

Creating a Design Token Library for ABB’s CommonUX
Design System

Topias Saari

 Bachelor’s Thesis

Degree Programme in

Business Information Technology

2019

 Abstract

 28.8.2019

Business Information Technology

Authors
Topias Saari

Group
BITe

The title of your thesis
Creating a Design Token Library for ABB’s CommonUX De-

sign System

Number of
pages and ap-
pendices
43+2

Supervisors
Jarmo Peltoniemi

This commissioned product-thesis describes the process of creating a design

token library for ABB’s Design System. The objective of the thesis is to create a

design token library which aims to improve the design handoff process within

the CommonUX-team. The goal of the thesis is to improve the knowledge and

skills of the thesis worker. The research questions of the thesis are: what is a

design token library and how can it improve the design handoff process?

These goals are met by describing the structure of design systems in general,

which is followed by a definition of design tokens. The definition, together with

an overview of the design system is then applied to create a project plan that

consists of first level token architecture and a command line tool for importing

the design tokens into a language agnostic format for the developers to use.

The development process is described in a thesis diary, which is finally evalu-

ated and discussed.

The conclusion to the research questions is that a design token library is a set

of values that can be used to maintain and organize design decisions within a

design system. It can improve the design handoff process by being a central-

ized and visible set of values that the designers and developers can agree upon

and refer to by using a shared language.

Key words
UX-design, Software development, Design system, Design token

Table of contents

1 Assessment statement ... 2
2 Introduction .. 1

2.1 Project definition .. 1
3 Pre-study .. 3

3.1 ABB .. 3
3.2 CommonUX Design System .. 3
3.3 Design systems ... 5
3.4 Design tokens .. 9
3.5 Tools of CommonUX ... 15

4 Creation of Design Tokens .. 19
5 Thesis diary .. 21
6 Results ... 30

6.1 Architecture .. 30
6.2 Implementation .. 32
6.3 Design handoff .. 33

7 Discussion .. 37
7.1 Reflection on thesis diary .. 37
7.2 Limitations .. 38
7.3 Suggestions for further development ... 38
7.4 Feedback ... 39
7.5 Conclusions ... 39

References ... 41
Appendices ... 45

Appendix 1. Main function of the Figma API to JSON token generator 45
Appendix 2. README of the token generator ... 46

Table of figures

Figure 1. UI Layout using CommonUX (ABB 2019) .. 4
Figure 2. Atomic Design methodology (Frost, 2016) ... 6
Figure 3. Mind map of a design system ... 7
Figure 4. Example of second level design token architecture ... 10
Figure 5. Timeline of the project .. 19
Figure 6. First Figma API test .. 21
Figure 7. Token dashboard test ... 26
Figure 8. Optimizing structure (week 30) ... 27
Figure 9. Token creation instructions in Figma .. 28
Figure 10. Naming conventions ... 30
Figure 11. Figma to JSON ... 32
Figure 12. Figma document structure (Laptev, 2019) ... 33
Figure 13. Design handoff ... 34

Table 1. Common token definitions in public design systems ... 11
Table 2. Token categories ... 31

1 Assessment statement

This project was assigned by ABB to design and develop a design token library as a fea-

ture to the CommonUX Design System. The thesis was commissioned in the spring of

2019. The project was conducted during June and July 2019.

1

2 Introduction

This product-driven thesis aims to create a design token library for ABB’s CommonUX De-

sign System. The design token library will consist of a token architecture and implementa-

tion, as well as documentation of the final product and the development process. This the-

sis includes terminology and concepts related to the field, which require prior knowledge

of web development as well as UX-design.

A pre-study will be conducted. First, the context, aims and framework for the project will

be defined. A definition of a design system is presented to help contextualize the aim of

the thesis project. After defining what a design system is, what is it used for, what are the

benefits, use purposes and tools, design tokens will be defined. As there are no definite

industry standards for design systems or design tokens since they are fairly new concepts

and serve a variety of use cases, the definitions used in this thesis will be constructed us-

ing multiple literary sources and examples as well as a benchmarking of existing design

token libraries. The exploration of design tokens will include benefits, disadvantages and

common practices.

The action part of the thesis will consist of a proposal for the design token architecture

and a technical implementation. Afterwards a thesis diary will be presented in order to

evaluate the implementation for further improvements or changes. The diary is also used

to present the progress and learnings of the thesis worker. To conclude, the process will

be evaluated by the representatives of ABB. A retroactive look at the project will be given

to summarize the process along with proposals for further development.

2.1 Project definition

The research questions of the thesis are: what is a design token library and how can it im-

prove the design handoff process? These research questions are used to gain under-

standing of existing design token libraries.

The thesis project is commissioned by ABB to implement a design token library into Com-

monUX Design System. The design token library is done in order to improve the process

of translating base level design decisions into development and maintaining consistency

within the CommonUX team. The term design handoff is used of this process. The thesis

will evaluate the success of the technical implementation, not the effects of the product in

the long run.

2

The theory section of the thesis aims to answer the first part of the research question:

what a design token library is, and the action part of the thesis will discuss and demon-

strate how to build one to improve the design handoff process in this particular case. The

development and progress of the thesis worker will be demonstrated through the thesis

diary as producing the deliverables for the commissioning party. The theory part will be

constructed using the pre-study as well as a benchmarking of existing design token archi-

tectures to gain knowledge of the current state and standards in use. Additionally, an

overview of the tools and processes of CommonUX will be gathered.

The action part of the thesis will include a project plan, thesis diary as well as a descrip-

tion of the design token library. The theory part will be applied to create a project plan.

This project plan will be implemented by the thesis worker in cooperation with the Com-

monUX team. This process will be documented in a thesis diary that will constitute to-

wards the learning goals of the project. As a final result of the project, the thesis worker

will deliver the commissioning party a functional design token library that is integrated to

the current tools and methods of the CommonUX Design System along with this thesis.

The commissioned thesis project aims to fulfill the following business benefits: reducing

maintenance overhead and decreasing initiation cost to implement new components in the

design system. The former is achieved through creating a tool, the design token library,

that decreases the resources needed in the design handoff process. The latter of these

business benefits will be achieved through making the tool in such a way, that it serves

the intended purposes and use cases as optimally as possible within the frames of the

thesis.

The design token library at first will work as an internal tool. The focus of the thesis is to

service of the workflow of the team to improve and maintain the design system. Even

though the solution will be for internal use, the end user will be kept in mind for further de-

velopment and possible release as part of the design system.

The schedule for the thesis is ten weeks. The ten-week project will include one to two

weeks of research, that is represented in the theory section of this thesis. The project

timeline will span from the beginning of June of 2019 to the end of July of 2019.

3

3 Pre-study

The pre-study for the thesis project introduces ABB, design systems as well as design to-

kens.

3.1 ABB

ABB (Asea Brown Boveri) is a multi-national corporation that operates in about 100 coun-

tries. It was founded in 1988 when two European companies, ASEA and Brown, Boveri &

Cie merged. It deals mostly in infrastructure, industry and transport technology. In 2017

ABB’s revenue was 34.3 billion US Dollars with 1% growth from previous year. (ABB

2019)

ABB has a notable presence in Finland with around 5000 employees and 2,2 billion reve-

nue. This presence has long roots that started back in 1889 with a Finnish company Oy

Strömberg Ab that was later acquired by ASEA, which would become ABB later on. In

Helsinki, the ABB premises range notably from Valimo to Pitäjänmäki with over half of the

Finnish ABB employees located in the area thus generating daily commuter traffic from

the surrounding metropolitan area. Pitäjänmäki factories produces motors, generators, fre-

quency converters, multiple electrical products, industry automation technology as well as

research and development. (ABB 2019).

3.2 CommonUX Design System

In 2018, an initiative to unify the look and feel of ABB’s digital products was created. This

effort was carried out by a dedicated central UX-design team that consists of UX-design-

ers and frontend developers. The goal of the design system is to improve the quality of the

digital offering of the company, that spans multiple different sectors of industrial and com-

mercial use. (ABB 2019)

The CommonUX Design System consists of design principles, foundational styling instruc-

tions, design tools such as toolkits for the vector graphics editors Adobe Illustrator and

Sketch as well as development tools in the form of reusable components built using

frontend frameworks React, Angular and WPF. In addition, references to example layouts

(figure 1) and how to build these user interfaces is described an online guideline which is

a website that acts as a portal to all of the resources for the design system. The main

4

responsibility of the team is to provide tools and instructions on how to create brand con-

sistent, meaningful and UX standard user interfaces to ABB’s customer facing digital prod-

ucts as well as internal tools. (ABB 2019)

Figure 1. UI Layout using CommonUX (ABB 2019)

5

3.3 Design systems

The process of branding is used to create a consistent image for a product or a company.

(Business Dictionary 2019). In user interfaces, the visual style, UX-patterns and other de-

sign decisions can be used to create consistent branding (Qubstudio 2019).

Style guides are one of the ways used to ensure visual consistency. In web design, tradi-

tionally a style guide defines a color palette, size classes and other stylings that can be

used to create the intended style. (McNaughton, 2019) But a design system is not just a

style guide. For example, a style guide is typically a reference pdf or a website that is

used to check that the design matches intended colors. Whereas a design system tells

one what the colors are, how to use them and in what context, as well as gives tools for

designers and developers to use the colors in a reusable manner (Curtis, 2017). The fol-

lowing quote from Nathan Curtis helps to sum the difference between style guides and de-

sign systems.

“A style guide is an artifact of the design process. A design system is a living, funded

product with a roadmap & backlog, serving an ecosystem.” – Nathan Curtis. (Curtis, 2015)

The idea of reusability in design is not a new one, even though all modern design systems

are arguably less than ten years old, a modular approach to software development has

been in use since the 1960’s (Fanguy, 2018). Historically it has been stated that design

and programming assets have been largely disconnected from each other, and any thor-

ough attempts to reach interface reusability and consistency through style guides have

failed (Gale, 1996. 362–367).

Alexander, Ishikawa and Silverstein in the book A Pattern Language (1977) define a lan-

guage based on 253 patterns as a way to create buildings, neighborhoods or other archi-

tectural projects. This idea of patterns, and small set of defined building blocks creating a

language (Alexander, Ishikawa, Silverstein, 1977, xi) is discussed by Frost in his work

Atomic Design (2016). He defines the cornerstone of design systems as being style

guides that present design elements in a clear way as well as providing guidelines, usage

and guardrails (Frost, 2016, 45). Frost’s work is not concerned with buildings or strictly

brand guidelines however, but creating a design methodology, a way of analyzing and

compartmentalizing a user interface as a set of small parts and using these parts to create

UI’s using a defined palette of elements. This idea of dividing the user interfaces into small

6

parts is crucial for the idea of reusability as most UI’s consist of complex elements and in-

teractions.

In the Atomic Design methodology, the smallest units are called atoms. Atoms are ele-

ments such as buttons or checkboxes. These atoms form molecules, such as an input ele-

ment. Together atoms and molecules can create organisms that are complex structures,

like a header on a site. All of the aforementioned together create templates on top of

which content is put to create pages (Frost, 2016, 83-90). All different levels of this meth-

odology are interlinked. A design system encompasses all of these elements, and how to

use them. It provides functioning atoms, molecules and organisms in the form of UI com-

ponents, and instructs how to create pages based on rules and guidelines that make func-

tioning templates.

Figure 2. Atomic Design methodology (Frost, 2016)

The Atomic Design methodology is a useful tool to help understand and define design

systems. The methodology defines the building blocks of user interfaces (figure 2). Having

a systematic approach in the creation of patterns and guides becomes logical.

What is relevant to understand in the context of this thesis is that design systems ap-

proach reusability and consistency in design by defining elements of the system and

providing tools to use them (Nguyen. 2018, 42). So, a design system is not just a style

guide, but a more full-fledged and encompassing set of tools, such as design principles,

design toolkits, reusable components and pattern libraries. Design systems can be

thought of creating the “application programming interface” – API for design (Saarinen,

2017).

7

The content and purpose of a design system can vary based on the use case. See figure

3 for an illustration of possible elements that can be included in a design system. The fol-

lowing aspects of design systems are presented shortly to give context of the functions

and content that design systems typically include.

Figure 3. Mind map of a design system

Design principles are the foundational grounding values that help define a design system.

The principles are not quantifiable, but good principles are authentic, practical and easy to

remember. (Kholmatova, 2017, 48-58.) A typical design principle is something along the

lines of “clear” or “approachable”. The design principles are used to guide the decision-

making process when determining specific parts of the design system.

A component library is a collection of reusable components to create user interfaces

(Catakli, 2018). A software component library can be created for example by using a front-

end development framework such as React, Angular or Vue.js. Web-based component li-

braries are not limited JavaScript based frameworks, even though they have become

prevalent in previous years (Wanyoike, 2018). The component library works as an asset

for the developers to implement designs without having to build the components from

scratch, as would be necessary with traditional style guides. One of the benefits that reus-

able components provide, is consistency in functionality. Some design systems support

multiple platforms that require separate implementations of the UI components. For exam-

ple, Google’s Material design supports iOS, Android, Flutter and Web (Google 2019),

which is an example of one of the more robust design systems currently that requires dif-

ferent technologies for different platforms.

8

Design toolkit is to designers what the software component library is to developers. It can

include for example components, color palettes and example layouts. A design toolkit can

be delivered in design tools such as Sketch, Adobe XD, Figma, Illustrator or InVision.

(Slegtenhorst, 2018) The aforementioned tools are used to create example layouts or pro-

totypes using components, colors or other tools that the design system provides for the

tool. These design toolkits can be useful in design systems that function mostly as brand-

ing guidelines that focuses on the visual aspects over usability. Design toolkits allow crea-

tion of faster mockups and prototypes without the need to create the user interfaces from

nothing.

The design principles, toolkits and component libraries together with a community of users

create the design system. A traditional style guide is mostly a one-way street, rules and

guides to be followed. The discussion on design systems usually involves the community

aspect. It is mentioned here as well to emphasize the fact that the impact of the design

system reveals itself through communication using a shared vocabulary (Anne, 2019).

The usability of the components, the look and feel, the implementation process, all are as-

pects of the system that benefit from feedback.

Consistency in branding and reusable tools are profitable endeavors in the long run de-

spite of the initiation costs that a design system requires (Arruda, 2016; Huang. 2019, 49).

Once established and stable, a design system can decrease the resources used for un-

necessary repetition in the design and development processes. A design system as a tool

provides scale, efficiency and consistency in design (Araújo, 2018). Quality is usability

and learnability as software products become aligned and consistent.

It can be said, that although design systems are relatively new and, on the rise, there are

recognized challenges. Most design systems are standalone products and have the same

needs as other kinds of products. A design system requires a holistic approach, attention

and resources. The most common challenges that a design system faces, are short term

mentality, allocating resources (being treated as an auxiliary project) and the need for

maintenance and governance. All of these elements can cause friction and failure to take

into use. (Frost. 2016, 67-74; Kravets, 2017)

Madsen (2017) has claimed, that design systems do not focus on the real problems,

namely the processes and tools. (Madsen, 2017) How to maintain the system? Where are

the definitions? How to deal with systematic change? Just to mention a few. As the design

9

system is a complex and time-consuming effort, it is important to remember that it ulti-

mately should serve the designers and developers that use it.

3.4 Design tokens

In the context of Atomic Design methodology, design tokens can be considered as the

sub-atomic level. If a button is considered as the atom, then the colors, sizes and other

values are what make up the atom. Tokens are common style definitions that act as labels

for design decisions that are stored as code-level attributes. (Curtis, 2016) The tokens act

as an abstraction that helps designers and developers to discuss the attributes in the

same terms, as well as to assist in the aforementioned difficulty of reusability.

In enterprise contexts, design systems can affect multiple different platforms. Not just

web, but native formats as well. It is important to clarify that design tokens are not CSS-

variables, they are not CSS at all. The tokens can be presented and utilized using CSS, or

any other format for that matter. (Rendle, 2019) The design token can be presented in

many ways, but since CSS is purely for web, using some other format can be more bene-

ficial. Jina Anne, who is credited for inventing the design token term, has referred design

tokens being the single source of truth for style decisions (Anne, 2016).

A design token library can include one or more levels of tokens (Curtis, 2016). Primary

first level tokens, such as a color value: “color-black” are ones that present the design op-

tions in the context of the design system, the raw decisions made on a base level. In addi-

tion to primary first level tokens for the raw values, there are second level tokens that pre-

sent specific decisions (Curtis, 2016). Sometimes tertiary level of component specific to-

kens can be created for even more granular use cases. For example, a “font-color-pri-

mary” can be a specific second level token that is mapped to the first level token “color-

black-1” which is mapped to the hex-value “#000000” (figure 4). Second level tokens are

defined using first level tokens.

10

Figure 4. Example of second level design token architecture

Component specific tokens are mostly implemented in design systems that give users

plain base components that are meant to be given case specific attributes. In that use

context, including a definition for specific component attributes helps when specific styling

changes are needed.

Based on the benchmarking of the content of design token libraries in design systems that

utilize web technologies and frameworks (table 1.) the design systems that included de-

sign tokens, all had color definitions. Almost all of the design token libraries defined typo-

graphic elements, scaling and from there to a varying degree content areas, z-axis’s, du-

rations and shadow properties. They were mostly distributed either in a data-serialization

format such as JSON or XML and from there distributed into specific formats like the pre-

processor for CSS, SASS in web development. Second level tokens were used for color

elements that served very specific purposes, such as application background or brand col-

ors. Specific font styles were also defined as second level tokens. Overall there seems to

be currently large variations on the structure and content of design token libraries. The

commonality being a centralized location for definition of the tokens and including color

values.

11

Table 1. Common token definitions in public design systems

Design System Color

Font

size

Font fam-

ily

Font

weight

Line

height Spacing

Salesforce Lightning x x x x x

Google Material x x x

FirefoxUI x

Mozilla Protocol x x x x

Shopify Polaris x x x x

Github Primer x x x x

Mineral UI x x x x x x

Skyscanner Backpack x x x x x

Microsoft Fabric x x x x

Lonely planet Rizzo x x x

Buzzfeed Solid x x x x x x

Uber Base Web x x x x x x

Discovery Comet x x x x

12

“There are only two hard things in Computer Science: cache invalidation and naming

things. – Phil Karlton

There is no one standard for naming design tokens. Phil Kartlon’s famous quote is easily

applicable here as in many other cases. Some conventions in use are modified versions

of the CSS methodology BEM (block-element-modifier), which specifies first the main

level block, then the element and lastly modifier. An example of this being “.button—state-

success” (Strukchinsky, Starkov. 2018). This naming convention is used for CSS classes

and might not always translate into tokens, since design tokens are not bound to CSS. In

various design token libraries, the convention of category-definition such as “color-green”
seems to be the most prominent (Verou, 2018). There are also attempts to make color

naming semantic, based on what they literally are, but unsuccessfully, since remembering

a token name such as “mainBrandColor” can become difficult due to the quantity of differ-

ent tokens (Coyier, 2018). On the other hand, having semantic names for more specific

tokens like “button-color-text” allows one to change the complete color behind the token,

where as “color-button-red” will need to be red by definition. For first level tokens, this

specificity is clear, but using semantic naming in the second level tokens creates flexibility

(Anne, 2016).

Jackson argues that having “human readable” variables is crucial to their benefit. In his

experience designers and developers both seem to prefer “button” over “btn” even though

there is no concrete aspect of what makes them considered intuitive or human readable in

either one. Overall Jacksons position on design tokens is one of seeing value in standard

theming formats (Jackson, 2019). Thus, it could be argued that being aware of current

naming conventions and being consistent is the most important factor in achieving a sys-

tem of naming design tokens that serves its main purpose, being readable and clear, a

common language for all parties involved.

The presentation of tokens varies on the design system as well as the role that the tokens

play in it. Some were presented only in the codebase, and in some cases a list of tokens

that can be easily browsed on a website among the other guidelines was presented.

Some systems create foundational pages presenting and explaining the functions and

benefits of the tokens to the end-user. In the cases where end-users were presented with

a webpage about the design tokens, component specific tokens were not mentioned, but

they were mostly presented in the codebase. Whereas main branding colors, or other ge-

neric second level tokens were mentioned much in the fashion of traditional style guides.

13

According to Frost, having a strategy to maintain and govern the design system is crucial

(Frost, 2016. 63). Design tokens work as a low-level organizing tool for a design system,

which once established decreases overhead and provides clarity in the design handoff

process by setting a standardized set of core values and giving them names that both de-

velopers and designers understand, a shared vocabulary. A common language is benefi-

cial for all parties, since it allows the whole team to discuss in the same terms as well as

to have a clear understanding of the baseline. While improving the design system, under-

standing the palette available, and possible deviations from it allows the designer to cre-

ate more consistent work that is easier to hand to the developers (Curtis, 2016; Anne,

2016).

Design tokens are beneficial due to abstraction. When a design system includes 20 active

colors in over 40 different components, the smallest change in the “sub-atomic” level of

the system causes a ripple effect. For example, if a color value changes in the code, only

the definition of the specific color requires changing, not all the use cases of the color in

specific components.

The benefits of second level tokens are created by even further abstraction. When a spe-

cific component value needs to be changed, a second level token can decrease the

amount of manual labor needed even further. Instead of having to check all of the first

level tokens, changing only the specific occurrence of the specific component token pro-

vides changes in the needed place. Also, the amount of errors should decrease due to

more intuitive naming conventions than understanding the structure of the styling docu-

ment. Having a name such as “button-border-color” immediately tells the developer what

the value correlates to. By having second level tokens for different states of a component,

comparing and checking that all values are in order becomes easier. A concrete example

of this is localization. In cultures where red means down versus red meaning up can be

localized through a second level token for “up” or “down” (Anne, 2016).

To sum up, the benefits of design tokens for developers include reusability and less man-

ual labor required when change occurs. For designers the tokens provide a palette upon

which to create consistent designs while being certain of the core elements of the design

system. The design tokens also help to create a common language amongst the two, im-

proving cooperation and so the design handoff process.

14

The main disadvantage that can be recognized while using tokens arises from the same

source as the main benefit: abstraction. More specifically differing levels of abstraction.

While consistent use of second level tokens can decrease the amount of upkeep and

mental lifting at the developing end, having too broad tokens and realizing that they don’t

fit creates a double amount of distraction. This can cause errors to spread wide. If a sec-

ond level token is too wide, changing the token becomes impossible as it tries to cover too

many varying elements.

Definitions set in stone create limitations to the design work. They give a framework but

also can lead to constrains with the flexibility of the system and affect the usability. While

systematic basis does give certainty when facing problems where the design system is

against the end user through accessibility or other factors, the designer is facing a deci-

sion to either follow the rules or break them in order to create a better design. Optimally

these situations should not happen, but realistically they will. The disadvantage caused by

a design token library is dealing with these situations. They require more immediate atten-

tion. It can be argued, that this is also a positive quality, not only a restraint. As mentioned

in the earlier section, design systems require a community to improve it. Situations where

the design system are a hinderance is a perfect opportunity for discussion and improve-

ment of the system itself.

As mentioned earlier, the perceived disadvantage of design systems is the need for up-

keep and being viewed as a secondary project. A design token library can have the same

effect even within the design system. Setting up and maintaining a design token library

also causes work, especially during initiation. The token library should service the design

system, just like the design system should serve its users.

15

3.5 Tools of CommonUX

To create a functioning design token library for CommonUX, the tools and processes of

the component work need to be defined. This chapter does not aim to fully describe or an-

alyze CommonUX in its entirety, but to look at the relevant processes and tools in place to

determine a basis for the thesis project implementation. There are some limitations to doc-

umenting the design system due to its nature as an internal tool for ABB. The tools in use

are described in order to successfully create and integrate the design token library into the

CommonUX Design System. The information presented in this chapter is collected

through discussions with the CommonUX team and observations of the thesis worker who

has worked as a part of the team previously.

CommonUX Design System has been in production for the past 15 months and is partly

based on the previous UI style guide by ABB. It includes around 30 components. These

components are developed in three different frameworks for the web and desktop: React,

Angular and WPF. The development is mainly led by creating the React components,

which are also presented in the online guideline along with design principles, foundations,

references and toolkits. The Angular and WPF implementations are created based on the

React implementation.

Due to a wide of different tech frameworks in use at ABB, many of the product-teams ap-

ply specific frameworks, and therefore the system aims to provide tools for the developers

to create the components based on the designs solely. The current iteration of the design

system focuses on desktop and large form factors, and mobile will be supported in near

future.

The design system is available as an online site that ties all of the tools and guides to-

gether. It is an internal website that offers foundational instructions on the use of colors,

icons, motion and other elements. It also gives reasoning for the system in the first place

as well as instructions on how to use the components, providing links to the Angular and

React documentation as well as Figma redlines. The online guideline serves as the main

touchpoint for the end-users.

Currently the CommonUX team maintains two design toolkits. One for Sketch and Illustra-

tor. Out of these two, Sketch is updated more constantly and is in regular use inside the

team. There is a version control system in place, which makes the workflow easier. The

problem with Sketch is that it is available only on MacOS which is not a standard

16

workstation operating system many industrial companies like ABB. Illustrator on the other

hand is becoming slowly outdated by Adobe XD, so the future of the Illustrator toolkit is

under question.

In CommonUX design system the redlines consist of color definitions and dimensions for

all components. The purpose of the redlines is for the designers to define the software

component specifications that the developers will use later to create the software imple-

mentation. Thus, it works as the common ground for both aspects of the work. The red-

lines for components are presented in a design tool Figma. It is available in the browser

as well as a desktop application for Windows and MacOS. Unlike most design tools, it al-

lows live editing amongst multiple users simultaneously. The Figma redlines are referred

to as the ‘single source of truth’ in the CommonUX team. The redlines are also outwards

facing. The product groups within ABB that do not use the supported frameworks can use

the redlines to construct the software components.

The current redlines show constant use of colors, which are presented as hex-values. The

dimensions are presented in pixels. After gathering and evaluating the values found in the

redlines it can be concluded that there is a clear pattern that does follow the foundation of

the design system, which also supports the creation of design tokens for colors as well as

dimensions and other factors. The current redlines can then also be updated to use the

design tokens.

The current software component implementation for web is distributed through a mon-

orepo that hosts the React, Angular and styles. The component styles use a PostCSS-

preprocessor. WPF is its separate repository and is distributed through different means as

the monorepository. There are some differences between the frameworks due to struc-

tural limitations. The styles repository is accessible only through the Node Packet Man-

ager (NPM) and is not presented in a way that is easy for non-developers to access. If a

developer wants to implement the software components styles without using the sup-

ported frameworks, they have to check both redlines and the styles of the existing soft-

ware component implementations.

The design handoff process within the CommonUX team currently is such that when the

redlines change, the designers notify the developer of changes that are then imple-

mented. The current values in the code are not always identical to the values in the red-

lines due to the way CSS operates. For example, a four-pixel margin in the redlines might

actually be three pixels in the code due to the box-model of CSS.

17

Figma functions as the common ground for both designers and developers. It hosts most

required information regarding UI component work. According to members of the Com-

monUX team, in the past there has been problems with confirming the correct values that

are not available in the redlines, such as the color palette.

The design and development of components has been iterative. In most cases, a basic

version of the implementation has been made to include the base functions. Then a de-

sign has been presented, which is then reviewed together with the developer. This design

is then implemented, and possible improvements are discussed and acted upon in an iter-

ative manner. The whole process heavily relies on communication between the designer

and the developer.

The findings presented in this chapter and the pre-study into existing design tokens sug-

gests that the workflow of documenting and implementing design decisions into the soft-

ware component library currently requires manual labor that could benefit from design to-

kens.

As the software components differ based on the framework and the design system func-

tions also as a branding guideline, creating component specific tokens is not advisable at

this stage. The component specific second level tokens would prove useful if the aim of

the component library would be to provide easily visually customizable components. One

factor to consider in the implementation is the maturity of the visual design. If multiple

changes in the outlook of the established components can be expected in the future, the

benefits of second level tokens would become useful. Currently, in an optimal case for a

team using one of the supported frameworks would not need to look at the CSS-styles at

any point. The main customization with the components is provided on the API-side of the

components.

The design tokens should be easily updated and distributed. Even though the core values

of the system are quite established on the component level, presenting the values in a

clear and distinct manner eases the maintenance and further development of the design

system.

As redlines work as the central tool that developers and designers use already to com-

municate design decisions, including the design token library in the same will decrease

need for browsing multiple places to find necessary information for the design handoff.

18

Even though Sketch is also used internally by some of the designers, the distribution and

centralization give Figma an advantage as a place for the design handoff with less steps

required.

To conclude, the design token architecture needs to be simple and easy to handle in order

for the design token library to be successfully integrated and taken into use. The use of

second level tokens is currently not a priority, and the design token library should be cen-

tralized, preferably within the existing tools, namely Figma, in order to decrease initiation

costs.

19

4 Creation of Design Tokens

Based on the pre-study, the following plan was constructed to implement the design token

library. The theory part is not included in the following timeline of the project shown in fig-

ure 5.

Figure 5. Timeline of the project

Firstly, definitions for the design token library will be created using the knowledge gained

from the previous chapters. The tokens will be reviewed and approved by the representa-

tive of ABB before beginning of implementation. The naming conventions for the tokens

should strive to be intuitive, the aim being that the designer and developer could derive

the required token from other tokens naturally. The naming should not be too long to avoid

unnecessary typing, while still staying descriptive enough.

The final design tokens should include values that occur more than twice in the system,

adhere to the rules set in the design system and are agreed upon by the designers and

developers within the team.

Once the design token categories are defined, the tokens will be listed in Figma as a part

of the redlines. To export these tokens into a format that the developers can easily use, a

tool that utilizes the application programming interface (API) of Figma will be created. This

tool will be implemented using Node.js, a JavaScript run-time environment, to create a

command line tool that gets desired values from Figma and parses the token information

into files using JavaScript Object Notation. The JSON-format will serve as a lightweight

and agnostic format to distribute the tokens. These technologies are used mostly due to

the recommendations from the developers.

20

After creating the architecture and implementation, simple documentation will be created

to ensure knowledge transfer and to make using the token library easy and seamless. In

the development side, the documentation will be in form of a README-document in the

application describing the uses and functions of the system. In Figma, the tokens will in-

clude an example token frame that can be used as a template to create a new token cate-

gory or a single token.

21

5 Thesis diary

On week 23, after conducting the initial pre-study about design systems and design to-

kens in relation, I began to browse through the codebases and content of the online

guideline to define the basis of the design system. From the online guideline and redlines I

found the following base attributes: color palette, grid and typographic scale.

I listed these elements and by checking with the analysis of the redlines that was done for

the pre-study. I concluded that the colors used in the components and redlines matched

with the ones defined in the online guideline. To check this, I had to use three different

tools at the same time, online guideline, Figma and a text editor for the codebase, which

felt excessive to see that everything is correct as the Figma redlines are “the single source

of truth” by definition. During the week I had a discussion with the development lead of the

team to discuss the initial ideas of the implementation; agnostic file format from Figma to

distribute to the code. He approved this and said that he would prefer JSON as the format

since it can be easily distributed to React, Angular and WPF.

Based on my previous discussions, pre-study and Figma API documentation. I created a

proof of concept (PoC) for the tool to export values from Figma into a JSON-file (figure 6).

At first navigating the Figma file structure felt difficult. After finding the specific place in the

file, I managed to print two values and translate them into hex-values. To check that

Figma permissions with shared documents allowed this method, I copied the aforemen-

tioned file in the CommonUX Figma-folder and successfully imported the colors again.

Figure 6. First Figma API test

22

This took some time, and while this was a success, my limited understanding of Node.js

did feel like a barrier at some points. I understand that in the time span of the project I will

not be able to get to know Node.js very widely, but fortunately I can check and review the

process with the developers in the team.

On week 24, after concluding that the PoC was successful, I began analyzing the redline

research further to see which values were repeated enough times to be potential tokens.

Based on my research it became evident that colors were a necessary token definition.

The colors were easily divided into categories: grey, ui-blue (action color), data visualiza-

tion colors and brand colors. As the color palette was defined very clearly on the site and

used in the redlines, this step was quite straight forward. Even though the colors seem to

follow very similar patterns, the values do not correlate enough to create universal tokens

for state changes.

As mentioned earlier in the theory section, I aimed to keep the token definitions agnostic

and as reusable as possible is valuable. Thus, creating separate margin and content defi-

nitions seemed unlikely, whereas the 8px grid that is used by the design system is mostly

implemented also in the components by multipliers of 0,5 to 5. Overall generic size clas-

ses based on t-shirt sizing provide some ease in the development by decreasing amount

of sizing errors, and for the designer acknowledging when to stray from the set grid. For

example, a margin value of “s, s, 10px,s” raises the question why one of the values

doesn’t conform to the grid.

It also seemed that a few CSS specific tokens would be fairly useful, as two types of shad-

ows are presented in the redlines that were used in multiple components. Same applied to

duration in animations. This was discussed with the lead developer, who notified that

some of the project teams are not working with CSS and keeping this in mind was im-

portant.

In regard to the typographic values, font-families and sizes correlate in the redlines and

online guideline, thus creating tokens for the basic values became quite straight-forward.

The naming convention of the typographic sizes was still under question at the time. At

the end of the week I began looking into possibly using BEM naming, which is introduced

in chapter 3.4.

One week was not enough to create the token categories. I was hoping to get it mostly

done during week 25, but it proved to be a larger operation than suspected.

23

While mapping tokens and analyzing the online guideline during week 26 I found out that

the page mentions that default line-height is 1,5x the font. This does not apply to any

value in the redlines. Most font sizes correlate to a single line height. This raised the ques-

tion, whether the line height tokens should follow the guideline or the redlines. I decided to

create the tokens based on the current values to prevent breaking stylistic changes in the

redlines. Of course, this also illustrated a great point for the use of the tokens themselves.

Most likely a clarification to one direction or the other will be made in the future, and then,

updating the tokens is easier than the separate values.

While searching for the naming conventions I began testing different variables such as:

'color-ui-blue-100' and 'ui-blue-10'. As well as possible names for font sizes such as: ‘font-

size-text-xs‘, ‘f1’, ‘fs-1’ or ‘text-1’.

With fonts, the shorter naming convention seemed appealing, since having different attrib-

utes to headings and text is not defined clearly in the design system, and thus would have

given attribute to values that are not pre-existent. This also facilitates the creation of sec-

ond level tokens for heading definitions later on.

Mixing up t-shirt sizes “xs-s-m-l-xl” with numerical values brings dissonance in the overall

logic of the token library. This being said, the t-shirt sizing does work in relation with size

class definitions, since the t-shirt sizes are indeed correlating to concrete change in size.

But adding in-between values becomes harder since there is a very limited scale. Alt-

hough in the future there will probably be a limited number of new components added,

and thus adding many basic first level tokens seems unrealistic. If there are exceptions in

the design, acknowledging it and taking it to consideration in the process has its own

value as well.

If the categorical result is that sizes go up with number, that logic will need to be applied to

all tokens to stay constant. In the future, having semantic naming to second level tokens

like “font-size-h1” would create an acceptable distinction.

The naming convention I decided upon during week 26 uses pattern “category-type-varia-

tion” with a few exceptions. The section for sizing doesn’t include the prefix “size” due to

the constant usage, as well as use cases such as “margin: $size-xxs $size-xxs $size-m

$size-xs” which would make the notation extremely difficult to read. Instead, a shorter

24

notation of “margin: $xxs $xxs $m $s” is easier to update and is more intuitive. The prob-

lem with the t-shirt sizes is the so-called in-between sizes such as medium large – “ml”.

At the end of week 26, I got permission from ABB to continue. The first level token defini-

tions were accepted, and the technical implementation plans confirmed.

After getting the confirmation on the token categories, I began to create a Figma repre-

sentation of them during week 27. Each token category is represented by a frame to cre-

ate clearer visual distinction, whereas when exported to JSON, they are presented as a

tree-formatted list. With colors, creating the representation / visualizer was quite easy

since the color values could be linked to symbols that can be used straight out of the box.

With units of size, I decided to use dotted line illustrations. With opacity and shadow creat-

ing a simple visual representation was quite straight forward.

After finalizing the Figma-file I noticed that the structure of the file and its complexity would

bring some problems to the Node.js command line tool that exports the values. The initial

proof of concept tool was experiencing some of the structural difficulties already with two

values, not to mention the whole design token library which will span over a hundred val-

ues in different frames. The frames have to have a similar structure to avoid unnecessary

filtering rules in the code. The structure that caused the least friction, and could allow the

most variance, was creating a group within a frame. Each group represents a token, that

is named based on the token. All of the tokens have a title and a value. Currently the to-

kens don’t have any other attributes, but this structure allows in the future adding other

things like aliases or metadata. In terms of maintenance, this requirement of specific

structure was not optimal, but couldn’t be avoided. In a sense, the Figma-file serves as

the main element to the structure, so if the export tool breaks in the future, it will only re-

quire small fixes.

An interesting learning experience was that trying to export the full document from Figma

into JSON using Postmate, the application crashed more than once. Presumably because

of the size of the document. This was quite interesting, since I’ve noticed that during de-

velopment, fetching the values from Figma takes the most time, usually over a minute.

Optimizing this time was not a priority at the time because when in production, it’s likely

that this application will be used quite rarely and so a difference of less than a minute

does not matter too much. Still I hoped to fix this if there was time. Another optimization

factor was that having a straight representation of the tokens on the main redline page

seemed too volatile because all changes are live and auto saved. Having some sort of

25

symbol or library etc. that is “exported” to redlines like with the software components

would make this more secure, when the changes would have to be agreed upon and ex-

ported. This would also help maintain the document structure.

Navigating the file structure of Figma files was quite difficult. Efficient use of the debugger

helped. The main challenge during the implementation was extracting the child-elements.

At the time I was using a regular expression to filter the elements that include the pixel

values:

 const value = c.children.filter(child => /[0-9]+px/.test(child.name))[0].name;

With the fonts decided to put the “font stack”, line height, font size and family, in the same

JSON-file. I was also thinking of putting more CSS-specific definitions such shadow, opac-

ity, border, radius duration and transition in the same file. Since categories like opacity

and shadow have less than three values, creating separate files seems useless, whereas

colors themselves already make a long file with many categories. As the application is

meant for other people to use as well, I was actively adding comments and expanding the

README-file to keep the application approachable.

The first iteration of the design token library was finished at the end of week 27. I didn’t

face that many obstacles, but there is a lot of optimization to be done in the implementa-

tion side. Assessing the naming conventions and categories of the tokens at this stage

was quite difficult, since the usefulness would be proved once in production and applied to

the redlines.

As an exercise to use the tokens, I tried making a sample dashboard (figure 7) and listed

all the tokens required for the layout afterwards. The typographic content was pretty easily

fit into three sizes and one for heading. The gauge, which is defined in the redlines

through percentages and not in pixels as all other values, did not understandably match.

With colors, the matching was quite simple. Having the palette names and numbers avail-

able when using the data visualization colors made having matching colors feel straight

forward. This exercise helped to gain some understanding on the concrete number of to-

kens that a user interface could include. Also, most of the color values in the scale were

floating in the same 10-increment states for similar elements, which is proof of success-

fully consistent design amongst the components.

26

Figure 7. Token dashboard test

During week 28 I had a meeting with the representative of Haaga-Helia about the project.

The meeting mostly concerned the writing of the thesis with useful points. During the week

I also reviewed the JSON-file structure with one of the developers to determine which of

the following two structures would be nicer to use: “Title [Value: value, Metadata: value]”

or the original ‘[Title: value]’. In his opinion, the more complex structure was better, since

when in production, one can avoid confusion with more specific queries while also allow-

ing addition of other features to each token such as metadata or aliases. I decided to con-

sult the other developers as well about this once they would return to work after the sum-

mer.

After finishing the first complete version during week 28, I began to look into updating the

redlines. As the redlines themselves are outwards facing, the production file cannot be

changed straight to tokens. Thus, a separate redline-file that includes the tokens and has

software component specifications marked down in tokens would be needed to ensure

that the solution works before releasing into production.

At first when starting the conversion of redlines, it was hard to remember the token values

by heart, but surprisingly fast it became fairly easy. The first problem seemed to be that

there was a missing category for non-font-icons. As font-icons are covered by the font-

family tokens, basic dimensions for boxes were left out, like 10x10.

27

The whole redline document consisted of 128 frames. During the first hour I converted 5

frames. The rate differs based on frame, but the whole process took more than 30 hours

of manual changes.

Some of the token did not match existing redline values. Due to this the class I added “in-

dication-line”, as it served a different purpose than border-width. All in all, changing the

concrete values to first level tokens covered most of the values. The ones that were not

covered by the tokens were icon sizes outside font icons as well as names of font icons

and few specification values that did not match the 8px grid. The one remaining change

that is still required is adding tokens for icon sizes that are not font icons.

Week 29 was the most monotonous one. It was nice to notice that when there were a few

small changes that I needed to make into the redlines, I could do the change in the token

definitions. What remains to be seen is that will the use of sizes be useful in the redlines.

On week 30 I realized that the application is doing unnecessary repetition. Previously

each type-specific function was getting the values from Figma separately, which increased

the loading time significantly. The improved version first fetches the file, then filters the to-

kens in separate files for each function, which makes handling the functions easier, then it

exports all of the tokens to type-specific files (figure 8). For the main function to run, the

old version took 75 seconds, whereas the improved one takes 18 seconds.

Figure 8. Optimizing structure (week 30)

28

This was a happy surprise when successful, considering that I had spent approximately

three times more time for no reason when updating the values. With hindsight I’d say that

focusing on this aspect would have been valuable in an earlier phase. I also updated the

README-file (appendix 2) and token creation instructions (figure 9).

Figure 9. Token creation instructions in Figma

During week 31 the lead developer returned from summer holidays and we had a review

session on the implementation work done during the summer. He thought that the overall

structure of the Figma token definitions was clear. He had an improvement suggestion to

make the filtering type-specific functions a bit more accurate by changing the filtering

method. I implemented this and it required changing the name of the value element in

Figma to ‘value’ instead of being the concrete value to avoid any confusion. Previously the

filtering was done by selecting the child element in the group that included numbers, but

this would prove problematic if in the future a token name would include a number. The

new filtering method requires more work on the Figma-side but is more self-evident. In ad-

dition, he proposed small improvements to the logic of the main function, mainly by using

keys instead of using a separate array to determine the token names and by changing the

writing of the file to synchronous.

The tokenized redlines were also approved of and in his opinion, it helped to understand

what values match the set design system, and which values are a deviation. The problem

29

that the tokenized redlines cause at the current point is that they will be soon outdated if

not taken into production. When presented to the designers, the overall reaction towards

the base level tokens was positive. There was conversation on the overall uses and pur-

poses of the redlines, but the value of the systematical base values was recognized. The

concept and use cases for the tokens were explained and understood with no notable

mishaps or problems.

30

6 Results

The design token library architecture consists of first level design token definitions that are

presented in Figma and a command-line application that can be used to export the tokens

as JSON-files.

6.1 Architecture

The token architecture has been created with simplicity and consistency in mind. The to-

ken categories were kept to the minimum while covering most of the core elements of the

design system.

The current implementation does not introduce second level tokens, as there were no uni-

versally applicable patterns that follow the same values, and the optional route of using

component specific second level tokens would create additional maintenance costs that

do not bring benefit to the current internal workflows, and mostly would benefit visual re-

skinning of components that is not the intended use case. The current system does allow

expanding the token library to include second level tokens, this is further discussed in

chapter 7.

Figure 10. Naming conventions

The naming convention draws from the BEM methodology that is introduced in chapter

4.3 but is optimized for the specific use case and content while following usual conven-

tions. The naming structure follows “category-type-variation”-pattern which allows better

searchability in code. The only variation from this naming convention is the category of

‘size’. As mentioned in the thesis diary, having the sizes be as precise and easy as possi-

ble allows efficient use, especially in a case where multiple values are in one definition

31

such as margins in CSS (figure 10). One should not have to think what the size names

are, nor should it feel like a chore to type them out. The naming categories were agreed

upon by the developers and designers of the team.

The token categories presented in table 2 cover most of the base elements of the design

system: typography, colors and scale. The sizing is based on t-shirt sizes ranging from

“xxs” to “xxl” which is designed to correlate with the 8px grid of the design system while

keeping the values human readable. For example, line-height, font-size and margin sizes

“s” work well together. In design and development, its intuitive to try larger or smaller

sizes. If the small size feels too small, one can try medium-small or medium.

Table 2. Token categories

Category Example

Size $s

Line-height $line-height-s

Font-size $font-size-s

Font-family $font-abb-regular

Color $color-grey-50

Duration $duration-in-ease-out

Transition $transition-s

Border-radius $border-radius-s

Border-width $border-width-s

Indication line $indication-line-s

Shadow $shadow-s

Opacity $opacity-half

32

6.2 Implementation

The implementation part of this thesis had two steps. Firstly, the token list that is available

in the redlines in Figma that is available to the CommonUX team and secondly the com-

mand line tool that takes values from Figma using their API and exports the values into

JSON-files. See figure 11 for an illustration of the structure.

Figure 11. Figma to JSON

The command-line tool uses specific asynchronous functions to search the document for

intended types of tokens. By separating the token search into specific functions, the whole

application remains customizable and adaptive to further changes while staying managea-

ble in terms of search queries that the application uses to filter and fetch the values. If the

structure of the Figma-file were to change drastically, the new location could be easily

picked. These type-specific functions search the Figma document structure (figure 12) for

the specific names, types and values by filtering the frames, which are named based on

the token categories. It then maps all wanted values by taking the group names and filter-

ing the values from there.

33

Figure 12. Figma document structure (Laptev, 2019)

In the main function (appendix 1), the Figma-file is first fetched, then given to the type-

specific functions where they are filtered. Then, these type-specific functions export the

filtered tokens. The main function then maps these tokens into separate JSON-files using

the file system module of Node.js. The current iteration of the tool is wrapped in a while-

loop, allowing for the user to make changes in the Figma, then fetching and exporting the

JSON without having to restart the application.

6.3 Design handoff

The created implementation and architecture together facilitate the following design

handoff procedure (figure 13). The distribution of the tokens to the end users’ needs to be

defined separately based on the needs of the user. The straightforward distribution

method would be to use the version-control system Git in the monorepo and deliver the

tokens as a part of the NPM package. The design aspect of the distribution will provide

more challenges, since there are multiple different toolkits and tools in use. In general, the

34

communication of changing values in redlines should be separately discussed. This is out-

side the scope of the project.

Figure 13. Design handoff

The following use case examples are presented to illustrate the benefits of design handoff

procedure that the design token library allows. These examples are modelled based on

the current workflow of the CommonUX team. The third example is presented to illustrate

the theoretical benefits for a product team for future reference. The descriptions were cre-

ated with the assistance of the team. They are meant solely to present a fictional example

that is similar to the processes in place, and how the created solution can improve said

processes. To gain further knowledge, a user study will have to be conducted, but is not

part of the current project scope.

35

USE CASE - Updating a color, a foundational feature:

The central CommonUX team decides to update the color palette. After the decision to up-

date certain colors, the existing design toolkits (Sketch and Illustrator) and redlines

(Figma) are updated. After the values are updated in the redlines, the developer must be

notified of the changes, and they will need to change the color values in all of the compo-

nents individually.

After implementing the design token library, when a design decision is made, the decision

is updated in Figma to the appropriate frame that has the values listed. Then, the designer

notifies the developer of this change. The developer in turn runs the Node.js application to

update the JSON-files, from there the change is applied to the codebase based on the de-

velopers own implementation.

The benefits created by this are increased documentation and a centralized location for

design decisions that is easy to communicate to the whole team. The solution also helps

to avoid possible manual errors.

USE CASE - Adding a new component to CommonUX:

When creating a new component into the component library, a designer creates first draft

version that will be reviewed by another designer as well as a developer. After getting

feedback on what is possible on the implementation side as well as getting an alternative

view, the designer will create a redline of the component that includes the dimensions as

well as colors and interaction patterns of the component. After multiple iterative rounds

amongst the team, a first version of the implementation is created. At this point the devel-

oper uses the redlines to create a functioning software component using React. To imple-

ment the colors and dimensions, they crosscheck using the online guideline and the red-

lines. When changes occur in the design, the designer informs the developer of the

change and then they crosscheck again the redlines and the codebase.

With the design token library, when the initial design work is done for the components, the

redlines include specifications in the form of design tokens. The developer inputs these

values to the code using the variables extracted from the JSON-files. If changes occur in

36

the core design of the design system, the designer informs which tokens have been

changed.

The benefits produced are that the amount of manual errors decreases due to the use of

tokens which are defined outside the CSS. Discussions about the specifications of the

component becomes easier when a definite set of values is defined as a framework in

which the conversation happens. Tweaking and constant changes are common in this iter-

ative process. The design token library lowers the frustration caused by the iterative na-

ture of this work.

USE CASE - Implementing a component in a non-supported frontend framework:

A product team in a business unit decides to implement CommonUX into their existing

product. They are not using any supported frameworks, and thus need to rely on the pro-

vided redlines. To implement the colors, the developer uses the CommonUX online guide-

line Foundation-pages to find the available color palette. The redlines include pixel values

as well as some color variables. To input the hex-values in their component styles, the de-

veloper has to crosscheck from both the Foundation-page as well as the redlines, and

later check that the color values, match the styling.

After implementing the design token library, to implement the colors, the developer down-

loads the JSON-files that include the design tokens. Then they import the tokens as varia-

bles and input said variables into their styles in a desired format.

The benefits created are that there is no crosschecking required. The solution is also ag-

nostic to development language.

37

7 Discussion

In the following chapter the results, limitation and the process of the thesis are discussed.

In addition, suggestions for further development are presented before the conclusions.

7.1 Reflection on thesis diary

The process of researching and developing the design token library was a challenge for

me on multiple fronts. I had previous experience with working as a part of the CommonUX

team, but this was the first time I directly contributed to the design aspects of the design

system. My previous contributions have had to do with the maintenance of the online

guideline.

The development of the command-line tool was the most work. At first it was discussed

with the commissioning party whether the application was necessary, but based on the re-

search and understanding the aims, I felt that the tool would serve the project well. This

was my first time working with external API’s, JSON and JavaScript development with

Node.js. There is probably a lot of things that could be more streamlined, but for example

the progress made during week 30 with the optimization of the program was gratifying.

The help and consultation of the CommonUX team was important in terms of achieving

the learning goal of the project.

In conclusion the thesis project felt like a good kickoff to the design token project as a part

of the design system. There are a lot of improvements and use cases that could be re-

searched and developed further. Overall, I am satisfied with the result and it reflects the

project plan and goals set at the start. Biggest dissatisfaction regarding the project was

mostly related to the scope of the project, which needed to stay as linear as possible to

stay in the given frame of a bachelor’s thesis.

I have to admit that I could have done a wider scope, but we wanted to keep this project in

the timeframe of a bachelor’s thesis. I feel that during this thesis process I have learned a

lot. Not only about the meta-level of design systems and constructing one, but also soft-

ware development and utilizing multiple different tools to benefit the ways of working in a

team environment.

38

7.2 Limitations

The project faced some limitations regarding the current scope of the design system.

Mainly creating the second level token architecture became obstructed due to some miss-

ing definitions in the design system. This being said, the creation of said second level to-

kens was not deemed necessary in the initiation of the design token library, as the archi-

tecture allows expansion. The alternative would be to create widespread overall tokens

that use the patterns of the design system. This would have required changes and deci-

sions that were not possible within the project timeline due to scheduling.

User testing would have benefitted the project. To gain more legitimate validation and im-

portant information on the success of the thesis. A project team could have been con-

tacted to determine whether the created design token library matched their needs as well

to ensure successful future development and release of the design token library.

7.3 Suggestions for further development

Based on the research conducted for the project, implementing a second level token li-

brary could provide useful. Component specific second level tokens would not create

enough benefits in exchange for the maintenance required. General level second level to-

kens that present documented patterns in the system would be useful, but currently there

are some dissonances in the use of patterns that does not allow consistent tokens.

As a second suggestion the token library could be presented outwards, as a part of the

design system. As defined in the theory section, most common way for this would be to

have a page in the online guideline with simple description of the uses. The list itself could

be generated using the Figma-file.

Having more research into how to expand the Figma symbol library would allow the crea-

tion of an extensive symbol library based on the tokens. Currently the color palette is for-

matted as symbols that are available and the font types are included, but this could in the-

ory be expanded to other tokens as well. Right after the development period, Figma intro-

duced plug-ins (Sicking, 2019). This could provide some interesting options for the tokens.

Finally, the structure of the JSON-files that contain the design tokens allow for other attrib-

utes than value. These attributes could include metadata or aliases.

39

7.4 Feedback

The feedback to the thesis project from ABB was positive. The results were presented to

the CommonUX team and discussed afterwards. The discussion was focused on what

steps would be necessary to design and implement second level tokens. The discussion

also touched on the nature of the current redlines and what technologies overall should be

used in the design handoff process. Neither designers or developers raised concerns and

seemed satisfied with the results. They agreed with the design token definitions. Since the

presentation, further meetings have been had regarding the further development of the

design token library.

7.5 Conclusions

The research questions of the thesis were: what is a design token library and how can it

improve the design handoff process? Based on the pre-study of this thesis it can be con-

cluded that a design token library is a set of values that can be used to maintain and or-

ganize design decisions within a design system. The design token library can have a vary-

ing level of abstraction ranging from first level tokens which benefit the design system in

terms of maintaining consistency to more specific second level tokens which can be com-

ponent specific or general. The second level tokens are used to distribute and upkeep de-

sign decisions that affect the specific factors of the design system. Based on the action

part of the thesis, it can be summarized that the design token library can improve the de-

sign handoff process by being a centralized and visible set of values that the designers

and developers can agree upon and refer to by using a shared language. A design token

library can be used to create consistency within a design system.

A design token library was defined, built and implemented with the focus on helping to im-

prove the design handoff process in a company setting. This library includes a first level

design token architecture, that is built to suit the CommonUX Design System at ABB. In

addition, a tool that integrates the design token library into the workflow of the Com-

monUX team using Figma and a Node.js application to deliver the tokens in a language

agnostic format JSON was created. The design and implementation processes are de-

scribed in a thesis diary. The project was successfully executed, and the deliverables

were approved by the commissioning party.

The design token library was integrated into the current design system by creating a dupli-

cate redline-file that changes all raw values to have design tokens. As the current redlines

40

are outward facing and in production, the redlines that include the design tokens function

mostly as an internal tool but could be transferred to production quite easily. The whole

project will be taken into a trial period in internal use to determine possible changes. The

release and distribution to the project teams is outside the thesis scope.

The long-term success of the created design token library depends on adaptation as well

as clarity. By design, the architecture is built with simplicity and approachability in mind.

As the CommonUX Design System covers a lot of ground when compared to other con-

temporary design systems, the simplicity of it seems necessary for a successful integra-

tion. Analyzing the long-time implications of the design token library are out of the scope

of this thesis, and thus all conclusions have been made based on the first reactions and

the overall execution of the project.

41

References

ABB 2019. URL: https://abb.com Accessed: 20th March 2019.

ABB 2019. ABB Suomessa. URL: https://new.abb.com/fi/abb-lyhyesti/suomessa Ac-

cessed: 20th March 2019.

ABB 2019. CommonUX. Internal Accessed: 19th June 2019.

ABB. 2019. SoftwareUI style guide. Internal. Accessed: 19th June 2019.

Alexander, C. Ishikawa, S. Silverstein, M. 1977. A Pattern Language: Towns, Buildings,

Constructions. Oxford University Press. New York, USA.

Araújo, J. 2018. Design Systems: benefits, challenges & solutions.

URL: https://uxdesign.cc/design-systems-62f648c6dccf Accessed: 24th June

2019.

Arruda, W. Why Consistency Is the Key to Successful Branding. URL:

https://www.forbes.com/sites/williamarruda/2016/12/13/why-consistency-is-the-key-to-suc-

cessful-branding/#528fac4d7bbd Accessed: 28th August 2019.

Anne, J. 2016. UIE Virtual Seminar Recording - Design Tokens: Scaling Design with a

Single Source of Truth URL: https://aycl.uie.com/virtual_seminars/7596 Accessed: 26th

June 2019.

Anne, J. 2019. Measure the impact of a design system URL:

https://askplaybook.com/measure-the-impact-of-a-design-system/answers Accessed: 19th

June 2019.

Business Dictionary 2019. Definition: Branding URL: http://www.businessdiction-

ary.com/definition/branding.html Accessed: 1st July 2019.

42

Catakli, T. 2018. Why Should You Use a React Component Library for your Project? URL:

https://medium.com/@timurcatakli/why-should-you-use-a-react-component-library-for-

your-project-aa530a05e038 Accessed: 28th August 2019.

Coyier, C. 2018. What do you name color variables? URL: https://css-tricks.com/what-do-

you-name-color-variables/ Accessed: 25th June 2019.

Curtis, N. 2015. Twitter status. URL: https://twitter.com/nathanacurtis/sta-

tus/656829204235972608 Accessed: 19th June 2019.

Curtis, N. 2016. Tokens in Design Systems. URL:

https://medium.com/eightshapes-llc/tokens-in-design-systems-25dd82d58421 Accessed:

20th March 2019.

Curtis, N. 2017. Defining Design Systems. URL:

https://medium.com/eightshapes-llc/defining-design-systems-6dd4b03e0ff6

Accessed: 5th September 2019.

Fanguy, W. 2018. 3 lessons learned from the history of design systems. URL:

https://www.invisionapp.com/inside-design/3-lessons-learned-history-design-systems/

Accessed: 28th August 2019.

Frost, B. 2016. Atomic Design. Self-published, Pennsylvania, USA

Gale, S. 1996. A collaborative approach to developing style guides, in ‘Proceedings of the

SIGCHI Conference on Human Factors in Computing Systems’, CHI ’96, ACM, New York,

NY, USA, URL: http://doi.acm.org/10.1145/238386.238572

Google. 2019. Material Design – Develop. URL:

https://material.io/develop/ Accessed: 24th June 2019.

Huang, Y. 2019. Developing a design system for an e-commerce website. URL:

http://urn.fi/URN:NBN:fi:aalto-201906093538

Kholmatova, A. 2017. Design Systems. Smashing Media AG, Freiburg, Germany

Kravets, U. 2017. Why Design System Fail. URL:

43

https://24ways.org/2017/why-design-systems-fail/ Accessed: 2st of July 2019.

Laptev, P. 2019. Design Tokens with Figma URL:

https://blog.prototypr.io/design-tokens-with-figma-aef25c42430f Accessed: 20th June 2019.

Madsen, R. 2017. The User Experience of Design Systems URL: https://runemad-

sen.com/talks/uxcampcph/ Accessed: 22th July 2019.

McNaughton, H. 2019 Style Guides: The Key to Visual Brand Consistency. URL:

https://www.metricmarketing.com/blog/style-guides-the-key-to-visual-brand-consistency/

Accessed: 28th August 2019.

Nguyen, G. 2018. Design system: A tool for scaling product design in large technology

companies. URL: http://urn.fi/URN:NBN:fi:amk-2018120620425

Qubstudio, 2018. Branding in Web Interfaces: How Customer Experience Can Make You

Stand Out. URL: https://qubstudio.com/blog/branding-in-web-interfaces-how-customer-ex-

perience-can-make-you-stand-out/ Accessed: 28th August 2019.

Rendle, R. 2019 What Are Design Tokens? URL: https://css-tricks.com/what-are-design-

tokens/ Accessed: 28th August 2019.

Saarinen, K. 2019. Building a Visual Language URL:

https://airbnb.design/building-a-visual-language/ Accessed: 29th April 2019.

Sicking, J. 2019. Plugins are coming to Figma. URL: https://www.figma.com/blog/plugins-

are-coming-to-figma/ Accessed: 2nd August 2019.

Slegtenhorst, C. 2019. Building a design system…not just a UI kit. URL:

https://uxdesign.cc/a-design-system-not-just-a-ui-kit-e3c8aaed0c98

Accessed: 28th August 2019.

Strukchinsky, V, Starkov, V. 2019. Get BEM – Introduction. URL: http://getbem.com/intro-

duction/ Accessed: 25th June 2019.

Verou, L. 2018. Twitter status. URL: https://twitter.com/LeaVerou/sta-

tus/1051432487971373056 Accessed 25th June 2019.

44

Wanyoike, M. 2018. History of front-end frameworks https://logrocket.com/blog/history-of-

frontend-frameworks/

Accessed 30th July 2019.

45

Appendices
async function main() {
 while (true) {
 console.log('Fetching data...');
 //Gets Figma-file with API-key and file-id
 const FigmaAPIKey;
 const fileId;
 const result = await fetch('https://api.figma.com/v1/files/' + fileId, {
method: 'GET', headers: { 'X-Figma-Token': FigmaAPIKey } });
 const figmaFile = await result.json();

 // Gets tokens using the imported functions, requires the fetched figma-file.
 console.log('Writing JSON data...');
 const tokens = {};
 tokens['color'] = await colors(figmaFile).catch(e => console.log(e));
 tokens['size'] = await sizes(figmaFile).catch(e => console.log(e));
 tokens['font'] = await fonts(figmaFile).catch(e => console.log(e));
 tokens['other'] = await others(figmaFile).catch(e => console.log(e));
 const keys = Object.keys(tokens);
 for (let i = 0; i < keys.length; i++) {
 const k = keys[i];
 try {
 // Create a json-files that includes wanted token categories, sends error
if fail
 fs.writeFileSync(`tokens/${k}.json`, JSON.stringify(tokens[k], null, 2) +
'\n');
 console.log(k + ' exported');
 } catch (err) {
 console.log(k + ' error', err);
 }
 }
 console.log('Finished');

 /* Enter to refresh */
 readlineSync.question('\nPRESS ENTER TO EXPORT FILES\n ');
 }
}

Appendix 1. Main function of the Figma API to JSON token generator

46

Exports design token values from Figma.

FIRST TIME:
npm install

TO RUN:
npm start

App structure:

- color.js "getColors()" --> grey, ui-blue, data-viz, status, brand
- size.js "getSizes()" --> sizes

- font.js "getFonts()" --> font-family, font-size, line-height
- others.js "getOthers()" ---> shadows, border-radius, border-width, duration, opacity, indication-line
- app.js "main()" --> fetches figma-file, gets values using functions described above and prints to separate

json-files

Figma file structure:

document
 |- children
 |- canvas

 |- children
 |- FRAME (border-radius)
 | |- children
 | |- group (border-radius-xs)

 | |- title
 | |- value (2px)
 | |- visuals*

 | |- alias*
 | |- metadata*
 |
 |- frame

 | |- children
 | |- group
 |

 |- frame
 | |- children
 | |- group

*optional child elements

The functions take the category of token from FRAME name.

Name of each token from GROUP (not the title within group to avoid filtering problems).
Searched for a child element called 'value' and maps it to GROUP name, then prints.

IN COLORS: does the exact same, but instead of searching for VALUE,
searches for rgb-value of VISUALS which is type RECTANGLE
(because linked to a symbol in figma).

TODO:
- error notifications (if file empty or path doesn't work)

- including optional info about a token (metadata,alias,etc)

Appendix 2. README of the token generator

