unlock(&client->ioctl_mutex);
if (err >= 0) {

/* Some commands includes a bug in 'dir' field. */
if (handler->cmd == SNDRV_SEQ_IOCTL_SET_QUEUE_CLIENT

||

Figure 21. A patch adding lock for CVE-2018-1000004

Data race bugs of varying severity are further discussed in with descriptions and
examples in e.g. CVE-2014-0196 (2014); Groß (2014), CVE-2016-5195 (2016);
COW (2016), CVE-2016-8655 (2016); Pettersson (2016) and CVE-2017-2636
(2017); Popov (2017).

There are some mechanisms to help to deal with data races. The kernel contains
a lock validator, lockdep (Corbet 2016) that can detect some incorrect locking
patterns, which can lead to deadlocks. Kernel also provides some alternatives to
locking, such as lockless algorithms, atomic variables, seqlocks and read-copy-
update-mechanism (Corbet et al. 2005, 123-130). The is also work to provide the
kernel with formal memory-ordering model, which can be used to prove that the
kernel works correctly in concurrent situations (Alglave, Maranget, McKenney,
Parri, & Stern 2017a, 2017b).

3.5 Other Vulnerability Classes

The memory violations and data races discussed above are the most important
vulnerability classes in the Linux kernel. Their exploitation also typically differs
from the user mode counterparts. The other vulnerability classes discussed in the
previous chapter, namely integer overflows and format string vulnerabilities, are
also present in the kernel; however, the kernel context does not make them very
different from those occurring in the user mode.

39

As discussed previously, integer overflows come in two flavors, unsigned and signed.
When signed overflow occurs, the result is undefined and can, for example, lead
compiler to generate code with security vulnerability, as seen above in Figure 3.

In some cases, the signed integer can be overflown so that instead of using some
pre-defined maximum positive value for the variable, overflown variable wraps to
a negative value. A recent example of this can be seen in Qualys (2018), where
signed integer overflow was used to create a spatial memory violation. CVE-
2016-5344 (2016) is an example of unsigned integer overflow in an Android device
driver. In this case, the bug allowed to manipulate the memory received from the
user, which was erroneously copied to kernel by manipulating the size of the copied
memory area.

Format string vulnerabilities in kernel are also similar to those occurring in the user
mode, since the kernel print functions implement similar format string modifiers as
the standard C library does. An example of kernel format string vulnerability can
be found e.g. in CVE-2013-1848 (2013). The Linux kernel does not implement
highly vulnerable %n-modifier, which allows writing to memory with with an invalid
format string, but allows for reading memory. Reading arbitrary kernel memory
is usually more dangerous in the kernel context than it is in the user process
context, since it can allow both attacking the probabilistic defenses in the kernel
and potentially leaking information from other user processes.

4 Detecting and Eliminating Memory Safety Vi-
olations and Other Errors

This section surveys the potential approaches to detect and possibly eliminate the
problems, which memory unsafety causes. A vulnerable kernel module is imple-
mented and static and dynamic analysis methods, which can be used to either
detect or eliminate memory safety issues in the code, are studied. Finally, there is
an attempt to reimplement the same kernel module in memory safe language and
analyze whether that approach is generally feasible.

40

4.1 A Faulty Kernel Module

For the purposes of this study, a vulnerable kernel module containing simple ex-
amples of the types of programming faults discussed above was implemented. The
implementation was done in C language and normal kernel programming tools
were used. The module can be tested in any Linux installation, which allows using
non-signed third party kernel modules. The module was compiled and tested us-
ing Ubuntu 18.10 (GCC version 8.2.0 Ubuntu 8.2.0-7ubuntu1, kernel 4.18.0) and
Debian 9 (GCC version 6.3.0 20170516 Debian 6.3.0-18+deb9u1, kernel 4.9.0).

The full source code for the module is available at https://github.com/isido/
kernel-module-with-faults and the most important parts are included in the ap-
pendices. The source code distribution contains instructions on how to build the
module and test it in a virtual machine. The faults in the source code are annotated
with text FAULT: <name> and they are summarized in Table 1.

Table 1. Programming fault types and their identifiers in the source code

Fault type Comment identifier
Stack buffer overflow FAULT: stack buffer overflow
Slab buffer overflow FAULT: heap buffer overflow
Unsigned integer overflow FAULT: unsigned overflow
Signed integer underflow FAULT: signed underflow
Format string vulnerability FAULT: format-string
Stack area overflow FAULT: stack overflow
Potential data race FAULT: race
Double free FAULT: double free
Use after free FAULT: use after free
Information leak FAULT: infoleak

The faults included in the module are intentionally very simple, since they try to
model the essential problem of each bug class and at the same time try to be very
simple to understand. The code contains some comments, which aims to clarify
how the code works. The code can be interfaced from the user space via debugfs
endpoints and potentially exploited. In this study, the focus is on the detection
and elimination of the selected bug classes, and the author will not detail the
possible exploitation and interaction with the module. A small exception to this
is the analysis of the code reuse potential of the module, discussed later.

Each of the fault tries to be essentially similar to the already discovered bugs in
the Linux kernel, even if in simplified form. A brief explanation of the bugs follow,
however, for the full details, the source code is to be studied.

https://github.com/isido/kernel-module-with-faults
https://github.com/isido/kernel-module-with-faults

41

Stack buffer overflow and Heap buffer overflow bugs both result from in-
complete bounds checking, which allows overwriting other objects in memory. In
the case of stack buffer overflow, the return address of the function could be over-
written, if the stack canary value can be bypassed. The heap overflow takes place
in the SLAB allocated memory, and can be used to corrupt an adjacent allocated
object.

Unsigned integer overflow and signed integer underflow both provide a
counter whose value can be incremented or decremented by reading the provided
debugfs endpoint. When the counter value over- or underflows, the kernel ring
buffer will display a message about executing a function, which should not be
reachable under the normal execution. Signed integer underflow is also undefined
behavior according to the C standard, which means that the compiled code might
have some surprising properties as well.

The format string vulnerability simply copies verbatim a user-supplied string
to printk-function. It can be noted that the newer interface for ring-buffer-logging,
the pr_ family of functions is not as vulnerable to format string problems, never-
theless, the older printk-function is used to demonstrate the problem, even if the
use of printk is not the best current practice in the kernel programming.

Stack area overflow is simply a static buffer allocated from the process stack,
whose size might exceed the kernel process stack area. The allocation takes place
in data race write endpoint and is not separately available.

Potential data race endpoint copies a value from the user to two different buffers,
separated by a small (1,000-microsecond) delay. It can be triggered by having two
separate processes writing simultaneously different values to the endpoint. When
data race happens, kernel ring buffer will display a message.

Double free and Use after free bugs provide endpoints that trigger buggy
behavior. With double free, reading from the endpoint makes an allocation, and
writing to it triggers deallocation. The endpoint does not provide good input for
the debugs-operations but kernel ring buffer will provide the feedback. Use after
free is simply triggered by reading from the endpoint.

Finally, information leak simply returns the contents of uninitialized memory
area when the endpoint is read.

42

4.2 Static analysis

First, it was analyzed whether different static analysis tools would detect the cod-
ing faults we implemented. There is a great variety of static analysis tooling and it
differs in sophistication, from very simple syntax checkers to formal proof systems.
The baseline for the static analysis tooling was the compiler. At the second level,
the author tried various simple static analysis tools, which could easily be included
in a standard kernel development workflow, which require little or no configura-
tion. Finally, we tested briefly two more sophisticated static analysis tools, one
of which was an academic project, and another a tool developed in the industry.
Both of the tools did not require any alterations to the original source code.

The author did not test any sophisticated formal methods based tools in this
study. One reason for this the was limited amount of time. The tools usually
require considerable familiarity with some formal proof system and might also
require annotations in the source code for the properties or invariants which they
are trying to prove correct and just testing a single tool would have expanded the
scope of this thesis considerably. Another factor, which can be derived from the
previous one, is that since the tooling is nontrivial to use, it is not very likely to
be used by the kernel developers.

The baseline for the tests was the GNU Compiler Collection’s C-compiler, GCC
(GCC 2019). GCC is currently the only C compiler that can be used to build Linux
kernel for all platforms, even though there is a work in process to enable building
the kernel with other compilers as well (Larabel 2018). GCC has many heuristics,
which can be used to emit warnings for problems in the program code. In this
study, all warnings were enable to provide a baseline for the experiment. The only
fault detected was stack area overflow, which generated a warning in compilation
phase. GCC version 6 used with Debian also generated another warning about
unused result from function in potential data race fault; however, the warning did
not point to the actual problem in the function.

Basic static analyzers form the first class of tested tools. The static analyzers
try to analyze the source code at compile time and warn about suspicious code
patterns or buggy code. There are static analyzers of varying complexity and
sophistication. The simpler tools try to find code patterns, which are known to be
dangerous, whereas more sophisticated analyzers form a formal model of the code
execution and try to prove some properties of the model.

43

Two other tools used are originally developed specially for the Linux kernel. The
first, sparse is called a “semantic parser” (Sparse 2019), which means that it
tries to infer the meaning of code, instead of just its syntax. Sparse was originally
developed by Linus Torvalds, and it is used for instance to notify about incorrect
memory handling between kernel and user space (Brown 2016c). It can be used
to find bugs from data races and to annotate the code so that certain bugs are
easier to find, cf. Brown (2016a).

The main functionality of Sparse is in the form of a C-library that can be used
to build more tools. The tool for kernel static analysis is also called ’Sparse’ and
it is this latter Sparse, which is studied in this work. Smatch or Source Matcher
is a tool, built on top of Sparse to provide more comprehensive static analysis
capabilities than original Sparse. As is case with Sparse, the Smatch tool can be
extended to detect more unsafe or erroneous code patterns manually, but in this
study, Smatch was used as provided by the upstream. (Brown 2016b; Smatch
2019).

Clang C compiler (Clang 2019), which is built on top of the LLVM Compiler
Infrastructure (LLVM 2019), is a mature C compiler, which can be also used to
build Linux kernel on some platforms, even though on some platforms, the kernel
relies on GCC-specific extensions. Clang compiler includes also a static analyzer
for C and C++ code, called scan-build, which can be used to test the faulty
kernel module.

Finally, the author evaluated a stand-alone static analyzer called Cppcheck (Mar-
jamäki 2019). Cppcheck is a general static analyser for C and C++ programs, not
specifically aimed to work with Linux kernel, yet, it has been successfully used to
find bugs in it (Cppcheck 2019).

The results for the basic static analysis tools, alongside with the GCC baseline are
summarized in Table 2. The versions used in the test are given in Table 3.

The analyzers tested here did find just few of the faults implanted in the module.
Sparse noticed an information leak resulting from the use of uninitialized memory.
Smatch noticed a use after free error and potential information leak related to
it, but not the implanted information leak. Otherwise, the tools did not detect
the errors. Sparse, however, was helpful in separating pointers to kernel and user
space, when correct annotations were used correctly. Sparse contains also other
annotations beside those used in this test, and it seems that using them can prevent
some of the memory unsafety issues.

44

On the usability perspective, all of the tools were relatively easy to use with kernel.
The tools required just a normal installation procedure and they could be run
directly against the source code, with no special requirements with project setup.

One of the reasons for the lack of findings, or completeness can be in the nature of
the implanted bugs. Buggy code works correctly as long as the user input or inter-
action is withing certain limits. To actually notice buggy behavior requires either
generating counterexamples or proving the code correct, which is not something
that can be usually done with basic static analysis, which is based on analyzing
code patterns and semantic behavior of the code.

Table 2. Fault detection by basic static analysis

Fault type GCC sparse Smatch Clang Cppcheck
Stack buffer overflow - - - - -
Slab buffer overflow - - - - -
Unsigned integer overflow - - - - -
Signed integer underflow - - - - -
Format string vulnerability - - - - -
Stack area overflow yes - - - -
Potential data race - - - - -
Double free - - - - -
Use after free - - yes - -
Information leak - yes yes - -

Table 3. Tool versions used for static analysis

Tool Version
GCC 8.2.0 (Ubuntu 8.2.0-7ubuntu1)
Sparse 0.5.2 (Ubuntu: 0.5.2-1)
Smatch git commit 10ef4ac
Clang scan-build 7.0-43ubuntu1
Cppcheck 1.84
Frama-C Sulfur-20171101i
Infer v0.15.0

There is much research on more sophisticated static analyzers, however, in general,
the more advanced tools are not easy to integrate in the development process; they
might require some specific expertise to run, and might require modifications to the
source code. As a result, the use of more formal static analyzers tend to be limited
to academic settings rather than ordinary kernel development process. Some of
the better known tools include Coverity, Dr. CHECKER, Frama-C and Infer
(CEA LIST & Inria 2019; Facebook 2019; Synopsys 2019a; The Computer Security
Group at UC Santa Barbara 2019).

45

Coverity is possibly the best known and the most mature of more advanced static
analyzers. It was originally developed in Stanford University but has since been
morphed into a commercial project. Coverity has been used to find defects also
in the Linux Kernel (Corbet 2014). Coverity is not freely available; however, it
provides scans of Linux kernel as a free service (Synopsys 2019b). Coverity was
not tested in this study, since it is not freely available.

Dr. CHECKER is a relatively new static analyzer aimed to specially find bugs
in Linux kernel drivers. It uses soundy analysis methodology, which means that
its results are almost, but not completely free of false positives, or sound. It
has been successfully used to find bugs in the Linux kernel (Machiry et al.
2017). Unfortunately, when evaluating the tool, the author could not configure it
to process only a single module, within a reasonable time; hence it could not be
included the results of this study.

Frama-C is a modular framework for analyzing C programs. In practice, this means
that Frama-C is a collection of different analyzers, which can work together and
provide a single analysis. It has been widely used in different contexts, and has
also been used to analyze Linux kernel code (Khoroshilov & Mandrykin 2017).

Infer is a static analyzer developed by Facebook. Unlike the other analyzers tested,
besides C/C++ code, it can also analyze Java and Objective-C code. It is not
specifically aimed at Linux kernel, and to the author’s knowledge, it has not been
reported to find bugs in the kernel.

There has been some work in applying formal methods to prove the correctness
of parts of Linux kernel; however, but this has been mainly an academic endeavor
and not yet widely used. Since the scope of this work was limited to tools, which
could be used relatively easily in the normal kernel development workflow, they
were not included in this study. Some examples of these approaches, however, can
be found e.g. in (Efremov, Mandrykin, & Khoroshilov 2018; Penninckx, Jacobs,
Smans, & Muhlberg 2019).

Neither of the advanced static analysis tools tested, Frama-C and Infer detected
any of the planted faults. There may be many reasons for this. It is possible, that
testing Linux kernel module would have required a more complex setup than the
basic tool documentation described, and the tools themselves might have required
some special settings. The output from the tools, however, did not indicate any
problems in running the analysis.

46

Especially in the case of Frama-C, it quickly became apparent that the tool is not
intended to be an out-of-the-box static analyzer, but its effective would require
modelling the wanted properties of the source code and then implementing the
logic to analyze these properties within the Frama-C framework.

Based on the testing, it seems that the more advanced static analyzers would
require a significant investment in time to become effective in finding the kinds of
bugs present in the test case. It is also possible that the bugs implanted are just
too difficult for the tools to find. If this is the case, static analysis in its current
form is not a complete solution for detection and elimination of memory safety
bugs. On the other hand, it can be noted that Sparse and Smatch, probably the
best-known tools in the Linux kernel development community, were able to find
some of the bugs, which can be seen as a good thing. Since the two tools are
well integrated in the kernel coding process, they are also likely to be used during
normal kernel development.

4.3 Dynamic Analysis

Dynamic analysis means running the code under analysis, and trying to observe
its behavior. When compared to static analysis, dynamic analysis is usually more
complex and possibly more time consuming than static analysis, which can take
place at the same time as code compilation. Dynamic analysis usually requires
setting up special runtime environment, so that the tested code can be observed.
Dynamic analysis also requires some knowledge of the properties of the program
under test. For instance, dynamic analysis might need a set of inputs and outputs,
which can be used to perform the analysis. There is also a specialized subset of
dynamic analysis called fuzzing, where given input sets are modified or mutated
randomly or according to a specific patterns and fed to the program so that they
might trigger unusual code paths and expose errors.

One of the best-known dynamic analysis tools is Valgrind. It runs a program
in a special execution environment, where each memory access is instrumented.
Instrumentation can reveal memory handling errors when program is run, although
the program’s performance is slowed approximately 20 to 30 times the program’s
normal speed (Seward 2019).

Valgrind as such cannot be used to analyze Linux kernel components, such as the
author’s vulnerable module; however, Linux kernel currently has similar function-

47

ality called Kernel Address Sanitizer or KASAN. KASAN depends on GCC
compiler to create similar instrumentation to Valgrind, which detects temporal and
spatial memory violations and reports them to the kernel ring buffer log, instead
of crashing the kernel. KASAN is intended as a debugging aid and cannot be used
in the production kernels due to performance penalty it incurs. To use KASAN,
kernel must be specially compiled using configuration option CONFIG_KASAN and
then the part of the kernel user test must be somehow invoked.

KASAN is very well suited to test the vulnerable module developed in this thesis
project, since all the functionality of the module is exposed via debugfs-endpoints
and testing the module can simply be done by giving the module legal and illegal
inputs and monitoring the kernel ring buffer log.

Linux kernel also has similar functionality to detect undefined behavior with com-
piler instrumentation, called the Undefined Behavior Sanitizer or UBSAN.
UBSAN works by inserting checks for code that might exhibit potential unde-
fined behavior at compile time, and invoking the checks at runtime. Similarly to
KASAN, UBSAN can also be turned on with kernel configuration option CONFIG_UBSAN.

Finally, there is a kernel fuzzing tool called Syzkaller, which has been used to find
bugs in Linux kernel and later also in other operating system kernels (Google
2019). Syzkaller works by enabling kernel instrumentation for kernel code cov-
erage and initial C programs using Linux system calls. Based on the coverage
information, Syzkaller mutates the programs to find a kernel crash. When a crash
is found, it tries to minimize the mutated C program to as short form as possible
(Konovalov 2019).

In this work, both KASAN and UBSAN were tested against the vulnerable test
module. In this experiment, Syzkaller was excluded due to the fact that each of
the exposed debugfs endpoints only implements simple read-write functionality
and actual system calls are not really used. In addition, creating crashes with the
exposed endpoints is already trivial, and generating in some sense minimal inputs
which reproduce the crash is not very helpful in our case, when the main interest
is in locating the invalid code.

In the tests, UBSAN did not detect any undefined behavior. The potential unde-
fined behavior we had in the test code was signed integer underflow, which was not
detected. KASAN, however, easily noticed the problems related to illegal memory
accesses. The findings are detailed in Table 4. KASAN error reports are somewhat
helpful for finding the problematic code, since they detail the function called when

48

Table 4. Fault detection by dynamic analysis

Fault type KASAN
Stack buffer overflow yes
Slab buffer overflow yes
Unsigned integer overflow -
Signed integer underflow -
Format string vulnerability -
Stack area overflow -
Potential data race -
Double free yes
Use after free yes
Information leak -

the error occurred and contents of the problematic memory. Figure 22 gives an
abridged log of KASAN error message. The first part gives general information
of the error type, the second part contains the call trace of the offending kernel
process and the third part is a memory dump of the related memory.

KASAN seems to be a good tool for finding spatial and perhaps temporal memory
safety violations, at least in the current simple test case. In the general setting,
triggering memory problems when code is more complex would require finding
execution and input patterns that trigger the faults, so it is unclear how well the
current result can be generalized. It is possible that in general more complex
approaches for testing should be employed, for instance using Syzkaller or using
some sort of fuzzing framework for input manipulation.

KASAN is also not a comprehensive solution for all the bug classes enabled by
the lack of safety in C programming language; it detected only memory errors.
However, KASAN was the tool which detected more errors than any other tool
tested and its use was relatively straight-forward, so it can be considered to be a
good, however not necessarily sufficient solution for writing safe kernel code.

4.4 Memory-Safe Languages

Unsafe C or C++ are not the only languages operating system kernels could be
written. There has long been talk of using some memory safe language. Despite
the talk, there have been very few attempts to use other languages in kernel set-
ting. Perhaps the best-known effort has been the use of OCaml in special purpose
Mirage unikernels (MirageOS 2019). Unikernel is not a full operating system,

49

[8251.457761]
==

[8251.458557] BUG: KASAN: stack-out-of-bounds in
simple_write_to_buffer+0x58/0xd0 at addr ffff8800165d7d48

[8251.459499] Write of size 13 by task bash/1665
[8251.459982] page:ffffea00005975c0 count:0 mapcount:0 mapping:

(null) index:0x0
[8251.460783] flags: 0x1ffff8000000000()
[8251.461151] page dumped because: kasan: bad access detected
[8251.461806] CPU: 1 PID: 1665 Comm: bash Tainted: G O

4.9.144 #2
...
[8251.461860] Call Trace:
[8251.461877] [<ffffffff81ee79cc >] ? dump_stack+0xaf/0x103
[8251.461890] [<ffffffff81ee791d >] ? _atomic_dec_and_lock+0x9d/0x9d
[8251.461903] [<ffffffff81bb5a36 >] ? __dump_page+0x176/0x460
[8251.461913] [<ffffffff81c21495 >] ? kasan_report.part.0+0x5a5/0

x7b0
[8251.461925] [<ffffffff81c20203 >] ? save_stack+0x33/0xa0
[8251.461935] [<ffffffff81c20203 >] ? save_stack+0x33/0xa0
[8251.461946] [<ffffffff81cb41a8 >] ? simple_write_to_buffer+0x58/0

xd0
[8251.461956] [<ffffffff81c20203 >] ? save_stack+0x33/0xa0
[8251.461967] [<ffffffff81cb41a8 >] ? simple_write_to_buffer+0x58/0

xd0
[8251.461977] [<ffffffff81c9ef40 >] ? __fdget+0x10/0x10
[8251.461988] [<ffffffff81d16750 >] ? locks_remove_posix+0xb0/0x2d0
[8251.461998] [<ffffffff81cb41a8 >] ? simple_write_to_buffer+0x58/0

xd0
[8251.462019] [<ffffffffc06703fe >] ? sbo_write+0x6e/0xa0 [faulty]
[8251.462033] [<ffffffffc0670390 >] ? sbo_read+0x20/0x20 [faulty]
...
[8251.462175] Memory state around the buggy address:
[8251.462677] ffff8800165d7c00: 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00
[8251.463393] ffff8800165d7c80: 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00
[8251.464108] >ffff8800165d7d00: 00 00 00 00 00 f1 f1 f1 f1 00 02 f4

f4 00 00 00
[8251.464914] ^
[8251.465494] ffff8800165d7d80: 00 00 00 00 f1 f1 f1 f1 04 f4 f4 f4

00 00 00 00
[8251.466208] ffff8800165d7e00: 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00
[8251.466937]

===

Figure 22. A Partial KASAN output for stack buffer overflow

50

but rather a specialized program, usually dedicated to a single task, that can be
run in hypervisor like a virtual machine. Unikernels do not also do task switching,
but run in a single address space for the whole time. Madhavapeddy and Scott
(2014) provide an overview of the Unikernel concept.

Unikernels can be written in high-level languages more easily than complete oper-
ating systems, since they do not need to abstract away the hardware layer, sched-
ule tasks and other operating system kernel tasks. Implementing a full operating
system or its part also requires some specific properties from the language. The
language must be able to directly access memory via pointers or similar abstrac-
tion. The language must also be able to control its memory management and it
must be able to function without system calls provided by the operating system.

These conditions rule out many of the common memory safe languages, even those
oriented to systems programming. For instance, to use Google’s Go-language in op-
erating system kernel, one would have to reimplement Go’s runtime system which
provides Go’s system call interface and memory management. Go’s current mem-
ory management also relies on garbage collection, which might provide unsuitable
in operating systems context.

There are, however, memory safe languages suitable to use in the operating system
context. D-language is a systems-level language evolved from C and C++, which
has also been used in operating systems context (Dlang 2019). Another, not
very well known candidate is ATS. ATS is a functional programming language,
inspired by ML. ATS has strong type system and can use linear types.

Linear types are types the values of which can be used exactly once during the
program. Having this type constraint helps compiler to generate very efficient code
(Xi 2019). Unlike D, ATS is still largely an academic project, and not generally
widely used, despite its impressive features.

Finally, a third candidate suitable for operating system kernels is Rust, initially
developed by Mozilla (Rust Developers 2019). Rust has been very well received
and it has been used in some projects to rewrite code originally written in C or
C++, as seen e.g. in Mozilla Developer Network (2019), Remacs developers
(2019). Rust contains ideas from functional languages and strong type system.
Rust’s types are not linear as with ATS, but affine, which means that the type value
can be used at most one time. This allows efficient memory management without
garbage collection. Rust also forbids multiple writes to a single resource; each
resource can only be altered by its owner. The ownership system can eliminate data

51

races, however, at the cost of steeper learning curve than other popular languages.

In this work, Rust was chosen to see if the author can port the buggy kernel module
written in C to a memory safe language, analyze the challenges in porting and see
whether the memory unsafe errors can be eliminated in the porting process.

As a starting point, a bare bones Linux kernel module written in Rust (T.
Kim 2017) was used. The kernel module works by generating Rust bindings,
to Linux kernel functions and structures defined in C header files. The kernel
can be interfaced using generated Rust counterparts to kernel’s C functions and
structures. The full source code and build instructions are available online at
https://github.com/isido/faulty-rust.ko.

Rust version used was 1.35.0-nightly (f69422288 2019-04-01). Stable versions can-
not be used to build the module, since some gated features are used.

When porting the C code to Rust, two problems became apparent. First, Rust’s
binding generator cannot generate Rust bindings to full C header files. For in-
stance, preprocessor macros defined in the header files are not generated into Rust
equivalents, which means that Linux kernel constants must be redefined in the
Rust code, which leads to code duplication and is a source of potential errors.
Likewise, helper functions defined as C macros are not ported and must be rede-
fined, if they are to be used in the Rust code. In addition, functions defined as
static inline, are not exported to Rust code and they must also be redefined
in Rust. A Figure 23 shows an example of redefinition boiler-plate code. The
problem of unnecessary redefinitions may be lessened in the future if the program
responsible for the bindings, Rust-Bindgen gains more features.

This problem is generally more serious than was apparent in the testing, since
Rust-Bindgen cannot in all cases generate binary compatible bindings to all kernel
structures, whose structure may depend in used compiler options and optimizations
used. This problem did not manifest itself in the testing, since the interfacing to
kernel was done only via well-defined function calls.

Another serious problem is that kernel functions and direct pointers to memory,
or raw pointers in Rust parlance, must be used inside unsafe-code blocks. Unsafe
blocks in Rust code are parts of the code, where Rust’s safety features are turned
off, in order to do something that is normally not permitted by the Rust’s type
system. On one hand, this permits Rust to interact directly with the kernel; on the
other hand, unsafe code is not able to benefit from the Rust’s safety guarantees. In

https://github.com/isido/faulty-rust.ko

52

1const ___GFP_IO: gfp_t = 0x40;
2const ___GFP_FS: gfp_t = 0x80;
3const ___GFP_ZERO: gfp_t = 0x8000;
4const ___GFP_DIRECT_RECLAIM: gfp_t = 0x200000;
5const ___GFP_KSWAPD_RECLAIM: gfp_t = 0x400000;
6

7const __GFP_RECLAIM: gfp_t = ___GFP_DIRECT_RECLAIM |
___GFP_KSWAPD_RECLAIM;

8const __GFP_IO: gfp_t = ___GFP_IO;
9const __GFP_FS: gfp_t = ___GFP_FS;
10const __GFP_ZERO: gfp_t = ___GFP_ZERO;
11const GFP_KERNEL: gfp_t = __GFP_RECLAIM | __GFP_IO | __GFP_FS;
12

13const PAGE_SIZE: usize = 4096;
14

15unsafe fn kzalloc(size: usize, flags: gfp_t) -> *mut c_void {
16__kmalloc(size, flags | __GFP_ZERO)
17}
18

19unsafe fn kmalloc(size: usize, flags: gfp_t) -> *mut c_void {
20__kmalloc(size, flags)
21}

Figure 23. Redefinitions of C constants and functions in Rust

our case, unsafe code blocks allowed us to port the faulty kernel module written in
C to Rust. Unfortunately, the porting process brought also all the same memory
unsafety bugs to our Rust code, which were present in the C code.

Figure 24 shows an example of ported stack buffer overflow in Rust. A positive
thing is, that in this particular case the unsafe code is isolated in a relatively small
section of unsafe code, here consisting of just one function call. However, in many
places in the Rust code, the author was forced to use much larger unsafe code
blocks. This may, however, been an artifact of the used setting. The code in
kernel modules is typically much more complicated than in our experiment, and
the unsafe code blocks may usually be much smaller. Unsafe blocks can also help
in localizing possible dangerous or erroneous code segments; however, in the test
setting, no evidence was gained for this.

Rust code helped to spot some errors, which went otherwise undetected. Rust
compiler noticed integer over- and underflows, although the code was compiled
in debug-mode. If the code is compiled in release-mode, it does not have checks
detecting these. The compiler also noticed some cases of use of the uninitialized
memory, which were not intentional and forced the author to use unsafe code
blocks for potentially hazardous code. Table 5 summarizes how the faults were
translated into Rust.

53

1pub fn rust_stack_write(
2_fps: *mut file,
3buf: *const c_char,
4len: usize,
5offset: *mut loff_t,
6) -> isize {
7const KBUF_SIZE: usize = 10;
8let flag = 0; // variable to clobber
9let mut kbuf = [0; KBUF_SIZE];
10let bytes_written;
11

12unsafe {
13bytes_written = std::os::kernel::simple_write_to_buffer(
14kbuf.as_mut_ptr() as *mut c_void,
15len,
16offset,
17buf as *const c_void,
18len,
19);
20}
21

22bytes_written
23}

Figure 24. Stack buffer overflow in Rust

The reason for unsafety was either unsafe function call or unsafe memory access.
Both could be mitigated with some effort. Unsafe memory access could be miti-
gated by implementing safe memory management and safe data structures. Normal
Rust standard library contains both of these but when used in the kernel settings,
the normal standard library cannot be used; instead Rust provides a small core
library, which provides only basic pointer types and only stack based memory
management. Nothing would prevent a kernel programmer from implementing for
instance slab based memory management, although it was deemed to be outside
of the scope of this work. The same this true for unsafe C functions, which could
be reimplemented in safe Rust. This has been indeed how Rust has been used in
some porting efforts. In Linux kernel setting, this seems, however, very unlikely.
It would mean that the kernel developers would change their whole infrastructure
and learn a new language to use in kernel programming and since the kernel devel-
opment process seems to work in its current form, it is difficult to see what would
drive a change of this magnitude.

Indeed, this social issue of C as traditionally used kernel programming language
and the economy of existing, tested codebase may be the biggest hurdles to the
widespread use of Rust in the kernel context. The other problems mentioned are
of technical nature and they tend to be more easily solved than social or economic

54

problems. It may be that the future successes of Rust and other memory safe
languages come from new, greenfield projects.

Finally, it must also be noted that the current Rust implementation may not be
optimally safe Rust code, and it would have been possible to eliminate some of the
ported errors without using unsafe code. Rust language is also evolving in a rapid
pace, and may provide more facilities in the form of code and documentation for
reducing the use of unsafe code.

Table 5. Faults prevented in Rust port of C module and reasons for unsafety

Fault type Prevented by Rust/Reason for unsafety
Stack buffer overflow unsafe function access
Slab buffer overflow unsafe function access
Unsigned integer overflow yes (Only in debug-mode)
Signed integer underflow yes (Only in debug-mode)
Format string vulnerability unsafe function access
Stack area overflow unsafe memory access
Potential data race unsafe memory access
Double free unsafe function access
Use after free unsafe function access
Information leak unsafe memory access

5 Conclusions

This study surveyed various issues caused by memory unsafe programming and
their possible solutions. Even though the issues caused by the lack of memory
protection have long history and are well known, they still pose a serious threat
to the security of the computer systems.

The long list of mitigations surveyed have one thing in common. All the mitiga-
tions can be circumvented, if the attacker is clever and persistent enough. The
exploitation of the vulnerabilities is considerably more difficult in the modern op-
erating systems than it was twenty years ago, when the first stack based exploits
were popularized, nevertheless, it is still possible. This study showed that unfortu-
nately, there is no silver bullet for eliminating the problems caused by the memory
unsafety. The static analysis tools are either not powerful enough or easy enough
to use. The tools for dynamic analysis gave better results in the testing; however,
it is unclear if the dynamic analysis can find deep bugs in contrast of shallow ones
available in the test setting. Dynamic analysis also requires a separate testing

55

phase in addition to development phase in contrast with static analysis, which can
be easily included in the development process. This can hinder the use of dynamic
analysis in practice. Both analysis types have their use, yet, even if their usage will
increase, it is likely that they cannot significantly decrease the amount of memory
safety bugs.

Rewriting code in memory safe languages, such as, Rust, has often been brought
up as a way to eliminate memory safety problems. This may be the case when
these languages are used to write new code in new projects; however, this study
showed that there are serious challenges when trying to use them in old, established
settings, such as, Linux kernel. It is our hope, however, that by identifying the
challenges in using new tools in old settings can help to make some progress in
overcoming those challenges. Memory safe languages have one advantage compared
to static and dynamic code analysis techniques: they can provide guarantees that
certain bug classes can be eliminated altogether, or at least confined to unsafe
sections, whereas code analysis can only guarantee finding some of the bugs present
in the code. At the moment, it seems however, that the memory safety problems
stay with us for some time.

56

References

Abadi, M., Budiu, M., Erlingsson, Ú., & Ligatti, J. 2009. Control-flow integrity
principles, implementations, and applications. ACM Transactions on Infor-
mation and System Security, 13(1), 1–40. doi:10.1145/1609956.1609960

Alglave, J., Maranget, L., McKenney, P. E., Parri, A., & Stern, A. 2017a. A formal
kernel memory-ordering model (part 1). Linux Weekly News. Accessed on
5 January 2019. Retrieved from https://lwn.net/Articles/718628/

Alglave, J., Maranget, L., McKenney, P. E., Parri, A., & Stern, A. 2017b. A formal
kernel memory-ordering model (part 2). Linux Weekly News. Accessed on
5 January 2019. Retrieved from https://lwn.net/Articles/720550/

Andrews, J. 2008. Security bugs and full disclosure. Kernel Trap. Accessed on
15 October 2017. Retrieved from https://web.archive.org/web/20080719130436/
http://kerneltrap.org/Linux/Security_Bugs_and_Full_Disclosure

Anonymous. 2001. Once upon a free(). Phrack Magazine, 11(57). Accessed on
18 February 2018. Retrieved from http://phrack.org/issues/57/9.html

AppArmor Authors. 2017. AppArmor. Accessed on 1 November 2017. Retrieved
from http://wiki.apparmor.net/index.php/Main_Page

Argyroudis, P. 2012. The Linux kernel memory allocators from an exploitation
perspective [Argp]. Accessed on 17 December 2018. Retrieved from https :
//argp.github.io/2012/01/03/linux-kernel-heap-exploitation/

Arpaci-Dusseau, R. H., & Arpaci-Dusseau, A. C. 2014. Operating systems: Three
easy pieces. Arpaci-Dusseau Books Wisconsin. Accessed on 7 February 2018.
Retrieved from http://pages.cs.wisc.edu/~remzi/OSTEP/

Biesheuvel, A. 2016. KASLR in the arm64 Linux kernel [Work of ard]. Accessed
on 14 November 2018. Retrieved from http://www.workofard.com/2016/
05/kaslr-in-the-arm64-kernel/

Bletsch, T. 2011. Code-reuse attacks: New frontiers and defenses (Doctoral disser-
tation, North Carolina State University).

Bonwick, J., & Sun Microsystems. 1994. The slab allocator: An object-caching ker-
nel memory allocator. In USENIX summer (pp. 87–98). Accessed on 16 De-
cember 2018. Retrieved from https://www.usenix.org/legacy/publications/
library/proceedings/bos94/full_papers/bonwick.ps

Brown, N. 2016a. Better types in C using sparse and smatch. Linux Weekly News.
Accessed on 29 March 2019. Retrieved from https : / / lwn . net / Articles /
696624/

Brown, N. 2016b. Smatch: Pluggable static analysis for C. Accessed on 29 March
2019. Retrieved from https://lwn.net/Articles/691882/

https://dx.doi.org/10.1145/1609956.1609960
https://lwn.net/Articles/718628/
https://lwn.net/Articles/720550/
https://web.archive.org/web/20080719130436/http://kerneltrap.org/Linux/Security_Bugs_and_Full_Disclosure
https://web.archive.org/web/20080719130436/http://kerneltrap.org/Linux/Security_Bugs_and_Full_Disclosure
http://phrack.org/issues/57/9.html
http://wiki.apparmor.net/index.php/Main_Page
https://argp.github.io/2012/01/03/linux-kernel-heap-exploitation/
https://argp.github.io/2012/01/03/linux-kernel-heap-exploitation/
http://pages.cs.wisc.edu/~remzi/OSTEP/
http://www.workofard.com/2016/05/kaslr-in-the-arm64-kernel/
http://www.workofard.com/2016/05/kaslr-in-the-arm64-kernel/
https://www.usenix.org/legacy/publications/library/proceedings/bos94/full_papers/bonwick.ps
https://www.usenix.org/legacy/publications/library/proceedings/bos94/full_papers/bonwick.ps
https://lwn.net/Articles/696624/
https://lwn.net/Articles/696624/
https://lwn.net/Articles/691882/

57

Brown, N. 2016c, June 8. Sparse: A look under the hood. Linux Weekly News.
Accessed on 29 March 2019. Retrieved from https : / / lwn . net / Articles /
689907/

Burow, N., Zhang, X., & Payer, M. [Mathias]. 2018. Shining light on shadow stacks.
arXiv:1811.03165 [cs]. arXiv: 1811.03165. Accessed on 13 November 2018.
Retrieved from http://arxiv.org/abs/1811.03165

CEA LIST, & Inria. 2019. Frama-C. Accessed on 29 March 2019. Retrieved from
https://frama-c.com/

Chisnall, D. 2010. What is Mac OS X? Accessed on 6 August 2017. Retrieved from
http://www.informit.com/articles/article.aspx?p=1552774

Clang. 2019. Clang: A C language family frontend for LLVM. Accessed on 30 March
2019. Retrieved from https://clang.llvm.org/

Cook, K. 2014. -fstack-protector-strong [Codeblog]. Accessed on 11 November 2018.
Retrieved from https ://outflux .net/blog/archives/2014/01/27/ fstack-
protector-strong/

Cook, K. 2015. Kernel Self Protection Project. Linux Weekly News. Accessed on
14 October 2017. Retrieved from https://lwn.net/Articles/663361/

Corbet, J. 2009. Fun with NULL pointers, part 1. Linux Weekly News. Accessed
on 6 June 2016. Retrieved from https://lwn.net/Articles/342330/

Corbet, J. 2015. Kernel security: Beyond bug fixing [LWN.net]. Linux Weekly News.
Accessed on 14 October 2017. Retrieved from https://lwn.net/Articles/
662219/

Corbet, J. 2014. One year of Coverity work. Linux Weekly News. Accessed on
20 April 2019. Retrieved from https://lwn.net/Articles/608992/

Corbet, J. 2017a. Preventing stack guard-page hopping. Linux Weekly News. Ac-
cessed on 27 November 2018. Retrieved from https :// lwn .net/Articles/
725832/

Corbet, J. 2017b. Unsafe_put_user() turns out to be unsafe. Accessed on 15 Oc-
tober 2017. Retrieved from https://lwn.net/Articles/736348/

Corbet, J. 2016. Virtually mapped kernel stacks. Linux Weekly News. Accessed on
20 November 2018. Retrieved from https://lwn.net/Articles/692208/

Corbet, J., Rubini, A., & Kroah-Hartman, G. 2005. Linux device drivers: Where
the kernel meets the hardware. ” O’Reilly Media, Inc.”

COW, D. 2016. Dirty COW. Accessed on 5 January 2019. Retrieved from https:
//dirtycow.ninja/

Cowan, C., Barringer, M., Beattie, S., Kroah-Hartman, G., Frantzen, M., & Lok-
ier, J. 2001. FormatGuard: Automatic protection from printf format string
vulnerabilities. In USENIX security symposium (Vol. 91, p. 10).

https://lwn.net/Articles/689907/
https://lwn.net/Articles/689907/
https://arxiv.org/abs/1811.03165
http://arxiv.org/abs/1811.03165
https://frama-c.com/
http://www.informit.com/articles/article.aspx?p=1552774
https://clang.llvm.org/
https://outflux.net/blog/archives/2014/01/27/fstack-protector-strong/
https://outflux.net/blog/archives/2014/01/27/fstack-protector-strong/
https://lwn.net/Articles/663361/
https://lwn.net/Articles/342330/
https://lwn.net/Articles/662219/
https://lwn.net/Articles/662219/
https://lwn.net/Articles/608992/
https://lwn.net/Articles/725832/
https://lwn.net/Articles/725832/
https://lwn.net/Articles/736348/
https://lwn.net/Articles/692208/
https://dirtycow.ninja/
https://dirtycow.ninja/

58

Cowan, C., Wagle, P., Pu, C., Beattie, S., & Walpole, J. 1999. Buffer Overflows:
Attacks and Defenses for the Vulnerability of the Decade.

Cppcheck. 2019. Cppcheck wiki: Found bugs. Accessed on 20 April 2019. Retrieved
from https://web.archive.org/web/20131014013121/http://sourceforge.net/
apps/mediawiki/cppcheck/index.php?title=Found_bugs#Linux_kernel

CVE-2009-1897. 2009. CVE-2009-1897. Accessed on 6 June 2016. Retrieved from
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1897

CVE-2010-2240. 2010. CVE-2010-2240. Accessed on 28 November 2018. Retrieved
from https://nvd.nist.gov/vuln/detail/CVE-2010-2240

CVE-2010-3848. 2010. CVE-2010-3848. Accessed on 28 November 2018. Retrieved
from https://nvd.nist.gov/vuln/detail/CVE-2010-3848

CVE-2013-1848. 2013. CVE-2013-1848. Accessed on 20 January 2019. Retrieved
from https://nvd.nist.gov/vuln/detail/CVE-2013-1848

CVE-2014-0196. 2014. CVE-2014-0196. Accessed on 5 January 2019. Retrieved
from https://nvd.nist.gov/vuln/detail/CVE-2014-0196

CVE-2016-5195. 2016. CVE-2016-5195. Accessed on 5 January 2019. Retrieved
from https://nvd.nist.gov/vuln/detail/CVE-2016-5195

CVE-2016-5344. 2016. CVE-2016-5344. Accessed on 20 January 2019. Retrieved
from https://nvd.nist.gov/vuln/detail/CVE-2016-5344

CVE-2016-8655. 2016. CVE-2016-8655. Accessed on 5 January 2019. Retrieved
from https://nvd.nist.gov/vuln/detail/CVE-2016-8655

CVE-2017-1000251. 2017. CVE-2017-1000251. Accessed on 2 November 2018. Re-
trieved from https://nvd.nist.gov/vuln/detail/CVE-2017-1000251

CVE-2017-2636. 2017. CVE-cve-2017-2636. Accessed on 5 January 2019. Retrieved
from https://nvd.nist.gov/vuln/detail/CVE-CVE-2017-2636

CVE-2018-0825. 2018. CVE-2018-0825. Accessed on 26 March 2018. Retrieved from
https://nvd.nist.gov/vuln/detail/CVE-2018-0825

CVE-2018-1000004. 2018. CVE-2018-1000004. Accessed on 16 January 2018. Re-
trieved from https://nvd.nist.gov/vuln/detail/CVE-2018-1000004

CVE-2018-6789. 2018. CVE-2018-6789. Accessed on 26 March 2018. Retrieved from
https://nvd.nist.gov/vuln/detail/CVE-2018-6789

CWE-415. 2019. CWE-415. Accessed on 1 May 2019. Retrieved from https://cwe.
mitre.org/data/definitions/415.html

CWE-416. 2019. CWE-416. Accessed on 1 May 2019. Retrieved from https://cwe.
mitre.org/data/definitions/416.html

de Raadt, T. 2004. Exploit mitigation techniques. Accessed on 28 October 2018.
Retrieved from http://www.openbsd.org/papers/ven05-deraadt/index.html

https://web.archive.org/web/20131014013121/http://sourceforge.net/apps/mediawiki/cppcheck/index.php?title=Found_bugs#Linux_kernel
https://web.archive.org/web/20131014013121/http://sourceforge.net/apps/mediawiki/cppcheck/index.php?title=Found_bugs#Linux_kernel
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1897
https://nvd.nist.gov/vuln/detail/CVE-2010-2240
https://nvd.nist.gov/vuln/detail/CVE-2010-3848
https://nvd.nist.gov/vuln/detail/CVE-2013-1848
https://nvd.nist.gov/vuln/detail/CVE-2014-0196
https://nvd.nist.gov/vuln/detail/CVE-2016-5195
https://nvd.nist.gov/vuln/detail/CVE-2016-5344
https://nvd.nist.gov/vuln/detail/CVE-2016-8655
https://nvd.nist.gov/vuln/detail/CVE-2017-1000251
https://nvd.nist.gov/vuln/detail/CVE-CVE-2017-2636
https://nvd.nist.gov/vuln/detail/CVE-2018-0825
https://nvd.nist.gov/vuln/detail/CVE-2018-1000004
https://nvd.nist.gov/vuln/detail/CVE-2018-6789
https://cwe.mitre.org/data/definitions/415.html
https://cwe.mitre.org/data/definitions/415.html
https://cwe.mitre.org/data/definitions/416.html
https://cwe.mitre.org/data/definitions/416.html
http://www.openbsd.org/papers/ven05-deraadt/index.html

59

Delalleau, G. 2005. Large memory management vulnerabilities. Accessed on 27 Novem-
ber 2018. Retrieved from https://cansecwest.com/core05/memory_vulns_
delalleau.pdf

Dietz, W., Li, P., Regehr, J., & Adve, V. 2012. Understanding integer overflow
in C/C++. In Proceedings of the 34th international conference on software
engineering (ICSE), Zurich, Switzerland (p. 11). Zurich, Switzerland: IEEE
Press. Accessed on 19 July 2018. Retrieved from http://www.cs.utah.edu/
~regehr/papers/overflow12.pdf

Dlang. 2019. Areas of D usage. Accessed on 24 April 2019. Retrieved from https:
//dlang.org/areas-of-d-usage.html

Duarte, G. 2009. How The Kernel Manages Your Memory. Accessed on 12 Decem-
ber 2018. Retrieved from https://manybutfinite.com/post/how-the-kernel-
manages-your-memory/

Eckert, M., Bianchi, A., Wang, R., Shoshitaishvili, Y., Kruegel, C., & Vigna, G.
2018. HeapHopper: Bringing bounded model checking to heap implementa-
tion security. In Proceedings of the 27th USENIX security symposium (p. 19).
27th USENIX security symposium. Baltimore, MD, USA.

Edge, J. 2014. ”Strong” stack protection for GCC. Linux Weekly News. Accessed
on 26 September 2018. Retrieved from https://lwn.net/Articles/584225/

Edge, J. 2016. Hardened usercopy. Linux Weekly News. Accessed on 28 November
2018. Retrieved from https://lwn.net/Articles/695991/

Edge, J. 2013a. Kernel address space layout randomization. Linux Weekly News.
Accessed on 11 November 2018. Retrieved from https://lwn.net/Articles/
569635/

Edge, J. 2013b. Randomizing the kernel [Linux weekly news]. Linux Weekly News.
Accessed on 12 November 2018. Retrieved from https://lwn.net/Articles/
546686/

Edge, J. 2009. The future for grsecurity. Linux Weekly News. Accessed on 25 Oc-
tober 2017. Retrieved from https://lwn.net/Articles/313621/

Edgecombe, R. 2018. Kernel-hardening - [PATCH v9 0/4] KASLR feature to ran-
domize each loadable module. Accessed on 14 November 2018. Retrieved from
https://www.openwall.com/lists/kernel-hardening/2018/11/10/1

Efremov, D., Mandrykin, M., & Khoroshilov, A. 2018. Deductive verification of un-
modified Linux kernel library functions. In T. Margaria & B. Steffen (Eds.),
Leveraging applications of formal methods, verification and validation. veri-
fication (pp. 216–234). Lecture Notes in Computer Science. Springer Inter-
national Publishing.

Evans, C. 2017. Ode to the use-after-free: One vulnerable function, a thousand pos-
sibilities. Accessed on 8 May 2017. Retrieved from https://scarybeastsecurity.
blogspot.com/2017/05/ode-to-use-after-free-one-vulnerable.html

https://cansecwest.com/core05/memory_vulns_delalleau.pdf
https://cansecwest.com/core05/memory_vulns_delalleau.pdf
http://www.cs.utah.edu/~regehr/papers/overflow12.pdf
http://www.cs.utah.edu/~regehr/papers/overflow12.pdf
https://dlang.org/areas-of-d-usage.html
https://dlang.org/areas-of-d-usage.html
https://manybutfinite.com/post/how-the-kernel-manages-your-memory/
https://manybutfinite.com/post/how-the-kernel-manages-your-memory/
https://lwn.net/Articles/584225/
https://lwn.net/Articles/695991/
https://lwn.net/Articles/569635/
https://lwn.net/Articles/569635/
https://lwn.net/Articles/546686/
https://lwn.net/Articles/546686/
https://lwn.net/Articles/313621/
https://www.openwall.com/lists/kernel-hardening/2018/11/10/1
https://scarybeastsecurity.blogspot.com/2017/05/ode-to-use-after-free-one-vulnerable.html
https://scarybeastsecurity.blogspot.com/2017/05/ode-to-use-after-free-one-vulnerable.html

60

Facebook. 2019. Infer. Accessed on 29 March 2019. Retrieved from https://fbinfer.
com/

Fog, A. 2018. Calling conventions. Accessed on Retrieved from https : //www.
agner.org/optimize/calling_conventions.pdf

Gaurav, S. K., Keromytis, D., Angelos, & Prevelakis, V. 2003. Countering code-
injection attacks with instruction-set randomization. In Proceedings of the
10th ACM conference on computer and communications security (p. 10).
ACM.

GCC. 2019. GCC, the gnu compiler collection. Accessed on 29 March 2019. Re-
trieved from https://gcc.gnu.org/

Google. 2019. Syzkaller. Accessed on 21 April 2019. Retrieved from https://github.
com/google/syzkaller

Gorman, M. 2004. Understanding the Linux Virtual Memory Manager. Bruce
Perens’ Open Source series. Upper Saddle River, NJ: Prentice Hall.

Groß, S. 2014. Exploiting CVE-2014-0196 a walk-through of the Linux pty race
condition PoC [Include security]. Accessed on 5 January 2019. Retrieved
from http://blog.includesecurity.com/2014/06/exploit-walkthrough-cve-
2014-0196-pty-kernel-race-condition.html

Grsecurity. 2017. Grsecurity.net. Accessed on 15 October 2017. Retrieved from
https://www.grsecurity.net/

Gruss, D., Lipp, M., Schwarz, M., Fellner, R., Maurice, C., & Mangard, S. 2017.
KASLR is dead: Long live KASLR. In E. Bodden, M. Payer, & E. Athana-
sopoulos (Eds.), Engineering secure software and systems (Vol. 10379, pp. 161–
176). doi:10.1007/978-3-319-62105-0_11

Hall, J., Méndez, R. C., & Lich, B. 2017, April 5. Mitigate threats by using Windows
10 security features. Accessed on 23 July 2017. Retrieved from https://docs.
microsoft . com / en - us / windows / threat - protection / overview - of - threat -
mitigations-in-windows-10

Horn, J. 2016. Project Zero: Exploiting Recursion in the Linux Kernel. Accessed
on 20 November 2018. Retrieved from https://googleprojectzero.blogspot.
com/2016/06/exploiting-recursion-in-linux-kernel_20.html

Howard, M. 2006. Address space layout randomization in Windows Vista [Michael
howard’s web log]. Accessed on 23 July 2017. Retrieved from https://blogs.
msdn.microsoft.com/michael_howard/2006/05/26/address-space-layout-
randomization-in-windows-vista/

Howard, M., & Lipner, S. 2003. Inside the Windows security push. IEEE Security
Privacy, 1(1), 57–61. doi:10.1109/MSECP.2003.1176996

Ionescu, A. 2017. Universally bypassing CFG through mutability abuse. EuskalHack
2017, Donostia. Accessed on 15 September 2018. Retrieved from http://alex-
ionescu.com/publications/euskalhack/euskalhack2017-cfg.pdf

https://fbinfer.com/
https://fbinfer.com/
https://www.agner.org/optimize/calling_conventions.pdf
https://www.agner.org/optimize/calling_conventions.pdf
https://gcc.gnu.org/
https://github.com/google/syzkaller
https://github.com/google/syzkaller
http://blog.includesecurity.com/2014/06/exploit-walkthrough-cve-2014-0196-pty-kernel-race-condition.html
http://blog.includesecurity.com/2014/06/exploit-walkthrough-cve-2014-0196-pty-kernel-race-condition.html
https://www.grsecurity.net/
https://dx.doi.org/10.1007/978-3-319-62105-0_11
https://docs.microsoft.com/en-us/windows/threat-protection/overview-of-threat-mitigations-in-windows-10
https://docs.microsoft.com/en-us/windows/threat-protection/overview-of-threat-mitigations-in-windows-10
https://docs.microsoft.com/en-us/windows/threat-protection/overview-of-threat-mitigations-in-windows-10
https://googleprojectzero.blogspot.com/2016/06/exploiting-recursion-in-linux-kernel_20.html
https://googleprojectzero.blogspot.com/2016/06/exploiting-recursion-in-linux-kernel_20.html
https://blogs.msdn.microsoft.com/michael_howard/2006/05/26/address-space-layout-randomization-in-windows-vista/
https://blogs.msdn.microsoft.com/michael_howard/2006/05/26/address-space-layout-randomization-in-windows-vista/
https://blogs.msdn.microsoft.com/michael_howard/2006/05/26/address-space-layout-randomization-in-windows-vista/
https://dx.doi.org/10.1109/MSECP.2003.1176996
http://alex-ionescu.com/publications/euskalhack/euskalhack2017-cfg.pdf
http://alex-ionescu.com/publications/euskalhack/euskalhack2017-cfg.pdf

61

Information technology - Programming languages - C. 2011. International Organi-
zation for Standardization. Geneva, Switzerland.

Iwai, T. 2018. Kernel/git/torvalds/linux.git - Linux kernel source tree. Accessed
on 5 January 2019. Retrieved from https://git.kernel.org/pub/scm/linux/
kernel/git/torvalds/linux.git/commit/?id=b3defb791b26ea0683a93a4f49c77ec45ec96f10

Jang, Y., Lee, S., & Kim, T. 2016. Breaking kernel address space layout random-
ization with Intel TSX. In Proceedings of the 2016 ACM SIGSAC conference
on computer and communications security - CCS’16 (pp. 380–392). The 2016
ACM SIGSAC conference. doi:10.1145/2976749.2978321

Jones, D. 2013. Trinity: A Linux kernel fuzz tester.

Kaempf, M. 2001. Vudo - an object superstitiously believed to embody magical
powers. Phrack Magazine, 11(57). Accessed on 7 June 2018. Retrieved from
http://phrack.org/issues/57/8.html#article

Kernighan, B. W., & Ritchie, D. M. 1978. The C Programming Language. Prentice
Hall.

Khoroshilov, A., & Mandrykin, M. 2017. Specifying and proving correctness of
Linux kernel components with ACSL. Accessed on 20 April 2019. Retrieved
from http://linuxtesting.org/downloads/20170530-ispras-astraver.pdf

Kim, J. 2012. How does the SLUB allocator work. Accessed on 27 December 2018.
Retrieved from https://events.static.linuxfound.org/images/stories/pdf/
klf2012_kim.pdf

Kim, T. 2017. Rust.ko. Accessed on 24 April 2019. Retrieved from https://github.
com/tsgates/rust.ko

Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P., Elka-
duwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H.,
Winwood, S., NICTA, UNSW, Open Kernel Labs, & ANU. 2009. seL4: For-
mal verification of an OS kernel. In Proceedings of the ACM SIGOPS 22nd
symposium on operating systems principles (pp. 207–220). ACM. Accessed on
6 August 2017. Retrieved from http://dl.acm.org/citation.cfm?id=1629596

Klein, T. 2009. RELRO - A (not so well known) Memory Corruption Mitigation
Technique. Accessed on 9 January 2019. Retrieved from http ://tk - blog .
blogspot.com/2009/02/relro-not-so-well-known-memory.html

Kocher, P., Horn, J., Fogh, A., Genkin, D., Gruss, D., Haas, W., Hamburg, M.,
Lipp, M., Mangard, S., Prescher, T., Schwarz, M., & Yarom, Y. 2019. Spec-
tre Attacks: Exploiting Speculative Execution. In 40th IEEE Symposium on
Security and Privacy (S&P’19).

Konovalov, A. 2019. Coverage-guided USB fuzzing with Syzkaller. OffensiveCon
2019. Accessed on 22 April 2019. Retrieved from https://docs.google.com/
presentation/d/1z-giB9kom17Lk21YEjmceiNUVYeI6yIaG5_gZ3vKC-M

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=b3defb791b26ea0683a93a4f49c77ec45ec96f10
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=b3defb791b26ea0683a93a4f49c77ec45ec96f10
https://dx.doi.org/10.1145/2976749.2978321
http://phrack.org/issues/57/8.html#article
http://linuxtesting.org/downloads/20170530-ispras-astraver.pdf
https://events.static.linuxfound.org/images/stories/pdf/klf2012_kim.pdf
https://events.static.linuxfound.org/images/stories/pdf/klf2012_kim.pdf
https://github.com/tsgates/rust.ko
https://github.com/tsgates/rust.ko
http://dl.acm.org/citation.cfm?id=1629596
http://tk-blog.blogspot.com/2009/02/relro-not-so-well-known-memory.html
http://tk-blog.blogspot.com/2009/02/relro-not-so-well-known-memory.html
https://docs.google.com/presentation/d/1z-giB9kom17Lk21YEjmceiNUVYeI6yIaG5_gZ3vKC-M
https://docs.google.com/presentation/d/1z-giB9kom17Lk21YEjmceiNUVYeI6yIaG5_gZ3vKC-M

62

Kuperman, B., Brodley, C., Ozdoganoglu, H., Vijaykumar, T., & Jalote, A. 2005.
Detection and prevention of stack buffer overflow attacks. Communications
of the ACM, 48(11), 50–56. Accessed on 26 September 2018. Retrieved from
https://courses.cs.washington.edu/courses/csep590/05au/readings/p50-
kuperman.pdf

Lameter, C. 2007. SLUB: The unqueued slab allocator v6. Linux Weekly News.
Accessed on 16 December 2018. Retrieved from https://lwn.net/Articles/
229096/

Larabel, M. 2018. The Linux Kernel Is Now VLA-Free: A Win For Security, Less
Overhead & Better For Clang. Phoronix. Accessed on 28 November 2018.
Retrieved from https://phoronix.com/scan.php?page=news_item&px=
Linux-Kills-The-VLA

Lattner, C. 2011a. LLVM Project Blog: What Every C Programmer Should Know
About Undefined Behavior #1/3. Accessed on 17 May 2016. Retrieved from
http://blog.llvm.org/2011/05/what-every-c-programmer-should-know.html

Lattner, C. 2011b. LLVM Project Blog: What Every C Programmer Should Know
About Undefined Behavior #2/3. Accessed on 6 June 2016. Retrieved from
http://blog.llvm.org/2011/05/what-every-c-programmer-should-know_14.
html

Lea, D., & Gloger, W. 1996. A memory allocator. Accessed on 9 May 2018. Re-
trieved from http://gee.cs.oswego.edu/dl/html/malloc.html

Levy, E. 1996. Smashing the stack for fun and profit. Phrack Magazine, 7(49).

Linux Information Project. 2017. Kernel definition. Accessed on 10 October 2017.
Retrieved from http://www.linfo.org/kernel.html

Linux Kernel API. 2018. The Linux Kernel API. Accessed on 6 November 2018.
Retrieved from https://www.kernel.org/doc/htmldocs/kernel-api/

Linux Kernel Developers. 2017. The kernel address sanitizer (KASAN) — the
Linux kernel documentation. Accessed on 1 November 2017. Retrieved from
https://www.kernel.org/doc/html/latest/dev-tools/kasan.html

Lipp, M., Schwarz, M., Gruss, D., Prescher, T., Haas, W., Fogh, A., Horn, J., Man-
gard, S., Kocher, P., Genkin, D., Yarom, Y., & Hamburg, M. 2018. Melt-
down: Reading Kernel Memory from User Space. In 27th USENIX Security
Symposium (USENIX Security 18).

LLVM. 2019. The llvm compiler infrastructure. Accessed on 30 March 2019. Re-
trieved from https://www.llvm.org/

Löhner, C. 2017. Funny statistics for the Linux kernel - lines of code, bad words,
good words - the Linux counter project - statistics about Linux, its users
and more. Accessed on 10 October 2017. Retrieved from https : / / www .
linuxcounter.net/

https://courses.cs.washington.edu/courses/csep590/05au/readings/p50-kuperman.pdf
https://courses.cs.washington.edu/courses/csep590/05au/readings/p50-kuperman.pdf
https://lwn.net/Articles/229096/
https://lwn.net/Articles/229096/
https://phoronix.com/scan.php?page=news_item&px=Linux-Kills-The-VLA
https://phoronix.com/scan.php?page=news_item&px=Linux-Kills-The-VLA
http://blog.llvm.org/2011/05/what-every-c-programmer-should-know.html
http://blog.llvm.org/2011/05/what-every-c-programmer-should-know_14.html
http://blog.llvm.org/2011/05/what-every-c-programmer-should-know_14.html
http://gee.cs.oswego.edu/dl/html/malloc.html
http://www.linfo.org/kernel.html
https://www.kernel.org/doc/htmldocs/kernel-api/
https://www.kernel.org/doc/html/latest/dev-tools/kasan.html
https://www.llvm.org/
https://www.linuxcounter.net/
https://www.linuxcounter.net/

63

Loosemore, S., McGrath, R., Oram, A., & Stallman, R. M. 2001. The GNU C
library reference manual. Free software foundation Boston.

Machiry, A., Spensky, C., Corina, J., Stephens, N., Kruegel, C., & Vigna, G. 2017.
DR. CHECKER: A soundy analysis for linux kernel drivers. In Proceedings
of the 26th USENIX security symposioum, Vancouver, BC, Canada. Ac-
cessed on Retrieved from https://www.usenix.org/system/files/conference/
usenixsecurity17/sec17-machiry.pdf

Mackall, M. 2005. Slob: Introduce the SLOB allocator. Linux Weekly News. Ac-
cessed on 16 December 2018. Retrieved from https : // lwn .net/Articles/
157944/

Madhavapeddy, A., & Scott, D. J. 2014, January 1. Unikernels: The rise of the
virtual library operating system. Communications of the ACM, 57(1), 61–
69. doi:10.1145/2541883.2541895

Marco-Gisbert, H., & Ripoll, I. 2014. On the effectiveness of full-ASLR on 64-bit
Linux. Accessed on Retrieved from http://cybersecurity.upv.es/attacks/
offset2lib/offset2lib-paper.pdf

Marjamäki, D. 2019. Cppcheck: A tool for static C/C++ code analysis. Accessed
on 30 March 2019. Retrieved from http://cppcheck.sourceforge.net/

Meer, H. et al. 2010. Memory corruption attacks the (almost) complete history.
Blackhat USA.(Jul. 2010). Accessed on 4 March 2018. Retrieved from https:
//media.blackhat.com/bh-us-10/whitepapers/Meer/BlackHat-USA-2010-
Meer-History-of-Memory-Corruption-Attacks-wp.pdf

Miller, M. 2009. Preventing the exploitation of user mode heap corruption vul-
nerabilities – security research & defense [Microsoft tech net]. Accessed on
28 October 2018. Retrieved from https://blogs.technet.microsoft.com/srd/
2009/08/04/preventing- the- exploitation-of-user-mode-heap-corruption-
vulnerabilities/

Miller, M. 2013. Software defense: Mitigating heap corruption vulnerabilities –
security research & defense [Microsoft tech net]. Accessed on 28 October
2018. Retrieved from https://blogs.technet.microsoft.com/srd/2013/10/29/
software-defense-mitigating-heap-corruption-vulnerabilities/

MirageOS. 2019. MirageOS: A programming framework for building type-safe, mod-
ular systems. Accessed on 24 April 2019. Retrieved from https://mirage.io/

Moreira, J., Rigo, S., Polychronakis, M., & Kemerlis, V. P. 2017. DROP THE ROP
fine-grained control-flow integrity for the Linux kernel.

Mozilla Developer Network. 2019. Building Firefox with Rust code. Accessed on
1 May 2019. Retrieved from https://developer.mozilla.org/en-US/docs/
Mozilla/Firefox/Building_Firefox_with_Rust_code

Netzer, R. H. B., & Miller, B. P. 1992. What are race conditions?: Some issues and
formalizations. ACM Lett. Program. Lang. Syst. 1(1), 74–88. doi:10.1145/
130616.130623

https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-machiry.pdf
https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-machiry.pdf
https://lwn.net/Articles/157944/
https://lwn.net/Articles/157944/
https://dx.doi.org/10.1145/2541883.2541895
http://cybersecurity.upv.es/attacks/offset2lib/offset2lib-paper.pdf
http://cybersecurity.upv.es/attacks/offset2lib/offset2lib-paper.pdf
http://cppcheck.sourceforge.net/
https://media.blackhat.com/bh-us-10/whitepapers/Meer/BlackHat-USA-2010-Meer-History-of-Memory-Corruption-Attacks-wp.pdf
https://media.blackhat.com/bh-us-10/whitepapers/Meer/BlackHat-USA-2010-Meer-History-of-Memory-Corruption-Attacks-wp.pdf
https://media.blackhat.com/bh-us-10/whitepapers/Meer/BlackHat-USA-2010-Meer-History-of-Memory-Corruption-Attacks-wp.pdf
https://blogs.technet.microsoft.com/srd/2009/08/04/preventing-the-exploitation-of-user-mode-heap-corruption-vulnerabilities/
https://blogs.technet.microsoft.com/srd/2009/08/04/preventing-the-exploitation-of-user-mode-heap-corruption-vulnerabilities/
https://blogs.technet.microsoft.com/srd/2009/08/04/preventing-the-exploitation-of-user-mode-heap-corruption-vulnerabilities/
https://blogs.technet.microsoft.com/srd/2013/10/29/software-defense-mitigating-heap-corruption-vulnerabilities/
https://blogs.technet.microsoft.com/srd/2013/10/29/software-defense-mitigating-heap-corruption-vulnerabilities/
https://mirage.io/
https://developer.mozilla.org/en-US/docs/Mozilla/Firefox/Building_Firefox_with_Rust_code
https://developer.mozilla.org/en-US/docs/Mozilla/Firefox/Building_Firefox_with_Rust_code
https://dx.doi.org/10.1145/130616.130623
https://dx.doi.org/10.1145/130616.130623

64

Newsham, T. 2001. Exploiting format string vulnerabilities. Accessed on 19 June
2018. Retrieved from https://crypto.stanford.edu/cs155/papers/formatstring-
1.2.pdf

Onarlioglu, K., Bilge, L., Lanzi, A., Balzarotti, D., & Kirda, E. 2010. G-free: De-
feating return-oriented programming through gadget-less binaries. In Pro-
ceedings of the 26th annual computer security applications conference on -
ACSAC ’10 (p. 49). The 26th annual computer security applications confer-
ence. doi:10.1145/1920261.1920269

OpenBSD Developers. 2017. Openbsd. Accessed on 6 August 2017. Retrieved from
https://www.openbsd.org/

Packard, K. 2010. Kernel/git/torvalds/linux.git - Linux kernel source tree. Accessed
on 28 November 2018. Retrieved from https://git .kernel .org/pub/scm/
linux/kernel/git/torvalds/linux.git/commit/?id=320b2b8de12698082609ebbc1a17165727f4c893

PaX Team. 2001. Address space layout randomization. Accessed on 8 October 2018.
Retrieved from https://pax.grsecurity.net/docs/aslr.txt

Penninckx, W., Jacobs, B., Smans, J., & Muhlberg, J. T. 2019. Verification of
Linux kernel modules: Experience report. Accessed on Retrieved from https:
//www.researchgate.net/publication/267206117_Verification_of_Linux_
Kernel_Modules_Experience_Report

Perla, E., & Oldani, M. 2011. A guide to kernel exploitation: Attacking the core.
Amsterdam; Boston: Syngress.

Peslyak, A. 1997. Getting around non-executable stack (and fix). Accessed on 3 Au-
gust 2018. Retrieved from http://seclists.org/bugtraq/1997/Aug/63

Peslyak, A. 2000. Jpeg com marker processing vulnerability. Accessed on 18 Febru-
ary 2018. Retrieved from http://www.openwall.com/articles/JPEG-COM-
Marker-Vulnerability

Pettersson, P. 2016. CVE-2016-8655 Linux af_packet.c race condition (local root)
[Oss-sec]. Accessed on 5 January 2019. Retrieved from https://seclists.org/
oss-sec/2016/q4/607

Phantasmal Phantasmagoria. 2005. The malloc maleficarum. bugtraq@securityfocus.com.
Accessed on 18 February 2018. Retrieved from https://dl.packetstormsecurity.
net/papers/attack/MallocMaleficarum.txt

Pierce, C. 2016. ROP is dying and your exploit mitigations are on life support
[Endgame]. Accessed on 15 September 2018. Retrieved from https://www.
endgame.com/blog/technical-blog/rop-dying-and-your-exploit-mitigations-
are-life-support

Pingios, A. 2010. CVE-2010-3848: Linux kernel econet_sendmsg() Stack Overflow.
Accessed on 28 November 2018. Retrieved from https://xorl.wordpress.com/
2010/12/01/cve-2010-3848-linux-kernel-econet_sendmsg-stack-overflow/

https://crypto.stanford.edu/cs155/papers/formatstring-1.2.pdf
https://crypto.stanford.edu/cs155/papers/formatstring-1.2.pdf
https://dx.doi.org/10.1145/1920261.1920269
https://www.openbsd.org/
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=320b2b8de12698082609ebbc1a17165727f4c893
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=320b2b8de12698082609ebbc1a17165727f4c893
https://pax.grsecurity.net/docs/aslr.txt
https://www.researchgate.net/publication/267206117_Verification_of_Linux_Kernel_Modules_Experience_Report
https://www.researchgate.net/publication/267206117_Verification_of_Linux_Kernel_Modules_Experience_Report
https://www.researchgate.net/publication/267206117_Verification_of_Linux_Kernel_Modules_Experience_Report
http://seclists.org/bugtraq/1997/Aug/63
http://www.openwall.com/articles/JPEG-COM-Marker-Vulnerability
http://www.openwall.com/articles/JPEG-COM-Marker-Vulnerability
https://seclists.org/oss-sec/2016/q4/607
https://seclists.org/oss-sec/2016/q4/607
https://dl.packetstormsecurity.net/papers/attack/MallocMaleficarum.txt
https://dl.packetstormsecurity.net/papers/attack/MallocMaleficarum.txt
https://www.endgame.com/blog/technical-blog/rop-dying-and-your-exploit-mitigations-are-life-support
https://www.endgame.com/blog/technical-blog/rop-dying-and-your-exploit-mitigations-are-life-support
https://www.endgame.com/blog/technical-blog/rop-dying-and-your-exploit-mitigations-are-life-support
https://xorl.wordpress.com/2010/12/01/cve-2010-3848-linux-kernel-econet_sendmsg-stack-overflow/
https://xorl.wordpress.com/2010/12/01/cve-2010-3848-linux-kernel-econet_sendmsg-stack-overflow/

65

Popov, A. 2017. CVE-2017-2636: Exploit the race condition in the n_hdlc linux
kernel driver bypassing SMEP. Accessed on 5 January 2019. Retrieved from
https://a13xp0p0v.github.io/2017/03/24/CVE-2017-2636.html

Popov, A. 2018. How STACKLEAK improves Linux kernel security. Accessed on
27 November 2018. Retrieved from http://blog.ptsecurity.com/2018/10/
how-stackleak-improves-linux-kernel.html

Qualys. 2018. Oss-security - integer overflow in Linux’s create_elf_tables() (CVE-
2018-14634). Accessed on 20 January 2019. Retrieved from https://www.
openwall.com/lists/oss-security/2018/09/25/4

Qualys. 2017a. Qualys Security Advisory. Accessed on 19 June 2017. Retrieved
from https://www.qualys.com/2017/06/19/stack-clash/stack-clash.txt

Qualys. 2017b. The Stack Clash. Accessed on 19 June 2017. Retrieved from https:
//blog.qualys.com/securitylabs/2017/06/19/the-stack-clash

Quan, L. 2018. Oss-sec: Sound driver conditional competition. Accessed on 5 Jan-
uary 2019. Retrieved from https://seclists.org/oss-sec/2018/q1/51

Reece, A. 2013. Introduction to return oriented programming (ROP) [Code arcana].
Accessed on 9 September 2018. Retrieved from http ://codearcana .com/
posts/2013/05/28/introduction-to-return-oriented-programming-rop.html

Regehr, J. 2011. Race condition vs. data race [Embedded in academia]. Accessed
on 27 July 2018. Retrieved from https://blog.regehr.org/archives/490

Remacs developers. 2019. Remacs: A community-driven port of emacs to rust.
Accessed on 1 May 2019. Retrieved from https://github.com/remacs/remacs

Reshetova, E., Liljestrand, H., Paverd, A., & Asokan, N. 2017. Towards Linux
kernel memory safety. arXiv:1710.06175 [cs]. arXiv: 1710.06175. Accessed
on 29 October 2017. Retrieved from http://arxiv.org/abs/1710.06175

Ritchie, D. M. 1993. The development of the C language. SIGPLAN Not. 28(3),
201–208. doi:10.1145/155360.155580

Ritchie, D. M., & Thompson, K. 1974. The UNIX time-sharing system. Commun.
ACM, 17(7), 365–375. doi:10.1145/361011.361061

Rocha, L. 2016. Evolution of stack based buffer overflows [Count upon security].
Accessed on 29 August 2018. Retrieved from https ://countuponsecurity .
com/tag/return-to-libc/

Rodrigues, R. E., Campos, V. H. S., & Pereira, F. M. Q. 2013. A fast and low-
overhead technique to secure programs against integer overflows. In Proceed-
ings of the 2013 IEEE/ACM international symposium on code generation and
optimization (CGO) (pp. 1–11). Proceedings of the 2013 IEEE/ACM inter-
national symposium on code generation and optimization (CGO). doi:10 .
1109/CGO.2013.6494996

https://a13xp0p0v.github.io/2017/03/24/CVE-2017-2636.html
http://blog.ptsecurity.com/2018/10/how-stackleak-improves-linux-kernel.html
http://blog.ptsecurity.com/2018/10/how-stackleak-improves-linux-kernel.html
https://www.openwall.com/lists/oss-security/2018/09/25/4
https://www.openwall.com/lists/oss-security/2018/09/25/4
https://www.qualys.com/2017/06/19/stack-clash/stack-clash.txt
https://blog.qualys.com/securitylabs/2017/06/19/the-stack-clash
https://blog.qualys.com/securitylabs/2017/06/19/the-stack-clash
https://seclists.org/oss-sec/2018/q1/51
http://codearcana.com/posts/2013/05/28/introduction-to-return-oriented-programming-rop.html
http://codearcana.com/posts/2013/05/28/introduction-to-return-oriented-programming-rop.html
https://blog.regehr.org/archives/490
https://github.com/remacs/remacs
https://arxiv.org/abs/1710.06175
http://arxiv.org/abs/1710.06175
https://dx.doi.org/10.1145/155360.155580
https://dx.doi.org/10.1145/361011.361061
https://countuponsecurity.com/tag/return-to-libc/
https://countuponsecurity.com/tag/return-to-libc/
https://dx.doi.org/10.1109/CGO.2013.6494996
https://dx.doi.org/10.1109/CGO.2013.6494996

66

Roemer, R., Buchanan, E., Shacham, H., & Savage, S. 2012. Return-oriented pro-
gramming: Systems, languages, and applications. ACM Transactions on In-
formation and System Security, 15(1), 1–34. doi:10.1145/2133375.2133377

Rosenberg, D. 2016. A heap of trouble: Breaking the Linux kernel SLOB allocator.
Accessed on 18 December 2018. Retrieved from https://www.vsecurity.com/
download/papers/slob-exploitation.pdf

Rust Developers. 2019. Rust programming language. Accessed on 21 April 2019.
Retrieved from https://www.rust-lang.org/

Serebryany, K., & Iskhodzhanov, T. 2009. ThreadSanitizer: Data race detection
in practice. In Proceedings of the workshop on binary instrumentation and
applications (pp. 62–71). WBIA ’09. doi:10.1145/1791194.1791203

Seri, B. 2017. Kernel/git/torvalds/linux.git - Linux kernel source tree. Accessed on
7 November 2018. Retrieved from https://git.kernel.org/pub/scm/linux/
kernel/git/torvalds/linux.git/commit/?id=e860d2c904d1a9f38a24eb44c9f34b8f915a6ea3

Seward, J. 2019. Valgrind. Accessed on 21 April 2019. Retrieved from http://www.
valgrind.org/

sgrakkyu, & twiz. 2007. Attacking the Core: Kernel Exploiting Notes. Phrack Mag-
azine, (64). Accessed on 29 November 2018. Retrieved from http://phrack.
org/issues/64/6.html

Shacham, H. 2007. The geometry of innocent flesh on the bone: Return-into-libc
without function calls (on the x86). In Proceedings of the 14th ACM con-
ference on computer and communications security (pp. 552–561). CCS ’07.
doi:10.1145/1315245.1315313

Smalley, S., Vance, C., & Salamon, W. 2001. Implementing SELinux as a Linux
security module. NAI Labs Report, 1(43), 139.

Smatch. 2019. Smatch. Accessed on 29 March 2019. Retrieved from http://smatch.
sourceforge.net/

Spafford, E. H. 1989. The internet worm program: An analysis. ACM SIGCOMM
Computer Communication Review, 19(1), 17–57.

Sparse. 2019. Sparse. Accessed on 29 March 2019. Retrieved from https://sparse.
wiki.kernel.org/index.php/Main_Page

Spender, B. 2013. KASLR: An exercise in cargo cult security [Grsecurity forums].
Accessed on 15 November 2018. Retrieved from https://forums.grsecurity.
net/viewtopic.php?f=7&t=3367

Strackx, R., Younan, Y., Philippaerts, P., Piessens, F., Lachmund, S., & Walter,
T. 2009. Breaking the memory secrecy assumption. In Proceedings of the
second european workshop on system security - EUROSEC ’09 (pp. 1–8).
The second european workshop. doi:10.1145/1519144.1519145

Synopsys. 2019a. Coverity. Accessed on 29 March 2019. Retrieved from https :
//scan.coverity.com/

https://dx.doi.org/10.1145/2133375.2133377
https://www.vsecurity.com/download/papers/slob-exploitation.pdf
https://www.vsecurity.com/download/papers/slob-exploitation.pdf
https://www.rust-lang.org/
https://dx.doi.org/10.1145/1791194.1791203
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=e860d2c904d1a9f38a24eb44c9f34b8f915a6ea3
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=e860d2c904d1a9f38a24eb44c9f34b8f915a6ea3
http://www.valgrind.org/
http://www.valgrind.org/
http://phrack.org/issues/64/6.html
http://phrack.org/issues/64/6.html
https://dx.doi.org/10.1145/1315245.1315313
http://smatch.sourceforge.net/
http://smatch.sourceforge.net/
https://sparse.wiki.kernel.org/index.php/Main_Page
https://sparse.wiki.kernel.org/index.php/Main_Page
https://forums.grsecurity.net/viewtopic.php?f=7&t=3367
https://forums.grsecurity.net/viewtopic.php?f=7&t=3367
https://dx.doi.org/10.1145/1519144.1519145
https://scan.coverity.com/
https://scan.coverity.com/

67

Synopsys. 2019b. Coverity Linux scan. Accessed on 20 April 2019. Retrieved from
https://scan.coverity.com/projects/linux

Szekeres, L., Payer, M. [M.], Wei, T., & Song, D. 2013. SoK: Eternal war in memory.
In 2013 IEEE symposium on security and privacy (pp. 48–62). 2013 IEEE
symposium on security and privacy. doi:10.1109/SP.2013.13

Taylor, I. L. 2008. Airs – signed overflow. Accessed on 27 July 2018. Retrieved
from https://www.airs.com/blog/archives/120

The Computer Security Group at UC Santa Barbara. 2019. Dr. CHECKER:
A soundy vulnerability detection tool for linux kernel drivers. Accessed on
20 April 2019. Retrieved from http://cppcheck.sourceforge.net/

Timberg, C. 2015. The kernel of the argument. The Washington Post. Accessed on
8 May 2017. Retrieved from http://www.washingtonpost.com/sf/business/
2015/11/05/net-of-insecurity-the-kernel-of-the-argument

van de Ven, A. 2004. New security enhancements in Red Hat Enterprise Linux
v.3, update 3. Red Hat. Accessed on 28 October 2018. Retrieved from https:
//web.archive.org/web/20050512030425/http://www.redhat.com/f/pdf/
rhel/WHP0006US_Execshield.pdf

Vanegue, J. 2010. Zero-sized heap allocations vulnerability analysis. In WOOT.
WOOT’10 proceedings of the 4th USENIX conference on offensive technolo-
gies, Washington, DC: USENIX.

Vermeulen, S. 2011. High level explanation on some binary executable security.
Accessed on 9 January 2019. Retrieved from http://blog.siphos.be/2011/
07/high-level-explanation-on-some-binary-executable-security/

Wang, X., Chen, H., Cheung, A., Jia, Z., Zeldovich, N., & Kaashoek, M. F. 2012.
Undefined behavior: What happened to my code? In Proceedings of the asia-
pacific workshop on systems (p. 9). ACM. Accessed on 17 May 2016. Re-
trieved from http://dl.acm.org/citation.cfm?id=2349905

Wang, X., Zeldovich, N., Kaashoek, M. F., & Solar-Lezama, A. 2013. Towards
optimization-safe systems: Analyzing the impact of undefined behavior. (pp. 260–
275). doi:10.1145/2517349.2522728

Wojtczuk, R. 2001. The advanced return-into-lib(c) exploits: Pax case study. Phrack
Magazine, 11(58). Accessed on 29 August 2018. Retrieved from http : / /
phrack.org/issues/58/4.html

Xi, H. 2019. The ATS programming language. Accessed on 24 April 2019. Retrieved
from http://www.ats-lang.org/

Xie, T., Zhang, Y., Li, J., Liu, H., & Gu, D. 2016. New exploit methods against
ptmalloc of GLIBC. In 2016 IEEE trustcom/BigDataSE/ISPA (pp. 646–
653). 2016 IEEE trustcom/BigDataSE/ISPA. doi:10.1109/TrustCom.2016.
0121

https://scan.coverity.com/projects/linux
https://dx.doi.org/10.1109/SP.2013.13
https://www.airs.com/blog/archives/120
http://cppcheck.sourceforge.net/
http://www.washingtonpost.com/sf/business/2015/11/05/net-of-insecurity-the-kernel-of-the-argument
http://www.washingtonpost.com/sf/business/2015/11/05/net-of-insecurity-the-kernel-of-the-argument
https://web.archive.org/web/20050512030425/http://www.redhat.com/f/pdf/rhel/WHP0006US_Execshield.pdf
https://web.archive.org/web/20050512030425/http://www.redhat.com/f/pdf/rhel/WHP0006US_Execshield.pdf
https://web.archive.org/web/20050512030425/http://www.redhat.com/f/pdf/rhel/WHP0006US_Execshield.pdf
http://blog.siphos.be/2011/07/high-level-explanation-on-some-binary-executable-security/
http://blog.siphos.be/2011/07/high-level-explanation-on-some-binary-executable-security/
http://dl.acm.org/citation.cfm?id=2349905
https://dx.doi.org/10.1145/2517349.2522728
http://phrack.org/issues/58/4.html
http://phrack.org/issues/58/4.html
http://www.ats-lang.org/
https://dx.doi.org/10.1109/TrustCom.2016.0121
https://dx.doi.org/10.1109/TrustCom.2016.0121

68

Appendices

Appendix 1: Makefile source code

ifneq ($(KERNELRELEASE),)
obj-m += faulty.o
faulty-y := faulty_main.o

ccflags-y := -DDEBUG -Wall

else

all:
make -C /lib/modules/$(shell uname -r)/build M=$(PWD) modules

clean:
make -C /lib/modules/$(shell uname -r)/build M=$(PWD) clean

endif

69

Appendix 2: faulty.c source code

/*
* Faulty: A kernel module with intentional (and unintentional?) bugs
*/

#include <linux/debugfs.h>
#include <linux/delay.h>
#include <linux/fs.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/uaccess.h>
#include <linux/slab.h>

#define BUF_SIZE 256

static struct dentry *dir;
static const char *root = "ffaulty";

static int init_endpoint(struct dentry *dir, const char *fn,
const struct file_operations *fops);

static ssize_t sbo_read(struct file *fps, __user char *buf, size_t len,
loff_t *offset);

static ssize_t sbo_write(struct file *fps, const char __user *buf,
size_t len, loff_t *offset);

static ssize_t slab_read(struct file *fps, char __user *buf, size_t len,
loff_t *offset);

static ssize_t slab_write(struct file *fps, const char __user *buf,
size_t len, loff_t *offset);

static void slab_operate_with_other_data(void);
static ssize_t unsigned_overflow_read(struct file *fps, char __user *buf,

size_t len, loff_t *offset);
static ssize_t signed_underflow_read(struct file *fps, char __user *buf,

size_t len, loff_t *offset);
static ssize_t format_read(struct file *fps, char __user *buf, size_t len,

loff_t *offset);
static ssize_t format_write(struct file *fps, const char __user *buf,

size_t len, loff_t *offset);
static ssize_t race_read(struct file *fps, char __user *buf, size_t len,

loff_t *offset);
static ssize_t race_write(struct file *fps, const char __user *buf,

size_t len, loff_t *offset);
static ssize_t df_alloc(struct file *fps, char __user *buf, size_t len,

loff_t *offset);
static ssize_t df_free(struct file *fps, const char __user *buf,

size_t len, loff_t *offset);
static ssize_t use_after_free_read(struct file *fps, char __user *buf,

size_t len, loff_t *offset);
static ssize_t infoleak_read(struct file *fps, char __user *buf,

size_t len, loff_t *offset);
static void non_reachable_function(void);

// stack buffer overflow
static char *buffer = "Write more than 10 bytes here to cause "

"stack buffer overflow.\n";

70

static const struct file_operations fops_sbo = {
.owner = THIS_MODULE,
.open = simple_open,
.read = sbo_read,
.write = sbo_write,

};

// slab corruption
static const struct file_operations fops_slab = {

.owner = THIS_MODULE,

.open = simple_open,

.read = slab_read,

.write = slab_write,
};

struct some_data {
char data[10];
bool flag_which_is_never_set;

};

static struct some_data *user_controlled;
static struct some_data *other_data;
static bool toggle;

// under/overflow
static u8 unsigned_counter = 250;
static s8 signed_counter = -124;

static const struct file_operations fops_overflow = {
.owner = THIS_MODULE,
.open = simple_open,
.read = unsigned_overflow_read,

};

static const struct file_operations fops_underflow = {
.owner = THIS_MODULE,
.open = simple_open,
.read = signed_underflow_read,

};

// format string bug
static char *some_string = "A write to this endpoint will get copied "

"to kernel message buffer\n";

static const struct file_operations fops_format = {
.owner = THIS_MODULE,
.open = simple_open,
.read = format_read,
.write = format_write,

};

// data race
static char *race1;
static char *race2;

static const struct file_operations fops_race = {

71

.owner = THIS_MODULE,

.open = simple_open,

.read = race_read,

.write = race_write,
};

// double free
static char *double_free;

static const struct file_operations fops_double_free = {
.owner = THIS_MODULE,
.open = simple_open,
.read = df_alloc,
.write = df_free,

};

// use after free
static const struct file_operations fops_use_after_free = {

.owner = THIS_MODULE,

.open = simple_open,

.read = use_after_free_read,
};

static const struct file_operations fops_infoleak = {
.owner = THIS_MODULE,
.open = simple_open,
.read = infoleak_read,

};

// FAULT: infoleak
#define DATA_LEN 4096
struct a_struct {

char data[DATA_LEN];
} *uninitialized;

static int __init mod_init(void)
{

pr_debug("Faulty: creating debugfs-endpoints\n");

dir = debugfs_create_dir(root, NULL);

if (dir == ERR_PTR(-ENODEV)) {
pr_err

("Faulty: Debugfs doesn't seem to be compiled "
"into the kernel\n");

return -ENODEV;
}

if (dir == NULL) {
pr_err

("Faulty: Cannot create debugfs-entry '%s'", root);
return -ENOENT;

}

if (!init_endpoint(dir, "sbo", &fops_sbo))
pr_debug

72

("Faulty: Stack buffer overflow at debugfs '%s/sbo'\n",
root);

if (!init_endpoint(dir, "slab", &fops_slab))
pr_debug("Faulty: Slab buffer overflow at debugfs '%s/slab'\n",

root);

if (!init_endpoint(dir, "overflow", &fops_overflow))
pr_debug("Faulty: Unsigned integer overflow at debugfs "

"'%s/overflow'\n", root);

if (!init_endpoint(dir, "underflow", &fops_underflow))
pr_debug("Faulty: Signed integer underflow at debugfs "

"'%s/underflow'\n", root);

if (!init_endpoint(dir, "format", &fops_format))
pr_debug("Faulty: Format string bug at debugfs "

"'%s/format'\n", root);

if (!init_endpoint(dir, "data-race", &fops_race)) {
race1 = kzalloc(PAGE_SIZE, GFP_KERNEL);
race2 = kzalloc(PAGE_SIZE, GFP_KERNEL);
pr_debug("Faulty: Data race at debugfs "

"'%s/data-race'\n", root);
}

if (!init_endpoint(dir, "double-free", &fops_double_free))
pr_debug("Faulty: Double free bug at debugfs "

"'%s/double-free'\n", root);

if (!init_endpoint(dir, "use-after-free", &fops_use_after_free))
pr_debug("Faulty: Use-after-free bug at debugfs "

"'%s/use-after-free'\n", root);

uninitialized = kmalloc(sizeof(struct a_struct), GFP_KERNEL);

if (!init_endpoint(dir, "infoleak", &fops_infoleak))
pr_debug("Faulty: Infoleak at debugfs '%s/infoleak'\n", root);

pr_debug("Faulty: module loaded\n");
return 0;

}

static void __exit mod_exit(void)
{

debugfs_remove_recursive(dir);
kfree(race1);
kfree(race2);
kfree(uninitialized);

pr_debug("Faulty: Unloaded faulty kernel module\n");
}

static int init_endpoint(struct dentry *dir, const char *fn,
const struct file_operations *fops)

73

{
struct dentry *fil = debugfs_create_file(fn, 0644, dir, NULL, fops);

if (fil == NULL) {
pr_err("Faulty: Cannot create endpoint %s\n", fn);
return -ENOENT;

}

return 0;
}

static ssize_t sbo_read(struct file *fps, char __user *buf, size_t len,
loff_t *offset)

{
return simple_read_from_buffer(buf, len, offset, buffer,

strlen(buffer));
}

static ssize_t sbo_write(struct file *fps, const char __user *buf, size_t len,
loff_t *offset)

{
int kbuf_size = 10;
int flag = 0; // variable to clobber
char kbuf[kbuf_size];
int bytes_written = 0;

// FAULT: stack buffer overflow
// length of the incoming data is used instead of
// target buffer length (kbuf_size)
bytes_written = simple_write_to_buffer(kbuf, len, offset,

buf, len);

// TODO: another fault here?
//strncpy(buffer, kbuf, len);

// we'll bypass stack canary evasion at this time
if (flag != 0)

non_reachable_function();

return bytes_written;
}

static ssize_t slab_read(struct file *fps, char __user *buf, size_t len,
loff_t *offset)

{
slab_operate_with_other_data();

if (!user_controlled) {
pr_debug("Faulty: Slab - Read, no data\n");
return 0;

}

pr_info("Faulty: Slab - Read, there is data\n");
return simple_read_from_buffer(buf, len, offset,

user_controlled->data,

74

strlen(user_controlled->data));

}

static ssize_t slab_write(struct file *fps, const char __user *buf,
size_t len, loff_t *offset)

{
slab_operate_with_other_data();

if (!user_controlled) {
pr_debug("Faulty: Slab - Write, No data\n");

} else {
pr_debug("Faulty: Slab - Write, Free old data\n");
kfree(user_controlled);

}
user_controlled = kmalloc(sizeof(struct some_data), GFP_KERNEL);

// TODO test conditions
if (other_data->flag_which_is_never_set)

non_reachable_function();

// FAULT: heap buffer overflow
return simple_write_to_buffer(user_controlled->data, len, offset,

buf, len);

}

// TODO: make this double freeable
static void slab_operate_with_other_data(void)
{

if (!toggle) {
toggle = true;
pr_debug("Faulty: Slab - allocating other data");
other_data = kzalloc(sizeof(struct some_data), GFP_KERNEL);

} else {
pr_debug("Faulty: Slab - freeing other data");
kfree(other_data);
toggle = false;

}
}

static ssize_t unsigned_overflow_read(struct file *fps, char __user *buf,
size_t len, loff_t *offset)

{
char *buffer = kmalloc(BUF_SIZE, GFP_KERNEL);
ssize_t n = 0;

// FAULT: unsigned overflow
snprintf(buffer, BUF_SIZE, "Faulty: Overflow - Counter value :%d\n",

unsigned_counter++); // note the behaviour of counter

if (unsigned_counter == 1)
non_reachable_function();

n = simple_read_from_buffer(buf, len, offset, buffer,
strlen(buffer));

75

kfree(buffer);
return n;

}

static ssize_t signed_underflow_read(struct file *fps, char __user *buf,
size_t len, loff_t *offset)

{
char *buffer = kmalloc(BUF_SIZE, GFP_KERNEL);
ssize_t n = 0;

// FAULT: signed underflow
snprintf(buffer, BUF_SIZE, "Faulty: Underflow - Counter value :%d\n",

signed_counter--); // note the behaviour of counter

if (signed_counter == 126)
non_reachable_function();

n = simple_read_from_buffer(buf, len, offset, buffer,
strlen(buffer));

kfree(buffer);
return n;

}

static ssize_t format_read(struct file *fps, char __user *buf, size_t len,
loff_t *offset)

{
return simple_read_from_buffer(buf, len, offset, some_string,

strlen(some_string));
}

static ssize_t format_write(struct file *fps, const char __user *buf,
size_t len, loff_t *offset)

{
char buffer[BUF_SIZE];
ssize_t n;

n = simple_write_to_buffer(&buffer, BUF_SIZE, offset, buf, len);
buffer[n] = '\0';
pr_info("Faulty: %s\n", buffer);
// pr_info(buffer); // this would generate a compile-time error
// FAULT: format-string
printk(buffer);
return n;

}

static ssize_t race_read(struct file *fps, char __user *buf, size_t len,
loff_t *offset)

{
if (strcmp(race1, race2))

non_reachable_function();

return simple_read_from_buffer(buf, len, offset, race1,
strlen(race1));

}

static ssize_t race_write(struct file *fps, const char __user *buf,

76

size_t len, loff_t *offset)
{

// FAULT: stack overflow
char buffer[PAGE_SIZE];
ssize_t n;

n = simple_write_to_buffer(&buffer, PAGE_SIZE, offset, buf, len);
buffer[n] = '\0';

// FAULT: race
// slow write is racy
memcpy(race1, buffer, len);
udelay(1000);
memcpy(race2, buffer, len);

return n;
}

static ssize_t df_alloc(struct file *fps, char __user *buf,
size_t len, loff_t *offset)

{
pr_info("Faulty: double-free allocation\n");
double_free = kmalloc(len, GFP_KERNEL);
return len;

}
static ssize_t df_free(struct file *fps, const char __user *buf,

size_t len, loff_t *offset)
{

// FAULT: double free
pr_info("Faulty: double-free deallocation\n");
kfree(double_free);
return len;

}

static ssize_t use_after_free_read(struct file *fps, char __user *buf,
size_t len, loff_t *offset)

{
char *tmp = kmalloc(len, GFP_KERNEL);

strncpy(tmp, buffer, len);
// FAULT: use after free
kfree(tmp);
copy_to_user(buf, tmp, len);
return len;

}

static ssize_t infoleak_read(struct file *fps, char __user *buf,
size_t len, loff_t *offset)

{

ssize_t l = len < DATA_LEN ? len : DATA_LEN;

return simple_read_from_buffer(buf, len, offset,
uninitialized->data, l);

77

}

static void non_reachable_function(void)
{

pr_info("Faulty: This function should not be reachable.\n");
}

module_init(mod_init);
module_exit(mod_exit);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("A Kernel Module with Faults");
MODULE_AUTHOR("Ilja Sidoroff");

	Introduction
	Motivation and Overview
	Security in Linux Kernel Development
	Research Problem and Methodology

	Memory Safety as Security Problem
	Definition of Memory Safety
	Unsafe features of C Programming Language
	Stack Corruption and Arbitratry Code Execution
	Heap misuse and corruption
	Other Types Common of Vulnerabilities
	Code Reuse Attacks

	Memory Safety Issues in Linux Kernel
	Linux Kernel Specific Considerations
	Stack and Buffer Overflows
	Dynamic Memory Allocation
	Data Races
	Other Vulnerability Classes

	Detecting and Eliminating Memory Safety Violations and Other Errors
	A Faulty Kernel Module
	Static analysis
	Dynamic Analysis
	Memory-Safe Languages

	Conclusions
	References
	Appendices

