

AGILE METHODOLOGIES IN PRODUCT DEVELOPMENT

CASE: DISCRETE MANUFACTURING AND ASSEMBLY

Master's thesis

Visamäki, Strategic Leading of Technology-based Business

Spring 2019

Tero Lappalainen

 ABSTRACT

Strategic Leading of Technology-based Business
Visamäki

Author Tero Lappalainen Year 2019

Title Agile Methodologies in Product Development

Case: Discrete Manufacturing and Assembly

Supervisor(s) Jukka Pulkkinen

ABSTRACT

During last years, the most successful ICT companies has adopted Agile
methodologies. What happens when these methods are used in totally
different industry? Rapid product development cycles and managing
continuously changing priorities are key attributes in developing highly
customized products. Aim of this action research was to understand,
whether Discrete Manufacturing and Assembly Company's product
development process required changes, could design work benefit from
agile practices, how new operation model can be implemented and what
kind of results it will deliver.

Qualitative semi-structured interviews were used to understand current
situation and requirement for change. In parallel, a literature and media
study were made of methodologies with highest adoption and growth, and
industry specific applications. Based on this information, a framework
comparison according ǎǳōƧŜŎǘΩǎ prerequisites and a recommendation of
most suitable frameworks was made. This was followed by a new
operating model description, implementation of required tools and
introduction of new model.

After and before surveys and comparison of design release volumes for
past two years was conducted to evaluate the change impact. Based on
the results, a following conclusion was made. Using agile methodology and
practices led into increased process clarity, better support for design of
high-quality products and increased transparency and communication
perceived by process contributors. There was no sound evidence for
productivity gains, as effects of other factors could not be ruled out.
However, gains through continuous improvement cannot be excluded.

Keywords Agile methodologies, Lean management, product development

Pages 79 pages including appendices 15 pages

 TIIVISTELMÄ

Teknologiaosaamisen johtaminen
Visamäki

Tekijä Tero Lappalainen Vuosi 2019

Työn nimi Agile Methodologies in Product Development

Case: Discrete Manufacturing and Assembly

Työn ohjaaja(t) Jukka Pulkkinen

TIIVISTELMÄ

Poikkeuksetta viime vuosien menestyneimmät ICT-yritykset ovat
hyödyntäneet tuotekehityksessään ketteriä menetelmiä. Miten käy, kun
samoja menetelmiä käytetään kokonaan toisella toimialalla? Lyhyiden,
kustomoitujen erien tuotannossa, on tuotekehityssyklien nopeus ja
jatkuvasti muuttuvien prioriteettien hallinta äärimmäisen tärkeää.
Kehittämistutkimuksen tavoitteena oli selvittää, onko Discrete Manu-
facturing and Assemblyn tuotekehitysprosessia tarve muuttaa, miten
ketteriä menetelmiä voidaan hyödyntää suunnittelutyössä, miten uusi
toimintamalli otetaan käyttöön ja mitä tuloksia sillä voidaan saavuttaa.

Nykytilanteen ja muutostarpeen selvittämiseksi hyödynnettiin laadullista
haastattelututkimusta. Samanaikaisesti perehdyttiin käytetyimpiin ja
viime aikoina eniten käyttäjäkuntaansa kasvattaneisiin ketteriin menetel-
miin ja toimialan sovellutuksiin hyödyntäen lähdekirjallisuutta ja verkko-
materiaaleja. Näiden pohjalta luotiin viitekehysten vertailukehikko, jossa
huomioitiin toimeksiantajan tarpeet ja tehtiin suositus sopivimmista viite-
kehyksistä. Tämän jälkeen tehtiin uuden toimintavan kuvaus, toteutettiin
tarvittavat työkalut ja otettiin uusi tapa käyttöön.

Vaikutusta mitattiin muutosta ennen ja jälkeen tehdyillä määrällisillä
verkkokyselyillä ja vertaamalla suunnitelmien julkaisumääriä kahden edel-
lisen vuoden tuloksiin. Lopputuloksena ketterien menetelmien hyödyntä-
minen kasvatti prosessin osallistujien mielestä prosessin selkeyttä, tuki
paremmin laadukkaiden tuotteiden suunnittelua, teki priorisoinnista ja
kommunikaatiosta läpinäkyvämpää. Tuottavuuden kasvulle ei tutki-
muksen aikana löydetty aukottomia todisteita, vaan muiden tekijöiden
vaikutus jäi merkittävämmäksi. Tämä ei kuitenkaan poissulje uuden mallin
mukaisen jatkuvan kehittämisen kautta syntyvää kasvua jatkossa.

Avainsanat Ketterät menetelmät, Lean-johtaminen, tuotekehitys

Sivut 79 sivua, joista liitteitä 15 sivua

CONTENTS

1 INTRODUCTION ... 1

2 AGILE (SOFTWARE) DEVELOPMENT .. 2

2.1 Scrum ... 6

2.2 Extreme Programming .. 10

2.3 Kanban ... 14

2.4 Scrumban .. 18

2.5 Lean Startup .. 21

2.6 Spotify model .. 25

2.7 Extreme Manufacturing .. 27

3 RESEARCH METHOD .. 28

3.1 Research problem and questions .. 28

3.2 Research methodologies ... 29

3.3 Data collection and analysis .. 30

3.4 Reliability and validity of research .. 32

3.5 Subject of research .. 33

4 EMPIRICAL STUDY .. 33

4.1 Survey of current state .. 33

4.2 Choosing a methodology... 41

4.3 Implementation plan ... 43

4.3.1 Agree on a set of goals .. 44

4.3.2 Map a value stream ... 45

4.3.3 Define work item types and classes of service 46

4.3.4 Create a board template ... 47

4.3.5 Meet with the stakeholders about policies and coordination 50

4.3.6 Create an electronic board .. 51

4.3.7 Educate the team on the new board .. 52

4.4 Experimentation .. 52

4.5 Evaluation .. 54

5 CONCLUSION ... 58

REFERENCES .. 61

APPENDICES

Appendix 1 Research timeline
Appendix 2 Invitation to interview
Appendix 3 Questions for semi-structured interview
Appendix 4 Interview topic category cross-reference heat map
Appendix 5 Evaluation chart of Agile methodologies
Appendix 6 Kanban board template

Appendix 7 Electronic Kanban Board
Appendix 8 Invitation e-mails to web-surveys
Appendix 9 Web-survey questions
Appendix 10 Web-survey results

1

1 INTRODUCTION

During the summer 2018 I had a discussion with a member of Discrete
Manufacturing and Assembly Company about Agile methodologies and
how well those transfer outside IT domain. Having 15 years of experience
of leading technology teams and ǘŜƴ ȅŜŀǊǎΩ ŜȄǇŜǊƛŜƴŎŜ ƻŦ [Ŝŀƴ adoption
and several years about Agile methodologies, I still felt underqualified to
make any strong recommendations or prescriptions. As the person was
aware that I was finishing my studies, a question was raised whether I
would be interested to make a case study of such implementation. Being
horrified about the idea, ŀǎ L ŘƛŘƴΩǘ ƪƴƻǿ ǇǊŀŎǘƛŎŀƭƭȅ ŀƴȅǘƘƛƴƎ ŀōƻǳǘ
developing physical products, but at the same time intrigued about the
possibility to test these methodologies outside my comfort zone in such a
greenfield environment induced me to take the assignment.

Discrete Manufacturing and Assembly Company (DMA) has grown
significantly during past couple of years from virtually zero to a 130-person
organisation comprising almost hundred million euros revenue. Results
have been promising, but at the same time need for more structured
approach to ensure transparency of priorities, constant communication
and cumulative learning of the team has surged. On the other hand,
traditional structures and management models used in manufacturing
industry are perceived too bureaucratic and rigid, eventually killing agility,
which is seen as one of the critical success factors. Could emergent Lean-
based Agile methodologies be the solution?

Agile methodologies and practices have been used in IT industry for over
quarter of century and today it is claimed that they are used by 80ς97% of
organisations (CA 2018; VersionOne 2018) to some extent. Unfortunately,
most of the surveys are made or sponsored by IT industry companies and
independent research is marginally available. Many of the prosperous
newcomers in technology industry like Amazon, Facebook, Google, Netflix
and Spotify have openly told that they use Agile methodologies and has
been actively participating in Agile conferences and publishing material of
the Agile implementations.

Of course, business agility and being able to rapidly answer to increasing
competition and changing customer needs sounds compelling and who
would not like to be compared to these technology giants. Again,
academic, peer reviewed quantitative surveys, not to mention longitudinal
research, is sparse and most of the academic research has been single-case
studies. As an exception Serrador and Pinto (2015, 1047ς1049) made a
research about Agile benefits with a conclusion that Agile methodologies
increase efficiency, stakeholder satisfaction and perception of overall
project performance. One of the largest industry surveys of 3000 projects

2

has been conducted by Reifer (2017) suggesting 7ς12 % productivity gains,
5ς12 % lower unit costs and 6ς12 % increased quality. There is also 75ς
90% project schedule achievement compared to 40ς60% resulted from
following traditional project management methodologies, though this has
been achieved by delivering fewer features.

Tempting figures but adopting Agile Software development methodologies
and practices is still rare outside ICT industry. Although, Scrum for
Hardware (Brown & Justice, 2018), which is based on Scrum and Extreme
Manufacturing, is one the most complete framework which could be used
in discrete manufacturing or batch production. According the Scrum Inc.
organisations using Agile practices include Saab, Boeing, John Deere and
Volvo. Most likely low adoption rate is related to Lean management and
Agile Manufacturing having significant footprint and Agile software
development is perceived more focused on developing highly customised,
one-off solutions throughout software lifecycle. Quite like highly
customised products, which are constantly and rapidly evolving based on
changed needs, resulting really short production batches.

Based on this initial information, a decision was made to survey current
situation by interviewing team members contributing to product
development process, whether assumed need for change is present and
what are most pressing issues. If the survey indicated requirement for a
change, a literature study, evaluation and suggestion of the most feasible
methodologies and practices would be done. As DMA representatives
wanted me to also support in experimentation, an implementation plan
and fulfilment of that plan was added into the research scope. This of
course prolonged the schedule several months but gave me an opportunity
to measure real-life results by having web-based, structured surveys
before and after experimentation.

As there is still quite small amount of research about implementation Agile
methodologies outside ICT industry. This research and its results can prove
to be of some value in future meta-studies. As DMA's industry is specific
and even globally quite niche, it is not likely to be replicated in scale. But if
it increases Agile methodologies awareness and encourages readers to
interdisciplinary thinking, this research has earned its existence.

2 AGILE (SOFTWARE) DEVELOPMENT

Agile Software Development (in short Agile) is a philosophy, an umbrella
term for a set of methods and practices based on the values and principles
expressed in the Agile Manifesto, where solutions evolve through
collaboration between self-organizing, cross-functional teams utilizing the
appropriate practices for their context. (Agile Alliance 2018.)

3

Agile has a lot of overlap with Lean management such as continuous
improvement, making things visible, empowerment of teams, process
flow, value, value streams and removal of waste. Both Agile and Lean fall
under study of Systems Thinking. There are probably hundreds of
methodology variants that follow Agile values and principles. Each
methodology prescribing distinct set of practices and tools.

Figure 1. Positioning of Agile Software Development.

Most distinctive difference between Agile and previously more used
Waterfall methodologies is iterative and incremental approach. Instead of
trying to predict the outcome into smallest detail early in the Waterfall
project and delivering everything once, Agile delivers in iterations which
provide new, changed or fixed functionality in increments throughout the
project.

Figure 2. Difference between Waterfall and Agile approach.

Although Agile Software Development and Iterative and Incremental
Development (IID) are considered to be quite modern their evolution dates
back to 1930's to work of Walter Shewhart, who proposed using a series
ƻŦ ǎƘƻǊǘ άǇƭŀƴ-do-check-ŀŎǘέ (PDCA) cycles for quality improvement. PDCA

4

was also promoted since the 1940s by W. Edwards Deming what he
eventually described in his book Out of Crisis in 1982. Although he thought
άǇƭŀƴ-do-study-ŀŎǘέ όt5{!ύ would better elicit the importance of learning
from the experiment. Earliest successful iterative software development
projects can be tracked to 1957 when IBMΩǎ Service Bureau Corporation
used technique resembling many of the Extreme Programming practices.
While there is some evidence and publications of use of IID from 1960s to
1980s and grim reviews pointing out strict, document-driven, single-pass
waterfall approaches inability to deliver quality software, it was not before
1990s when IID started to gain real traction. During 1990s public
awareness of IID in software development raised due to hundreds of
publications. This also led into birth of dozens of IID methods like Rapid
Application Development (RAD), Dynamic Systems Development Method
(DSDM), Scrum, Rational Unified Process (RUP), Experimental
Programming (XP) and Feature-Driven Development (FDD). (Larman &
Basili 2003, 47ς48.)

In 2001, group of 17 software development process experts including Kent
Beck (XP/TDD), Jeff Sutherland (Scrum), Ken Schwaber (Scrum), Ward
Cunningham (XP/Wiki), Jim Highsmith (ASD) and Alistair Cockburn (Crystal)
authored an Agile Manifesto promoting modern, simple IID methods and
principles. At the same occasion, Agile Alliance was formed. Agile
Manifesto defines Agile philosophy by four values:

- Individuals and interactions over processes and tools

- Working software over comprehensive documentation

- Customer collaboration over contract negotiation

- Responding to change over following a plan.

And twelve principles (agilemanifesto.org, 2018):

- Customer satisfaction by early and continuous delivery of valuable
software

- Welcome changing requirements, even in late development

- Working software is delivered frequently (weeks rather than
months)

- Close, daily cooperation between businesspeople and developers

- Projects are built around motivated individuals, who should be
trusted

- Face-to-face conversation is the best form of communication (co-
location)

- Working software is the primary measure of progress

- Sustainable development, able to maintain a constant pace

- Continuous attention to technical excellence and good design

- Simplicity-the art of maximizing the amount of work not done-is
essential

5

- Best architectures, requirements, and designs emerge from self-
organizing teams

- Regularly, the team reflects on how to become more effective, and
adjusts accordingly

Today there are tens of Agile methodologies and if you count all variations,
fusions, hybrids and flavours there are hundreds known variants of Agile.
To evaluate which Agile methodology would be most suitable framework
in this case, population was restricted to most used frameworks and the
ones which popularity have increased most during past couple of years.

VersionOne has done their State of Agile-Survey now for 12 years, which
includes information about popularity of different methodologies. During
the time this survey has been made, Scrum has always been most popular
Agile methodology followed by the organisations responding to survey.
Combined popularity of Scrum, Experimental Programming and hybrid of
these two has been between 70% ς 80%. ·tΩǎ usage has significantly
dropped during past ten years and it seems many XP practices has become
software development best practices which are being followed despite the
framework being used. Early surveys show some use of DSDM, AUP, FDD
and LSD, which all have now fallen into Others category. Those has been
replaced by Kanban, Scrumban and Iterative Development. Latest
newcomers to list are Lean Startup and Spotify Method. (VersionOne
2018.)

Table 1. Agile methodologies use globally (VersionOne 2006ς2018).

6

Codento has done similar assessment in the Finnish market. Most
significant difference is that Codento reports methodologies and practices
as concepts on the same level. Based on this survey Scrum was in 2016 still
most popular methodology with 71% of organisations using it. Kanban
being second with 55,4% (Aukia, Luoto & Tiainen 2017). In two years, this
has been changed in favour of Kanban having 48% of organisations
following it and Scrum going down to 41% (Aukia, Iivonen & Luoto 2018).
Most likely high share of Kanban compared to VersionOne report is related
to popularity of kanban board as a tool, not Kanban as an Agile
methodology. It is also good to note that 32% of organisations use
Minimum Viable Product which is a practice used in Lean Startup
methodology.

Table 2. Agile methodologies use in Finland (Aukia et al. 2017ς2018).

Additionally, from the research subject and manufacturing industry point
of view, one interesting framework is Extreme Manufacturing (XM) used
by Wikispeed Ltd to build 100-miles-per-gallon vehicle, which has evolved
to Scrum for Hardware during last couple of years and has been adopted
by some companies in automotive and aviation industry (Brown & Justice,
2018).

2.1 Scrum

According to VersionOne State of Agile report Scrum has been the most
used agile methodology throughout past decade. It was authored by Jeff
Sutherland and Ken Schwaber at 1995 by inspiration of ŀǊǘƛŎƭŜ ŎŀƭƭŜŘ ά¢ƘŜ
New New Product Development GŀƳŜέ ŦǊƻƳ Takeuhci and Nonaka (1986).
It suggests that old sequential development approach should be replaced
with new approach with heavily overlapping development phases
providing faster lead time and more flexibility. Sutherland suggests that
Scrum provides 300ς400 percent productivity improvement and doubling
of quality compared to traditional approaches. (Sutherland 2015, 31 ς 34.)

7

Scrum framework is medium prescriptive having three roles, five events
and three artefacts as follows:

- Development Team

- Product Owner

- Scrum Master

- Sprint

- Sprint Planning

- Daily Scrum

- Sprint Review

- Sprint Retrospective

- Product Backlog

- Sprint Backlog

- Increment

Figure 3. Illustration of Scrum framework (Scrum.org n.d.).

Scrum teams are cross-functional having all necessary skills needed to
complete the increment, the outcome done in the sprint. Team individuals
may have specialized skills and focus, but whole team is accountable of the
results. Team size should be rather small, around 7ς8 persons ± 2
preferably working in same premises. Having small team size in same
location makes communication between team members easier. Teams are
self-organising and self-managing, empowered to make decisions about
how assignments are resolved. This autonomy is underpinned by sense of
purpose above ordinary. (Sutherland 2015, 41ς45 & 58ς61.)

Product Owner is responsible of Product Backlog consisting all the
requirements for any changes waiting for accomplishment in priority
order. Inspiration to Product Owner role came from Toyota Product
5ŜǾŜƭƻǇƳŜƴǘ {ȅǎǘŜƳΩǎ /ƘƛŜŦ 9ƴƎƛƴŜŜǊ ǊƻƭŜ, who typically are senior
engineers having wide experience and knowledge about domain team is
working on but also having good understanding of customer needs and
market situation. Product owner need to have constant dialog with the
team to make sure that planned value is realized when increment is
released. (Sutherland 2015, 176ς180.)

Roles

Events

Artefacts

8

Scrum Master is responsible for promoting Scrum practices, supporting
team members to work accordingly and process being effective. Scrum
Master is like a Project Manager in waterfall project, but with more
servant-leader approach. This person is responsible of facilitating all the
Scrum events, making sure that there is required transparency and most
importantly, helping team to remove impediments hindering team to
finish requirements. Scum Master has also significant role to make sure
that process team follows is continuously improved. (Sutherland 2015, 61ς
62.)

Sprint is a one to four-week time-box, in which potentially releasable
product increment is created. Sprint length should remain unaltered
between Sprints. One sprint consists of Sprint Planning, Daily Scrums,
development work, Sprint Review and Sprint Retrospective. During the
Sprint you should not assign new tasks to team or reprioritize items in that
Sprint, but task scope can be clarified between the team and the Product
Owner. Usually teams use simple boards to illustrate state of different
tasks (Figure 4). Even though Scrum does not limit number of tasks
assigned to one person, it is advised to have as few simultaneous tasks as
possible to avoid waste related to task switching. Team also should
concentrate on finishing as many shippable products as possible if it seems
like they are not able to reach Sprint objectives. {ŎǊǳƳΩǎ ǇǊogress is usually
followed with burndown chart illustrating current estimation of remaining
work in on going Sprint (Figure 5). (Sutherland 2015, 72ς76 & 88ς94.)

Figure 4. Example of Scrum Board.

9

Figure 5. Example of a Scrum Burndown Chart for a three week sprint.

Content of each Sprint is planned in Sprint Planning and is documented
into a Sprint Backlog. Participants for Sprint Planning are Development
Team, Scrum Master and Product Owner. Based on prioritised Product
Backlog, team selects Stories (requests) which can be accomplished during
upcoming Sprint and how work is done. At the same time knowledge about
purpose of each Story is transferred from Product owner to Development
team to form common understanding of Definition of Done for the
Increment. According to The Scrum Guide (Sutherland & Schwaber 2017,
10ς11), Sprint planning should take no more than eight hours depending
length of the Sprint. (Sutherland 2015, 138 & 235ς236.)

During the Sprint, Development Team will hold a daily 15-minute meeting
called Daily Scrum. During the meeting team gathers around Scum Board
and each Team member has couple of minutes to answer three questions:

- What did you do yesterday to help the team to finish the Sprint?

- What will you do today to help the team to finish the Sprint?

- What obstacles arŜ ƎŜǘǘƛƴƎ ƛƴ ǘƘŜ ǘŜŀƳΩǎ ǿŀȅΚ

Rationale behind this meeting is to boost communication between team
members and make possible impediments visible. This also makes sure
that every team member is ŀǿŀǊŜ ƻŦ {ǇǊƛƴǘΩǎ ǇǊƻƎǊŜǎǎΦ Usually raising
issues in Daily Scrum leads into after meeting discussion or swarming with
team members able to help removing the impediments. (Sutherland 2015,
76ς79.)

A Sprint Review is held at the end of each Sprint and it should
accommodate anyone wanting to participate. This event should take no
more than 4 hours to one-month Sprints. In this event, team should
demonstrate all features which meets the Definition of Done, are
completely finished and able to release into production. Product Owner
will show current state of Backlog and there is a discussion providing input
for subsequent Sprint Planning. (Sutherland & Schwaber 2017, 13.)

10

Sprint Retrospective is the key event to make sure there is continuous
improvement on followed process. In this meeting Scrum Master and the
Team will go through the last Sprint. Did they follow the agreed Scrum
process? What were the impediments during the Sprint and how they
could avoid those in the future? Based on these discussions team will pick
one or couple of improvement tasks for the next sprint, which will be
regarded like any other Story to be accomplished. Sutherland (2015, 145ς
160) greatly emphasizes team member happiness and its impact on
productivity. Sprint Retrospective is seen as a valuable opportunity to
monitor and increase happiness. (Sutherland & Schwaber 2017, 14.)

Product Backlog is a list of all the new features, functions, fixes and
enhancements called stories to change the current product. The Product
owner is responsible of all the Backlog content and prioritisation. Backlog
refinement is an activity where Product Owner together with the
Development Team update details, estimates and order of assignments
during the Sprints. Refinement takes around 10% of Development team
capacity. (Sutherland & Schwaber 2017, 15.)

The Increment is a combination of the Product Backlog items which meet
ǘƘŜ {ŎǊǳƳ ¢ŜŀƳΩǎ 5ŜŦƛƴƛǘƛƻƴ ƻŦ 5ƻƴŜ criteria composed during Sprint
Planning. All the Stories within an Increment are potentially Customer
shippable and finished. Not necessary product but part of the product as a
function providing value to users of the product. It is up to Product Owner
and release scheduling whether the Increment is released immediately or
later. (Sutherland & Schwaber 2017, 17.)

2.2 Extreme Programming

Extreme Programming (XP) was authored by Kent Beck at 1999 focusing to
produce high-quality software in short iterations. It was developed based
on .ŜŎƪΩǎ work on /ƘǊȅǎƭŜǊΩǎ ǇŀȅǊƻƭƭ ǎȅǎǘŜƳ implementation during 1996ς
1999. Based on Agile surveys (VersionOne 2018) use of XP as a
methodology has declined from 2005 when it was used by 30ς40% of
organizations as standalone framework or in combination with Scrum,
close to 7% and its standalone use has almost vanished. At the same time
many of the XP principles and practices has been adopted by other Agile
methodologies or those has become software industry best practices.
(Beck 2005, 125ς129.)

Extreme Programming has thirteen primary practices, which have evolved
since its initial release. These thirteen practices are (Beck 2005):

- Sit Together

- Whole Team

- Informative Workspace

- Energized Work

11

- Pair Programming

- Stories

- Weekly Cycle

- Quarterly Cycle

- Slack

- Ten-minute Build

- Continuous Integration

- Test-first Programming

- Incremental Design

XP teams are prescribed to Sit Together while doing development work in
common open space. This is seen to have positive effect to intra-team
communication and build fellowship. It also reduces significantly required
walking or travelling time which can be used to contribute to customer
value. This practice fits together with Whole Team and Informative
Workspace principles. tǊƛƴŎƛǇƭŜ ƻŦ {ƛǘ ¢ƻƎŜǘƘŜǊ ŘƻŜǎƴΩǘ exclude use of XP
in geographically dispersed teams, which is usually the case in large
organisations where different expert communities are in separate sites or
Offshore resources are being used. In such case more attention should be
given to ensure feedback by for example having several planning meetings
during the week. (Beck 2005, 37ς38 & 149ς150.)

Whole Team advocates for cross-functional teams having all the necessary
skills to proceed successfully in the project including if possible, a customer
representative to contribute and elaborate feature stories. Principle goes
beyond just cross-functional team as team members should feel belonging
to a team, support each other and omit shared responsibility of results. XP
sets the ideal team size based on GladwellΩǎ (2000, 175ς181) description
of discontinuities. Teams should be split if they have more than 12
members as ά¢ǿŜƭǾŜ ƛǎ ŀ ƴǳƳōŜǊ ƻŦ ǇŜƻǇƭŜ ǿƘƻ Ŏŀƴ ŎƻƳŦƻǊǘŀōƭȅ ƛƴǘŜǊŀŎǘ
ǿƛǘƘ ŜŀŎƘ ƻǘƘŜǊ ƛƴ ŀ ŘŀȅέΦ To scale, team of teams can be used. Generally,
instead of making teams bigger, splitting problems into smaller problems
is advised. Having non-fulltime assignments to team should be avoided as
task switching will increase waste, having several objectives blurs focus
and decreases feeling of belonging to a team. (Beck 2005, 38ς39 & 111ς
112.)

Informative Workspace principle describes a story card wall which should
be put in central place in a team workspace. This card wall (Figure 6)
provides a quick glance on what team is working on and what kind of things
are in the pipeline. Card wall helps to pinpoint if team is having issues in
planning, estimation or execution. Additionally, charts can be used to
visualise progress in long-term projects. Workspace should support Pair
Programming practice by having two-person workstations and informal
information exchange between team members, simultaneously providing
ability to work privately if needed in separate cubes. (Beck 2005, 40ς41.)

12

Figure 6. Example of story card wall used in Extreme Programming.

Energized Work practice follows sustainable pace Agile principle and is an
ŜǾƻƭǳǘƛƻƴ ƻŦ άпл-ƘƻǳǊ ǿŜŜƪέ. People should work only as long as they can
sustain productive pace. Working significantly longer than normal working
hours should be considered more of losing control than sign of
commitment as productivity sinks rapidly after eight hours of focused
working time usually leading into value shrinkage. Same applies to
working while being sick. Concentrating on rapid recovery will have more
positive impact than working ill. This also protects rest of the team losing
more productivity because of illness. During active working time focused
contribution should be protected against external disruptions by shutting
off phones and other communication channels for unsolicited contacts.
(Beck 2005, 41ς42.)

Pair Programming is a practice where two people are sitting at one
computer. One person is programming while pair having a constant dialog
of how things should be resolved and making sure that there are no defects
injected into the code. This practice promotes knowledge sharing and
reduces significantly quality issues and quicker remedy of possible issues.
Pair should switch roles during pair programming session and there should
be rotation in pair members so that people work with everybody in the
team regularly. Pair programming should result better or close to same
volume of code than done by itself, but a lot lower amount of errors. (Beck
2005, 42ς43.)

Stories refer to assignments, tasks, feature requests or requirements
similarly as in many Agile methodologies. Stories should be written
according to customer-visible functionality for better general
comprehension of requests better and have a short, descriptive name.
Estimations should be done as soon as stories are written to give possibility
to early reprioritization of potential ideas. Physical cards on wall are
preferred over virtual systems because of their ease of use and practicality.
(Beck 2005, 44ς45.)

13

Work in XP is planned in Weekly and Quarterly Cycles. Beginning of each
week, there should be a planning meeting reviewing last weekΩs progress
against expected results, having customer picking on-going weeks stories
for implementation and breaking these stories into tasks which will be
signed up by team members. Planning is considered as a necessary waste
and such time consumed on planning should be minimized. When ǘŜŀƳΩǎ
experience increase, planning should in optimum only take only an hour a
week. After every week all assigned tasks should pass testing and there
should be another deployable version of software. Once a quarter team
should reflect the whole project, progress and its alignment with broader
goals. Team should identify issues and bottlenecks and decide how to
resolve those, plan the theme and initially pick theme-related stories to be
implemented. Quarterly cycles are also good for longer term improvement
experiments. (Beck 2005, 47ς48.)

Plans made in Weekly and Quarterly cycles should always include tasks
with minor importance which can be dropped if results begin to drag. This
kind of Slack combined with clear and honest stakeholder communication
improves credibility. And being able to release according to commitments
increase trust between team and other stakeholders. (Beck 2005, 48.)

Team should aim at being able to build the whole system and run all the
tests in ten minutes. This requires all the build and test tasks to be
automated. Also, this ability to build and test whole environment should
be used frequently to verify new code put into repository. Similarly, new
code should be merged into a single, common main branch several times
a day to test possible interoperability issues with rest of the code base.
Usually automated code builds and tests are made asynchronously after
code commit providing near real-time feedback. This can be combined in
the end of each Pair Programming session so that possible issues can be
immediately fixed and avoid waste resulting from task-switching.
Continuous Integration (CI) and Continuous Delivery or Deployment (CD)
are practices followed by most, if not all, modern application development
teams. (Beck 2005, 49ς50.)

After weekly planning session, development should begin with writing
tests which will be run after story is completed. Test-first Programming
practice focuses development to features requested. If additional features
arise during development, those should have their own tests written after
minimum deployable feature has been finished. Being unable to write a
test usually indicates design problems in code. Refactoring the code and
making it simpler should help. Having tests for every new feature
demonstrates code cohesiveness and increases trust between team
members. There is on-going development done to achieve continuous
testing during development, but these are still running too slowly for real-
time development. (Beck 2005, 50ς51.)

14

Last principle is Incremental Design, which was called in earlier version of
XP Refactoring. Incremental design suggests investing in to the design of
the system every day. As best possible design for the system evolves all the
time, development work to achieve that goal should be gradual and done
while making story changes in respective code areas. Considering
continuous development of technology, designing as early as possible in
start of the project, should be postponed close to when design is required.
This is also a form of risk management as there is only minimum
investment on long-term design and that cost is divided on a long period
of time. Beck also suggest that many design issues are such that having
experience how to solve them ŘƻŜǎƴΩǘ ŜǾŜƴ ŜȄƛǎǘ yet. In those situations,
incremental approach gaining the experience while implementing new
features is the most preferable approach anyway. (Beck 2005, 51ς53 &
103ς109.)

2.3 Kanban

Kanban is an agile method which evolution started in Microsoft 2004 when
first virtual kanban board was implemented. The evolutionary,
incremental process improvement methodology Kanban emerged during
2006 and 2008 at Corbis by David J Anderson. Kanban is a pull system
underpinned by Toyota Production System (Lean) alternative to Eliyahu
DƻƭŘǊŀǘǘΩǎ Drum-Buffer-Rope application of the Theory of Constraints. The
Kanban Method started to grow in community adoption around 2007 and
has been evolving in wider Lean software development community during
the years. (Anderson 2010, 3ς8.)

Kanban has five core practices to achieve emergent set of Lean behaviours
in organisations:

- Visualize workflow

- Limit work-in-progress

- Measure and manage flow

- Make process policies explicit

- Use model to recognize improvement opportunities

Visualization of the workflow is achieved by use of card walls (kanban
board) illustrating different process phases in columns and different
products or work item types as separate rows called swim lanes (Figure 7).
Each task in the system has its own card indicating basic information like
unique task id, descriptive name of task, date of assignment and fixed
delivery date if such exist. Card colour usually indicates a certain product
or assignment class of service. Assignees of the task are usually visualized
by magnetic avatars on top of the card or by writing a name on a board on
top of the card. Additionally, stickers can be used to indicate different
conditions like task being blocked. (Anderson 2010, 64ς71.)

15

Figure 7. Example of kanban board.

Kanban aims to significantly increase task lead time by limiting work-in-
progress team members are allowed to pull from previous phase of
process. Number of tasks allowed in certain point of process is indicated
by a figure in column title. Based on queuinƎ ǘƘŜƻǊȅ ŎŀƭƭŜŘ [ƛǘǘƭŜΩǎ [ŀǿ
there is linear relationship between quantity of work-in-progress and
average lead time. Of course, after certain point this will also affect to
velocity (production volume) negatively and team should experiment with
WIP limits to discover optimal balance. Even early on implementation, it is
advised to have in maximum three open tasks per team member to avoid
multitasking and loss of active working time caused by context switching.
Having WIP limits smaller than team size will naturally lead into pair
programming practice. (Anderson 2010, 25ς28 & 113ς122.)

!ǎ ǎǳŎƘ Yŀƴōŀƴ ŘƻŜǎƴΩǘ rule use of any specific reporting even though it
prescribes measurement and management of the flow. Best practice
report to visualize lead time and number of work-in-progress over time is
a Cumulative Flow diagram (Figure 8). Addition to reporting Average Lead
Time, Lead Time spectral analysis
 should be used to evaluate how predictable Average Lead Time is. If Fixed
Delivery Date class of service is used, Due Date performance should also
be reported to evaluate how well agreed schedules are being met.
(Anderson 2010, 139ς147.)

16

Figure 8. Example of Cumulative Flow Diagram (Anderson, 2010).

Even though Kanban is inclined to highlight Lead time, it is a good practice
to follow throughput with velocity metric indicating how many task, stories
or story points were completed within certain period and flow efficiency
calculating ratio of active work time on task to lead time. This metric
visualizes amount of time task spend in process buffers or queues waiting
for additional value creation. As Kanban focuses on constant evolutionary
change, often referred as Kaizen, it is a good practice to follow number of
blocked tasks relative to time and how process issues get fixed (Figure 9).
Finally tracking number of bugs or product defects over time helps
organisation to understand how the quality resulting from the process is
being improved. (Anderson 2010, 139ς147.)

Figure 9. Example of Issues and Blocked items chart (Anderson, 2010).

17

As Kanban is relatively non-prescriptive methodology, it requires
significant amount of additional context specific policies. Policies should
be agreed by team members and stakeholders and they need to be explicit.
Usually some of the generic practices like Definition of done, Daily
Standups, After Meetings, Backlog prioritization, Release planning,
Operations reviews and Issue management are encouraged to be defined.
Definition of done defines when task is possible to move to next phase in
the process. Daily Standups are short daily meetings concentrating on
blocks preventing team members to finish tasks. Blocks are not typically
solved during Daily Standups, but they are handled in some type of
swarming activity called "After meeting" ƻǊ άtŀǊƪƛƴƎ [ƻǘ 5ƛǎŎǳǎǎƛƻƴέ.
Backlog prioritization is an activity where stakeholders or business owners
decide which work items will be moved from Backlog to To-do phase as
open slots emerge when previous tasks move further on the process.
Release planning is required if Kanban teams are required to participate
release actions of finished product components or if release activities are
also managed with Kanban board. Issue management defines how blocked
tasks are handled, documented and further on avoided in the future. This
usually includes some sort of escalation if team cannot resolve issue on its
own and help from other departments or 3rd parties are required.
Operations reviews should be held once a month or bi-monthly including
all members actively participating to end-to-end process and stakeholders
providing input or consuming outputs of process. This meeting
concentrates on result achievements, optimization of the process and how
issues can be avoided in the future. (Anderson 2010, 82ς88 & 159ς165 &
235ς239.)

Anderson suggests that there are three types of primary improvement
opportunities which should be concentrated on. First one is identifying and
removing process bottlenecks with άCƛǾŜ CƻŎǳǎƛƴƎ {ǘŜǇǎέ, a continuous
improvement framework from The Theory of Constraints developed by Eli
Goldratt in 1984. Framework states:

1. Identify the constraint.
2. Decide how to exploit the constraint.
3. Subordinate everything else in the system to the decision
4. Elevate the constraint.
5. Avoid inertia; identify the next constraint and return to step 2

Second improvement opportunity is Lean/TPS based elimination of waste.
Lƴ !ƴŘŜǊǎǎƻƴΩǎ ŀǇǇǊƻŀŎƘ waste can be classified into three main
categories: transaction costs, coordination costs and failure load.
Transaction costs are generated as setup and delivery costs of new
products and those should be balanced based on benefits of new release
and effort required. Coordination costs are related to assigning people to
tasks, scheduling events or coordinating work of two or more people
toward a common goal. These should be minimized. Failure load is a work
generated because of some earlier deliveries failing, such as product

18

defects, poor design, increased amount of service requests etc. This type
of waste uses capacity, which could be used for creating new value-adding
features and should be avoided by pursuing high product quality. Third
area of improvement is reduction of variability, which is addressed in
Kanban with Statistical Process Control (SPC) pioneered by Walter
Shewhart in 1920s and further developed by W. Edwards Deming in his
Theory of Constraints. Both Lean/TPS and Six Sigma has adopted SPC to
improve process flow. SPC divides sources of variation into two categories.
First category is Internal variations, which are also referred to as change-
cause variations, like work item size, type, class of service, irregular flow
and rework. These can be controlled using policies that define product
development lifecycle and project management process in use. Second
category is External variations, which are also referred as assignableςcause
variations, like requirements ambiguity, expedite requests, irregular flow,
market factors, staffing factors and challenges in scheduling coordination.
These can be managed using issue-management and resolution
capabilities and reduced by root-cause analysis and elimination
capabilities. (Anderson 2010, 187ς192 & 232.)

As a result of successful Kanban implementation following organizational
behaviour are emerged (Anderson 2010, 16):

1. Process uniquely tailored to each project/value stream
2. Iterationless development
3. Work scheduled by Cost of delay
4. Value optimized with Classes of service
5. Risk managed with Capacity allocation
6. Tolerance for process experimentation
7. Quantitative management
8. Viral spread of Kanban across the organisation
9. Small teams merged for more liquid labour pools

2.4 Scrumban

Scrumban is a hybrid of Scrum and Kanban methodologies authored by
Corey Ladas at 2008. Even though it is considered as a separate method,
Ladas advocates benefits of Kanban over other agile methodologies.
Scrumban provides a framework how organisations currently following
Scrum framework, may transform to use Kanban. He suggests that if
organization is currently following waterfall-type process with functionally
aligned teams, it should implement Kanban. But if organization has now
more project-aligned teams, then Scrum with cross functional approach
could prove to be more convenient. If again organization is already
following Scrum they are encouraged to move to Kanban with evolutionary
approach. As Scrum is widely adopted and XP has become more of the set
of best practices followed in software industry, Ladas describes in detail
how team could transform evolutionary way. (Ladas 2008, 82ς85.)

19

Toyota Production System (TPS) has a goal of having only one work item in
each workflow phase and work items moving between the phases in takt,
which is a time between the start of production phase of two units without
need of buffering between workflow phases. Figure 10 illustrates how
items move between phases during equally sized time slots (takts)
throughout the synchronized workflow. (Ladas 2008, 34ς36.)

Figure 10. Example of 7 items in 5 phase workflow.

Same rationale applies to moving from waterfall to agile. Instead of having
one iteration to achieve 100 requirements Scrum splits requirements to 10
ǎǇǊƛƴǘǎ ƘŀǾƛƴƎ мл ǊŜǉǳƛǊŜƳŜƴǘǎ ŜŀŎƘΦ [ŀŘŀǎΩǎ ǘŜǎtimonial is like in
Lean/TPS, that ultimate optimum is to have one-piece flow without
iterations at all. But as it is impossible to know development work time
required in each workflow phase beforehand, synchronous workflow
cannot be implemented. Instead implementing Kanban pull system with
minimum buffers to balance flow should be set as a goal. (Ladas 2008, 44ς
53.)

Scrumban as a framework prefers specialized teams instead of cross-
skilled generalist team members with ability to fulfil all tasks end-to-end,
which is a goal of a Scrum team. Usually people are highly skilled and
motivated in certain tasks but at the same time they perform worse in
other tasks. When optimizing resourcing to minimize lead time, preference
is to use highest skilled persons to fulfil each task. In this type of resourcing
it also makes more sense train persons strong areas of skills, not the weak
ones, as it provides significantly improved lead time. (Ladas 2008, 73ς79.)

A most distinctive practice suggested in Scrumban is use of a bucket
brigade-style of skills combination to eliminate buffers. As an example
(Figure 11), it could consist 3 persons, each having 2 high skill areas of
totally 4 phases of workflow. First person would do phase 1 and phase 2
tasks, second person would do phase 2 and phase 3 tasks and third person
phase 3 and 4 tasks. In this model person 3 would pull immediately work
from person 2 which is in phase 3 and respectively person 2 would pull
tasks in phase 2 from person 1, who would take the next job from backlog
to phase 1. Person 2 would act like a flexible buffer but simultaneously
actively contributing to product. (Ladas 2008, 146ς151.)

Item 1

Item 1 Item 2

Item 1 Item 2 Item 3

Phase 5 Item 1 Item 2 Item 3 Item 4

Phase 4 Item 1 Item 2 Item 3 Item 4 Item 5

Phase 3 Item 1 Item 2 Item 3 Item 4 Item 5 Item 6

Phase 2 Item 1 Item 2 Item 3 Item 4 Item 5 Item 6 Item 7

Phase 1 Item 1 Item 2 Item 3 Item 4 Item 5 Item 6 Item 7

Takt 1 Takt 2 Takt 3 Takt 4 Takt 5 Takt 6 Takt 7 Takt 8

Ready

Χ

20

Figure 11. Bucket Brigade-style bufferless flow.

More complex workflows having 6 phases or more could be handled
without buffers with 2ς3 persons like illustrated in Figure 12 by using
return flow and 2 cycles (Ladas 2008, 152ς157). This kind of setup seems
feasible only when team size is small and complex workflow followed.
Otherwise it is contradicting with preference to use of specialized teams.

Figure 12. Complex workflow bucked brigade examples.

One of the Scrumban principles is Release Early, release often (RERO),
which was initially published in mid-1990Ωǎ which is also applied in Extreme
Programming and other Agile methodologies. Scrumban emphasizes
definition of minimum deployable feature set to determine which features

21

are required for logical completeness. As an example, car without
transmission is illogical, but car without heated cup holder is not. Even if
your competition has released a product with more features, you shouldƴΩǘ
try to compete with scope, but productivity. Key is to provide incremental
features in increasing speed to overcome competition. (Ladas 2008, 158ς
159.)

Lastly Ladas (2008, 163ς172) ǊŀƛǎŜǎ ǘƘŜ ƛǎǎǳŜ ǊŜƎŀǊŘƛƴƎ ǇǊƛƻǊƛǘƛȊŀǘƛƻƴΦ LǘΩǎ
quite usual that around 80 percent of backlog features fall into priority one
class. This makes prioritization diluted as άLŦ ŜǾŜǊȅǘƘƛƴƎ ƛǎ high priority,
ǘƘŜƴ ƴƻǘƘƛƴƎ ƛǎέΦ One possible solution is Progressive Priority Filter having
columns for backlog, priority 1ς3 and done. Each priority column has
assignment limits in increasing sequence like geometric (2, 4, 8) or
Fibonacci (3, 5, 8). Assignments are pulled from priority 1 and that open
slot is filled with a priority 2 assignment, which is further replaced by
priority 3 assignment and so forth. If a more important assignment appears
in the backlog it can replace any assignment in the board which is then
returned to backlog. To prevent assignments to languish in lower priority
states without getting promoted and fulfilled every assignment should
have an expiration date. Another option is to use Perpetual Multivoting in
which a voting committee is selected from stakeholders. Each member has
an allocation of votes which she can use to promote any tasks on backlog
with as many votes as member has and wants. Votes can be recasted any
time. When pull event occurs, top-voted item is selected, and votes are
returned into pool for recasting. Oldest items ǿƘƛŎƘ ƘŀǾŜƴΩǘ ǇǊƻƎǊŜǎǎŜŘ
are removed from backlog.

2.5 Lean Startup

One of the most interesting recent methodologies published in 2011 by
Eric Ries is the Lean Startup. When the book was published it went
immediately to position number two on New York Times (2011) Best
Sellers list and has been allegedly sold over million copies over the years,
which is exceptionally good for a business book. Just like Spotify model, it
appeared also on latest ±ŜǊǎƛƻƴhƴŜΩǎ State of Agile-Survey (2018) and it
will be interesting to see can it achieve longer-lasting traction.

The Lean Startup methodology base on five principles:

- Entrepreneurs are everywhere

- Entrepreneurship is management

- Validated learning

- Build-Measure-Learn

- Innovation accounting

Even though entrepreneurs and start-ups are most of the time comprised
as small companies working in garages in Lean Startup, start-ups are

22

ŘŜŦƛƴŜŘ ŀǎ άŀ ƘǳƳŀƴ ƛƴǎǘƛǘǳǘƛƻƴ designed to create new products and
ǎŜǊǾƛŎŜǎ ǳƴŘŜǊ ŎƻƴŘƛǘƛƻƴǎ ƻŦ ŜȄǘǊŜƳŜ ǳƴŎŜǊǘŀƛƴǘȅέ. In larger companies
these intrapreneurs are autonomous teams with separate profit and loss
statements, facing similar obstacles while trying to innovate totally new
business or revolutionizing corporations current offering to meet evolving
customer requirements. Innovation in this context should be understood
broadly from new inventions to repurposing existing technology or
building a novel business model to fulfil diverse customer needs. (Ries
2011, 25ς29.)

The Lean Startup claims that many startςups fall into άƧǳǎǘ Řƻ ƛǘέ ŀǇǇǊƻŀŎƘ
without structured methodology causing many of those experiments to at
their best reaching mediocre results or worst leading into purposeless
chaos instead of transforming the market. This is usually related to fear of
introduction of unnecessary bureaucracy and impeding creativity of highly
skilled individuals. At the same time, management practices have
leapfrogged in several industries by implementation of Lean and Agile
methodologies and practices resulting unprecedented increase in
effectiveness and efficiency. Adopting these practices in developing new
businesses can provide similarly substantial results. (Ries 2011, 15ς24.)

Validated Learning is a Lean Startup concept of how to empirically
demonstrate the facts related to business opportunities providing rapidly
concrete and accurate real-life results to predefined questions instead of
using learning as an afterthought excuse for failure. In addition, providing
information about viability of demonstrated feature it may also disclose
possible changes required to make product successful. (Ries 2011, 37ς38.)

Build-Measure-Learn loop illustrated in Figure 13 is the engine for
Validated learning. It starts from identification of hypotheses called leap-
of-faith assumptions which a start-up would like to test. Most important
assumptions are related to innovations value and growth i.e. does
innovation provide value for its target customers and is it possible to build
sustainable growth for a product. It is important to define success or failure
criteria before experimentation. In the next phase a minimum viable
product (MVP) is built with least effort and minimum development time.
MVP needs to be published to potential customers and their feedback
collected (Ries 2011, 75ς78). The Lean Startup introduces a Concierge
service and Wizard of Oz testing. In Concierge service a start-up team,
instead of immediately building an internet service, provides similar
service to strictly limited number of customers personally verifying
assumed customer needs and behaviour. This also provides possibility for
rich qualitative customer feedback during experimentation (Ries 2011, 99ς
102). Wizard of Oz testing is somewhat similar, but it has intended user
interface available, but all or most of the provided functionalities are
achieved by manual labour (Ries 2011, 106). After building a product for

23

experimentation and releasing to customer use, measurements are
collected forming a data for learning and decision making.

Figure 13. Build-Measure-Learn loop (Ries 2011, 75).

Innovation accounting is a quantitative approach to evaluate results from
experiments forming a learning milestone. Learning milestones help start-
ups to assess their progress accurately and objectively. Learning
milestones are also imperative information to stakeholders to monitor
development (Ries 2011, 77). There is always a danger of using vanity
metrics, which gives much pleasing picture of progress, but which can be
achieved by secondary activities like excessive marketing or dumping
product to market with loss-making price. More actionable metrics can be
achieved by use of cohort analysis or split tests. In cohort analysis, instead
of looking cumulative totals or gross numbers start-up measure each test
group using product independently by using relative figures presenting
user behaviour (Ries 2011, 123). In split-testing a new and old product or
feature is offered to users simultaneously and measurements related to
user preference is collected real-time (Ries 2011, 136ς137).

After the learning phase a decision to persevere or pivot is done. Idea of
the build-measure-learn loop is to answer the question: άare we making
sufficient progress to believe that our original strategic hypothesis is
correct, or do we need to make a major change?έ LŦ ŎƘŀƴƎŜ ƛǎ ǊŜǉǳƛǊŜŘΣ
ǘƘŀǘΩǎ ŎŀƭƭŜŘ ŀ ǇƛǾƻǘ, which is designed to test a new fundamental
hypothesis about the product, business model or engine of growth (Ries
2011, 149ς150). Ries (2011, 172ς176) lists ten types of pivots. In Zoom-in
pivot, a previously single feature of the product becomes the whole
product. In Zoom-out pivot current product becomes one feature or
feature-bundle of the new product. Customer segment pivot is required if

24

experimentation shows that product solves real problems but not for the
type of customers originally planned. Customer need pivot usually comes
to prominence during customer interviews or observations when original
product ŘƻŜǎƴΩǘ ǎƻƭǾŜ ŎǳǎǘƻƳŜǊ problems but makes related visible. A
Platform pivot leads into application turning to a platform or vice versa. In
Business architecture pivot mostly high margin, low volume business-to-
business product is transformed to a mostly low margin, high volume
consumer product, or vice versa. When Value capture pivot is required, a
monetization or revenue model of the product is changed. Engine of
growth pivot suggest that organizations have three primary engines of
growth: the sticky, the viral and paid growth models. In sticky growth
model a product is designed for recurrent use and companies try to
achieve such customer loyalty that users come back and use service
repeatedly. In Viral growth model a word-of-mouth is spreading rapidly
and even though customers are not intentionally evangelizing the product,
epidemic-like growth is built-in to the product in. This is how most social
media services attract increasing number of users. In paid growth model
customer acquisition is done mainly by sales and marketing efforts. Every
acquisition has its cost and while this cost is lower than additional income,
a company can grow profitably (Ries 2011, 209ς219). In Channel pivot a
company changes the way how it delivers the product to customers.
Traditionally options have been through direct sales channel or partner
distribution channel. Last option is a Technology pivot, where company
discovers a way to achieve same results or functionality by using different
technology. This is usually done by established companies to increase
product profitability of mature products and markets.

Ries (2011, 111) claims that company which has the shortest time
completing the loop is the one learning about the customers and markets
fastest and having highest probability to become successful. The Lean
Startup also embraces several practices like genchi gembutsu, the five
whys and small batch sizes introduced in The Toyota Production Model
(Liker 2010, 223ς235; 252ς254; 21ς22). Ries (2011, 255ς256) also raises
importance of rapid decision making and single authority referring to a
Chief Engineer role in The Toyota Product Development System (Morgan
& Liker 2006, 117ς120).

The Lean Startup seems to be heavily focused on adopting agile and lean
principles in business development more than software or physical
product development. In this research it would best serve if subject of the
research would be trying to find new business opportunities rather than
trying to find ways to improve how continuous product development could
be improved in established operations environment.

25

2.6 Spotify model

During past couple of years, {ǇƻǘƛŦȅ aƻŘŜƭΩǎ ǇƻǇǳƭŀǊƛǘȅ Ƙŀǎ ƛƴŎǊŜŀǎŜŘ
significantly (VersionOne 2018). Although it is not a distinct framework,
but more a rapidly evolving fusion of several agile and modern
management practices.

Originally Spotify followed Scrum methodology until the company started
to grow rapidly and some standard Scrum practices begun to get their way.
They decided that Agile principles should have greater importance than
obeying certain methodology or practices. This led to a course of
development which Kniberg (2012) calls more still ongoing evolution than
a big re-make of operating model. (Kniberg 2014.)

Spotify use quite common Agile practices like small cross-functional teams,
called squads, which are self-organizing. Leaders communicate company
level vision and what are the problems to be solved. Squads collaborate
with each other to find the best possible solution, how to accomplish it and
how to work together, leading into high autonomy. However, squads have
mission which is aligned with product strategy and company short term
goals which creates high alignment between loosely coupled squads.
Organisation model is probably one of the most distinctive attribute to
Spotify model. (Kniberg 2014.)

Figure 14. Spotify organization model (Kniberg & Ivarsson, 2012).

Squads are cross-functional feature teams with ownership of certain part
of the solution responsible of full software lifecycle from design to release
and even operation and maintenance related to feature. Every feature has
a Product owner and team usually consist of frontend and backend
developers, test and release specialists and an Agile coach which is
analogous to Scrum Master to help the team to follow their chosen

26

methodology and practices. Chapters are teams specialized in certain
knowledge, like backend development. Chapter leads are line managers to
people working with same or similar technologies, but in different Squads.
Where Product Owners are responsible to decide which things are
developed, Chapter Leads are responsible of coaching teams on how they
should approach the request and actions resulting in equally high-quality
code in every Squad. Tribe is a collection of features which usually form a
natural larger entity like music player or recommendation engine. Finally,
Guilds are voluntary communities of collective interest showcasing
resolutions or mistakes and sharing knowledge on certain areas like
security, Agile practices or development tools which usually span over
multiple chapters. (Kniberg & Ivarsson, 2012.)

Generated code is always peer reviewed and all the code is available to
everyone for alteration proposals. Spotify also makes releasing software
as fast and automatic as possible with fit-for-purpose tools. This enables
frequent and small releases. New code is rolled out gradually, first in a
small subset of the whole environment serving users, simultaneously
running old and new versions in parallel. Functionality and end user
behaviour can be evaluated in real time to make decision whether to keep
new version or return to the old version. These practices are familiar from
Extreme Programming. (Kniberg, 2014.)

Generally, in Product Development Spotify follows Lean Startup
methodology first defining a narrative and prototype how new feature or
fix that should work. After that a Minimum Lovable Product, a derivative
from Minimum Viable Product, is build and released. Based on careful
analysis of predefined measure a decision to tweak or ditch the feature is
made. Failing fast is seen as a possibility to learn fast which ultimately leads
into fast improvement. Even Spotify CEO, Daniel Ek has made a statement
ǘƘŀǘ ά²Ŝ ŀƛƳ ǘƻ ƳŀƪŜ ƳƛǎǘŀƪŜǎ ŦŀǎǘŜǊ ǘƘŀƴ ŀƴȅƻƴŜ ŜƭǎŜέΦ όYƴƛōŜǊƎΣ нлмпΦύ

Spotify also tries to build an innovative culture by embracing
experimentation, having 10 % of hack-time what people can use to
develop whatever they like. And running hack weeks twice a year
combined with demos and afterparty. These have resulted as several
features used now in Spotify's music service. (Kniberg, 2014.)

Even though Spotify has been successful, very likely at least partially
because of their working methodology, they advise other organisations
not to copy what they have done but concentrate on experimenting with
the correct fit between practices, organisation culture and current
situation. As Spotify keeps growing, market and consumer habits changing
they also feel a constant need to improve. Meaning change the ways things
are done today to accommodate better fit-for-purpose ways to do things
tomorrow. (Florian, 2016.)

27

2.7 Extreme Manufacturing

Even though Extreme manufacturing (XM) ŘƻŜǎƴΩǘ top popularity lists or
ŀǎ ǎǳŎƘ ƛǎƴΩǘ ŀ Řƛǎǘƛnct methodology but an assortment of Agile practices,
ƛǘ ƛǎ ƘƛƎƘƭȅ ƛƴǘŜǊŜǎǘƛƴƎ ŀǎ ƛǘΩǎ probably a most thoughtful and advanced
approach to combine Agile Software Development methodologies and
practices in building tangible, hardware objects. Joe Justice, a founder and
CEO of Wikispeed and a major contributor of Extreme Manufacturing since
2006, is today also a member of Scrum Inc. developing methodology now
called Scrum in Hardware further (Wikispeed n.d. & Scrum Inc. n.d.).
9ȄǘǊŜƳŜ aŀƴǳŦŀŎǘǳǊƛƴƎΩǎ ŦƻŎǳǎ ƻƴ ōǳƛƭŘƛƴƎ ŎŀǊǎ is also rather fascinating
from this tƘŜǎƛǎΩǎ Ǉƻƛƴǘ ƻŦ ǾƛŜǿΦ

Extreme Manufacturing base on 7 principles (Justice 2011):

- minimize cost to make changes to innovate quickly

- loose coupling enables making changes in parallel

- working collaboratively n shared space removes blocks quickly

- doing automated tests first quickly confirms improvement

- test are success criteria

- team morale is multiplier for velocity

- Iterations and stubs make for constant successes

Cost of change like changes in team, tooling materials, components even
goals are seen as an impediment of innovation. If sunk cost is not material,
ƛǘΩǎ ƴƻǘ ǇǊƻƘƛōƛǘƛǾŜ ǘƻ ŎƘŀƴƎŜ and makes use of new innovative approaches
possible. As an example, Justice refers to a 2000-dollar generic CNC
machine compared to a million-dollar equal proprietary solution used by
automotive industry (Brown & Justice 2018) and learning how to use
composites to build a car body, instead of subcontracting one. (Justice
2011.)

Loose coupling of components has been adopted from Object Oriented
Architecture, where modularity is achieved through contract-first design
between modules with known stable interfaces (KSI). As an example, a
joint of suspension to chassis is standardized. This is also only point where
proactive design for future requirements is done to avoid costly changes
to interfaces (Brown & Justice 2018). Otherwise components are designed
minimally to fulfil predefined tests. Additionally, existing designs, materials
and components are re-used throughout the car to minimize costs. (Justice
2011.)

Extreme Manufacturing follows Scrum practices to have, if possible, team
physically located at the same location at the same time. This enables
pairing and swarming practices inherited from XP. Test Driven
development is also a practice from XP, now limiting design efforts to a
level fulfilling predefined acceptance tests. (Justice 2011.)

28

High team morale is achieved through tangible, well-defined short-term
objectives and feeling constant progress iterative approach creates. If
team morale is high, results are multiplied compared to low morale.
Iterative approach and stubs, which are short-term workarounds for more
permanent solutions. Like having blocks of tree instead of real suspension
system to be able to demonstrate a to-be finished product in real life.
(Justice 2011.)

All-in-all Extreme Manufacturing combines 12 co-existing compatible
practices from Scrum, Extreme Programming and Object-Oriented
Architecture as illustrated in Figure 15.

Figure 15. Extreme Manufacturing principles (Schwartz, 2017).

Additionally, Wikispeed uses Lean practices like 5S (Liker 2010, 150ς151)
to arrange working environment and have modular inventory. Whenever
tools are located next to their consumables. Similar are located in same
place, as few categories as possible. Everything is visually accessible like
having transparent bins over drawers so that people can see the content.
(Justice 2011.)

3 RESEARCH METHOD

3.1 Research problem and questions

The research problem was to understand could Agile methodologies
provide benefits in Product Development Process of Discrete
Manufacturing and Assembly Company.

The research questions were:

- is there a need to change the DMA Product Development Process

- could Agile software development methodologies be applied

- which Agile development framework fits best to DMA environment

29

- what kind of results (improvement) new operating model provides

Based on research and evaluation of suitable frameworks against research
subjectΩǎ requirements there was a recommendation of actions, project to
implement development process changes and measurement to evaluate
benefits from the change.

Goals for process development were optimizing existing process,
improving prioritization, increasing quality, elevating transparency and
communication. If these goals are achieved, it will eventually have positive
impact on employee satisfaction.

Success of this research was measured by positive trend between before
and after change surveys related to key goals and keeping up or exceeding
productivity by comparing experimentation period design release volumes
to previous results.

3.2 Research methodologies

Lean management and Agile development falling under Systems Theory
are abstract concepts even though they many times have physical
embodiments. Those exist in consequence of human social activities and
interactions. According to Karl Popper these kinds of phenomenon belong
into World Three of objective knowledge having intersubjective ontology.
(Anttila 2015, 41ς45; Niiniluoto 1984, 319ς321.)

As this research aimed to influence and develop organizational behaviour
and researcher was actively contributing to change, research strategy
quite naturally was Action Research where interests are critical and
emancipatory with practical orientation. Unlike most research strategies,
Action research prescribes researcher to influence on research subject.
Research is tightly integrated into daily operation and all the participants
in the process are subjects to research. Approach is empirical in a sense
that it includes perception of research subject. It also has interpretative,
hermeneutic attributes as researcher is required to interpret situation and
factors influencing into it. (Anttila 2015, 439ς443; Kananen 2014, 27ς30.)

Action Research is a form of Blended Research allowing both qualitative
and quantitative approach (Kananen 2014, 20ς21). Qualitative semi-
structured interviews were used to understand current situation,
requirement for change and possible impediments for the change in DMA.
This information combined with studies related to theoretical framework
was used to evaluate optimal approach to reach goals. Quantitative Survey
was used to evaluate project results.

During the research, abductive reasoning was used. Having an initial
thought of issues and plausible approach to enhance current process was

30

verified by having constant conversation with individuals and with groups
of people in workshops (Anttila 2015, 118ς121). Concurrently this
information was used to select and evaluate different opportunities as
future operating model for initial Plan-Do-Study-Act -cycle with primary
goal of establishing continuously improving structured development
process.

3.3 Data collection and analysis

Even though there was a quite good preconception about current situation
of Product Development Process in DMA and several plausible solutions
how to remedy issues caused by increasing demand, growing geographical
spread and siloed teams combined with short time interval to adapt
operating structures, personal semi-structured interviews were used to
verify these preconceptions and understand root causes in more detail.
Semi-structured interviews provide rich, descriptive information and
ŘƻŜǎƴΩǘ ƭƛƳƛǘ ƛƴǘŜǊǾƛŜǿŜŜ to a certain set of answers. Personal interviews
were used to avoid influence of team dynamics and to create safe
environment to express opinions. To avoid interviewer bias, open-ended
questions were used throughout the interviews. (Anttila 2015, 195ς201;
Kananen 2014, 87ς92.)

As ǉǳŀƭƛǘŀǘƛǾŜ ǊŜǎŜŀǊŎƘ ǎŀƳǇƭŜ ǎŜƭŜŎǘƛƻƴ ŘƻŜǎƴΩǘ exactly conform to theory
of sampling, used sampling resembles at best discretionary sampling.
Interviewees were selected so that every team, different nationalities and
both specialists and managers contributing into Product Development
Process were represented as they were available for the interview. Total
number of 14 persons were interviewed to ensure high level of
representation, even though answers started showing saturation already
after 8ς10 interviews. (Kananen 2015, 93ς94.)

Interviews were held mostly face-to-face in DMA premises or some as a
telephone interview. All interviews were recorded. Discussions about the
key topics started from generic level gradually going into more detail
simultaneously reflecting interviewee answers to make not-predefined
additional questions. Interview language was either Finnish or English,
depending on native language of interviewee. Recordings were initially
transcribed by using speech recognition machine learning service (Google),
but as the results ŘƛŘƴΩǘ ƘŀǾŜ ƘƛƎƘ ŜƴƻǳƎƘ ŀŎŎǳǊŀŎȅΣ interviews were re-
transcribed manually by using initial machine transcription. Intelligent
verbatim transcription was used to have easy-to-read documents.
Transcriptions were imported into cloud-based qualitative data analysis
and research service (Atlas.ti) where it was coded based on themes rising
from interviews. Coding of material was done in two passes to makes sure
that themes occurring in later interviews were coded also in first
interviews and to ensure coding consistency. Between the two passes

31

some codes were split to have more detail analysis or merged if initial
codes were near-similar.

Instead of trying to forcefully combine resulting 30 codes to higher level
codes, data was analysed based on level 1 coding with spreadsheet
application (Microsoft Excel) to bring up most discussed topics and
concurrent topics occurring in same sentences. Based on this information
a concept map of most pressing issues and likely resolutions was drawn.
To confirm manual analysis, a cloud based semantic analysis tool
(Infranodus) were used to analyse code data and build a full map of topics
and their co-occurrence.

As there were no existing measurements which could have been used to
verify effect of changes, a small survey was held before and after change.
This approach is seen more reliable than conducting only one survey after
the changes. Both surveys introduced five statements and each participant
were requested to indicate their level of agreement with 5 level Likert scale
from strongly disagree to strongly agree. Participants were also given an
opportunity to leave question unanswered. There was also possibility to
give generic open feedback. Latter survey also included a direct question
whether participants felt that changes had improved the Product
Development Process. Each survey questions were selected to depict one
of the change goals, and questions can be found in Appendix 9.

A web-based structured survey was selected as a method, because it is
easy to implement and provides numerical responses which makes relative
comparison of before and after status straightforward. A web-based
survey platform (Webropol) was used to conduct a survey for all identified
58 persons contributing to Product Development Process. A high number
of survey participants was chosen to ensure reasonable amount of
answers and chosen method ŘƛŘƴΩǘ require additional work for increased
coverage. Invitation e-mails (Appendix 4.) were sent late in the evening, so
that participants would see those on top of their mail list in the morning.
Participants were given a week to answer to survey. They were also
notified three days before and again on the morning of the day the survey
closed in the midnight. First survey was held during the week before and
second survey was done during the ninth week after the implementation
of new method. Quite long time between the surveys was planned to give
people time to orientate to new way of working and to be able to have one
continuous improvement session to re-iterate process.

Analysis of the results was done by comparing arithmetic means and
variance of before and answer pairs of each question separately. As
suggested by Anttila (2015, 246ς250) {ǘǳŘŜƴǘΩǎ ¢-test were used to verify
whether survey result pairs had statistically significant difference. A two-
sample T-test assuming unequal variances were used, even though both
surveys received twelve answers, but it was likely that respondents were

32

not the same in both surveys. Survey results were also visualized with line
chart to help analysis.

3.4 Reliability and validity of research

Credibility of the qualitative research was sought with sufficiently large
number of interviewees leading into repetition in responds and
comprehensive representation of different parties related to process. This
approach also ensured that single ƛƴǘŜǊǾƛŜǿŜŜ ŘƛŘƴΩǘ ƘŀǾŜ ǘƻƻ ƳǳŎƘ
weight in synthesis.

Due to the nature of qualitative research, ensuring its validity and
reliability is challenging and even more so to Action research which aims
to change of research subject (Kananen 2015, 125ς126). Mäkelä (1990, 48)
has suggested having following ŎǊƛǘŜǊƛŀΩǎ ǿƘŜƴ ŜǾŀƭǳŀǘƛƴƎ ǉǳŀƭƛǘŀǘƛǾŜ
research:

- sufficiency of material

- coverage of analysis

- evaluation and repeatability of the analysis

According to Kananen (2015, 134ς137) focus should be put on:

- detailed documentation of results, methods and data collection

- confirmation of the research subjects for credibility

- detailed documentation of starting point for transferability

- use of material or methodological triangulation

- vindication of how interpretation has done and how it is extracted
from material

The validity of the study was verified by evaluating different research-
theoretical approaches to the problem and excluding the alternatives that
were not relevant to the problem in question. Despite having a quite clear
preconception of the issues and likely root-causes, a semi-structured
interview was used to avoid possible bias of research subscriber. In
addition, attention was paid to non-conducting interview practices,
transcription and coding of material. The analysis was done using generally
well-proven methods with verification from automated code analysis.
Methodological triangulation was used as verification of results were
analysed with survey, instead of having second round of interviews which
provides additional confirmation of validity. Finally, research subscriber
satisfaction reassures research validity.

The reliability of the research was assured by careful and accurate
interview documentation and by striving for a consistent implementation
both from content and interview environment point of view. Individual
variation in responses was neutralized by the number of interviewees, so
the results of the individual interview did not gain significant weight in the

33

results. The interviews can be similarly replayed, but as the situation in the
organization changes quickly, the results are only valid for a limited time.
On the other hand, by conducting the survey again with same content for
example every six months, it is possible to evaluate the direction and
velocity of evolution. Replenishing focus areas requires interviews to be
repeated or an enlightened assessment of the changed state.

3.5 Subject of research

Discrete Manufacturing and Assembly Company (DMA) was founded in
early 2000's, but demand begin to surge couple of years ago. During past
couple of year company has grown from virtually zero to a 150 person,
nŜŀǊƭȅ млл Ƴϵ ƻǇŜǊŀǘƛƻƴΦ Despite strong growth, DMA has been able to
sustain 12ς13% operating profit level, which can be considered a good
achievement. Most of the diverse personnel consisting around 10
nationalities are Finnish and new assembly line is starting abroad

Even though DMA has been successful, they are always seeking
opportunities to enhance their productivity, especially on product
development which is in the end the key to sustainable success. Successful
business has been possible so far because of quite small, highly motivated
and skilled group of individuals with flexible working methods. To be able
to build sustaining success more structure in working methods without
losing agility is sought after. Also growing number of dispersed resources
are requiring increasing communication, transparency and optimized
process to be followed by all the contributors, which needs to be
addressed.

4 EMPIRICAL STUDY

4.1 Survey of current state

A semi-structured interview was used to survey current state of the
Product Development Process (PDP) in Discrete Manufacturing and
Assembly Company. Before actual interviews there was a kick-off meeting
at 27.9.2018 for all persons contributing to or being a stakeholder for PDP
about process development initiative and related thesis work. All the
participants received an invitation letter (Appendix 3) in their meeting
reservation. The goal of the interviews was:

- to understand current state of product development process

- to verify need of change

- to understand possible impediments for the change

34

These were also the themes used in interviews which were broken down
into questions drilling in to details of each topic. Additional, ad-hoc
questions were also used based on individual discussions.

First round of six face-to-face interviews were conducted 2.10.2018 in
DMA headquarters. Version 1.0 of interview questions (Appendix 2) were
used. Interviews were held in Finnish or English, depending on interviewee
native language. Interviews were recorded and transcribed during next
two weeks with machine learning-based speech recognition service and
manual correction, because machine transcriptions too low quality. During
this process, recordings were listened several times. Transcriptions were
sent to interviewee for possible corrections and remarks. After that all
interviews were initially categorized based on discussion content.

Second round of six face-to-face interviews were conducted 15.10.2018 in
DMA headquarters. Questions were subtly refined based on first round of
interviews and version 1.1 of interview questions (Appendix 2) were used.
Interviews, transcription and categorisation followed same procedure as
in first round. Two additional phone interviews were arranged at October
26th and 30th 2018 making total number of interviews 14, despite there was
distinctive saturation of interview content already during second round.
Otherwise the process for these telephone interviews remained same.

Interview categorization was done twice on the material, a second pass
merging some similar codes. This also increased code quality as couple of
the categories were raised in later interviews, even though they existed
already in the early ones, but were left unnoticed.

Figure 16. Interviewee demographics.

