

XANDER
A Nim Web Application Development Library and Framework

THESIS - BACHELOR'S DEGREE PROGRAMME

TECHNOLOGY, COMMUNICATION AND TRANSPORT

A u t h o r / s :

Santeri Sydänmetsä

2

SAVONIA UNIVERSITY OF APPLIED SCIENCES THESIS

Abstract

Field of Study

Technology, Communication and Transport

 Degree Programme

Degree Programme in Information Technology

 Author(s)

Santeri Sydänmetsä

 Title of Thesis

Xander – A Nim Web Application Development Library and Framework

Date 10 August 2019 Pages/Appendices 34

Supervisor(s)

Mr Mikko Pääkkönen, Senior Lecturer

Mr Jussi Koistinen, Senior Lecturer

Client Organisation /Partners

Mr Jussi Nivamo, Research Engineer, Savonia DigiCenter

Abstract

The objective of the thesis was to design and develop a free and open-source web development framework and

library for the Nim programming language. As open source projects tend to be large in scale with multiple devel-

opers, the aim was to produce a library and framework with stable functionality and a relatively high number of

features, with a focus on ease of use.

The project was developed over a period of time by publishing small new features one at a time. Older, working

implementations of web libraries and frameworks were studied to understand what features work well and to

achieve semantically pleasing and easily understandable code. Taking inspiration from PHP and other languages,

Nim’s powerful macro system provided the tools to build powerful tools for the developer to use.

The resulting framework reached the set goals of being competent enough for experimental usage. The number

of features were adequate and powerful, without compromising ease of use and readability. Future developments

were considered for HTTPS and for the make over of the server architecture.

Keywords

Nim, Library, Framework

3

 CONTENTS

ABBREVIATIONS AND DEFINITIONS ... 5

1 INTRODUCTION... 6

2 NIM .. 7

2.1 History ... 7

2.2 Features... 7

3 THE IDEA BEHIND XANDER .. 11

3.1 The goals of Xander ...11

3.1.1 Inspiration from PHP ..11

3.1.2 Inspiration from Go ..12

3.1.3 Inspiration from Jester ...13

3.2 Ease of use ...13

4 DEVELOPMENT WITH THE XANDER LIBRARY ... 14

4.1 The callback procedure aka. onRequest ..14

4.2 Preparing request handler parameters ..15

4.2.1 Request handler parameter: data ..15

4.2.2 Request handler parameter: headers...15

4.2.3 Request handler parameter: cookies ...17

4.2.4 Request handler parameter: session..17

4.2.5 Request handler parameter: files ..17

4.3 Compression..18

4.4 Request handlers ...18

4.4.1 Creating a request handler ...19

4.4.2 Responding ...19

4.5 Dynamic routes ...20

4.6 Serving files...21

4.7 Routers ...22

4.8 Hosts & Subdomains ..22

4.9 Helpers ...23

4.9.1 withData & withHeaders macros ...23

4.9.2 The fetch-procedure...24

4.9.3 requestHook ..24

4

4.9.4 Web sockets ..25

4.10 Templates ...26

5 WORKFLOW AUTOMATION WITH XANDER .. 30

5.1 Installing the executable ..30

5.2 Running the executable ..30

5.3 Creating a project ..30

5.4 Running a project ..30

5.5 Code listener ...31

6 ISSUES DURING DEVELOPMENT .. 32

7 CONCLUSIONS .. 33

8 REFERENCES... 34

5

ABBREVIATIONS AND DEFINITIONS

Nim = A statically typed programming language.

Library = An external collection of functions, constants, classes, types etc.

Framework = A set of tools to aid the developer by automating certain tasks.

HTTP = Hyper Text Transport Protocol; data communication for web pages.

Front End = The visible portion of a web application i.e. the user interface, client side.

Back End = The server side of a web application. Not visible to clients.

HTML = Hyper Text Markup Language; a markup language use for web documents.

JavaScript = A high-level, interpreted programming language used to create dynamic features and functionality

to websites, such as buttons, pop-ups etc.

PHP = A server-side scripting language used primarily used for web application development

Macro = Macros (or macro systems) allow programmers to access carry out metaprogramming i.e. writing code

that produces code. Macros are executed at compile-time.

Procedure = In Nim, a procedure is a function that can alter the state of objects outside of the function’s scope.

The programmer = In general, a person using Xander to develop web applications.

6

1 INTRODUCTION

The goal of this thesis is to create a comprehensive web application development library and frame-

work for the Nim programming language, as none of the kind are easily available as of now. Origi-

nally an individual free-time project but due to the scale of the subject, the project will be under-

taken for the thesis.

The thesis will be undertaken as an individual project. Due to the nature of the project, Savonia’s

DigiCenter was assigned to be the “client” of the work.

Xander being a public on-going project, a lot of the features and technologies mentioned in this re-

port are subject to change. Do not use this document as code reference.

7

2 NIM

Nim is a statically typed general purpose compiled programming language. Syntactically it is very

similar to Python, focusing on easy readability with indentation and reserved keywords. Since the

Nim compiler firstly compiles the nim code into C, C++, Objective-C or JavaScript, and only then

generates an executable, cross-platform functionality is guaranteed. Nim also has a macro system,

which provides the programmer with a toolkit for manipulating the abstract syntax tree directly.

(Rumpf, 2019)

2.1 History

Designed by Andreas Rumph, Nim (formerly Nimrod) appeared for the first time in 2008 as a free

and open-source language, making it a relatively young programming language compared to many

other commonly used languages, such as Java (1995), PHP (1996) and C# (2000). Although ap-

pearing in 2008, Nim only released its stable version as recently as June 2019, having been unstable

up till that point with updates that are not necessarily backwards compatible. (Rumpf, 2019)

2.2 Features

Like Python, Nim features indentation, similar constructs and reserved keywords, such as in, is, and,

or, where and as. Nim is also garbage collected and provides many garbage collector options, and

outperforms many other garbage collector implementations as shown in Figure 1.

 The Nim compiler can compile Nim code to C, C++, Objective-C and JavaScript. This

feature allows for several benefits, such as portability and performance (when compiling to C/C++)

FIGURE 1 Garbage collector performance compared to Go, Java and Haskell.

(Rumpf, 2019)

8

as shown in Figure 2 and Figure 3, and the possibility to write front end code in Nim (when compil-

ing to JavaScript in combination with the dom Nim module) as shown in Figure 4. Nim also provides

the ability to wrap Nim types with external C, C++ and Objective-C types, making it possible to ac-

cess types and functions from said programming languages.

FIGURE 2 "Hello World" application binary size. (Rumpf, 2019)

FIGURE 3 Importing C++ types and header file. (Rumpf, 2019)

9

Functions and methods are called “procedures” (or procs) in Nim. Nim supports different kinds of

procedure calls: the common way of calling a function by typing the function name with parentheses

is naturally supported, as well as procedure calls without parentheses. This makes using some pro-

cedures semantically look like accessing properties, as shown in Figure 5.

FIGURE 4 Example showing the dom module in use.

(Rumpf, 2019)

FIGURE 5 Examples showing Nim procedure

calls. (Rumpf, 2019)

10

If a procedure has a return type, Nim will implicitly create a variable in the procedure called result,

which boasts the same data type as the return type. To make the procedure return a value, simply

assigning a value to the result variable is enough, as it does not have to be returned. Also, if the last

statement of a procedure has the same data type as the procedure’s return type, the last statement

will be evaluated and returned as shown in Figure 6.

FIGURE 6 Returning from procedures in unconventional

ways. (Rumpf, 2019)

11

3 THE IDEA BEHIND XANDER

Nim comes preinstalled with a standard library which provides many powerful and useful procedures

and types to develop and build production ready applications. This also applies to web application

development, but to effectively develop web applications and get them up and running quickly still

requires a lot of set up.

Due to the novelty of the language itself, not many community created web application develop-

ment libraries exist. The ones that do exist, do not match the specifics that Xander is designed to

offer.

3.1 The goals of Xander

As a library, Xander attempts to implement features that other languages or libraries already offer

that have been proven to work and improve the programmers work efficiency. Xander aims to allow

the programmer to focus on the development of the actual application, instead of using ever so pre-

cious time and resources on setting up the backbone of the application. Doing this trades perfor-

mance for ease of use and an increased speed of development and is an intentional design choice.

3.1.1 Inspiration from PHP

PHP offers implicit global variables (called super globals) for the programmer to use. This means

that the programmer never actually initializes said variables with any data themself, and they are

always accessible. Knowing this, the programmer can simply access the data they might need with

the aid of said global variables. For example, given an HTML form with the following input fields:

FIGURE 7 Form with inputs for address, email and addressAndEmail.

12

On the server-side, the data in the input fields can be accessed with:

Certainly, to maintain proper coding standards, the programmer would check that these variables

exist before using them. However, the fact that the variables exist implicitly make the developers

job easier. The examples in Figure 7 and Figure 8 showed methods of sending simple form data

(strings), but several other global variables also exist. These variables include uploaded files, cookie

and session variables. (Achour, et al., 2019)

3.1.2 Inspiration from Go

Go (or golang), is a language developed by Google to handle large scale web applications. Setting

up a basic server in Go is very straight-forward and can be done with a small set of very readable

code. (Golang, 2019)

The developer simply needs to set a “HandleFunc” – a request handler – for a specific URL path and

listen to a desired post for requests. This is all achievable with one of the standard Go libraries.

FIGURE 8 Accessing form fields in PHP. If the HTML form

method is GET, the global variable $_GET would be used.

FIGURE 9 Useful global variables that exist implicitly in PHP

and are designed to be implemented in Xander.

FIGURE 10 A basic Go server example.

(Golang, 2019)

13

3.1.3 Inspiration from Jester

Jester is currently the go-to web application library for Nim. Developed by one the core developers

of Nim, it contains a feature that adds greatly to code readability and simplicity. According to

Jester’s GitHub page’s description, Jester aims to be a “sinatra-like web framework”, and certainly,

semantically it shows vast similarities to Sinatra, a web library for the Ruby programming language.

Syntax-wise the code is very readable: no procedures are defined, and the procedure-calls are short

and simple, as shown in Figure 11. As Xander aims to be readable and easy to use, a feature like

this is of the highest priority.

3.2 Ease of use

Xander aims to be beginner friendly, all the while providing powerful tools an advanced developer

may require. Syntactically, Xander aims to be intuitive and expressive: all procedure and function

names are descriptive in what tasks they perform, and are written using whole words, without ab-

breviations (some exceptions exist due to conflicts with reserved key words in the language itself).

FIGURE 11 Example showcasing a Hello World application made with

Jester. (Picheta, 2019)

14

4 DEVELOPMENT WITH THE XANDER LIBRARY

Xander relies on Nim’s standard libraries asynchttpserver and asyncdispatch. These libraries – espe-

cially asynchttpserver – are not operating on the lowest level of Nim but provide many useful and

powerful tools to build HTTP servers.

In the Hello World example in Figure 12, an object of the type AsyncHttpServer is initialized and

bound to the variable server. Then, the serve method is called with a port number and a callback

procedure, which is called every time a request is made to the server. The respond procedure in the

callback procedure additionally takes an optional argument called headers, which contains the re-

sponse header values.

4.1 The callback procedure aka. onRequest

The request callback procedure (called onRequest in Xander) is the core of the event loop, and a

wide range of server logic takes place in it. To handle each request, the following tasks are done to

prepare the HTTP response:

1. Set default response values (HTTP code, content and headers)

2. Get the response values set by the programmer

3. Merge or replace the two sets of response values

Each HTTP response is made up of three things; HTTP status code, content and headers. These en-

compass all the data that Xander plays around with. As mentioned in section 3.1.1, Xander is de-

signed to provide the programmer with a set of implicitly defined and initialized variables to do some

of the legwork required to run a well-functioning server. Like PHP, Xander defines variables used for

handling the request, form data and URL queries, headers, cookies, sessions and uploaded files.

However, in Xander these variables are not globals like they are in PHP. Instead, they excist implic-

itly in every request handler procedure as a parameter (thus the scope is limited to the procedure).

FIGURE 12 asynchttpserver Hello World example. Every request responds with

a “Hello World” message and HTTP status code 200.

15

The onRequest procedure calls the programmer-defined request handlers with said variables as pa-

rameters, and most importantly, sends them by reference, meaning that all the changes the pro-

grammer makes to the variables in the request handler procedure affect the variables in the onRe-

quest procedure as well.

4.2 Preparing request handler parameters

Except for the request parameter, which is provided by asynchttpserver, all the other parameters

are prepared and assigned some data, if there is any data to be assigned. All the possible incoming

data is pulled from the incoming request. The request variable contains a lot of important infor-

mation about the request. However, the data needed for the Xander defined variables only requires

the request’s header and body. The request variable is sent to the request handler unchanged as a

parameter, as it contains every piece of information regarding the incoming request.

4.2.1 Request handler parameter: data

The data parameter is of type Data, a data type defined by Xander, and behaves like a JSON object.

It is assigned form data and URL query data as key-value pairs. This keeps form and URL query

data handling neatly in a single variable. Although also sent in forms, files are handled in a seperate

variable.

4.2.2 Request handler parameter: headers

The headers parameter is of type HttpHeaders, as defined by asynchttpserver. As of currently, the

programmer can access the request headers via the request variable, which is sent as a parameter

to the request handler. By default, Xander sets some default header fields to ensure that the re-

sponse bears an adequate level of header information (see Figure 13). Most of the header fields are

set to streamline the request-response interaction as well as mitigate attacks targeted towards the

server.

16

The Cache-Control header is set to allow the browser to cache the response, including static files

like images and videos as well as text. Setting the maximum age to one week lets the web browser

know that the response can be saved as it came for a week and use that save later to speed up

later requests. The Connection header is set to keep the underlying socket connection alive for fur-

ther requests. (MDN, 2019)

By default, the Content-Type header of the response is set to text/plain and character set to UTF-8.

Thus, the programmer needs but to respond with some text, and it will be displayed correctly, as

the character set can display special characters. This header setting has the inevitable effect of fail-

ing to display HTML formatted strings correctly in the browser. To work around this, the program-

mer must use the html procedure when responding with a HTML formatted string. (MDN, 2019)

The Content-Security-Policy header lets the browser know that any scripts to be run must have their

origin on the server, preventing third party scripts from executing in the browser. The Feature-Policy

header simply prevents the browser from automatically playing any video or audio. The Referrer-

Policy header omits all referrer information sent with requests. (MDN, 2019)

The Vary header requires the caching process to consider the user agent, as well as accepted en-

coding. This is useful when a web application has versions for desktop and mobile environments.

(MDN, 2019)

The X-Content-Type-Options specifically helps mitigate XSS attacks by blocking MIME type sniffing.

The X-Frame-Options header denies iframes from rendering in the browser, preventing clickjacking

attacks. The X-XSS-Protection header mainly supports the Content-Security-Policy header by miti-

gating XSS attacks in older browsers. (MDN, 2019)

FIGURE 13 The default headers set by Xander

17

4.2.3 Request handler parameter: cookies

The cookies variable is of type Cookies, a data type defined by Xander. The data type consists of

two parts: cookies sent by the client and cookies set in the back end. The request cookies are trans-

mitted in the request’s header section, and Xander parses these headers to the cookies variable.

The variable is then accessed as shown in Figure 14.

4.2.4 Request handler parameter: session

The session variable is of type Session, which is equal with the Xander defined datatype Data. The

client’s session identity (session ID) is stored in the client’s browser cookies. The cookie is session

cookie is declared httpOnly, meaning it cannot be accessed and altered by browser scripts (JavaS-

cript). As of now, the session identity is a SHA-1 hashed random number.

Server sessions are stored in-memory by Xander, and request handlers receive the client’s session

variables in the session parameter.

4.2.5 Request handler parameter: files

The files variable is of type UploadFiles, a custom data type defined by Xander. Essentially, the data

type is a table, where the keys are strings and values are UploadFile sequences. The UploadFile data

type contains fields for the name, extension, content and size of the file.

FIGURE 14 Getting and setting cookies in request handlers

FIGURE 15 Xander creating a response cookie declaring the client’s session identity

FIGURE 16 UploadFiles data type definition

18

The definition is as shown in Figure 16 to enable forms that send multiple file inputs with different

names.

4.3 Compression

HTTP compression (decompression in the client) is a common method of improving the speed of

interaction between servers and clients. Currently, Xander only supports gzip compression (the most

common method of compression) and performs the compression process if the accept-encoding

header of the request contains the value gzip. (MDN, 2019)

4.4 Request handlers

Xander defines a custom type called RequestHandler, which is a synchronous procedure the onRe-

quest procedure calls on every successful request (the requested URL path exists). The purpose of

the request handler procedure is to allow the programmer to define their desired response to be

sent back to the client, among other functionality a server may perform.

FIGURE 17 An example HTML form with two file inputs

FIGURE 18 File handling in request handlers

19

4.4.1 Creating a request handler

To achieve the simple and readable Sinatra-like look, Xander uses Nim’s macro system to essentially

trim off all the jargon that goes on behind the scenes. This is necessary, for without the macros,

request handler definitions would be too long, both semantically and practically, cluttering the pro-

grammers screen with too much unnecessary information.

In Figure 19, the first request handler definition (a macro call) is the preferred and standard Xander

way of creating request handlers, whereas the second request handler definition is the actual proce-

dure call to add the request handler to Xander’s collection of request handlers. Currently, the transi-

tion from get to addGet (same for other request methods) is carried out by building a string that

contains the definition of addGet, after which the string is evaluated with a Nim procedure call pars-

eStmt (found in the os standard library).

Since onRequest – more precicely, the callback procedure parameter of the asynchttpserver library

procedure serve – must be gcsafe (garbage collector safe), variables defined outside of the proce-

dure scope must contain the threadvar pragma, if they need to be accessed. This leads to request

handlers requiring garbage collector safety, and thus accessing variables outside of said request

handler scope requires that the variables are defined with the threadvar pragma.

4.4.2 Responding

Technically, the onRequest procedure performs the actual responding, whereas the respond proce-

dure called in the request handler simply wraps the programmer defined response into a managea-

ble package for Xander to use as a valid response. The respond procedure is overloaded in such a

way that the programmer can simply respond with minimal information, such as simply providing

FIGURE 19 Code snippet showing what Xander does to request handler definitions

FIGURE 20 Example showing the threadvar pragma in use

20

the procedure with an HTTP status code or by providing content in a form of a string, Data or Up-

loadFile. The procedure definitions are as shown in Figure 21.

Redirecting has been made possible with the redirect procedure as defined by Xander (see Figure

22). The procedure can be used to redirect the user directly to a desired URL, or to redirect after a

specified amount of time (in seconds). In HTTP, redirecting is done in one of two ways using head-

ers:

1. Setting the Location header to a specified URL.

2. Setting the Refresh header to a specified number of seconds to wait and adding the

additional parameter url and giving it a URL to indicate the new page to redirect to.

4.5 Dynamic routes

Dynamic routes enable the programmer to create endpoints where the specified path is dynamic,

opposed to being static. This is achieved in the request handler by adding a colon prefix to the path,

and accessing the dynamic value using the data variable. This feature is commonly used in addition

to other dynamic functionalities a web application may have, such as account creation and access,

wikis et al.

FIGURE 21 Request handler response packager procedure definitions

FIGURE 22 If the redirect procedure is called without providing delay, the Location header will be

used.

21

4.6 Serving files

Serving files with Xander is done by calling the serveFiles procedure with a specified directory path

as its parameter. Any files in possible subdirectories within the specified directory will also be

served.

The way Xander handles file serving is by creating Xander’s very own request handlers for the direc-

tory and its subdirectories. Using dynamic routes, each request handler parses the requested file’s

name and checks if the file exists in the specified directory.

FIGURE 24 Example usage of the serveFiles procedure

FIGURE 25 The serveFiles procedure as defined by Xander

FIGURE 23 Using dynamic routes in request handlers

22

4.7 Routers

Routers help compartmentalize request handlers in a clean and logical order (due to indentation) as

well as removing some redundancy of repeating code. A web server may, for example, have its own

API endpoints, and thus grouping all the endpoints under one router block makes code more reada-

ble and manageable, as shown in Figure 26. The behaviour – produced with macros – is similar to

Express’ (a Node.js framework) router.

4.8 Hosts & Subdomains

A subdomain is a subsection of a main domain and needs to be configured by the domain name

provider. Xander handles subdomains by accessing the request’s host header value and parsing it

for subdomains. Similar to routers, subdomains can help compartmentalize different sections of a

server. For example, separating an API from the main domain, as shown in Figure 27.

Similar to subdomains, the host macro can be used to separate the server into smaller pieces. The

macro can be used to serve several different applications with different domain names from the

same server. Hosts, subdomains and routers can be layered. The host macro is considered to be

experimental.

FIGURE 26 An example router for an about section of a web server.

FIGURE 27 Usage of the subdomain macro. Consider the domain

site.com, the subdomain will match api.site.com

23

4.9 Helpers

Certain macros and procedures were developed to additionally aid the programmer in streamlining

their development process.

4.9.1 withData & withHeaders macros

During the development stage of Xander, some unnecessary redundancies were observed to exist in

request handlers. A basic and common function of a server is to receive data from a client and han-

dle it in a certain way. To catch this data on the server side, the developer would have to create a

request handler and then explicitly check that the required data was sent, and then possibly assign

the data to variables. Due to the frequency of the process mentioned before, a helper macro

withData was added to streamline the process by implicitly checking if some specified data fields

exist and assigning them to variables if they do. A similar helper was created for request headers.

FIGURE 29 Usage of withData.

FIGURE 28 Usage of the host macro. Requests made to the domain

localhost will return a welcome message.

24

4.9.2 The fetch-procedure

One function a server may have is retrieving data from a remote location. For example, a weather

application may collect weather and climate data from a reputable weather API, or an application

may simply have its resources spread into several locations. To access said resources, the program-

mer would have to use Nim’s httpclient library to create a request to a remote location. To stream-

line the process, fetch, a PHP-like procedure was created that performs this exact process synchro-

nously in one line.

4.9.3 requestHook

As of now, requstHook is a variable exported by Xander, which the programmer may use to create a

“hook” for Xander’s onRequest procedure. The status of requestHook is considered to be experi-

mental. The variable was originally added to allow the programmer to perform asynchronous tasks

for client requests. The requestHook can also be used as a section for lower level of web server pro-

gramming.

If the requestHook variable is correctly set to be an asynchronous procedure, it (the procedure) will

be called whenever a request is made to the server. The requestHook procedure is called first, be-

fore any other task is performed by Xander, or by the programmer in a request handler. Technically,

the programmer can build their entire application in the requestHook, as it behaves exactly like the

callback parameter of the serve procedure in the asynchttpserver library. Calling asynchttpserver’s

respond method in the requestHook returns from Xander’s onRequest procedure, and no other tasks

will be performed by Xander.

FIGURE 30 Usage of the fetch procedure

FIGURE 31 requestHook definition. Note, that the variable

type is a procedure.

25

Example use cases for the requestHook procedure are for example, web sockets, asynchronous da-

tabase tasks and any other asynchronous task. In the development stage of Xander the re-

questHook was originally used to test web socket functionality. However, web socket functionality

was later added to Xander itself.

4.9.4 Web sockets

Web sockets allow the client to communicate with the server – and vice versa - in a more respon-

sive way, where the page does not need to be refreshed after new data is received. A web socket is

essentially like an ongoing hands-free phone call; the client can continue to do what ever they might

do on the web page, while the web socket connection persists and exchanges data with the server.

Web sockets are useful in dynamic and responsive applications, such as live chats, as the client can

update the chat’s messages everytime the server sends a new message for the client to display, and

the client can send new messages to be shown to other recipients. Compared to the likes of AJAX,

where the programmer would most likely create a timed call to the server, fetching new data at an

interval, the data shown to the client may not be up to date. (MDN, 2019)

In Xander, web socket functionality can be built in the requestHook procedure or the programmer

may use the websocket macro, which was designed to do some of the legwork for the programmer.

The status of the websocket macro is considered to be experimental and uses an experimental com-

munity developed web socket library. As of now, the websocket macro only works in the global

scope. Thus, a web socket cannot be assigned to a certain host, subdomain or router.

FIGURE 32 An example application built entirely in the requestHook

variable. The application simply returns the message "Hello World!"

for every request.

FIGURE 33 Usage of the websocket macro in the chat server example.

Note that the variable ws exists implicitly.

26

In Xander’s onRequest procedure, web sockets are second in order of being handled (requestHook

being first). The macro implicitly injects a variable called ws (short for web socket) into the handler

that the programmer may use to access the socket and create their desired functionality.

4.10 Templates

Xander houses its own experimental templating engine, which currently provides three main func-

tionalities: importing templates, inserting variables and for loops. The template files themselves can

be of any file type, and as Xander’s templates are designed to help build dynamic web pages, the

.html file type is preferred. The engine uses regular expressions (RegEx) to parse template docu-

ments.

By default, Xander looks for templates in a folder called templates, which should be located in the

application directory. The template directory can be changed by calling setTemplateDirectory. In the

request handler, the programmer can respond with a template by calling the tmplt procedure (this

procedure breaks the procedure naming convention, as template is a reserved keyword in Nim) with

the name of the template. The tmplt procedure returns a string containing the page content, and

thus this can be returned in the respond procedure.

A common feature found in many other templating engines is layout files. Layout files declare the

layout of a web page, generally including JavaScript and CSS inclusions, meta tags, navigation bars

and footers. As these components are static, they should not have to be declared again (to avoid

repetition). Thus, creating a single layout file (with the file name layout) with the content tag is

FIGURE 34 Web Socket definition in Xander

FIGURE 35 Responding with a template. The index template is in the template directory.

27

enough, and Xander will automatically combine a specified template’s content with the layout file’s

content. Xander also supports having multiple layout files, granted that they are separated into sep-

arate directories.

Xander defines its template tags as a set of wavy and square brackets with keywords and dynamic

values inside. Data passed from request handlers are also accessed in this manner.

FIGURE 36 An example template directory structure of a Xander application. The directories

register, admin and normie can be considered seperate sections of a server with seperate

layout files. The closest layout file will always be served.

FIGURE 37 An example layout file. {[title]} is provided by the user. {[content]} will

be replaced with template content. {[template footer]} includes a template called

footer.

28

Included templates can themselves contain further inlusions of other templates. This makes it possi-

ble to build modular and clearly layed out template structures.

To pass data to templates, the programmer must call the tmplt procedure with an additional param-

eter, which should be of type Data (JObject). The key-value pairs of the Data object are then in-

jected to the template. Dotwalking is a feature found most notably in JavaScript, and this feature

was also implemented in Xander’s templating engine.

For-in-loops can be used to display a list of data, including HTML components. For example, given a

list of people, where each person has a name, age and hobbies field, programmers can generate a

table with the list’s data by defining a template as follows:

FIGURE 38 A footer template which further includes a template for contact de-

tails.

FIGURE 39 A dynamic end point which returns a template with the

dynamic data it received.

29

FIGURE 40 Generating table rows with a for-in loop. Note the JS like dotwalking.

30

5 WORKFLOW AUTOMATION WITH XANDER

The aim of Xander was to create a web application development library and framework that would

help backend developers streamline their development process and additionally get started with a

new project quickly without spending an unreasonable amount of time setting up the project envi-

ronment. For this reason, the main file of the Xander project can also be run as an executable from

the command line for some small added benefits.

5.1 Installing the executable

Once the programmer has installed Xander using Nim’s own package manager system Nimble, the

programmer can optionally (if they wish to use the executable to its fullest potential) install the exe-

cutable by running a shell script file located in the xander directory. The script creates a hidden di-

rectory in the user’s home directory and builds the resulting executable there. To run the executable

from anywhere, its path must be added to environment variables.

5.2 Running the executable

The executable can be run with three different parameters. The basic format of a Xander executable

call is as shown in Figure 41.

5.3 Creating a project

Getting started with a new project can be done by running the xander executable with the new pa-

rameter. This command creates a new project (called my-xander-app by default) by creating an ap-

plication directory and filling it with useful files to get started with the project, such as the main Nim

file and templates. If the programmer wants to name the project, an additional parameter must be

provided.

5.4 Running a project

To run a Nim application, the programmer would have to first compile the application, and then run

it. This can be done with the nim compiler quite simply, although the resulting command can turn

out being quite long.

FIGURE 41 Xander executable running format

FIGURE 42 Compiling and running using nim c.

31

For this reason, a simpler way to run the project was developed, so the programmer does not have

to memorize and type out the long command. The Xander executable features the run command,

which by default, if no other parameters are provided, attempts to compile and run the app.nim file,

which the new command creates by default. The command will run the Nim compiler with options

as shown in Figure 42.

5.5 Code listener

If any changes are made in the Xander application, the application needs to be compiled and run

again to put the changes into effect. To automate this process, the listen command was imple-

mented in the executable. The command is run similarly to the run command, where the name of

the file to run (and in this case, listen for changes) can be omitted. The executable will then proceed

to run the application and listen for changes in the applications source code. If any changes are de-

tected, the application will be compiled and run automatically. In case of an error, the error mes-

sage will be displayed in the command prompt.

32

6 ISSUES DURING DEVELOPMENT

The development process of Xander as a project contained some issues that were possible to fix or

find a work around for. For example, adding the requestHook was necessary to get asynchronous

tasks to work, which heavily alters the way developing with Xander works. The work around is more

of a hack than a reasonable and well thought out solution. However, it works as it should and does

not break the system in any way.

Although HTTPS was one of the planned features of Xander, it was unfortunately not implemented

due to issues with asynchronous sockets and a lack of time. In the future, rebuilding Xander from

the ground up using lower level libraries, such as starting at the socket level are definite possibilities

to ensure HTTPS works natively to Xander.

As of now, a workaround exists to successfully setup HTTPS for Xander applications. The program-

mer may use other server applications such as Apache or Nginx to setup an SSL proxy that directs

secure requests to the Xander application.

33

7 CONCLUSIONS

The project is still ongoing and will be for some time. However, the current state of Xander is suffi-

cient enough to be used at the very least experimentally but is by no means a complete and stable

framework. Xander is an open source project, and thus anyone can aquire the source code of it and

contribute as they see fit.

The project was very educational in the rudimentaries of web development and gave me deep in-

sight on how web servers actually work on lower levels of abstraction. I will continue to work on

project although development will be less active. The goal is to develop Xander to a steady and sta-

ble version where it can be left alone (left for others to further develop).

34

8 REFERENCES

Achour, Mehdi;ym. 2019. Manual. PHP. [Online] 2019. [Cited: 2. August 2019.]

https://www.php.net/manual/en/index.php.

Fielding, et al. 1999. RFC 2616. World Wide Web Consortium. [Online] 1999. [Cited: 15. July

2019.] https://w3.org/Protocols/rfc2616.

Golang. 2019. Doc. Golang. [Online] 2019. [Cited: 22. July 2019.] https://golang.org/doc/.

MDN. 2019. Web HTTP. Mozilla Developer Network. [Online] 2019. [Cited: 15. July 2019.]

https://developer.mozilla.org/en-US/docs/Web/HTTP.

Picheta, Dominic. 2019. Jester. GitHub. [Online] 2019. [Cited: 25. July 2019.]

https://github.com/dom96/jester.

Rumpf, Andreas. 2019. Documentation. Nim-lang. [Online] 2019. [Cited: 13. July 2019.]

https://nim-lang.org/documentation.html.

—. 2019. Features. Nim-lang. [Online] 2019. [Cited: 13. July 2019.] nim-lang.org.

