-
T
BTE LAAGA-HELIA

University of Applied Sciences

Smart syntax highlighting for dynamic language

Case: Common Lisp in Emacs

Mikhail Novikov

Bachelor’s Thesis
DP in Business Information Technology
2008

.. Abstract
BTE L AAGA-HELIA

University of Applied Sciences 30 May 2010
Business Information Technology
Authors Group
Mikhail Novikov BIT
Smart syntax highlighting for dynamically typed lan- | Number of pages and appen-
guages dices
Case study: Common Lisp in Emacs 27433
Supervisors

Tero Karvinen

Today, Java, C++ and C# being the most popular programming languages, the majority
of integrated development environments are tailored for them, and, in general, for statically-
typed languages. However, dynamically-typed languages are gaining more and more popular-
ity; thus, integrated development environments must evolve to support them. The purpose
of this thesis was to improve the situation by creating an advanced syntax highlighting system

for dynamically-typed languages.

This study developed a general framework for implementing an advanced syntax highlighting
system for integrated development environments. A proof-of-concept implementation was

developed in Common Lisp language using Emacs.

The developed framework makes it possible to create syntax highlighting system that pro-
vides sophisticated scope detection and symbol extraction systems allowing an integrated de-
velopment environment for dynamically-typed languages to possess the same language anal-

ysis features as the ones designed for statically-typed languages.

The study concludes that there are still many unexplored, potential improvements that could
be made for integrated development environments in order to increase a programmer’s pro-

ductivity.

Keywords

dynamic languages, syntax highlighting, development environments, Common Lisp, Emacs

Table of Contents

GloSSary .« vt e e e e e e e e e e 3
1 Introductionttt innineeneeneeneoeeneeneennes 4
1.1 Objectivesand scopeof thework 4
7 1) T 5
2.1 Syntax highlighting 5
2.2 AULO-COMPELILION . o o o vttt ettt e e e e e et et e e e 6

3 Design of smart syntax colorationoiiitiiiniitintanan 6
3.1 EXTraction .. .ov v ittt e e 7
3.2 Scopedetectiont 8

3.3 Coloration . . .v i e e 8

4 Proof of concept implementation i, 9
41 Basis . o e 9
4.1.1 CommonLisp 9

4.1.2 0 EmMacs . . .ttt e 10

4.1.3 FontlockmodeforEmacs............. 11

414 SHme. .. oot e 13

4.2 Application of general designtousecase L 14
421 Generaloverview 14

4.2.2 S-eXPressiOn MOION . . v v v v v vt i ettt e et e e e 14

423 EXCraction v v vttt ettt e e e 15

4.2.4 Scopedetectiont 15

425 Coloringo 16

4.3 Implementation OVEIVIEWvv it ieinin ., 16
4.4 Implementationresults 21
45 Evaluation 22

5 Recommendations and furtherresearch 23

6 CoONClUSIONS v v vttt ettt ettt et ettt ettt eeeeneees 24

Appendices e e e e et e et e 27
Appendix 1: End user documentation L L. 27
Appendix 2: Source code listing L L 29

List of Figures

1 Fontlock functionflow. 12
2 SLIME architecture. (Rittweiler,2008), 13
3 package-symbols and slime-dfl-global-env L. 17
4 slime-dfl-with-sexp-scanning o 18
5 slime-dfl-scan-rest-sexp 19
6 Example of the special form scanning function. 19
7 Lambdalistparsing 20

Glossary

Integrated Development Environment Software application that provides set of tools to

aid computer programmers in one package.

S-expression Symbolic expression. List based data-structure that represents semi-structured

data, that can be nested. Best known for it’s use in Lisp family of languages.

Symbol Lisp primitive named data structure. Throughout the thesis it is used as synonym to

an identifier - a name that can be used as a variable, function, class, etc, name.

Reflection Programming language features that let’s it observe and modify it’s structure and

behavior
Static (code) analysis Code analysis that is done without executing the code

Homoiconic Homoiconic languages are the languages in which their source code is also prim-

itive type in them
Metaprogramming Programming that aims at manipulating other programs

Multiple dispatch Feature of some object-oriented languages that allows function or method

to be dispatched on type of more than one of their arguments

RPC Remote Procedure Call - a network protocol that allows a computer program running

on one host to cause code to be executed on another host

Dynamic language Programming language which is primarily dynamically-typed

1 Introduction

The popularity of dynamically typed languages have been increasing in recent years. Success
of Python, that has been used by corporations like Google, Amazon NASA (Python Software
Foundation, 2010), and Ruby, whose Ruby on Rails platform became “the model” web frame-
work of today (Bichle and Kirchberg, 2007), has increased interest to concept of dynamically
typed language as a whole. And even though dynamic typing have been around since as yearly
as 1960, when first LISP has been created by McCarty (McCarty, 1978), for long time they
were considered slow and unsuitable for modern development. Nowadays, with computers
getting faster and cheaper, and programmer’s time getting more expensive, rapid prototyping
became very important (Mcclendon et al., 1996)(Grimm, 2005), and this is where dynamic
languages generally excel (Kindborg, 2010)(Norvig, 1992). Performance of dynamic program-
ming languages also have been on increase, with some Common Lisp implementations being
able to compete with C++ and Java in speed (Norvig, 2002)(Gat, 2000) and some experimen-
tal Python implementations have reported 10 fold increase in speed comparing to CPython

reference implementation(PyPy Project website, 2010).

One place where dynamically-typed languages generally lost to a more widespread static lan-
guages, such as Java and C++, is Integrated Development Environments field. Static code
analysis, which is easily available for static languages, can easily provide features like auto-
completion and “smart” syntax highlighting, that can provide hints to the programmer and
simplify programming process (Visual Studio, 2010)(Eclipse, 2010). Dynamically-typed lan-
guages are certainly catching up, with, for example, full fledged Python support coming to
Eclipse(PyDev, 2010) and Visual Studio(IronPython, 2010), that provide some advanced fea-
tures such as auto-completion. One feature is generally overlooked, though - “smart” syntax
highlighting - dynamically updating syntax highlighting which attempts to analyze the code
in such way, that symbols in code are colored in according to their semantical meaning (for

example variables and functions are colored differently).

1.1 Objectives and scope of the work

During this thesis work we would attempt to define a clear method to provide such “smart”
syntax highlighting for a given dynamic language in a arbitrary extensible Integrated Devel-
opment Environment. We would also attempt to create a proof of concept of such method,

by implementing such “smart” syntax highlighting for a Common Lisp language using Emacs

Integrated Development Environment.

We define “smart” syntax highlighting as syntax highlighting that distinguishes not only set
of keywords, predefined by author of the IDE (or plugin to IDE, where applicable), but that
detects, for example, variables and functions defined either in a library that user uses or by
user himself. This kind of syntax highlighting should also detect local variables or functions

and variable shadowing and distinguish them correctly.

Scope of the work only covers developing a proposed methodology and proof of concept
creation, the actual feasibility of this project in area of increased programmer’s productivity is
out of scope as we do not possess resources or time to execute any formal tests of the resulting
product. Therefore we can only speculate on the usefulness of such “smart” highlighting, and
the usefulness would definitely vary from programmer to programmer, as syntax highlighting
is highly personal topic and some programmers do not perceive even basic kind of syntax
highlighting as useful(Akesson, 2007).

Proof of concept should provide a functional version of “smart” syntax highlighting, which is
integrated with existing syntax highlighting tools of chosen IDE. Success or failure of proof of
concept would indicate the soundness of proposed approach and would, hopefully, pave the
road for future implementors of similar systems for other Integrated Development Environ-

ments and languages.

2 Basis

In this section we derive a proposed designed for a system that performs smart highlighting.

Different possibilities are considered and different considerations are listed.

2.1 Syntax highlighting

Syntax highlighting is process of distinguishing certain parts of source code in the editor based
on some criteria. First syntax highlighting system was developed for VM operating system for
the needs of Oxford English Dictionary computerization. It was called LEXX (Live Parsing
Editor) (Cowlinshaw, 1987). Since then most major Integrated Development Environments
provide syntax highlighting and many text editors do that too, nowadays (Wikipedia, 2010).

Most of the time pattern-matching is used to determine coloration of particular symbol, but

sometimes static code analysis is used for these needs. Some languages have strict variable
syntax rules (for examples in Erlang all variables start with a capital letter (see figure)), which
simplifies the highlighting process, while other (for example Common Lisp) have more uni-

form syntax, meaning pattern matching is harder to do (see figure).

Visual Code Assist X tool for Microsoft Visual Studio provide advanced syntax highlighting
capabilities to default Visual Studio syntax highlighting (colorizer in Visual Studio terms).
In addition to Visual Studio default syntax highlighter it provides highlighting for additional
code elements, like local symbols(Visual Code Assist X, 2010).

2.2 Auto-competition

Auto-completion (also Code Completion and Microsoft Visual Studio trademarked Intel-
liSense) is a tool that assist programmer in writing code by providing *auto-completion pos-
sibilities” when user requires them, for example by pressing some key combination. This is
usually done after part of some keyword or function name is printed already and programmer
wants program to complete it for him, to avoid extra typing and to provide fast way to browse
APL. For example, lisp symbol multiple-value-bind is very long, and programmer might be in-
clined to type multiple- and then press completion combination (M-Tab in Emacs/Slime) and
auto-completion will show possible combinations, from which programmer can choose the

correct one.

Primitive auto-completion provides only keyword based options, similarly to primitive syntax-
highlighting. Auto-completion in modern Integrated Development Environments provide
“smart” syntax highlighting, that provides options based on libraries that user uses and by

user created code.

We can see that auto-completion used to have limitations similar to syntax highlighting, but
nowadays it provides a more advanced options. I believe this can be reused to improve syntax

highlighting capabilities as well.

3 Design of smart syntax coloration

As already discussed before, smart syntax highlighting should colorize not only according to

the set of keywords, but according to set of symbols defined in scope that user is working in

and by taking scoping into account. Therefore syntax highlighting should colorize semanti-

cally and therefore different approaches are needed compared to pattern matching method.

In order for the system to be aware of symbols that are currently in the user’s scope, system
should be able to get symbols somehow, either through language reflection or through some
static analysis too. Backend that is used to get possibilities in auto-completion can be used for

it. We will call this step “extraction”.

As our system has to take scope into account, syntax highlighting system should be able to
detect symbols that are defined in local scope (in contrast with extraction that detects “top-
level” symbols), such as arguments to the function inside that function definition. We will call

that step “scope detection”.

And last step is to perform actual coloration. Mainly this should be done using existing
tools for syntax highlighting, that are built into the Integrated Development Environment

for which smart syntax highlighting is developed.

All these steps can be performed in several different ways and all of them have different ad-
vantages and disadvantages. It is important not only to choose the best solution in general,
but best solution for each language. This is especially the case since Lisp-like language are ho-
moiconic, meaning that they represent code in the same way they represent data, meaning it
is really easier to parse them, but the same is not true for Python or C-like languages, which
require much more complex tools to parse their code. On the other hand in Common Lisp
there are no special syntax for forms and generic syntax is used in most of the cases, meaning
it is not possible to get any “shortcuts” and define rules for special forms as user can easily
create more special forms through “macros”. This makes scope detection hard. In Python and

C-like languages special forms are mostly predefined meaning that this task is easier.

3.1 Extraction

In normal syntax highlighting extraction is done by defining a set of keywords and patterns
through which forms are found. This is a good solution if a language have limited set of
keywords that are used in one way or for a language that has strict syntax rules, but it won’t

work for a more “freely” defined language.

Methods that are used to get possible variants for a auto-completion can be used to extract

needed symbols.

One possibility is to extract list of current global symbols through language reflection or
by using that language running image (for example using running Lisp in case of Common
Lisp - this is how SLIME works (Rittweiler, 2008)(SLIME, 2010b)). It is already done when
possible completions for a symbol is gathered, both in SLIME and in any of three completion

possibilities for python-mode and therefore this step is unlikely to cause any problems.

Sometimes refactoring tools can be used to provide auto-completion possibilities(ropemacs,
2010). Static analysis of the code can be used to extract “tags” from libraries that user make
us off and then they can be used to auto-completion and so it can also be used for syntax-
highlighting(CTAGS, 2010).

3.2 Scope detection

In languages with lexical scoping, when programmer defines a local variable, it’s definition
“shadows” the possible global (or one scoped higher than local scope) definition with itself,
meaning that programmer will access it, rather than global variable. This should be taken
into account by smart syntax highlighting, as symbols like zype often have a built-in top level
function associated, but they also have a broad English meaning, which means that they might

be used a local variable a lot.

In order to detect the correct scope, syntax highlighting has to detect the variables that are
shadowed at each certain position. In languages where finite set of special forms define local
scope, this shouldn’t cause significant problems, but languages with rich meta-programming

capabilities which allow definition of new special forms, this can be a more complex task.

One feasible way to perform scope detection is to go parse the source code from top to bot-
tom, extending the scope when some scope defining forms are encountered and performing

coloration when symbol that requires coloration is encountered.

3.3 Coloration

The Integrated Development Environment built-in tools to expand syntax highlighting should
be used to implement the coloration of the code. Syntax highlighting should be expandable in

a way that allows to instruct colorizer to colorize particular symbols in particular locations, so

8

it should be possible to have some other matching mechanism than simple pattern matching.

This is required so that scope can be detected correctly.

4 Proof of concept implementation

Overview of the proof of concept implementation is presented here - Common Lisp smart

highlighting in Emacs Integrated Development Environment.

4.1 Basis

The rationale of the choice of Common Lisp and Emacs is explained in this section and li-

braries and system that are going to be used in the system are reviewed and their operations is

briefly described.

4.1.1 Common Lisp

Common Lisp is the most popular actively used Lisp language implementation nowadays.
Developed as a successor to Maclisp and Zetalisp, it was supposed to be new Lisp language
standard when it was designed. It was standardized by ANSI in 1994(INCITS, 1994).

Several Common Lisp implementations exists, both commercial and open-source and it has

been used in many industrial projects(Weinreb, 2010).

Common Lisp is a dynamic language in it’s core, but it is possible to provide compiler hints
to declare types for variables and function arguments(LispWorks, 2010). Steel Bank Com-
mon Lisp compiler Python (not to be mixed with Python programming language) provides
complex type inference in addition to that(SBCL, 2010). Many Lisp implementations compile
to native code and some of them achieve quite impressive results for a dynamic language, by
having performance that is comparable to one of Java(Gat, 2000). Usually types are declared
only late in development, when the code have finalized, meaning type declarations are not

idiomatic to do on early stage of development.

Common Lisp also features large number of advanced features that are not always found in

other languages. One is a macro facility, which allows defining functions that are expanded

into code on compile time, for example to provide new control structures. They are id-
iomatic part of Lisp family of languages and they provide immense meta-programming fa-
cilitiesMcllroy, 1960)(Steele, 1994)(Graham, 1995)(Norvig, 1992).

Lisp languages are also known for their homoiconicity, meaning data and code is represented
the same in Lisp. This is part of the macro power in Lisp, as this allows manipulating code as
listsMecllroy, 1960).

In addition to these features Lisp includes a powerful and innovative object system called
CLOS - Common Lisp Object System, which allows multiple inheritance, multiple dispatch
and is highly dynamic and customizable. Through so-called Meta-Object Protocol CLOS can
be heavily expanded and it’s behavior can be heavily modified(Kiczales et al., 1991).

All these features make Lisp a highly interesting language as a study subject. It’s homoiconicity
and balanced syntax makes parsing easier, and macro system adds challenge to the task of

making smart highlighting for it.

4.1.2 Emacs

According to GNU/Emacs website, Emacs is the extensible, customizable, self-documenting
real-time display editor(GNU Project, 2010). It is usually characterized for it’s almost unlim-

ited extensibility.

Emacs is customizable through so called modes. There are major and minor modes and while
only one major mode can be active at a time, multiple minor modes can be active. Most pro-
gramming languages have their own major modes and there are some special major modes,
such as major mode for reading email. Major modes provide can provide their own key bind-
ings, menus, behavior and syntax highlighting rules. Minor modes usually add additional
features to major mode, for example flyspell-mode can enable spell checking in any other
mode(Stallman, 2010).

Another important emacs concept is a buffer. For every file opened or created in emacs a
buffer is created, also there might be many additional buffers, such as a buffer for directory
structure. Only one buffer can be active, or current at the same time (even though it is possible
to have several of them displayed). When buffer is active, Emacs behaves in accordance to this

buffer’s setting, and this usually includes buffer mode. In case of file editing, buffer displays

10

file contains and it is possible to save changes to the buffer to opened file or to a new file. Point
is a location of single character inside the buffer. It is a integer and is determined by counting
all characters before the point character. A group of characters between two points are called a

region, a group of characters that are not separated by space are called a word(Stallman, 2010).

Emacs is expanded using Emacs Lisp langauge, which is a high level lisp-like language tai-
lored specifically to be used as an expansion langauge for Emacs. It shares many features with
Lisp family of languages, including parenthesized syntax, powerful symbolic manipulations,
linked-list based data structures and macro facility. Extremely sophisticated additions to the
Emacs have been made using Emacs Lisp language, including a news and mail reader, IRC
client, directory manager. Some people jokingly call Emacs an operating system, not an ed-
itor, just because of the immense customization capabilities that Emacs provides(Stallman,
2010)(Lewis et al., 1990).

It is important to understand that Emacs is state-machine based in a sense that many operations
are using concept of current-point - a literate pointer that user uses to edit or input buffer text
for example. Therefore often programming style is different from classic functional languages,
as it always involves global state. Therefore portability of functions is sometimes harder than
one could expect. Several functions are included to save the position of the pointer, so that

an addition can manipulate them without hassle to the user(Stallman, 2010)(Cameron et al.,

1996).

4.1.3 Font-lock mode for Emacs

Font lock is a emacs minor mode included in all emacs distributions, that provide syntax
highlighting capabilities. It provides all the generic tools for major modes authors to create

syntax highlighting rules for them(Stallman, 2010).

The basics of font-lock operation is based on ’keywords’ - set of special symbols that are meant
to be highlighted(Stallman, 2010). Coloration is done in three “passes” - syntactic keyword
pass, syntactic pass and regular expression based keyword pass. Syntactic passes are based on
Emacs syntax tables and are primarily used for comments and strings, while regular expression

based keywords colorize actual language constructs(Font-Lock, 2010).

During the syntactic keyword pass special rules are applied to syntactic elements, that may

have variable meaning. For instance quote can begin a string line and also perform some other

11

function. Syntactic keywords are meant to allow mode authors to have more flexibility, as
many language are not ambiguous on all their special elements. After syntactic keyword pass,
faces are applied to buffer text in according to buffer syntax text syntax table. It uses syntax
parsing to determine context of different regions. This is important as strings or comments
can span multiple lines. Font-lock documentation claims that this is not usually appropriate

for syntactic passes as it works only within given region(Font-Lock, 2010).

Keyword pass applies certain face to some parts of the buffer. It searches with a regular expres-
sion or with a given function, withing certain region. This fontifies keywords, reserved words

and other mode defined constructs(Font-Lock, 2010).

Here I present the general schema of how functions of font-lock mode are executed when
font-lock is performed. We ignore the actual invocation of font-lock and focus on actual font-
lock performed. Some functions are omitted; exclamation marks shows functions that are

overridable through font-lock configuration.

font-lock-fontify-buffer ! font-lock-fontify-syntactic-keywords-region
font-lock-fontify-region ! —7
-_\"“:':L font-lock-fontify-keywords-region

font-lock-fontify-syntactically-region

font-lock-apply-highlight

Figure 1: Font-lock function flow

Font-lock is customizable through font-lock-defaults variable, that can be overridden per mode.
Most of them time just keywords are overridden and font-lock is performed through defaults.
A more advanced way to do this is to provide font-lock a searching function, that will itself
find the keyword to colorize. If this depth of customization is not enough then even more
in-depth modifications can be made by overriding many of the functions that font-lock uses.
Unfortunately this set is limited, but we would still later use this possibility to expanded the

font-lock to include our system(Stallman, 2010).

12

4.1.4 Slime

SLIME - Superior Lisp Interaction Mode for Emacs - is an advanced mode for Emacs to im-
prove Common Lisp programming experience on that platform(SLIME, 2010a). It was orig-
inally started at 2003 and as of 2008, had more than 40000 lines of code and more than 100
contributors(Rittweiler, 2008).

SLIME provides many features for it’s users, such as dynamic compilation and interpretation
of code, using the user’s Common Lisp platform, display argument list of a function, dynamic
symbol auto-competition, Read-Evaluate-Print Loop of the underlying Common Lisp, inspec-
tor, debugger, macroexpansion, code disassembling and many other features. It is widely used

in Common Lisp community (as well as for some other Lisp dialects) and is de-facto standard

as a Common Lisp IDE.
. RPC T 1
Slime |_—- 5 | Swank [-4 Swank- |
(sync or async) RPC TCP : _I.Ei_a_E_ISE_rlE{-.i
Emacs Mode server (TCP) | ABCL ACL, i
q 1sp, |
User Interaction SEXP based || jsp introspection| | cMucL " |
’ N |
protocol | Lispworks, 1
Buffer frobbing _ Lisp data frobbing| éE:éLK:E: l
_ EEmirts [t
ELisp numbers, strings | Common Lisp i_cfojﬁrrg? ’ i

Figure 2: SLIME architecture. (Rittweiler, 2008)

SLIME consists of three distinct system. The Emacs mode itself, SWANK server, which is
RPC server, that SLIME calls in order to get some information out of running Lisp, that
returns lists, symbols, numbers or strings and SWANK back ends, which are platform de-
pendent back ends for various Common Lisp (and other Lisp dialects, such as Clojure and
Scheme)(Rittweiler, 2008).

This architecture allows SLIME to exchange information with Lisp image and therefore re-
trieve dynamic information out of there for, for example, auto completition. This differs
from auto-completion in popular IDE-s, such as Visual Studio, as it doesn’t use static code

analysis(SLIME, 2010b).

13

SLIME can be expandable through so called *slime-contribs’ - user contributed extension that
can be loaded on SLIME startup. SWANK also provides possibility of expansion through
special macro that defines function that is callable from emacs lisp SLIME(SLIME, 2010a).

4.2 Application of general design to use case

Implementation design is presented in this section and general use case is applied to Common
Lisp and Emacs with SLIME.

4.2.1 General overview

As we have seen previously most of the syntax highlighting consists of two distinct steps:
getting information about what symbols to colorize (I will call it “extraction”) and finding
these symbols and coloring them (“coloring”). I am going to add one more step to those two -
detection of the current scope in order to see if global symbol that is found should be colored

or not (I will call this step “scope detection”).

Our general approach would be to extract the global environment through extraction and then
scan all s-expressions symbol-by-symbol, detecting local scope where applicable and colorizing

where applicable too. This approach would combine scope detection with coloration.

4.2.2 S-expression motion

As our approach includes scanning (parsing) of s-expressions, we would need to find out the

way to reliably scan every element of s-expression.

Emacs has several built-in functions to move through s-expressions and balanced lists - func-
tions to go forward (next element), backward (previous element), down (inside next s-expression),
up (outside current s-expression). Unfortunately they are all not fail-safe and will signal and
error in any unexpected condition - forward would fail if we are located at the last element of
the list, for example. Therefore we need to catch these errors and interpret them correctly, in

order to parse the s-expression correctly.

14

4.2.3 Extraction

Usually in Emacs modes symbol extraction is done by mode creator, who supplies regular
expressions that are used to find keywords in code and apply coloration to it. This is a good
solution if a language have limited set of keywords that are used in one way, but it can fail even

in simple situations.

With SLIME it would be possible to get list of symbols currently loaded into the running Lisp
image and use them to do the coloration. SLIME can also provide classification for the symbol
(for example if they are functions, classes or macros). By default SLIME returns fully qualified
symbols, meaning symbols with package identifier. Symbol extractor would have to separate

package definition from the symbols.

However symbols would only get into the Lisp image when they are interpreted or compiled,
meaning that system should take that into the account and colorize on compilation or SLIME
connection so that the results would be correct. Before code is loaded, :common-lisp package,
which is a default package for Common Lisp would be used and before the SLIME connection

built-in font-lock can be used.

Environment would be presented as an association list, where symbol names are keys and list
of it’s properties are values. For example (“list” (:fboundb :boundp)) would mean that symbol

[ist 1s a bound as a function and as a variable in this environment.

4.2.4 Scope detection

We are going to parse the s-expressions ourself, through s-expression motion functions of
Emacs. The environment would be carried along as an argument to functions making col-
oration and functions would recourse when they encounter a new s-expression, meaning that
environment can be expanded in case special form would be detected. Environment would
be expanding by adding more keywords to the environment association list. Coloring would
also be performed at this stage, and would be invoked when symbol that is suspected to be

colorizable is encountered.

The reason why I think that syntactic parsing is a superior option is that it can detect scope
while it does it, so there is no need for separate scope checker, it can be built into parser. As

syntactic parser parses from top level, it is possible to track what is a current scope level and

15

which symbols are shadowed on it. This is much harder to implement with “normal” keyword
parsing because there is no guarantee it will pass whole file to the function at once. It might
be possible to use closures to track of state, but as Emacs Lisp have dynamic scope [explain

what it means] it might produce different problems.

4.2.5 Coloring

When symbol is encountered, system would attempt to detect whether this system is a special
form and if it is not then it would attempt to colorize it using the environment. Local proper-
ties would have precedence over global ones, to take symbol shadowing into account. Position

of the symbol is a s-exp would indicate whether it should “tried” as a function or as a symbol.

In background, some font-lock functions would be overridden. Unfortunately font-lock only
provides graceful overrides for some functions and it doesn’t provide such over ride for key-
word function only - one can either supply font-lock-apply-region-function or provide a search
function for it. Former doesn’t satisfy us because we would want to reuse the syntactic pass
and latter doesn’t satisfy us because our system has to maintain state in order to keep track
of local scope. So we would have to re-implement the function and it would be used only
when slime-mode is on. We would have to override the font-lock-keyword-region and apply the

highlight manually with font-lock-apply-highlight.

4.3 Implementation overview

Functionally system has several distinct parts in code. There are functions that work on en-
vironment - it can do the extraction of environment, expand environment with new symbols
and get symbols from environment. This section provide extraction part and part of scope
detection part. Extracts of the codes would be presented in this chapter to improve under-

standing and full source code is available in Appendix 2.

Extraction step is implemented through a small addition to SWANK server interface - new
interface function package-symbols was created that returns an association list of symbols that
are interned into current package along with it’s classification. Function slime-dfl-global-env in
the actual system code uses that interface to get the list of package symbols in current function

(see figure).

16

The s-expression scanning part is the main part of the program, which performs actual s-
expression scanning. It has functions to parse normal s-expression and also lambda list, lambda
form and defining forms (such as defun). The entry point is function slime-dfl-scan-region,
which takes two arguments - beg (beginning) and end and, starting from beginning, calls scan-

dlf-scan-sexp with global environment. When point reaches end or file ends, the function exits.

Figure 3: package-symbols and slime-dfl-global-env

;; swank-dynamic-font-lock.lisp
(defslimefun package-symbols (package)
(let ((result ’())
(package (or (parse-package package) cl-package)))
(do-symbols (s package)
(push (cons s (classify-symbol s)) result))
(remove-duplicates result)))

;5 slime-dynamic-font-lock.el
(defun slime-dfl-global-env ()
(let ((symbols (slime-dfl-package-symbols (slime-current-package))))
(dolist (symbol symbols symbols)
(rplaca symbol
(cadr (split-string
(symbol-name (car symbol)) "::\\|:"))))))

To capture typical case needed for s-expression scanner - scan each element of the list, while
taking empty expression possibility into account and exiting gracefully when the expression
end macro slime-dlf-with-sexp-scanning was introduced. It wraps all the forms that it is given
as an argument into a while loop that loops until the s-expression finishes. It allows provides
local variable first-element for body forms to use, if they need it, and it doesn’t start the while
loop in case empty expression is being scanned. Every time body forms would be executed,

the point would be at the new element of the list.

17

Figure 4: slime-dfl-with-sexp-scanning

(defmacro slime-dfl-with-sexp-scanning (&rest body)
‘(let ((continue ’t)
(first-element ’t))
(condition-case empty-list
(forward-sexp)
(error
(setf continue ’())
(up-list)))
(while continue
,@body
(condition-case end-of-list
(when continue
(forward-sexp))
(error
(setf continue ’())
(up-list)))
(setf first-element ’()))))

slime-dfl-scan-sexp just goes down the list (so inside next s-expression) and then calls slime-dfl-

scan-rest-sexp, which performs actual s-expression scanning. This scanning uses pattern cap-

tured in the above-mentioned macro, and body of the form takes element of the list at current

point and if it is a list it would go into this list by recursively calling slime-dfl-scan-sexp. If it is

indeed an atom, then if this atom is not a first element of current s-expression, then the system

tries to colorize it as a variable, and if it is a first-item, system first checks whether it is one of

predefined special forms, and if it is it colorizes the atom as a function and calls slime-dfl-scan-

special-form to parse the rest of special form and if it is not a special form, then it just colorizes

the atom as a function.

18

Figure 5: slime-dfl-scan-rest-sexp

(defun slime-dfl-scan-rest-sexp (env)
(slime-dfl-with-sexp-scanning
(let ((current (slime-dfl-sexp-at-point)))
(if (slime-dfl-atom current)
(if first-element
(let ((special-form (slime-dfl-find-special-form current)))
(if special-form
(progn
(slime-dfl-colorize env current :fboundp)
(setf continue ’())
(slime-dfl-scan-special-form env special-form))
(slime-dfl-colorize env current :fboundp)))
(slime-dfl-colorize env current :boundp))
(progn
(backward-sexp)
(slime-dfl-scan-sexp env))))))

slime-dfl-scan-special-form just checks which kind of special form this is and then calls it. Most
special form parsing functions just get their lambda list, use slime-dfl-scan-lambda-list to extract
locally scoped variables that they introduce and then use slime-dfl-scan-rest-sexp with expanded
environment to parse the remainder of the special form (see figure). In addition they may
colorize some standard elements of the special form, for example in case of defun special form,

the name of defined function.

Figure 6: Example of the special form scanning function

(defun slime-dfl-scan-defining-form (env)
(forward-sexp)
(let ((current (slime-dfl-sexp-at-point)))
(slime-dfl-apply-face current :defined-name))
(slime-dfl-scan-lambda-form env))

slime-dfl-scan-lambda-list is a very complex function, as it has to at the same time scan and col-
orize lambda list and expand the environment. Lambda list follow quite strict semantics [HY-
PERSPEC link], therefore it is possible to take care of all possible corner cases. As with slime-
dfl-scan-rest-sexp, the function uses slime-dfl-with-sexp-scanning to do the s-expression scanning,

but in it’s body forms it expands the environment together with coloring and it takes some

19

specifics of lambda-lists into detail - for example lambda-list keywords - symbols starting with

&, are treated separately (see figure).

Figure 7: Lambda list parsing

(defun slime-dfl-scan-lambda-list (env)
(down-1list)
(let ((new-env ’()))
(slime-dfl-with-sexp-scanning
(let ((current (slime-dfl-sexp-at-point)))
(if (slime-dfl-atom current)
(if (char-equal (elt current 0) 7\&)
(slime-dfl-apply-face current :lambdalistkeyword)
(setf new-env (slime-dfl-extend-env new-env current :lexboundp)))
(progn
(backward-sexp)
(down-1list)
(forward-sexp)
(let ((current (slime-dfl-sexp-at-point)))
(setf new-env (slime-dfl-extend-env new-env current :lexboundp)))
(slime-dfl-scan-rest-sexp env)))))
new-env))

Colorizing function slime-dfl-colorize accepts 3 arguments - the atom, current environment
and the way to colorize it. When it is asked to colorize as a function or a variable it first
checks this function is defined as a local function or variable in environment and if it is not
then looks if it is defined as a global function or variable. Then it calls slime-dfl-apply-face that
calls font-lock font-lock-apply-highlight to perform actual coloration.

System is integrated with font-lock and slime through slime-autoloads, which allow adding
contribs to SLIME easily through configuration. In addition to that re-definable settings are
provided for faces to be used to colorize different symbols and for special forms that should
be detected. From font-lock side system just overrides default font-lock functions. Most code
of the function is the same, but relevant changes are made. Unfortunately font-lock doesn’t
provide any more low-level functions to be overridden and therefore some code just had to be
reused without the change from font-lock mode, which hurts re-usability and maintainability

of the code.

Function slime-dfl-fontify-region is a function that overrides font-lock default font-lock-fontify-
region function. It checks if SLIME has successfully connected the list and if setting slime-dfl-

20

colorize-dynamically is true and then calls slime-dfl-scan-region. Otherwise it just calls default

font-lock function for keyword coloration is called.

4.4 Implementation results

The system was implemented in according to the plan. System integrates with Emacs font-lock

and SLIME-mode and provide dynamic coloration with scope detection.

Basic comparison of standard font-locked code and code with implemented smart highlight-

ing.

(defun {symbol derives)
(mapcan
#' (lambda (derive)
(expand-ebnf symbol (if (listp derive) derive (list derive))))
derives))

(defun (symbol derives)
{ETTET
#' (Llambda (derive)
(expand-ebnf symbol (if (listp derive) derive (list derive))))
derives))

As you see in normal mode even many lisp functions from base package are not colored.
Not only new system colorizes those, but it also detected function local to current package
expand-ebnf and colorized it accordingly and colorized function arguments symbol and derives

correctly inside the code.

Here I present a more complex example which illustrates how little original mode does in the

coloration comparing to the new mode.

21

(defun (form)
(let ((symbol (car form))
(productions *(}))
(dolist (stuff (cdr form))
(cond
((and (symbolp stuff) (not (null stuff)))
(appendf productions (make-ebnf-production symbol (list stuff)
raction #'identity :action-form '#'identity)))
((listp stu
o is list
(not (eq (1) 'function))) stuff (butlast stuff)))
1) (not (eq (car 1) 'functien))) "#'list 1)))
(appendf productions (make-ebnf-production symbol rhs
ction)
:action-form action)))))
(t (error "L d produc ~5" stuff))})
productions))

(defun (form)

(let ((symbol (car form))

(productions ' (}))
(dolist (stuff (ecdr form))
{cond
((and (symbolp stuff) (not (null stuff)))
(appendf productions (make-ebnf-production symbol (list stuff)
raction #'identity :action-form '#'identity)))

((listp stuff)

. is 1
if (or (symbolp 1 eq (car 1) 'funct))) stuff (butlast stuff)))
(action (if (or (symbolp 1) (not (eq (car 1) 'function))) "#'list 1)))

(appendf produ (make-ebnf-production symbol rhs
;action (eval action)
raction-form acti 1))
(t (error "Un i production ~5" stuff))})

4.5 FEvaluation

The main goal have been reached - the proof of concept has been created that provides smart
syntax highlighting for dynamic languages through the method that matches described in the-
oretical part of this paper. Unfortunately this is only a proof of concept and it is not recom-

mended for production.

The main problem is performance - unfortunately smart highlighting noticeably slows down
the editor, because optimization was out of scope and font-lock updates on any buffer change,
which of course slows down the editor, as s-expressions have to be rescanned every time.
It might be possible to optimize by disabling default on-buffer-change update and providing
updates on buffer save or code compile. Unfortunately this includes even bigger modification

of base font-lock functions and we have decided to leave this out of scope.

Unfortunately system failed to auto-detect forms that create local scope in Lisp, as it proved to
be more complex than we have considered. Current system of default forms with user defined

parts works well enough for most of the cases, and auto-detection of special forms is seldom

22

needed in implementations for non-lisp languages, so we have decided to leave it out of the

project. SLIME indentation contrib might provide a good base for such projects.

Some advanced Lisp macros and special forms have a very complex syntax that is hard to parse
through the means provided. Therefore they are left out of scope of the project and they are
parsed in a very naiveway. Also we tried to include as many special forms to the special form

definition, but it we inevitably missed some of them.

In general system proved that concept is a viable one and I believe it greatly increases the
productivity of the programmer, especially in a language such as Lisp. Most probably this
would be of less use for languages with stricter syntax, but it is a great asset for languages like

Lisp.

5 Recommendations and further research

Concept have proved to be a viable one and we believe that it would be worthy to make
this system production ready and to implement similar system for languages like Ruby and
Python. It also would be an interesting project to implement such system in other IDE, such

as Eclipse.

Current project should be improved to detect Lisp special forms and provide a better interface
for customization for use in situation where automatic detection does not work. As already
mentioned above, SLIME indentation contrib is likely to provide a good base for such devel-

opment.

SLIME contribs can also be studied more in order to improve the parse process. There is a de-
funct now parser implementations in SLIME contribs that possibly could be remade and then
used in this system. In addition to that definition of special forms in bulky and cumbersome
- basically one have to redefine special form parsing function when new type of special forms
is to be parsed. Some sort of parser generator based on abstract grammar DSL can be used to

improve that.

Performance problems should be solved, both through optimization of existing code and mod-
ification of update rate, so that s-expressions are not rescanned too much. It might be that

techniques such as caching or memoization could improve the performance too.

23

Study about actual effect of this system on programmers’ productivity should be made in

order to see if the any of these further research are worth it.

6 Conclusions

The system to do smart highlighting have been implemented, confirming the validity of the
proposed design. This design can be later used to improve syntax highlighting for other lan-
guages and in other IDEs and can be basis for further research on this topic, like the research

of the usefulness of this addition for programmer’s productivity.

This study also showed how important reflective features of the languages are. Reflection
can not only be used as a method to solve programming problems, but also as a method to
significantly improve the environment programmer is working is and the more such systems

are implemented the more, hopefully, productive the programmer would be.

I hope that this thesis would push other programmers forward, to develop new, powerful
IDEs for dynamic languages or adding support for them in existing ones, thus improving user
experience with such languages. Rapid prototyping and development are getting more and
more important in the evolving programming world and I believe that dynamic languages will
play even bigger role in them, thus demand for development tools tailored for them would be

even higher than now.

24

References

Linus Akesson. A case against syntax highlighting. 2007. URL http://www.1linusakesson.
net/programming/syntaxhighlighting/index.php.

M Bichle and P Kirchberg. Ruby on rails. IEEE SOFTWARE, 24, 2007.

D Cameron, B Rosenblatt, and E Raymond. Learning GNU Emacs, Second Edition. O’Reilly,
1996.

M Cowlinshaw. Lexx - a programmable structured editor. IBM Journal of Research and Devel-

opment, 31, 1987.
CTAGS. Exuberant ctags website, 2010.
Eclipse. Eclipse project website. 2010. URL http://www.eclipse.org/.
Font-Lock. font-lock mode source code, 2010.
E Gat. Point of view: Lisp as an alternative to java. Intelligence, 11, 2000.
GNU Project. Gnu emacs website. 2010. URL http://www.gnu.org/software/emacs/.
P Graham. ANSI Common Lisp. Prentice Hall, 1995.
T Grimm. Rapid, efficient and easy prototyping. Time-Compression Technologies, 2005.
INCITS. ANSI/INCITS 226-1994 Programming Language Common Lisp. ANSI, 1994.
IronPython. Ironpython studio. 2010. URL http://ironpythonstudio.codeplex.com/.
G Kiczales, D Bobrow, and] des Rivieres. The Art of Metaobject Protocol. MIT Press, 1991.
M Kindborg. Better software with dynamic languages. 2010.

B Lewis, D LaLiberte, and R Stallman. GNU Emacs Lisp Reference Manual. Free Software
Foundation, 1990.

LispWorks. Common Lisp HyperSpec. LispWorks, 2010. URL http://www.lispworks.com/

documentation/common-lisp.html.
J McCarty. History of LISP. ACM, 1978.

M Mcclendon, L Regot, and G Akers. The analysis and prototyping of effective graphical user
interfaces. 1996.

25

D Mcllroy. Macro instruction extensions of compiler languages. Communications of the ACM,
3, 1960.

P Norvig. Paradigms of Artificial Intelligence Programming: Case Studies in Common Lisp.
Morgan Kaufmann, 1992.

P Norvig. A retrospective on paradigms of ai programming. 2002. URL http://www.

norvig.com/Lisp-retro.html.
PyDev. Pydev project website. 2010. URL http://pydev.org/.

PyPy Project website. Performance overview. 2010. URL http://speed.pypy.org/

overview/.

Python Software Foundation. Python success stories. 2010. URL http://python.org/

about/success/.

T Rittweiler. Slime - superior lisp interaction mode for emacs presentation. Munich Lisp
Group, 2008.

ropemacs. ropemacs, rope in emacs website, 2010. URL http://rope.sourceforge.net/

ropemacs.html.
SBCL. Steel bank common lisp website. 2010. URL http://sbcl.sourceforge.net/.
SLIME. Slime project website. 2010a. URL http://common-lisp.net/project/slime/.
SLIME. Slime source code, 2010b.
R Stallman. GNU Emacs Manual. Free Software Foundation, 2010.
G Steele. Common Lisp the Language, 2nd Edition. Digital Press Bedford, MA, 1994.

Visual Code Assist X. Visual code assist x features. 2010. URL http://www.wholetomato.
com/products/default.asp.

Visual Studio. Visual studio feature list. 2010. URL http://www.microsoft.com/

visualstudio/.

Daniel Weinreb. Common lisp implementations: A survey. 2010. URL http://
common-lisp.net/~dlw/LispSurvey.html.

Wikipedia. Comparison of text editors. 2010. URL http://en.wikipedia.org/wiki/

Comparison_of_text_editors#Programming features.

26

Appendices

Appendix 1: End user documentation

Slime-dfl is a SLIME contrib that provides smart syntax highlighting for Common Lisp code.
It gets symbols interned into package through SWANK server and then parses the code and
colorizes things, while taking local scope into account. System is highly experimental and is

not yes tested thoroughly.

Installation

Either add

(add-to-list ’load-path "<directory-of-this-file>")
(add-hook ’slime-load-hook (lambda () (require ’slime-dfl)))

to your .emacs or add slime-dfl to slime-setup.

Configuration

Several custom variables are provided that can be modified by the user to tailor the system to

himself.

slime-dfl-colorize-dynamically Boolean
If this variable is nil then smart highlighting won’t be performed. Useful for temporarily

disabling smart coloration.

slime-dfl-use-advanced-faces Boolean
slime-dfl provides a set of additional faces to cover all types of symbols that can be col-
ored. If this is non-nil that those advanced faces are used, but as they are non-standard
there is no definition for them in normal color-themes, so user is responsible for adding
them himself. If this is nil then basic font-lock faces are used, but this means that much

coloration would be of the same color.

27

slime-dfl-faces Alist

Alist of (symbol-type face-name). This is used when slime-dfl-advanced-faces is nil.

slime-dfl-advanced-faces Alist
Alist of (symbol-type face-name). This is used when slime-dfl-advanced-faces is non-nil.
Allowed symbol-types - :global-function, :global-variable, :global-type, :global-package-
function, :global-package-variable, :global-package-type, :local-variable, :local-function,

:defined-function, :defined-variable, :defined-type, :lambdakeyword, :keyword.

slime-dfl-special-forms Alist
Alist of (special-form special-form-type). Special form is a string with a symbol that
works as this special form. This is used to parse special forms and macros. User can add
new special-forms/macros here to make system parse them correctly. Allowed special-

form-types - :defining, :type, :constant, :lambda, :lambdaf, :double-lambda.

28

Appedix 2: Source code listing

29

AWITS I0F BurayITTySTy Xequks 3IeWS --—- [O [IP-SUITS * !
||||||||||||||||||||| T2 " TIP-OUWTITS —-————————————————————

(((3Tnsax seojeoTTdnp-sA0WSI)
((aTnsex ((s ToquAs-LyTsserd) s suod) ysnd)
(e8eyoed s) sToquis-op)
(((e8exoed-1o (o3exyoed oFexoed-ssied) i0) eoFexoed)
()¢ 3T0seI)) 387)
. 1STX® 20u soop oeyoed usatd T o3eyoed-To Io0 ofeyoed useATd woxJ sToquAS SOTFTSSRID pueR £195,

(e8eyoed) sToquis-e3exoed ungewrTsiep)

(fuens: oFexoed-ur)

UTewo(OTITqnd :9SusdTT « ¢

<WOD " TTReUIPIPUSSYIOII> AONTAON TTRUYIW :sIoyany ¢

AWITS I07 Sutqy8tTysty Xejufs axeug ——-— dsTT TIp-yuems ¢
|||||||||||||||||||| dsT1 TIP-UBMS ——— oo~

30

opou-awrTs, dnoxld

, 10U IO S9OBJI POOURADR OSN 073 JISYIOYM SOUTWILDLS(,

() S®OBJI-POOUBAPE-OSN-TIP-SWITS WOISNOJOP)

(uwesTo00q, odAq:

opou-awtTs, dnoxd

,"POSn oQq PINOYS UOTIRIOTOD OTWeULp JT SOUTWIDIS(,

7 ATTeoTweulp-oZTIOTOO-TIP-OWITS WOLSNDJOP)

uoTieZTwWolsn)

(((TFp-dutTs, aatnbex) () epquel) YOOU-peOT-SWITS, YOOY-PpE)
(1<®TTF-STY3-30-£103001TP>, Yaed-peol, 3STT-03-ppe)

:soewWe -’ JINnok 031 STYI PPV

UOTQRTTRASUT

AmUdEM Se OSUSDTT OEMWV Td9D NND

goewy NDH JO O YOO[-3UOJ WOIJ ST SPOD SWOS

<wod ' TTewdp1oussNTeII> AONTAON TTRUNTH

19SUSOT]

sI0yINy

[

4

3

¢

<

¢

1

¢

4

4

31

(edfa-TeqoT8-s00®I-TFp-outTs odA3-Teqor3:)
(9TqeTIeA-TeqOTS-So0RI-TIP-oWITS STqeTIeA-TeqoT3:)
(U0T3oUNJ-TeqOT3-S00BI-TIP-OWITS UOTIOUNI-TEJOT3:)),

SOOBJ-POOUBAPER-TIP-OUWITS WOISNOISP)

((eoey odha-entea: Toquihs odLq-Leyx: astTe), odf3:
opou-surTs, dnoxd:
. OTqeTIeA Jo odAq yoes ©ZTIOTOD 03 9SN 03 S9OBRI SOUTWINIS(,

((@o®I-UT]TTINQ-YO0T-1UOF pIoMLay:

N~

(eoeJ-odfq-¥o0T-quoF piomAexepqueT:
(eoeJ-adLq-¥o0T-quoy odLq-pautjep:

(90 J-OWRU-STQRTIBA-YDO0T-3UOJ STQRTIRA-POUTJIOP:
(90BJ-9WRU-UOT]OUNJ-YD0T-4UOJ UOTIOUNI-POUTFOP:
(90®J-0WRU-UOTIOUNT-HDOT-4UOJ UOTIOUNI-TeDIOT:
(90®J-oWRU-STqRTIBA-}D0T-4UO0J STqeTJIeA-TedOT:
(eoeJ-0dLy-300T7-quoF adhy-oFexoed-Teqor3:
(90BJ-3UR]SUOD-D0T-1UO0J oTqeTres-aFeyoed-Teqo13:

(9o®J-paomAey-20T-quU0F uUoTjounj-o3exoed-TeqoT3:

I A

(eoe3y-0dLy-o0T7-quoy odA3-TeqoT3:
(90BJ-JUR]SUOD-HO0T-3UOF OTqeTIeA-TeqoT3:)
(90®J-pIOMASY-¥D0T-qUOF UOTAOUNI-TRqOTS3:)),

S90®RJI-TJP-OWITS WO3SNOJap)

(ueaTo00q, odAq:

32

(edfa: ,edfagzep,)
(Sututyep: ,F30s30D,)
(Sututryep: ,Ieopuedxe-Jjes-auryep,)
(Sututryep: ,o0xdoew-AITpow-ouriep,)
(Bututrgep: ,oxoew-isTtdwoo-sutiep,)
(Sututgep: ,poy3zeuep,)
(Sututrgep: ,oTieus3zep,)
(Sututryep: ,o0xoewyep,)

(Buturgep: ,ungep,)).

SmIoF-TeToeds-TJP-oWITS WO3SNOFap)

((eoey odha-ontea: Toquhs odLy-Ley: gstTe), odfa:

33

opom-swITs, dnox3:
, " Opoll POOUBAPER UT oSN 07 S80'] SOUTWISLS(,

((pxonfeq-sooeI-TIp-oWITS piomLax:

N~

(pIomAeyepque-seoeJ-TIP-oUTITS pIomAayepqueT:
(edfq-peutyep-seoeI-TIp-owts odL1-psurgep:

(9TqeTIBA-DPOUT JOP-S00RI-TIP-OUTITS OTQRTIRA-POUTJOP:
(UOT1OUNT-POUT JOP-S80CI-TIP-SWITS UOTIOUNJ-POUTIOP:
(UOT3OUNJ-TBOO0T-S80RI-TFP-OUITS UOTIOUNJ-TeOOT:
(°TqeTIeA-Ted0T-S90eJ-TJP-OUTTS OTqRTIIRA-TEBOOT:
(edfq-eFexoed-Teqo18-seoeg-1Ip-owtTs adLy-seFexoed-Teqor3:
(eTqeTIRA-9FeNoRed-TRqOT3-S00RI-TJP-oUTITS oTqerIeA-a3eyoed-TeqoT3:

R I R N

(uotaounj-sfeyoed-TeqoT3-seoeI-TIP-oUITS UoT3oUNJ-o3eyoed-TeqoT3:

‘odfq:

(ewtTs, dnoiS3:
,Seoey Typ-owrTs I0F dnoiy,

(). seoei-TIp-awiTs dnox3Fep)

SOTgeTJIeA 9D0BJ PUR UOJTUTFOP Sodeq (f

((Toquis odAy-sntea: Sutays odhy-Lex: gastTe), °odhs:
opou-awtTs, dnoxl:
. “BpqueT-oTqnop: ‘JFepquwel: ‘epquwel: ‘quUe]suod:
‘Bututryep: oxe sodfy prTep -‘sodAay ITeyl pue swIio] Terdeds SeUTWILIS(,
((epqueT-oTqnop: ,putq-ontes-oTdraTnu,)
(epqueT: ,epquert,)
(FepquetT: ,ST®QRT,)
(Fepquetl: ,310TF.)
(epqueT: ,%39T,)
(epqueT: ,19T,)
(3ueasuod: ,Ieajep,)
(3ueasuod: ,Iejemeredjep,)
(3Ueqsuod: ,3UeISUODILP,)
(edfa: ,sse1ogep,)
(edfa: ,3oniasyep,)
(edfa: ,uoTatpuOOS-8UTISD,)

(edfa: ,e8exoedzep,)

34

, "o3eyoed quUeIIND UT POUTJIOpP oIe

, "o3eyoed quUSIIND UT POUTJIOpP oIe

, "o3eyoed quUSeIIND UT pOUTJOp oIe

eyl SOSSeTD

(seoeJ-TIp-owtiTs, dnoi3:

I0 sodfq TeqoT8 Surtqy3TTYSTIY IOF °0®,

() . odfar-oFexoed-Teqo18-seorI-TIP-oWITS @0€IIOP)

eyl sToqufs

(seoeJ-TIp-owtiTs, dnoi3:

oTqeTIes Teqol8 SurlySITUSTY JOF ©0R4,

() . @TqeTIEA-FeNOoRd-TRqOT8-500RI-TIP-OWITS 90€IJop)

eyl sToqufs

(seoeJ-TIp-owtTs, dnoi3:

uoT3ouny TeqOT8 JUTIYSTTYSTY 103 82BJ,

() . uotzounj-oFexoed-1eqor8-seoeI-TIP-oWITS 90€IJOP)

‘sToquis odAq

. " SToquAs
O«

. " SToquAs
O«

(seoeJ-TIp-owtTs, dnoi3:
I0 sseTd TeqoT8 Sutqy3TTySTIY IOF °0®4,
(). 2df1-TeqoT8-S00RI-TIP-OUWITS ©OBIJOD)

(seoeJ-TIp-owtiTs, dnoi3:
oTqeTIea Teqol8 SurlySITUSTy JOF ©0R4,

9TqeTIRA-TRqOTS-S00RI-TIP-SWITS 90eIIop)

(seoeJ-TIp-owtiTs, dnoi3:
uoT3ouny TeqoT8 JUTIYSTTIYSTY I0F 82,

UOT1OUNJ-TeqOTS-S00RI-TFP-OWITS 9OBIIOD)

35

(seoeJ-TIp-owtiTs, dnoi3:
u " Spronkey 3sTT epquel SuraySTIUSTY I0F ®0RJ,
() . piomkeyepqueT-sedoeJ-TIP-OUITS 9OBIJOP)

(seoeJ-TIp-owtiTs, dnoi3:
. poutyeop Suteq sodhy o seweu SuraySTTyYSIY IO0T °o%f,
()« @d£3-poutrFop-so0RI-TJP-OWITS ©0BIFOP)

(seoeJ-TIp-owtTs, dnoi3:
,‘pouriep SuTleq seTqeTIeA JO Soweu SUTAYITTYSIY I0T o8ovf,

()« 9TqRTIEA-DPOUTJOP-S9ORI-TIP-SUWITS 9DBJJop)

(seoeJ-TIp-owtTs, dnoi3:
. ‘pouriep SuTleq suorlouny Jo seweu JUTAYITTYSIY I0T o@ovf,

() ¢ UOTAOUNJ-POUTJOP-SOORI-TIP-SUWITS 90BIJOP)

(seoeJ-TIp-owtiTs, dnoi3:
. "SToquAs oTqeTIeA TeOOT SUTAYSTTYSIY IOF ©0®'J,

() ®TQRTIBA-TEDOT-S80RI-TJP-OUWITS 9OBIJIOD)

(seoeJ-TIp-owtiTs, dnoi3:
. "SToquAs uoTaouny TesoT SUTAYSTTYSIY IOF ©0®'4,

() (UOT3OUNJ-TEO0T-So0BI-TIP-OWITS 9OBIJIOD)

36

(, SToquAs woT3ouny Tedsol JurqU3TIYSIY I0F

UOT10UNI-TROOT-S00RI-TIP-9UWITS, UOT1OUNI-TBOOT-S00RI-TIP-OUWITS

(., o8exoed jquexind UT pouUTIep oJe jeyl sasseld Io sadhy TeqoT8 Jurqy3tTySTy I07
odfq-o8eyoed-TeqoT8-s00R0I-TIp-owtTs, odA3-oleyoed-Teqo13-S00€I-TIP-OUWITS

(. o8exoed quexind UT peuUTFep aJe jeyl sToquis o[qerIes TeqoTl8 Jurqy3TTYSIY I0J

oTqetJes-o3eyoed-TRqOT3-800RJ-TIP-oWITS, oTqerIes-s3eyoed-TeqoT8-s00eI-TIP-OUTITS

(. o8exoed jquexind UT peuUTFep oJe jeyl sToquiAs uoT1dUNy Teqol8 Jurqy3TIYSIY I0F

uoTzouny-a8eyoed-Teqo13-s90eI-TIP-oWITS, UoTloUNI-o3eyded-TeqoI3-s00vI-TIP-OWITS

(. sToquAs adfq I0 ssero TeqoTd SurqyUITTUSTY IOF
odfq-Teqo18-seoeI-TIp-owtTs, odA1-TeqOTS-S00RI-TIP-OWITS

(u STOquAs eTqetxeA Teqol8 SuriySITYSIY I07

9TgRIJIRA-TRQOTI-S00RI-TJP-OUTIS, O©TURIIRA-TRQOTI-S00RI-TFP-OUWITS

(u SToquAs uwotiouny Teqol8 SuriySITUSTy JOF

UOT3OUNJ-TRQOTS-S00RI-TIP-OWITS, UOTADOUNJ-TRQO[I-S00RJ-TIP-OUTTS

o0®q,

Ienjep)

20®eq,

Ienjep)

°20®vg,

IeAJOD)

°0®vdq,

Ienjep)

80®q,

Ienjep)

90®' g,

IeATeD)

°20®vq,

IeAJOD)

(seoeJ-TIp-owtiTs, dnoi3:

u Spronkey SuriySITUSTY JOF

0%,

() . pIOMAoY-Se0RI-TIP-OWITS 9OBIJIOD)

37

(., "MOU UOT3RIOTOD JIOJ POSN aIe 3Byl Sadej,

() . SeOBI-pOSN-TIP-OWITS

Ienjep)

SoTgqeTIeA TeqoTy « ¢

(" spaonkey SutiySTITySTy JIOF

pIomAey-S00RJ-TJP-OWITS, PIOMAOY-S00RI-TIP-OWITS

(u Spxonkey 3sTT epquel SUTIYSTTYSTY I0F
pIomAeyepqueT-se0eI-TIP-9WUITS, pPIoMAeyepquel-So0eI-TIP-SWITS

(., poutrjyep Suteq sedAq yo seweu SurquUITTUSTY IOJ
odfq-pourJop-seoeI-TIp-owWITs, odAl1-pouUTJop-So0RI-TIP-OUWITS

(., pouTyep SuTleq SoTgqeTIeA JOo soweu Jurqy3STIYSTIY I0J

9TQRIJIRA-DPOUT JOP-S00RI-TIP-OUITS, ©TURIIRA-POUTJOP-S00RI-TJP-OUWITS

(., poutTyep Suleq suoTldouny jo soweu JurqyITIYSIY I0J

UOTAOUNJ-POUT JOP-S00RI-TJP-OWITS, UOTIOUNJ-POUT JOP-S00RI-TIP-OWITS

(. SToquAs oTgqerIea Tedsol JuT4UITIYSIY I0F

9TQeIJIRA-TROOT-S00RI-TIP-OWITS, OTJeRTIJIRA-TBOOT-S00RI-TIP-OWITS

°20®vg,

IeAJOD)

°0®vdq,

Ienjep)

80®eq,

Ienjep)

90®' g,

IeATeD)

°20®vq,

IeAJOD)

°0®vdq,

Ienjep)

38

(CCCui-=--dXIS-TTIVAVIUNOA-———=i .
soey £3atq £x9\ ¥ - HAAY °
dxes
dxes 71)
(((rutod-qe-dxes-swtTs) dxes)) 3o7)
(dxes-pxenyoeq)
UOTSINDXO-9ABS)
4 -autod 8UY3 3e wojle JO UOTSSoIdXe-S QUOIIND S39Y),

() 2qutod-je-dxes-TIp-ewTITs uUnjep)

((pouwtI}
(((7 peumtil SUTI}SQNS) poUMTII JF38F)
((7 (poumtii yiduel) <)
(sIeys (O pouwWII3 JoIe) JIoquew) pue) oTTUYM)
((8utays peumtial)) 38T)
. 3J9T oy3 woxJ ,Ieyd, jo Aue yo SurIls swWril,

(s1eyd> JuTils) 1FO[-WTIF-SUTIIS-TIP-OWITS UNJep)
((smIo-TeToods-TIp-oWITS oWeU D0SSE)
,"S1STX® U0 JT UOTRTUIJOp wioJ Terooeds suanysy,

(eweu) wWIoF-TeTrdeds-pury-[FP-oUWITS UNJODP)

SOTRTTTII :::

39

(((o8exoed-querino-oWITS) STOqUAS-303-TIP-oWITS)
, "o3eyoed Ioyyngq JUSIIND IOJ JUSWUOISTAUS TRQOTS Suiniey,

() AuS-TeqOoT3-TIP-oWITS UNJOP)

JUSWUOITAUY & ¢

((:\é (0 Sutaas Foie) Tenbe-reyd)
. 'pIomAes ® ST SuTIlS JT S0,

(8utaas) pionfey-TIp-owWITS UNJap)

(((\é (7 Sutaas jyoie) Tenbe-ieyd)
(#\é (0 Sutays Fexe) Tenbe-xeyd)
pue)
. XTFoxd uorgouny e sey Jurids JT S¥O9UY,

(8UTI1S) UOTIOUNI-TIP-OUWITS UNJODP)

(CCCC (\é& (((peumTiy Y33ueT) -J) peumitiy Joxe) Tenbe-xeyd)
()\é (0 peumtxy jyoxe) Tenbe-xeyd)
(T (peumti3d Y3Buel) <)

pue) 3jo0u)

(CCCNe H5\e \é #\&) Butals 3F0T-WIII-JUTIIS-TIP-OWITS) POWWIIAL)) 38T)

,"Wole ue Io suorsseidxe-s uwe ST SUTIAS JT SY09YD,

(8uta3s) wo3e-TIpP-oWITS UNJOP)

40

,"ToquAs B I0F UOTQBOTIISSBID UO S9SS9201d,

(Te20T jop) JFop-ssedsoid-TJp-ewWTITS UNJep)

(CC((sFop
((Te20T Jop Fop-ssedoxd-TIp-owITs)
(3op) epquet) # Ieodew)
ToquAs suo0d)
(((((uin nity Te20T FT) TOquAS Surazs-317ds) Ipeo) Toquhs)
((1oquis d-ToquAs-TesoT-TIpP-oWITS) TEB20T)) %2°T)
(((Fop-Toquks Ipd) SI°Op)

(((Fop-Toquis xed) euweu-ToquAs) Toquihs)) 3o7)
, "SUOTATUTFop welsAs 09 SuTpIooO® UT 2T SOTJFISSe[D pue JJo oFeyoed sand - Joquhs sesse00I1],

(Fop-Toquis) ToquAs-ssedsoird-TFp-ewTTsS UNJep)

((((e3exoed‘ sToquAs-sFexoed:yuens),
TeAS-2WTITS)
((2 PEOIUl-QUSIIND-8WITS)) 29T)
, "o8eyoed ueaTtd I0J sToquAs JO 1STT pessedcoxdun suinisy,

(e8eyoed) sToquAs-oFexoed-TIp-owWITS UNJap)

(((e8exoed sToquis-e3eqoed-TIp-owWITS)
ToquiAs-ssesoxd-TFp-ewtTs # Ieodem)
, "o3eyoed usAT8 I0J UOTAEDTITSSeTD UYaTM sToquis Jo 1STT SUINI9Y,

(e8eyoed) sToquAS-103-TIP-oWITS UNJep)

41

((aus-mau

(((arue-mou ((o10x Toquihks 3sTT) 2sTT) puedde) aus-meu Jj3es)

(((seTox Ipd) oToX suod) seTox poerdr)

seT0I JT)

(((rue-mau ToquAs D0SSB) S8T0X)

(AU® AUS-MOU)) %20T)

4 3T 01 oTJox mou e Jurppe £Aq JUSWUOISTAUS UT TOoquUAS SpPuUslIXy,

(9T0x TOquAS AUS) AUS-PUSIXS-TIP-OWITS UNJFOD)

((aus Toquis Doss®)

, " AUSWUOITAUS WOIJ ToquAS £38Y,

(TOqUAS AUS) AUS-WOII-103-TIP-SWITS UNJOP)

((roquhs ANO\NFLECIDANVINNAN T+ DANDAN T ANONFL AN AN+ DA\ d-udreun-3utags)
, "o3eyoed eyal qe TeOOT ST ToquAs ST SY09YD,

(Toquis) d-ToquAS-TeO0T-TIP-OWITS UNJODP)

((((°TqeTIRA-TRQOT3: oTqerIeA-o3eyded-TeqoT3: Tedsof

((aueasuoo: Jop be) (dpunoq: yop be)

((uot3ounj-Teqord: uorjounjy-ofexoed-Teqold: TeooT

((xo0qexedo-Tetoeds: yep be) (uorjouny-otisusl: jep be) (oxoew: yep be) (dpunoqz: zep be)
((edf3-Teqo13: odA3-aFexoed-Teqor3: Ted0T

((oedsedfq: gop be) (sse1o: Jop be)

IT)
I0))
3D
I10))
IT)
I0))

puod)

42

((((() . FusWOTO-1SITI JFI0S)
(((3sTT-dn)
(() enuUT3uUOd J398)
I01I9)
((dxes-premioy)
SNUTIUOD USYM)
1STT-JO-pUS SSEO-UOTITPUOD)
Kpoqp ¢
SNUTIUOD STTYM)
(((3sT1-dn)
(() enuUTlUOd J38%)
JI0119)
(dxes-pxemnioy)
1sTT-£3dwe osEBO-UOT]TPUOD)
((23SITI-1UNOD‘ QUSWSTO-3SIATY)
(3, enuTauod)) 1°7),
, " Spuse uoissexdxe-s uoyM ATINJooeIZ SISTXO pUR

pepesu IT JuUeowWeT® 31SITI Jo yoexa sdeoy ‘ATnyeoeid sastT Aadwe seTpuey 2l

‘Butuueos uorsseidxe-s I0J ureljed UOWWOD S3OBIISHR 1BYI OIOR[,

(fpoq 31s81®3 3SITF-3unod) Jurtuueds-dxes-YITM-TIP-SWITS OIDBRWISP)

Sutuueos dxeg ¢

43

(3. ()¢ 3saTF-o10ulT JT) SurTuURIS-dXoS-YITM-TFP-OUWITS)
. oTdwexe I0J ‘ouo Jo STpPPIW SY3 UT pojreas ST 3T JT) uorssaxdxse-s oyl Jo

Toquis 3SITI oYa JO yoeiq desy 1,USe0p 3T USYZF [IU-UOU ST 3SITI-oI0UST IT

"QUOWUOITAUS USATS YITM UOoTSsaxdxe-s JO 1881 SuUeDG,

(3sa1J-o10ulT Teuoridoy Aue) dxes-3seI-UBDS-TIJP-OUWITS UNFOD)

((Arue dxos-31S59I-UBDS-TIP-OUWITS)
(3STT-UuMOD)
, "AUS 1USWUOITAUS USATS YITM uorssoxdxe-s TINJ oUO SURDG,

(Aue) dxes-ueds-TIp-oWITS uUNJjep)

(CCCCCCQ) ¢ dnuTIUOD J398)

JI0I1Id)
(rue-TeqoT3 dxes-ueos-TIp-ouWITS)
I9IJNQ-JO-pUS ©SBO-UOTITPUOD)
(enutquod (pue (qurod) >) pue) oTTyM)
(((arue-TeqoT3-TFp-owITS) AUS-TRqOT3)
(2, 9NUT3U0D)) 2397)
(82q 1ey2-0203)
UOTSINOXS-9AES)
. Spue IeIjng TI3uUn IO pue 01 Joq wWoIJ UoIJex sueog,

(pue 3oq) UOTZoI-UEDS-TIP-OWITS UNJop)

44

(aueasuod: adfq be))
((edf3-poutjep: Aue WIOF-oTdWIS-URDS-TFP-SUTTS)
(edfa: odfa be))
puod)
(((uzoy iped) adfa)) 3e7)
. "WIOT 3eya Jo odA3 eyz 03 ooUBPIOOOR UT UOTAOUNI Juriuueds wIoF Terdeds STTeD,

(IO AU®) WIOJ-TeTOodS-UedsS-TIpP-oWITS UNnJjep)

((((((aus dxos-ueoss-TIp-ouwWITS)
(dxes-pxenyoeq)
u3oad)
(((°TqeTIeA: JULIIND AUS OZTIOTOD-TFP-OWITS)
UOT3OUNT: JUSIIND AUS OZTJIOTOO-TIP-OUWTITS
()
(3USIIND UOTIOUNI-TIP-OWITS) IT)
UOTAOUNT: JUSIIND AUS OZTIOTOO-TIP-OUWTITS
qq¢)
((miog-Tetroeds Aue wIOJ-TeTIDodsS-UeDS-TIP-OUWITS)
(() . enuTjuUOd J388)
UOTAOUNT: JUSOIIND AUS OZTIOTOD-TIP-OUWITS
()
u3oad)
mioJ-Teroeds IT)
(((3ueI1INd WIOJ-TeTOodsS-purI-TIP-oUWITS) WIoF-Teroads)) 3oT)
JUeWeTo-1SITT IT)
(3USIIND WOIE-TIP-SWITS) IT)

(((autod-qe-dxes-TIp-oWITS) 3UeIIND)) 23OT)

45

((((aue dxos-1soI-UedsS-TIp-oWITS)
((se quaxind sdej-Ardde-TFp-owtTs)
(((3utod-qe-dxes-TIp-oWITS) JUSIIND)) 187T)
(dxes-paemnioy)
(3STT-uMop)
(dxes-paemsoeq)
u3oaxd)
(se quexino ooej-Ardde-TIp-owrTs)
(3USIIND WOJE-TIP-OUWTITS) JT)
(((rutod-qe-dxes-TIp-oWITS) 2JUSIIND)) 20T)
(dxes-paemnioy)
. -osxed o3 rewwesl8 xoTdwod 007 SBY WIOF USUYM pPUR pojeaId ST 2dodos TeDOT OU USUM Pas() ©
‘uotqouny Juruuess wioy oTduig, N

(se Aue) WI0oF-oTdWIS-UeDIS-TIP-OWITS UNJOp)

(((((Aus epqueT-oTqNOpP-UedS-TIP-SUTITS)
(epqueT-aTqnop: odfq be))

((UOT3OUNJ-TEO0T: AUS WIOJ-BPqUeT-UedS-TIP-SWITS)
(FepqueT: adLq be))

((°TQeTIRA-TEOOT: AUS WIOJ-BPQUET-UedS-TIP-oUWITS)
(epqueT: odfq be))

((AUS WIOJ-SUTUTJOP-UEDS-TIP-SUWITS)
(Bututgep: odfq be))

((°TqRTIRA-POUTJOP: AUS WIOF-oTdWTIS-UBDS-TIP-SWITS)

(3STT-unop)
, " FUSWUOISTAUS pPOPUSIXd SUIN]SI PUe 3STT BpqUe] SuUeog,

(Se AUS) 9STT-ePqUeT-UedS-TIP-SWITS UNJOP)

(((sButputq-meu dxes-1SeI-URDS-TFP-SUTTS)
(rue dxes-ueos-TFp-ouWITS)
(((°TQeTIeA-TEOOT: AU® 3STT-EpPqUWeT-UedS-TJP-owITS) sJurpurq-mau)) 2397T)
. putq-entea-aTdraTnu ordwexe IoJ ‘3STT BPqUWeT J91Je WIOJ TRUOTITPPER UR SeY
pue A1snowfuoue 3STT epque] YT JUIYLIOWOS SOUTIOP 3eY3 WIOF SUEDS,

(AUS) ©epqUET-oTqNOP-UeRIS-TFP-SWITS UNJODP)

(((sButputq-mou dxos-1S0I-URDS-TIP-OUWITS)
(((Se Au® 3STT-epPqWeT-UBDS-TJP-oWITS) SJUTpPuUTq-meu)) 2387T)
y " L1snouwfuoue 4STT epquel YITA SUTYISOWOS SOUIFOP 34BYJ WIOJ SURDG,

(Se AUS) WIOJ-ePqUeT-UedS-TIP-SoWITS UNJap)

((9TQRTIRA-TEDOT: AUS ULIOJ-BPQUeT-UBRDS-TIP-SWTITS)
((uotgoungy-peurjep: juexind edej-Ardde-Typ-ewrTs)
(((3utod-qe-dxos-TIpP-SWITS) 2JUSIIND)) 28T)
(dxes-paemnioy)
, "oIoeWIep Jo unjeop oTdwexse IOF ‘34STT BpqWe] ® YITM ToquAS SwoS SOUTIOP eyl WIOJ Suesg,

(AUS) WIOF-SUTUTJOP-URDS-TFP-OUWITS UNJODP)

((() . dxos-31s01-URDS-TIP-OUWITS)

47

(3uexind promkeq-TIp-ewITs) IT)

(CCO\e ‘\é ,\é (\é #\&) . FULIIND 3JOT-WTIF-SUTIIS-TFP-OUWITS) 3JUSIIND)) 38T)

. "souo Teqol8 xoao Lqt1I0Tid USATS oI SUOTATUIIOP
o3eyoed pue suoraryeop oeyoed I1eno Ayrxotrad uUsATS oIe SUOTJTUTIOP [BIOT]
"9TqeTIRA IO UOTJOUNF Se JUWOUOISTAUS [YITM WOIR JUSIIND SOZTJIOTOD,

(Se 3UeIIND AUS) OZTIOTOD-TIP-OWITS UNJOP)

SutzTIoTon ‘¢¢

((Aus-moUu
(((((3, Aus dxos-1S0I-UBDS-TIP-SUTITS)
(((S® JULIIND AUS-MOU AUS-PUSIXS-TIP-OWITS) AUS-MOU J39S)
(((3utod-qe-dxes-TIp-oWITS) JULIIND)) 387T)
(dxes-pxenioy)
(3STT-uMop)
(dxes-piemyoeq)
u3oxd)
(((Se QUSIIND AUS-MOU AUS-PUSIXS-TIP-OWITS) AUS-MOU J19S)
(pxomKexepqueT: jquarind odej-A7dde-Typ-euwrTs)
(%\¢ (0 2usIInd 979) Tenbe-xeyd) JIT)
(3USIIND WOJE-TIP-OWITS) JT)
(((rutod-qe-dxes-TIp-oWITS) 3USIIND)) 20T)
() . Sutuuess-dxes-Y3TM-TIP-SWITS)

((Aus Aus-mou)) 29T)

48

WO3e JUSIIAND SOZTIOTOD & ¢

((((((I0I-X00YD IpOD) SISO JUSIIND IOOYD-SZTIOTOO-TIP-SUTITS)
(3100 quexino ooej-Ardde-Ip-owrTs)
(SFop ¥ooud> Ioqueuw) JT)
(((I0I-¥20YD IEd) ¥D8Yd)) 12°7T)
OF
(I0F-308Yd TTnU) JT)
y §0T3TI0TId UOTITUTFOP ©TPURY 03 UoTIOuUNy A3TTTI(,

(I0F-¥D00YD SJOP JUSIIND) HOOUYI-9ZTIOTOD-TIP-OWITS UNJOP)

(((((((((odL3-TRQOTS:
odfq-o38eyoed-TeqoTSs:
oTqeTIRA-TRqQOTS:
oTqetIes-o3eyoed-TeqoTs:
9TQqeTIeA-TeO0T:), SJOP JUSIIND YDOUD-9ZTIOTOO-TIP-OUITS)
(oTqetaes: se bs) ueynm)
((uot3ouny-TeqoT3:
uoTaouny-sdeyoed-Teqo1s:
UOTAOUNJ-TeO0T:), SIOP FUSIIND }OOYI-9ZTIOTOO-TIP-OWITS)
(uotgouny: se ba) IT)
SJop uaym)
((((3USIIND AUS AUS-WOII-103-TIP-SWITS) JIPO) SIopP)) 23°71)
(pxomkey: quaxano ooej-A1dde-Typ-euwrTs)

49

<\ AN\
o (\\2d£a|\\2on13s|\\o3exored|\\oweyq |\\dnoid|\\sse12)\\,
*SuUoTleIRTOSP 8IN3oNIS -
o \\(\\TeA | \\Ie3emered | \\eoe] | \\SRTTRIRA | \\WOISTIO [\\{ (\\3TR)\\1SU0D)\\,
*SUOT3RIRTOOD OTQRIIBRp * ¢
o NN O (\\oxo'w- (\\ToquAs | \\£FTpow | \\ 1o TTdwo2) \\ | \\UOT3OUNJ,
2| \\208pTa|\\uosraTexs|\\Iopuedxe-Jios|\\UOTIRUTQUOD-POYIOU,,
w [\\epou- (\\2TIous3 | \\TouTu; (\\-4 (\\P9ZT:) \\TBAOTS: &) \\ | \\POATIOP: i) \\,
u [\\UOT3TPUOD)\\-9uT,
n NNERANTR AN G\ \3SAns [\\F38s,,
o[\\Pouaaum|\\sx\\oxoeu|\\oTIouad | \\set1e|\\ooTApe)\\,
*SuUOTleJIeTOOp uUoTilOoUNng ¢
W) \\FeP)\\), 2BOU0D))
"SUOTQTUIFe(q),
oTtdwoo-usym-TeAD)

T-spaonkex-yo0T-quoF-dsTT 3SUODIOD)

opouw ID0T-1UOF WOIF sSpiomhey orseyg * ¢

((((((s®oRI-poSN-TFP-SWITS Se 20SSB) Iped) (3STT) FYSTIYSTY-L1dde-3o07-3u0y)
(((prom-quaxind 9sTT) 1do-dxeSei) piemyoeq-ydIeSS-8I)

UOTSINOXS-SAES)

4 TAUsWeTe JI9IInq oyaz 03 ooeJ A7dde 03 UWOT3OUNT T[OAST-MOT,

(se piom-quarind) ooej-A1dde-Typ-suwrs unjep)

50

,UOTISINOX9-9A®S, ,U0OT1DTI]1SOI-9A®S, ,BpqueT, ,dOUITUT,
 x8o0ad, ,z8o0ad, ,180ad, ,a80ad, ,uload, ,80ad,
Wx30T, 39T, ,Indur-ou-eoTTys, ,OTTUM, ,FT, ,PUOD,).
qdo-dxe8ex1)).
3edU02) ‘)
‘smxoF dsTT soewy - SOINIONIS TOIQUOY),
oTtdwoo-usym-TeAd)
T-spaomnfex-y¥o07-quoy-dst1 puadde)
Z-spIomfeq-300T-qu0J-dSTT 2SUODJOD)

(u sepow dsTT x0F BUTIUYSTTYSTY [eAST penpqng,
(((puedexd eoeI-TRYP-UOTIRSEU-¥20T-2U0F T , (\\\\)\\I\\u)
‘dnox8 xeyo peaeldeu dxeley ¢
(puedeiad edeF-Fururem-¥o0T-3U0F T ,(\\PeOoTOoanex[Z-e-])\\###: ‘_.)
‘098 ‘JepusTed ‘e-yu Aq pesn SwWIOT ¢ ¢
queIsIITp AT3y38T1Ts oya saxoddng -soT00D peoToane dsTT soewy ¢ ¢
((3 TTu
((eoeF-odha-¥o0T-quU0F 1)
(90®J-oWRU-STqRTIBA-}D0T-qU0I (9 Surtuurdeq-yosjew))
(90BJ-8WeU-UOTIOUNF-YO0T-JU0F (g JUTUuUIZeq-yojemw)) puod) @)
(o' J-pIoMAo¥-HO0T-qUOT T)
(& (\\HBS\\ [\\ (+8S\\+[3\]F308)\\,
wk D\ T

‘q00[qo pesutrgep pue soedsestym Luy

51

J30T-I0T7TdWod, ,STOQRT, u29TZF. W*3OT-TeOTIXOT, ,39T-TBOIXOT,
y3oToIoRUW-TOqUAS, ,oIRTD9pP, ,WIRTDOpP, ,wrerooxd,
«KTTRO0T, ,®U3, ,3STTOP, ,SOWT3OP, ,*OP, ,0P, ,d0OT,
,SIoxxs-sI0uldT, ,¥eeIq,
,o8exoed-ur, ,oseo-3Ie3S0I, ,PUT]-3Ie1SOI,
.PUTQ-IoTpURY, ,OSeD-I9TpURY, ,osededL31d, ,osedD,
.oseoadfqs, ,oseoedfq, ,eseos, ,osed, ,sseTum, ,usyr,),
qdo-dxe8e1)).
3edU02) ‘)
‘swIoI dSTIT UOWWO) °SOINIONILS TOIJUOH ¢ °
(1
(u<\\
(3 (,ISTPURYU-INOSWII-YITH, ,INOSWII-YITH,

nodesseu-dwel-yits, ,oTri-dwel-yits, ,regyng-dusi-yita,

w9Tqe1-xequks—yaIm, ,OWeIJ-Pe3IOSTaS-YITH, ,MOPUTM-POIDDTOS-YITA,

yI91Ing-dusa-o3-qndqno-yats, ,Surtizs-oz-andano-yaInm,
yS8uturemn-ou-yatM, ,atnb-tecol-yats,
dTey-o1I300T0-Y3IM, ,I9IINQ-3USIIND-YITIHM,
,9Tqea-£x08eqe0-ya1M, ,OTqR1-9SBI-YITH,
.pPeOT-I93Je-1xou-Ters, ,dnjreas-je-Teas, ,USUYM-TRAD,
,oTTdwoo-usym-Tess, ,o7rdwoo-pue-Ters, ,pPeOT-I9lJe-Tead,
,OSnow-yoery, ,9SeO-UOT3TPUOd, ,309301d-purtmun,
,I9IINQ-1USIIND-SARS, ,RICP-UDJRU-SARS,

LUOTSINOXO-MOPUTM-DARS, ,MOPUTM-POIDOTOS-OARS,

52

(820'F-uTaTTNg-}20T7-3uo0r O ,<\\+MS\\:>\\.)

‘sonTea jueasuo) ¢

(puedead eoeJ-quEqSU0D-20T-2U0T T , (\\+M4S\\AS\\)\\,.)
‘goweu Toquiks ©q 03 puel .

, OPTISUT SPIOM !

(puedead 8oey-3ue3suod-¥20T-3u0F T [\\(\\+88\\)\\T\\ N\

* sKey-pueumoOO-994N3T3SqNS, I0F ©q 03 puel []\\ opTIsuT spioy &
(eorg-Buturem-¥o07-quoy T ,<\\(\\TeuSTs|\\10x1e|\\10x100|\\odLa-xooys|\\uzen|\\21esse|\\110qe)\\),)
*S8Inyonils sSnosuoxry

((3 TTU ©2BJF-qURASUOD-D0T-QUOT 7)

(90 J-pIoMAex-{20T-qUOT T)

Crd ANHES\\DAN* LA\ T
<\ (\\extnbex|\\eptaoxd|\\deanjesaz|\\Moxyd|\\Uo22ed)\\), 2€0OUO0D)*)
'SqUR]SUOD SB SToquAs ainjes/aTxy ¢

(T
G <A\

(3 (,¥Xejuks-oT-pIepuels-yitm, ,S30TS-UITIAM,
sdrelsex-oTdwrs-y3tM, ,I03eIoqT-o3eyoed-yaiIin,
y,Sutigs-oq-qndano-yatm, ,wesrls-usdo-yYaTH,
49T1tI-usdo-yatn, ,Sutizs-woij-andur-yatm,
,I01RISIT-9TqRI-YSRY-YITH, ,S3IRISOI-UOTITPUOI-YITIH,
patun-uorzerrdwoo-yaIM, ,SIOSSOO0B-UITA,

L WOII-UINgax, ,UINidl,

yT8oxd-enTea-oTdTaTnUW, ,purtq-enyes-s7dIaTnu,

w08, .o0t1q, ,4£poq8es, ,3eroxoew, ,purq-SUTINIONIISEP,

53

$90NI3SUO0D ,-0Op, pue -UYatm, IO !
*I0T0D Juoim oyy 193 Aoyl aeyl pue
(OP, YITM 3Je3S SOWRU OSOYM SUOTIOUNF Sy oy eyl paureTdwod Iosn y
‘SWI -- Teisusd 001 ST STYJL
((puedead 3onigsuoo-Jurdnorld-dxeSei-xo0T-3uU0I, €)
(puedexd ysersyoeq-Jurdnoid-dxe3ex-yooT-quoy, 7T)
(((((((3 punoz, moius)
((Po®J 90®I-BUTIFS-}¥DO0T-3U0J, Do)
((eo®I @0®I-3UTI]S-¥DO0T-qU0F, bwem)
(e9oey dasTT) pue) Io) usym)
(((eo®1, ((autod) -1) £aredoid-3xe7-308) edey)) 201)
(z Sutuur8eq-yojew) ssoTun)
(1 punoq
OO LT NG QN E6-0T 012 A1) AL TAL AN AL AW AN DN
PIBMIOJ-YOILSS-9I) STTIYM)
“ON\\, Ut)\\, ‘erdwexe 1oy ‘SuraySTTUSTY proAe !
03 pepnrout weed sed A\\\\, “(\\, «[\\, Z&)\\, O\, AN\, Fo ¢
ouo seyosjew dxo8ex pejeroosse oYl -SSUTIIS UT INOD0 30U Op eyl ¢
SoyDqRW J93Je JUTIYDIRSS SNUTIU0D 07 popesu sT dool SurmorroF oyl *
punoy, yosaed)
(punoq) epquet))
gqonaqsuod Jutdnoald dxelex dstTy ¢
(eoey-0dha-00T-qu0F * ,<\\+4S\\B\\>\\.)
‘sodfq se spiomfey 3, dstT) pue dsTTg ¢

54

1stTIes puedde)‘ x3e71),

(((wpoTFTPOW, TOquAS-oxew) POTFTPOW)) 30T)

((29T Sngep) (T JuULPUI) SIBTOSP)

. 92e1s I9IIng Surtxoalsex jgogd TeA® pue ISITHYA 03 Surpiooodoe SoTqeIIRA PUTY,
(Apoq 1se1p 3STTIeA) ©]B]S-ISIJNCQ-OABS OIDBRUISP)
‘sotaxedoad axeq Sutdytpouw ueym sIutyl aoe30id Io saxeseid 03 STYIL osn oM ¢
‘To Y00T-Azel WOIJ pemoriog ¢°¢
(1o, @xtnbax)
"SOJDORUW pPOPROTOANEB-UOU 9SN ATUO oM se ToasT-dol oyl 3e STYL Op 3,UOp oM &

oTTdwoo-usym-TeAD)

U080I-AJTQUOF-TIP-OWITS JO ©Seq YOOT-34UOJ UNI 03 JISPIO UT pOpedUu ST eyl uUoTldoung !

(xequfs, axtnbax)

FInas 3ooT-3uo, ¢

(. sepou dstT ur ay3TTYITY 03 suoTlssexdxe j3Tneze(,
T-spaomfex-¥o0T-quoF-dsTT spiomhkey-}o0T-quoy-dsTT Ieajep)

(. sepow dsTT x0F Sur3ySITUSTY ToaeT Apne)y,

(((
(92eF-pIromfox-xo0T-3u0F T , (\\x (\\M\\ [\\7S\\)\N(\N\-T3T8\\-0P)\\)\\) w) e

55

UOT]OTIISOI-SAES)
109930xd-putmun)
(((oT1qea-xeauds) oTqel-xequlks-pro)
((spaomhex-o1qoequhs-o07-quoF sotrredord-dniooT-dxes-ssxed i10)
set3rodoad-dnjooT-dxes-esaed))
91e1S-I9IINQ-9AES)
y "Sutay3TTySTy axews swroJied USY] pPUER POIDOUUOD ST
ANITS IT s¥oey) "uoT3ouUny uor8ei-AIT1U0I-1TNRISP-FOOT-3UO JO UOTIRITITPON,
(ATpnoT pue 8eq) uUOTZeI-AJTAUOI-TFP-oWITS UNJep)

IINAS INO + PIOMASY-AJTAUOT D0T-quoI Tewrou woxJ oased Adoo st sTIyl

(((((((TTu d-peTJITpOoW-I9FFNQ-0I03S0I)
poTFTpow’ sseTun)
(£poqp ¢
u3oxd)
109030xd-putmun)
((eweusnil-oTTI-I9IINg
sWeu-oTTI-I9IINg
JIeul-o31ATIOROD
(3 S}OOU-UOT3BOTITPOW-3TqTIYUT)
(2 s{ooy-uotyow-jurod-4TqIYUT)
(2 A{uo-pesi-3TqTYUT)
(3 3STI-OpuUn-I8IInq)
((d-petyTpow-1oFIng) peTyrTpow)),

56

KTuo-spiomkex-¥o00T-1UOF SsoTuUN)
((pue 3oq uotTFoi-spiomhex-oT130elUAS-LAITQUOTI-HO0T-qUOT)
SpI0MAS-DT10BQUAS-HO0OT-QUOT USYM)
(pue Seq uwOTS0I-AITIUOIUN-D0T-3UOT)
"UOTQROTJITAUOT OYL Op MON ‘¢
((pue-¥20T-3uU0J pue Joq-}o0T-quoF Joq bies)
(((SUOT1OUNI-UOTOI-PUSIKS-YDOT-FUOT

€ ¢

‘uses ApesiTe oA, oM

€ ¢

uny oyl JO 9UO WOIJ JIOMSUR JQUSOISIFIP B JUBRIIRM
few uotqtsod meu STUY] ooUTS urtese 3STT oyl *f
ySnoayy o8 prnoys om ‘oJUeYD ® USSQ S,0I9YL IT
(sunjy Ipo)
((SUOT1OUNJ-UOT30I-PUS]Xe-D0T-qU0F suny be)
(((suny 1es) Treounjy) jou) Io) JT) sunf bjes)
suny oTTYM)
((pus PusS-320T-3UOT)
(8eq 8eq-¥00T-2U0J)
(SUOT1OUNJ-UOTZOI-PUSIXS-HO0T-4UOF SuUNF)) 38T)
‘seoerd oJes ¢
1® Spu® pue sS3Ie3S 1T 3Byl 0S AJTQuOoF 03 uoT8ox oyl puolixy
((eTqe1-Xequks-¥O0T-qUOF oTqel-xejuks-3es)
9Tqe31-Xelquis-¥20T-3U0J USYM)
‘Aue IT ‘oTqea xequdls UOTABOTJITAUOT oYl osp -

((USPTIM) USPTM-3UOP-OO0T-3UOJ SSOTUN)

57

({00T-3U0F-18S-TFP-oUWITS, Hooy-epou-dsIT, YOOU-pPpe)
((SeOBJ-TIP-OUWITS SOOBJ-POOUBAPE-TIP-SWITS SOOBJ-POOURAPE-OSTN-TIP-SUWITS IT)
S9OBJ-POSN-TIP-oUWITS J19S)
(TFp-yuems: oiTnbei-owWITs)
w uoT3oUNy SUTZTTRTIITUT,

() ITUT-TIP-SWITS UNJFSD)

((((uoT301-LJTIUOI-TIP-OWITS ° UOTAOUNF-UOTZoI-AJTIUOI-HO0T-2UOJT)
(UOT30UNF-80BF-0T10eqUAS-¥00T-3U0J-dSTT * UOTIOUNF-9DBI-DT30eJUAS-HD0T-3UOT)
(UnFop-3Iew ° UOTIOUNF-D0Tq-NIRW-{O0T-3UOJ)
TTU (M © w®:o~B %$ii=<>"/*—+4)) 3 TTU
(Z-SpIomkey-®00T-qu0I-dsTT T-spiomkey-}o0T-quoy-dsTT spromhey-3o0T-31uoi-dstiT)),
(S3TNeJOp-}D0T-JUOJ, OTQRIIBA-TEDOT-O¥eu) 19S)
. Tweashs eyl 03 O0T-3U0F oYl SUTY0OY SNUY3 ‘U0TIOUNF UOTSoI-AJTIUOJ MOU opNTOUT 03 SiTNRJOp IOO0T-3UOF £318%,

() M20T-1U0I-18S-TJP-SUTTS UNFOP)

UOTAIeIZ0QUT FWITS & ¢°¢

(((3T9e1-xelULS-PTO STqel-XBlULS-1088)
‘dn ueeTn ¢
((((£1pnoT pue Jeoq uor3ei-spiomkex-LFTQUOI-D0T-qUOT)
(pue 3oq UOTSeI-UBDS-TFP-OWITS)
((d-psrosuuoo-surs) ATTedTWeulp-o9ZTIOTOO-TIP-SWITS PUBR) IT)

((£TpnoT pue Joq uoTFoI-ATTeOT10€IUAS-LITIUOI-YDO0T-QUOT)

58

(TFp-outTs, oprtaoid)

(AHW%%SQI%%._”PQO%IMUOHIPQO% ¢ JOOU-pPo1D8UUOO-dUWITS, JOOU-pPpPeR)

59

