
 

 

Tai Pham 

Safety System for Material Handling 
Vehicle prototype 
 

Metropolia University of Applied Sciences 

Bachelor of Engineering 

Electronics 

Bachelor’s Thesis 

30 September 2019 



 Abstract 

 

Author 
Title 
 
Number of Pages 
Date 

Tai Pham 
Safety System for Material Handling Vehicle prototype 
 
40 pages + 2 appendices  
30 September 2019 

Degree Bachelor of Engineering 

Degree Programme Electronics 

Professional Major  

 
Instructors 
 

Janne Mäntykoski, Senior Lecturer  

 
The goal of this project was to design a safety system for Material Handling Vehicle (MHV) 
prototype, which defines a safety distance that can change depending on the moving 
speed. The system will stop a prototype from moving forward when an object is detected 
within that safety distance.  
 
Based on theoretical knowledge of ultrasonic and photoelectric sensor concept, HC-SR04 
sensor for distance measuring and H206 sensor for speed calculating were used to imple-
ment the system. Several additional modules were also required to build the complete pro-
totypes. The signals from the sensors are processed by Arduino Uno microcontroller 
board. Programs were written in C language to control the movement of prototype via 
L298N motor driver and to determine safety distance for the system. Information of dis-
tance and speed will be shown on Liquid-crystal Display (LCD) 1602.  
 
Two prototypes were created to demonstrate two types of MHV, which are human driven 
one and Automated Guided Vehicle (AGV). The safety system can successfully separate 
different safety distances for different speed modes for both prototypes. Therefore, with 
further developments, this project can be applied to increase the safety of MHV, as well as 
minimize the accident rate in warehouse industry. 
 

Keywords Safety distance, ultrasonic sensor, speed sensor, IR sensor, 
joystick, line follower, PWM 



 

 

Contents 

List of Abbreviations 

1 Introduction 1 

2 Theoretical Background 2 

2.1 Concepts of Ultrasonic Sensors 2 

2.2 Concepts of Photoelectric Sensors 5 

2.2.1 Light Source 6 

2.2.2 Technology 8 

i Through-Beam Sensors 8 

ii Diffuse-Reflective Sensors 10 

iii Retro-Reflective Sensors 12 

2.3 Concepts of Line Follower Robot 14 

2.3.1 Working Principle 14 

2.3.2 PID control 16 

i Proportional control 16 

ii Integral control 17 

iii Derivative control 17 

3 Components 18 

3.1 Sensor units 18 

3.1.1 HC-SR04 Ultrasonic Sensor 18 

3.1.2 H206 Opto-Coupler Speed Sensor 20 

3.1.3 Four-channel Infrared Receiver Tracking Sensor 22 

3.2 Hardware units 23 

3.2.1 Arduino Uno and Sensor Shield 23 

3.2.2 L298N Motor Driver 25 

4 Design of the prototypes 27 

4.1 Joystick-Control Prototype 27 

4.2 Line Follower Prototype 32 

5 Conclusion 36 

References 38 

 



 

 

Appendices 

Appendix 1. Joystick-Control Prototype code 

Appendix 2. Line Following Prototype code 

  



 

 

List of Abbreviations 

AGV Automated Guided Vehicle 

IR Infrared Radiation, Infrared Light 

ISR Interrupt Service Routine 

LCD Liquid-crystal Display 

LED Light-emitting Diode 

LiDAR Light Detection and Ranging 

Li-Po Lithium Polymer 

MHV Material Handling Vehicles 

PID Proportional-Integral-Derivative 

PWM Pulse Width Modulation 



1 

  

1 Introduction 

The workplace safety management is considered as one of the most important factors 

to all industries, as it benefits the welfare of both employees and employers. According 

to Statistics Finland, in 2010, storage was mentioned as one of the riskiest industries as 

the risk of death was 4.6 over 100,000 employees [1]. Since global trading continuously 

increases, warehousing services have played a vital role in the storage and transporta-

tion of goods. Besides, the arrival of MHV has supported and improved several features 

in warehousing services, such as shorten delivery time and reducing handling costs in 

the supply chain. Generally, there are two main types of MHV, which are the human-

driven vehicle and AGV. The former’s movement is operated by human, while the latter 

is programmed to move without human driver. The routes of AGV are non-wire guidance 

mechanisms, such as lasers and magnetic tape. Depending on the design of the ware-

house as well as the type of the load, these vehicles travel with different velocity. How-

ever, these vehicles are still a major cause of accidents at the warehouse. Therefore, 

along with conducting proper training for vehicles operators and pedestrians, new tech-

nologies have been researched and applied to increase the safety of MHV and minimize 

the accident, as well as injury rate at the warehouse.  

 

The main goal of this study was to design a safety system for two prototypes. The first 

one is a robot with directional control, which represents a human-driven vehicle. The 

second one is a line follower robot, which represents an AGV. Particularly, the moving 

robot stops when an object is detected within a safe distance, which is dependent on the 

speed of the vehicle. The faster the vehicle travels, the longer the safety distance is. 

 

The second chapter covers the theoretical knowledge on ultrasonic energy and photoe-

lectric effect, which are applied in this study for distance and speed measurement. It also 

discusses the basic concept of line follower robot and Proportional-Integral-Derivative 

(PID) control. Chapter 3 offers key information about the main components which are 

used to build two prototypes. Chapter 4 focuses on the development and implementation 

of the design of two prototypes, the details of components wiring. Finally, chapter 5 pre-

sents the conclusion for this study, evaluates performance of the prototypes and sug-

gests possible improvement for later version. 



2 

  

2 Theoretical Background 

This chapter delivers a short description of the physical principles of the sensors which 

are used in this study. It is useful for a better understanding of the characteristics, func-

tions, advantages and disadvantages of these sensors. Selection of specific sensors and 

their performance are discussed in following chapters.  

2.1 Concepts of Ultrasonic Sensors 

For many industrial applications such as process control, robotics, security system and 

especially transportation traffic control, the distance measurement of an object’s position 

to a selected reference is essential. In this study, by measuring the distance accurately, 

it is possible to determine the vehicle’s safety distance to pedestrians or potential haz-

ards in the warehouse, which minimizes the possibility of accidents and injuries to hap-

pen. 

For non-contact distance, Fraden [2,314] claims that a measurement design can be 

made with an active sensor (an external source of power is the requirement to operate) 

which transmits a pilot signal and receives a reflected signal. The transmitted energy in 

this study is ultrasonic, which is an acoustic (sound) energy in the form of waves trans-

mitted at a frequency beyond the hearing range of human (20 kHz per second). Ultra-

sonic energy’s transmission and reception are fundamental for many automation appli-

cations such as distance measurement, position changes and velocity detectors. [2,314.] 

When ultrasonic waves encounter an object, part of their energy is reflected in a diffuse 

manner, which may approach 180° regardless of the coming direction. Based on the 

Doppler effect, in case of the object moves, the reflected wavelength frequency is differ-

ent from the transmitted waves one. [2,314.] 

 

 

 

 

 



3 

  

 

Figure 1. Piezoelectric ultrasonic transducer and its impedance characteristic [2,315,316] 

Working principle of the ultrasonic sensor is showed in figure 1 and figure 2. When an 

input voltage is applied to the sensor transducer, it flexes the ceramic element then a 

burst of the ultrasonic sound waves is generated and transmitted at the frequency around 

32kHz (Figure 1). When the waves encounter an obstacle, they reflect and flex the ce-

ramic, where produce an echo voltage signal (Figure 1). 

 

Figure 2. Ultrasonic sensor principle operation [3]  

The distance from the object is proportional to the timespan between emitting the signal 

and receiving the echo. As can be seen in figure 1, to improve the efficiency, driving 

oscillator frequency should be modified to the resonant frequency fr, where the sensitivity 

and efficiency of the piezoelectric ceramic element are the best.  



4 

  

 

Figure 3. The basic arrangement of ultrasonic distance measurement. [2,315] 

The distance D can be calculated based on this formula: 

                                                                              D =
1

2
vtcos(α)                                                              (1) 

Where v is the speed of sound (because ultrasonic waves propagate in the media with 

the speed of sound; v = 343,2 m/s at 20°C), t is the timespan that ultrasonic waves travel 

from the transmitter to the object and back to the receiver, and α is the angle which can 

be seen in figure 3. If the distance D to object is far longer compared to the gap between 

a transmitter and a receiver, then cos(α) ≈ 1 [2,315].  

Propagation with the speed of sound is an advantage of ultrasonic waves compared to 

the microwaves which travel with the speed of light. Speed of sound is much slower, so 

time t is much longer. Thus, it is easier and cheaper for measuring with ultrasonic waves. 

Additionally, ultrasonic waves are also unaffected by the color of the material they are 

sensing and completely insensitive to hindering factors such as light, dust, smoke, mist, 

vapor, etc [2,315]. 

However, the speed of sound varies depending on temperature and humidity. Therefore, 

to improve the accuracy, ambient temperature and humidity should be measured for the 

distance calculation.  



5 

  

 

Figure 4. Ultrasonic sensor directional diagram [2,316]  

The figure above shows another limitation when using the ultrasonic sensor. It illustrates 

the sensor’s effective angle of operation. The sensor will provide the most accurate read-

ing signal when a detected object is directly in front of it within 30 degrees window.  

 

Figure 5. Ultrasonic sensor limitations [4]  

Additionally, other limitations of the ultrasonic sensor are shown in the figure above. Each 

type of ultrasonic sensor offers a different effective range for operation, if the object is 

out of that range, the reading signal is not precise. In case the object is not perfectly in 

front of the sensor, the echo signal may be deflected and does not return to the receiver. 

Moreover, if the object is too small or too soft, the ultrasonic waves may not be reflected. 

2.2 Concepts of Photoelectric Sensors 

For many industrial applications in packaging, textile, paper industries and especially 

automated processes, photoelectric sensors have become crucial elements. Increasing 



6 

  

demand for safety, process efficiency and precision in sensing is the reason that photo-

electric sensors are widely used. In 2015, Europe was the region with highest photoe-

lectric sensor market revenue share and is expected to hold highest regional market 

share in future years, thanks to the rising demand of industrial automation in this region 

[5]. 

Photoelectric sensors detect objects without involving physical contact using light, elec-

tronic signal evaluation and amplification, and producing output state. A photoelectric 

sensor is constructed of an emitter (light source) for emitting light and a receiver for re-

ceiving light. When emitted light is incident or reflected by the sensing objects, the 

amount of light changes and reaches the receiver. The receiver senses this change and 

transfers it to an electrical output.  

2.2.1 Light Source 

Pulse modulated light that emits light repetitively at fixed intervals is commonly used by 

photoelectric sensors as a light source (Figure 6). It increases the sensing range while 

decreasing the interference of ambient light.  

 

Figure 6. Pulse modulated light intensity [6] 

Similar to the working principle of a radio receiver and radio station, photoelectric sensors 

can distinguish the modulated light and ignore the ambient light. They commonly use 

modulated light that ranges in the light spectrum from visible green to visible infrared as 

a light source. The wavelength of those lights can be seen in figure 7 and the detail range 

of interest light is shown in table 1. It shows that infrared light with the wavelength λ 

between 850 nm and 1050 nm has stronger intensity than other light. 



7 

  

 

 

 

Figure 7. Electromagnetic radiation spectrum [6] 

Photoelectric sensors most often use infrared light with the wavelength λ = 880 nm as a 

light source. Besides, red light with λ = 660 nm and infrared light with λ = 950 nm are 

also used in some specific cases [7,13]. According to a training manual offered by ifm 

electronic, there are several advantages of using infrared light as emitted light. When the 

same current is applied, the transmitter diodes for infrared light release more radiation, 

which means higher efficiency is acquired. Moreover, due to its wavelength is longer 

than the diameter of dust particles, transmitting of infrared light has no trouble with dust 

and soil. [7.] 

Wavelength range Radiation designation 

400 nm - 440 nm light - violet 

440 nm - 495 nm light - blue 

495 nm - 558 nm light - green 

558 nm - 640 nm light - yellow 

640 nm - 800 nm light - red 

800 nm - 1400 nm Infrared light (IR) - A 

1.4 μm - 3,0 μm IR - B 

3.0 μm - 1000 μm IR -C 

Table 1. The wavelength range of interest light according to DIN 5031 [7,13] 



8 

  

There are also other types of sensors, for example, Mark Sensors, which use non-mod-

ulated light as a light source. In contrast to pulse-modulated light, non-modulated light 

emits an uninterrupted beam of light at a specific intensity (Figure 8).  

 

Figure 8. Non-modulated light intensity [6] 

The advantage of non-modulated light is offering fast response time for the sensors while 

the limitations are short sensing range and susceptibility to ambient light interference [6]. 

2.2.2 Technology 

Based on technology, photoelectric sensors are classified into through-beam, diffuse-

reflective and retro-reflective. Depending on the target, the best technique is chosen. 

Some objects are highly reflective while others are hazy. In some situations, color-chang-

ing detection and scanning distance are also a consideration when selecting the tech-

nique. Some sensing methods operate well when the object is closer to the sensor, and 

others perform better at a greater distance. [8, 84.]  

i Through-Beam Sensors 

A through-beam sensor consists of separate emitter and receiver which are installed 

opposite each other. This allows the greatest possible amount of pulse-modulated light 

from the emitter to arrive at the receiver. When an object interrupts the direct path of the 

light beam between emitter and receiver, it triggers the receiver’s output to change state. 

The receiver’s output returns to the normal state when the light path is clear. Through-

beam sensing technique is demonstrated in figure 9. 



9 

  

 

Figure 9. Through-beam sensing method [6] 

Besides, slot sensors are a through-beam version that constructed with an integrated 

emitter and receiver (Figure 10). This is the type that is used in this study, combined with 

a round grid plate to calculate the speed. 

 

Figure 10. Slot Sensors [6] 

Effective beam of photoelectric sensors is the area of the beam’s diameter that an object 

can be sensed. For a through-beam sensor, the diameter of the emitter and receiver lens 

is the effective beam. It is illustrated in figure 11. The minimum size of the object should 

be equal to the lens’ diameter for better accuracy. [8, 84.] 

 

Figure 11. The effective beam of the through-beam sensor [8, 84] 



10 

  

One of the characteristics of this method is long detection distances varying between 

several centimeters to several tens of meters with stable operation. The other is changes 

in object path does not affect detecting position. Moreover, object gloss, color, or incli-

nation do not have a huge effect on sensing operation. [6.] 

ii Diffuse-Reflective Sensors 

A diffuse-Reflective Sensor consists of an emitter and a receiver which are installed into 

one single unit. The original state is when an object is not present, the emitter strikes the 

light and there is no reflection of transmitted light to the receiver. The output’s state 

changes when emitted light senses an object and it is reflected to the receiver. Demon-

stration of this sensing method is shown in the figure below. 

 

Figure 12. Diffuse-Reflective sensing method [6] 

For a diffuse-reflective sensor, the size of the object when detected in the path of light is 

the effective beam, which is demonstrated in figure 13. 

 

Figure 13. The effective beam of the diffuse-reflective sensor [8, 88] 



11 

  

In practice, the range for accurate detection depends on the characteristics of the object. 

Object's size and color are two of the factors that have the influence. [7,56.] 

 

Figure 14. Range and size [7,57] 

The fact is a small object reflects less light than a big one so that the range is varied 

corresponding to the size of the object, which is illustrated in Figure 14.  

 

Figure 15. Range and color [7,57] 

Generally, the reflective quality of light color is better than dark color. Figure 15 displays 

the sensing range changes according to the visible light. However, this feature with in-

frared light is significantly different from that range of visible light [7,57]. Therefore, the 

sensing range cannot be determined only by the object's color impression. 



12 

  

iii Retro-Reflective Sensors 

A Retro-Reflective Sensor consists of an emitter and a receiver which are installed into 

one single unit like a diffuse-reflective sensor. The original state is when an object is not 

present, the emitter strikes the straight light to a reflector installed on the opposite side, 

it is reflected and returns to the receiver. The output’s state changes when emitted light 

is interrupted by an object, its amount reduces when returning to the receiver. Illustration 

of this sensing technique is shown in the figure 16.  

 

Figure 16. Retro-Reflective sensing method [6] 

For a Retro-Reflective Sensor, a tapered area from the sensor’s lens to the edges of the 

reflector is the effective beam (Figure 17). The minimum size of the object should be 

equal the size of the reflector for better accuracy.  

 

Figure 17. The effective beam of the retro-reflective sensor [8,85] 

A reflector can be designed with different size, different shape (rectangular or round) or 

reflective tape. With a flat reflector, only the emitted light which strikes the mirror vertically 

is reflected to the receiver (Figure 18).  



13 

  

 

Figure 18. Flat reflector [7,44] 

The solution for the receiver to obtain as much light as possible is to use a prismatic 

reflector (Figure 19). A prismatic reflector contains several tiny prisms, which helps the 

light beam reflects exactly parallel towards the direction where it arrives from. Consider-

able margin for the angle that light beam hits the triple prism is ±15°, which is not too 

inclined. [7, 44.] 

 

Figure 19. Prismatic reflector [7,44] 

As can be seen in figure 19, not only light beam strikes the reflector at 45° returns exactly 

parallel, but also the sharp-angled beam reflects in parallel.  

Generally, the detection distance range for retro-reflective sensors is from several centi-

meters to several meters. The angle and color of the sensing object do not have a sig-

nificant effect on the operation. Transparent objects can be detected with this method 

because the light beam can pass through them twice.  



14 

  

 

Figure 20. Shiny object confusion with retro-reflective sensor [8, 86] 

However, this technique may not able to sense shiny objects because they reflect the 

light to the receiver. The sensor is incapable of distinguishing the light returns from a 

reflector or a shiny object (Figure 20). Additionally, another disadvantage of retro-reflec-

tive sensors is that they have a dead zone at close distances. 

2.3 Concepts of Line Follower Robot 

A line follower robot is an electronic device designed to track out and follow a line or a 

path which is predefined by the user. There are various types of line or track such as 

physical black or white line on the floor, magnetic markers, embedded lines and laser 

guide. They vary from simple low-cost technique to the complex expensive system. De-

pending on the project scope, the suitable option is selected, and appropriate technology 

and sensors are employed for the robot.  

2.3.1 Working Principle  

In this study, the prototype is a black line robot follower on a white surface. The robot 

senses the black line and stays on track while continuously adjusting to correct the wrong 

moves using the feedback mechanism. This works based on the behavior of light at the 

white and black surface. 

 

 

 

 



15 

  

 

Figure 21. Light is reflected by white surface [9] 

 

In general, the reflective quality of light color is better than dark color. Light is reflected 

almost completely when it strikes at a white surface (Figure 21) and absorbed totally at 

a black surface (Figure 22). 

  

Figure 22. Light is absorbed by black surface [9] 

 

The line follower prototype consists of three units: sensor unit, control unit and driver 

unit. Sensor unit contains infrared transmitter, infrared receiver, potentiometer and a 

comparator. The infrared transmitter emits light ray to the surface. When a light ray hits 

the white surface, it is reflected with high intensity. In case of hitting a black surface, a 

light ray is absorbed and not reflected. The infrared receiver is a photodiode, which gen-

erates analogue voltage corresponding to the intensity of reflected light. This voltage is 

connected to one terminal of a comparator. Another terminal is connected to a reference 

voltage, which is set by a potentiometer. Both voltages are compared by a comparator 

and a digital output signal is created. [9.] 

 

Control unit for this prototype is a microcontroller, which reads the digital signal from 

comparator output, processes the signal and sends commands to driver unit to control 

the rotation of the wheels and keep the robot on the line. There are several methods to 



16 

  

process the signals from the sensor unit, and PID control is adopted as a feedback con-

trol in this study to increase the performance of the robot.  

 

Driver unit contains a motor driver and two DC motors. Motor driver is used because 

most often, microcontroller does not provide enough voltage and current to drive the 

motors.  

2.3.2 PID control 

PID control is the most common control algorithm used to control feedback loops in many 

industrial process applications. PID control contains three fundamental terms: propor-

tional, integral and derivative which are computed and summed up to provide optimal 

result for the process. It can be understood as a control method that tracks the present, 

the past and the future of the error between the process variable and the setpoint to 

deliver correction until no error remains. Proportional control depends on the present 

error, integral control on the accumulation of the past error and derivative control on the 

forecasting of future error. [10.] 

i Proportional control 

The proportional part only depends on the current difference between the process vari-

able and the setpoint, which is referred as the current error [11,3]. The output response 

is determined by multiplying the error by a constant proportional gain 𝐾𝑝. The propor-

tional term is specified by:  

                                                                       𝑃 = 𝐾𝑝. 𝑒𝑟𝑟𝑜𝑟(𝑡)                                                                 (2) 

For example, if the error term has a magnitude of 10, a proportional gain of 7, the output 

proportional response of 70 is produced.  

Generally, increasing the proportional gain 𝐾𝑝 will rise up the speed of the output re-

sponse. However, if the proportional gain is too high, the process variable starts to oscil-

late, and the system can be unstable. On the other hand, decreasing the proportional 

gain results in lowering the speed of the output response. If the proportional gain is too 



17 

  

low, the output response may be too small for the error, and consequently, the steady-

state error is reduced but is not eliminated. [10.] 

ii Integral control 

The integral part depends on both the magnitude and the duration of the error. It is the 

sum of the instantaneous error over time and provides the output response over time 

until the error becomes zero. The control signal will be increased when a positive error 

is detected and decreased with a negative error. This drives the system to eliminate the 

final difference between the process variable and setpoint, which also called Steady-

State error. The integral term is specified by: 

                                                                    𝐼 = 𝐾𝑖 𝑒𝑟𝑟𝑜𝑟(𝑡)𝑑𝑡                                                             (3) 

where 𝐾𝑖 is the integral gain and it shows that the integral control is based on the error 

value in the past [11,5]. 

However, no matter how small the error is, it will change the control signal. Therefore, it 

may deteriorate the transient response. Moreover, integral windup is a phenomenon that 

happens when integral action saturates a controller without the controller driving the error 

signal toward zero. [10.] 

iii Derivative control 

The derivative part depends on the slope or the error over time and it is related to the 

future predicted error signal. The derivative action is proportional to the rate of change 

of the process variable. The derivative term is specified by: [11,6] 

                                                                              D = 𝐾𝑑
𝑑𝑒𝑟𝑟𝑜𝑟(𝑡)

dt
                                                      (4) 



18 

  

where 𝐾𝑑 is the derivative gain. Increasing Kd makes the control system response more 

strongly to changes in error signal and raises the speed of overall control system re-

sponse [10].  

The derivative control can improve the system performance as it can anticipate an incor-

rect trend of the error signal and counteract for it [11,6]. However, the derivative control 

is extremely sensitive to noise. Therefore, the system can become unstable if there is 

noise in the sensor feedback signal or the control loop rate is too slow [10]. 

3 Components 

3.1 Sensor units 

3.1.1 HC-SR04 Ultrasonic Sensor 

The HC-SR04 ultrasonic sensor is a device that is capable of measuring distance to a 

solid object. Based on the datasheet [12], the theoretical range of its operation is be-

tween 2cm and 400cm for non-contact measurement function, with the resolution of 

0,3cm. However, the practical optimal performance is between 10cm and 250cm [13].  

 

 

Figure 23. HC-SR04 ultrasonic sensor [4] 

 

The sensor operation is based on the emission of ultrasonic waves and their return time 

when bouncing off an object to detect the distance. It includes two main components: a 

transmitter, which sends a burst of ultrasonic pulses at the frequency of 40kHz, and a 



19 

  

receiver, which listens for the transmitted pulses. As can be seen in figure 23, the HC-

SR04 has four following pins: 

 

 VCC – power supply 

 Trig – Trigger pin, which is used to send the ultrasonic pulses 

 Echo – which produces a pulse when receiving reflected signal 

 GND – Ground pin 

 

Figure 24. Timing diagram of HC-SR04 ultrasonic sensor [12] 

 

Figure 24 shows the operation of the sensor module. High signal (5V) needs to be ap-

plied to the Trigger pin for 10 µs to generate the ultrasonic wave. The module responds 

by sending a burst of eight pulses at the frequency of 40kHz. Once finished sending the 

pulses, the echo pin is activated and creates a pulse, which has a width proportional to 

the distance between the sensor and the detected object. The distance is calculated 

based on time interval between sending trigger signal and receiving echo signal. Below 

are two formulas for calculating the distance [12]: 

 

 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑐𝑚)  =  𝑢𝑆(𝑚𝑖𝑐𝑟𝑜𝑠𝑒𝑐𝑜𝑛𝑑𝑠)/ 58                                                            (5) 

 

or 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑐𝑚)  =  ℎ𝑖𝑔ℎ 𝑙𝑒𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 ∗ 𝑠𝑝𝑒𝑒𝑑 𝑜𝑓 𝑠𝑜𝑢𝑛𝑑(0.034 𝑐𝑚/µ𝑠)/2      (6) 



20 

  

Below are some features and electric parameter of the HC-SR04 ultrasonic sensor ac-

cording to datasheet: [12] 

 

 Working Voltage: DC 5 V 

 Working Current: 15mA 

 Working Frequency: 40Hz 

 Max Range: 4m 

 Min Range: 2cm 

 Measuring Angle: 15 degree 

 Trigger Input Signal: 10uS TTL pulse 

 Echo Output Signal: Input TTL level signal and the range in proportion 

 Dimension: 45*20*15mm 

3.1.2 H206 Opto-Coupler Speed Sensor 

The sensor is a photo-interrupter that includes an infrared light-emitting diode (LED) as 

a source of light and a phototransistor sensor. The infrared LED is placed facing the 

sensor with a gap of 6 millimeters. In operation, when the gap is clear, the infrared LED 

shines onto the phototransistor sensor, which senses the light and allows the current 

passing to emitter from the collector. When a solid non-transparent object is placed in 

the gap between the infrared LED and the phototransistor sensor, the light beam is 

blocked, causing the phototransistor to stop passing current. Figure 25 shows two sides 

of the H206 Opto-Coupler Speed Sensor and the encode the wheel [14.] 

 

Figure 25. H206 Opto-Coupler Speed Sensor sensor and encoder wheel [15] 

 



21 

  

In this study, the encoder wheel with 20 equal spaced slots is placed in the gap between 

the infrared LED and the phototransistor sensor. When spinning, the slots of the wheel 

allows light beam passing through and causes the signal switching on and off according 

to its rotation. Each pulse represents a slot in the encoder wheel, it means one pulse 

shows that the wheel has rotated 18 degrees (360 degrees divided by 20).  

 

Additionally, as can be seen in figure 26, an LM393 comparator is mounted into the 

module to remove error digital signal as the phototransistor creates poor output pulses. 

The LM393 has two inputs, one for the output of phototransistor sensor and the other for 

reference voltage. The digital output of LM393 goes high (5V) when the output of photo-

transistor sensor equals or surpasses the reference voltage. In contrast, it goes low 

(ground) when the output of phototransistor sensor is below the reference voltage. With 

LM393 comparator, the H206 Opto-Coupler Speed Sensor module generates more ac-

curate 5V pulse signal, which is used in calculating wheel’s speed. 

 

 

Figure 26. LM393 comparator mounted in the H206 sensor module [15] 

 

By calculating the number of pulses in one minute, it is possible to measure the speed 

of the wheel in round per minute (rpm) (divided by 20). Besides, measuring the circum-

ference of the wheel helps determine the actual speed in kilometers per hour (km/h) as 

it is equivalent to the distance travel in one rotation.  

 



22 

  

The module has three following pins: 

 VCC – Power supply  

 GND – Ground pin 

 OUT – Signal output; standby - output low level, indicator light is on; detected 

something - output high level, indicator light is off. 

Below are some parameters of H206 Opto-Coupler Speed Sensor module [15]: 

 Working voltage: DC 4.5-5.5V 

 Launch tube current: If <20mA 

 Signal output: single channel; TTL level 

 Resolution accuracy: 0.01mm 

 Long size: 2.6mm x 2.2mm 

 The main component: LM393 

 Photoelectric slot width: 6mm  

3.1.3 Four-channel Infrared Receiver Tracking Sensor 

The module includes four sets of infrared transmitter and receiver tracking sensor con-

nected to the hollow board as can be seen in figure 27. Each tracking channel sends 

high or low signal to the board, depending on the color of surface. The tracking module 

has twelve input pins for supply voltage, ground and data from four tracking channels. 

There are also four potentiometers to adjust the sensitivity of four receivers when chang-

ing detection range.  

 

Figure 27. Four-channel infrared receiver tracking sensor [16] 



23 

  

The sensor also has six output pins: VCC for power supply, GND is ground pin and 

OUT1, OUT2, OUT3, OUT4 for four output signals from four tracking channels. When 

infrared light emitted from transmitter meets white surface and reflects to the receiver, 

the indicator LED (D1-4) is on and output signal (OUT1-4) is low. If infrared light is ab-

sorbed by black surface, the indicator LED (D1-4) is off and output signal (OUT1-4) is 

high.  

Below are some parameters of the module [16]: 

 Working voltage: DC 3.3V-5V 

 Working current: try to choose more than 1A power supply 

 Working temperature: -10°C to +50°C 

 Mounting aperture: M3 screw 

 Detection range: 1mm to 60cm adjustable, the performance more stable when 

closer, white reflects the farthest distance. 

 Output interface: 6-wire interface (1234 to 4 signal output ends, + positive power, 

- for the negative power is ground) 

 The output signal: TTL level 

3.2 Hardware units 

3.2.1 Arduino Uno and Sensor Shield 

Arduino Uno is a microcontroller board developed by Arduino.cc, which is an open-

source electronics platform built on single-chip microcontroller ATmega328P. It consists 

of 14 digital input/output pins, 6 of those (D3, D5, D6, D9, D10, D11) can be used to 

provide 8-bit Pulse Width Modulation (PWM) outputs, 6 analogue pins. The board can 

be powered by a 5V USB connection or by external power source, which can be up to 

12V. [17.] 

The board has several features such as timers, counters, interrupts, 16 MHz quartz crys-

tal clock. It also has a reset button, which resets the running program and starts again 

from the initial stage. Additionally, the board also supports serial communication with Tx 

(D1) and Rx (D0) pins. [18.] 



24 

  

Arduino IDE (Integrated Development Environment) is a software that is used to transfer 

the code to the board. This software is compatible with Windows, MAC or Linux Systems 

and it works with C or C++ language.  

The pinout of Arduino Uno board is shown in the figure 28: 

 

Figure 28. Arduino Uno Pinout [18] 

In this study, an Arduino sensor shield is also used to provide the simplified and well-

organized wiring connection between sensors and the board.  

 

Figure 29. Arduino sensor shield v5.0 and its functional diagram [19] 



25 

  

As can be seen in figure 29, the shield offers one VCC pin (power supply) and one GND 

pin (ground) for every Arduino signal pin. To provide 5V and ground for every digital and 

analogue I/O port, after connecting the shield and Arduino Uno board, two SEL pins of 

the shield need to be connected by a jumper. If those two SEL pins are not connected, 

only analogue I/O ports get 5V and ground from Arduino Uno board. In this case, digital 

I/O ports get VCC and GND from external power source that connects directly to the 

shield. 

Below are some parameters of Arduino Uno module [17]: 

 Microcontroller: ATmega328P – 8-bit AVR family microcontroller 

 Working voltage: 5V 

 Recommended Input Voltage: 7-12V 

 Input Voltage Limits: 6-20V 

 Analog Input Pins: 6 (A0 – A5)  

 Digital I/O Pins: 14 (Out of which 6 provide PWM output) 

 DC Current on I/O Pins: 40 mA 

 DC Current on 3.3V Pin: 50 mA 

 Flash Memory: 32 KB 

 Frequency (Clock Speed): 16 MHz 

3.2.2 L298N Motor Driver 

The L298N is a dual H-Bridge motor driver which can control the direction and speed of 

two DC motors at the same time. DC motors (5V to 35V) can be driven by the module 

with peak current up to 2A. [20.] 



26 

  

 

Figure 30. L298N motor driver [20] 

As can be seen in figure 30, the motor has two screw terminal blocks for driving two 

different motors, another 3-screw terminal block for supply voltage, ground pin and a 5V 

pin which can be used as either input or output. The module also has a jumper to active 

a 5V regulator onboard. If the supply voltage is below 12V, the regulator can be activated 

to provide 5V pin as an output. On the other hand, if the supply voltage is greater than 

12V, the jumper needs to be removed in order not to damage the regulator. In this case, 

the 5V pin becomes an input and requires a 5V power supply to help the module operate 

properly.  

Besides, there are six logic control inputs. The ENA and ENB pins are used to activate 

and control motors' speed. If the pin is connected by the jumper, the motor will be active 

and operate at full speed. If the jumper is removed, it is possible to control the motor’s 

speed by connecting the pin to a PWM pin of Arduino. Connecting this pin to ground will 

disable the motor. The IN1 and IN2 pins are used for controlling the rotation direction of 

Motor A, and IN3 and IN4 are for Motor B.  

Below are some parameters of the module [21]: 

 Double H bridge drive 

 Chip: L298N  

 Logical voltage: 5V 



27 

  

 Drive voltage: 5V-35V 

 Logical current: 0mA-36mA 

 Drive current: 2A (MAX single bridge) 

 Storage temperature: -20°C to +135°C 

 Max power: 25W 

 Weight: 30g 

 Size: 43 x 43 x 27mm 

4 Design of the prototypes 

The goal of this study was to create a safety system, which can stop a moving robot 

when an object is detected within a safety distance that is dependent on the velocity of 

the robot. Therefore, it is important to first determine precisely the robot’s distance to the 

obstacle around and its velocity. Information about distance and velocity is shown on a 

liquid-crystal display (LCD). Based on that information, each prototype is designed and 

programmed to operate as its function. First prototype is a directional robot controlled by 

a joystick and a second one is a black line robot follower. Once an object is detected 

within a safety distance, they will stop moving forward until their safety range is clear. In 

this study, two cases of safety distance are defined by the velocity of the robot. When it 

is in faster mode, the safety distance is set to 20 centimeters. When it is in slower mode, 

the safety distance is set to 10 centimeters.  

4.1 Joystick-Control Prototype  

This prototype is a robot with a joystick to control its speed and direction. A joystick is 

created by two potentiometers, which represent horizontal and vertical axes, and are 

connected to the analogue pins of Arduino to control the speed of two motors. Two mo-

tors have the PWM speed value that varies from 0 (stop) to 255 (maximum speed) and 

can change rotation direction depending on the current flow, which is controlled by the 

joystick. 



28 

  

 

Figure 31. Joystick diagram [20] 

As can be seen in figure 31, the value of both potentiometers ranges from 0 to 1023. 

When the joystick is at default position, both axes have a value of 512 roughly and the 

speed of two motors is zero. With Y axis, when the position of the joystick is from 550 to 

1023, two motors move forward with the speed varies corresponding from 0 to 255. Sim-

ilarly, when the position of the joystick is from 470 to 0, two motors move backward with 

the speed varies corresponding from 0 to 255. 

Moving the joystick in X axis controls the turning of the robot. When the position of the 

joystick in X axis varies from 470 to 0, it increases the speed of the right motor corre-

sponding from 0 to 255, which makes the robot turn left. In contrast, when the position 

of the joystick in X axis varies from 550 to 1023, it increases the speed of the left motor 

corresponding from 0 to 255, which makes the robot turn right. 

Figure 32 illustrates the front view and top view of the Joystick-control prototype. 



29 

  

 

Figure 32. Joystick-control prototype 

As can be seen in figure 34, the Arduino sensor shield is connected to and directly pow-

ered by Arduino Uno board. In this study, a 9V battery is used to supply power to Arduino 

Uno board, and it offers 5V to every V output pin of the shield. Firstly, HC-SR04 ultrasonic 

sensor is connected to the shield for distance detection. Trig and Echo pin are connected 

to pin D5, D4 in the shield respectively. Based on the application note of the sensor, the 

Ground pin should be connected before VCC pin. The Trig pin is set to LOW state for 2 

µs and then it is set to HIGH state for 10 µs to send the ultrasonic waves. After that, 

calculating the HIGH state time of Echo pin gives the duration that ultrasonic waves travel 

to an object and reflect, then dividing by 2 and multiplying with 0.0343 (343 meters per 

second as speed of sound) will give the distance from the sensor to the object in centi-

meter.  

Secondly, two motors are connected to L298N motor driver, and two H206 Opto-Coupler 

Speed Sensor are connected to the Arduino shield to measure the speed of the wheels, 

which are attached to the motors. VCC and GROUND pin are hooked up to the shield 

while OUTPUT pin of the left sensor is connected to pin D3 of Arduino Uno, which is an 

interrupt pin. There are two encoder disks, which have 20 equal spaced slots, attached 

to two motors and placed in the gap position of the sensors as can be seen in figure 33. 



30 

  

 

Figure 33. Speed sensor in place 

When the motor rotates, the disk will rotate with the same speed and its holes create 

interrupts, which happen when the state of the sensor digital output changes. An Arduino 

function called Interrupt Service Routine (ISR) is used to detect when an interrupt hap-

pens. Dividing the number of interrupts in one minute by 20 will give the speed of the 

wheel in round per minute. Tape is wrapped around the outside of the wheel and its 

measurement is 21 centimeters. This is used to provide the speed of the wheel in centi-

meters per minute and convert to kilometer per hour by dividing by 1666.67.  

Thirdly, a joystick is connected to the shield as can be seen in figure 34. VRx and VRy 

are connected respectively to A0 and A1 pin of the shield to provide analogue signals to 

drive the motors.  

Then another 9V battery is used to power the L298N motor driver and the 5V pin also 

needs to be connected to any VCC pin of the shield. ENA and ENB pin of the driver are 

hooked up respectively to pin D9 and D11, which are PWM pins to control the speed of 

two motors. IN1, IN2, IN3, IN4 pin of the driver, which are used to control the rotation 

direction of two motors, are connected correspondingly to pin D2, D8, D13, D12.  



31 

  

 

Figure 34. Joystick-control prototype circuit wiring made with fritzing program 

 



32 

  

An LCD1602 is connected to the shield via a serial interface adapter to display the ve-

locity of the robot and the distance between the robot to the object in front of it. The 

advantage of the adapter is it only takes two analogue pins as SDA pin and SCL pin are 

connected to pin A4 and A5, while a normal LCD can take up to six digital pins of the 

Arduino to operate. 

Finally, to set up two different safety distances for the prototype depending on its velocity, 

a Boolean variable is created in the program. It has a default value of 0 for the velocity 

that is below 5 km/h, while the safety distance is set at 10 centimeters. When the velocity 

is greater than 5 km/h, the variable changes its value to 1 and sets the safety distance 

to 20 centimeters, it also lights up the LED. A button is also connected as showed in 

figure 34 to switch the speed mode. Once the data of velocity and distance is acquired, 

it is possible to determine when to stop the robot from moving forward and the source 

code is provided in the Appendix 1. 

4.2 Line Follower Prototype  

The prototype is a black line robot follower in white surface. Like the joystick-control 

prototype, it also includes a HC-SR04 ultrasonic sensor, two H206 Opto-Coupler Speed 

Sensors for distance and speed calculation, and a LCD1602 with its serial interface 

adapter to display those values. Figure 35 illustrates the front view and top view of the 

line follower prototype. 

 

Figure 35. Line follower prototype  



33 

  

The wiring connection can be seen in figure 36. Trig pin, Echo pin of HC-SR04, and 

output pin of H206 are connected respectively to pin D7, D6, D2, while SDA and SCL 

pin of the adapter are hooked to pin A4, A5 of the Arduino shield. 

Two motors are also connected to L298N driver, which is powered by a 9V battery. In 

this prototype, ENA and ENB pin of the L298N also need to be connected to PWM pin, 

and EN1, EN2, EN3, EN4 pin are hooked to analogue pins of the Arduino shield. The 

L298N will drive two motors based on the digital signals from four IR tracking sensors. 

 

Figure 36. Line follower prototype circuit wiring made with fritzing program 



34 

  

It is important to adjust the potentiometers so that each tracking sensor can return accu-

rate signal corresponding to the color of the surface. When facing a black surface, the 

sensor turns off its LED and provide high level digital output. In contrast, when facing a 

white surface, the sensor turns on its LED and provide low level digital output. From the 

most left to the most right, the sensors are connected respectively to pin D8, D10, D11 

and D12. Figure 37 describes eleven cases that the prototype may face. 

 

Figure 37. Eleven cases of the line follower prototype 



35 

  

As can be seen in figure 37, depending on the position of the robot to the black line, four 

tracking sensors create different combination of four digital outputs. The table below 

shows more detail of these combinations. 

 

Most 
right 

sensor   

Most 
left 

sensor   
Case D12 D11 D10 D8 Robot next action Error 

1 0 1 0 0 turn right 1 
2 1 0 0 0 turn right 2 
3 1 1 0 0 turn right 3 
4 1 0 0 0 turn sharp right 4 
5 0 0 1 0 turn left -1 
6 0 0 0 1 turn left -2 
7 0 0 1 1 turn left -3 
8 0 0 0 1 turn sharp left -4 
9 0 1 1 0 keep straight 0 

10 1 1 1 1   0 
11 0 0 0 0    0 

Table 2. Eleven cases of the line follower prototype 

The table 2 illustrates eleven cases of four digital signals combination that Arduino re-

ceives based on the position of the robot to the black line and how the robot reacts. 

Additionally, it also shows the 𝑒𝑟𝑟𝑜𝑟 values, which are used for PID control as: 

                                                                       𝑃 =  𝐾𝑝 ∗  𝑒𝑟𝑟𝑜𝑟                                                                (7) 

                                                                     𝐼 =  𝐾𝑖 ∗  𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙                                                               (8) 

                                                                  𝐷 =  𝐾𝑑 ∗  𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒                                                           (9) 

                                                                  𝑜𝑢𝑡𝑝𝑢𝑡 =  𝑃 +  𝐼 +  𝐷                                                        (10) 

where 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 is the sum of all previous 𝑒𝑟𝑟𝑜𝑟 values, 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 is the difference be-

tween current 𝑒𝑟𝑟𝑜𝑟 value and previous 𝑒𝑟𝑟𝑜𝑟 value. The 𝑜𝑢𝑡𝑝𝑢𝑡 value is used to adjust 

the speed of two motors to minimize the 𝑒𝑟𝑟𝑜𝑟 value to zero, which means to keep the 



36 

  

robot moving on the black line. After testing the robot, 𝐾𝑝, 𝐾𝑖 and 𝐾𝑑 values are tuned 

to 15, 0 and 20 to maintain the stability of robot movement.   

Finally, distance and velocity of the robot are calculated by the same methods that are 

used in the joystick-control prototype. There are two speed modes for this prototype, 

which can be switched by a button. In the first mode, the speed of motors is set to fast 

speed level, safety distance is set at 20 centimeters and the LED is on. In the second 

mode, the speed of motors is set slower, safety distance is changed to 10 centimeters 

and the LED is off. A button is also used to switch between two modes. Once the data 

of velocity and distance is acquired, it is possible to determine when to stop the robot 

from moving forward and the source code is provided in the Appendix 2. 

5 Conclusion 

To sum up, the purpose of this project was to design a safety system for MHV prototypes, 

which can stop the robots from moving forward if an object is detected within a safety 

distance. The safety distance changes depending on the speed of the robots, it is further 

with faster speed. By applying theoretical knowledge of ultrasonic waves and photoelec-

tric sensor, the prototype can detect the distance from itself to an object using HC-SR04 

sensor and determine its velocity with H206 sensor. Collected data are processed with 

Arduino Uno to control the motors via L298N driver.  

In general, two prototypes successfully work as desired. Both can detect and display 

their distance to any object as well as their velocity. When any object is placed within 

their safety range they will stop moving forward until the object is removed. With the 

Joystick-control prototype, it is possible to control the moving direction and the speed of 

the robot. The safety system can set up two different safety distances for the velocity 

below and greater than 5 km/h. The line follower prototype can move along the black line 

on a white surface. It has two speed modes and the safety system can separate two 

different safety distances. The robot might not be able to follow complicated routes be-

cause this project is mainly focused on the safety system. 



37 

  

However, the prototypes are two simple robots made with affordable components and 

sensors. Therefore, plenty of improvements can be made for further development. For 

example, extra sensors can be added to the sides as well as the back of the robot to 

cover larger safety range. Besides, due to its limitations, HC-SR04 sensor can be re-

placed by Light Detection and Ranging (LiDAR) sensor to increase the accuracy in dis-

tance reading. Moreover, better techniques of speed-sensing should be implemented to 

provide more precise velocity measurement. With more sensors, it is also necessary to 

replace Arduino Uno by another microcontroller with a greater number of pinouts. Espe-

cially in this study, another power source such as Lithium Polymer (Li-Po) battery can be 

a better option as a 9V PP3 battery does not offer long battery life. Above are few pos-

sible developments that can be made to improve the performance of the system. Further 

improvements may help the system become more practical and can be applied in real 

industrial MHV.  

 

 

 

 

 

 

 

 

 

 



38 

  

References 

1. Statistics Finland. Self-employed persons’ accidents at work. Statistics Finland. 

[Online] November 30, 2012. [Cited: May 22, 2019.] 

https://tilastokeskus.fi/til/ttap/2010/ttap_2010_2012-11-30_kat_002_en.html 

 

2. Fraden, Jacob. Handbook of modern sensors: physics, designs, and applications 

Fourth Edition. New York: Springer Science+Business Media, 2010. ISBN 978-1-4419-

6465-6 

 

3. Seebo Blog. Ultrasonic Sensors: Applications in the Internet of Things. Seebo Blog 

web site. [Online] Seebo Blog, May 28, 2018. [Cited: May 28, 2019.] 

https://blog.seebo.com/iot-ultrasonic-sensors/ 

 

4. Lucian, Vaduva Ionut. ARDUINO SNOW DEPTH REMOTE SENSING WITH 

ULTRASONIC SENSOR. GeeksTips. [Online] [Cited: 29 July 2019.] 

https://www.geekstips.com/arduino-snow-depth-remote-sensing-with-ultrasonic-sensor/ 

 

5. Transparency Market Research. Photoelectric Sensors Market. Transparency 

Market Research. [Online] May 2016. [Cited: June 4, 2019.] 

https://www.transparencymarketresearch.com/photoelectric-sensors-market.html 

 

6. OMRON Industrial Automation. Photoelectric Sensors. OMRON Industrial 

Automation. [Online] OMRON Industrial Automation. [Cited: June 5, 2019.] 

http://www.ia.omron.com/support/guide/43/introduction.html 

 

7. ifm electronic. Training manual photoelectric sensors. ifm electronic. [Online] March 

2003. [Cited: June 5, 2019.] www.ifm.com/obj/s200e.pdf 

 

8. SoftNoze USA Inc. Photoelectric Sensors Theory of Operation. SoftNoze. [Online] 

[Cited: June 7, 2019.] www.softnoze.com/downloads/Sensor%20Basics%204.pdf 

 



39 

  

9. Saddam. Line Follower Robot using Arduino. Circuit Digest. [Online] 18 June 2015. 

[Cited: 4 July 2019.] https://circuitdigest.com/microcontroller-projects/line-follower-robot-

using-arduino 

10. National Instruments. PID Theory Explained. National Instruments. [Online] 

National Instruments, March 5, 2019. [Cited: July 30, 2019.] http://www.ni.com/fi-

fi/innovations/white-papers/06/pid-theory-explained.html 

 

11. Visioli, Antonio. Practical PID Control. Brescia : Springer, 2006. ISBN-13: 

9781846285851 

 

12. Elecfreaks. Ultrasonic Ranging Module HC - SR04. Elecfreaks. [Online] [Cited: 22 

July 2019.] https://cdn.sparkfun.com/datasheets/Sensors/Proximity/HCSR04.pdf 

 

13. Bermudez, Brayan. sensor ultrasonido hc-sr04 con psoc5lp. PSoCLatinoamerica. 

[Online] 24 November 2016. [Cited: 22 July 2019.] 

https://blog.psoclatinoamerica.co/sensor-ultrasonido-hc-sr04-con-psoc5lp/ 

 

14. DroneBot Workshop. Build a Robot Car with Speed Sensors. DroneBot Workshop. 

[Online] DroneBot Workshop, December 8, 2017. [Cited: July 23, 2019.] 

https://dronebotworkshop.com/robot-car-with-speed-sensors/ 

 

15. Banggood. H206 Photoelectric Counter Counting Sensor Module Motor Speed 

Board Robot Speed Code 6MM Slot Width. Banggood. [Online] Banggood. [Cited: July 

30, 2019.] https://www.banggood.com/H206-Photoelectric-Counter-Counting-Sensor-

Module-Motor-Speed-Board-p-

1204425.html?utm_design=41&utm_source=emarsys&utm_medium=Shipoutinform171

129&utm_campaign=trigger-

emarsys&utm_content=Winna&sc_src=email_2671705&sc_eh=d0abf4d71 

 

16. Banggood. 4 Channel Infrared Receiver Tracking Sensor Module IR Line Patrol For 

Arduino. Bang good. [Online] Bang good. [Cited: 23 July 2019.] 

https://www.banggood.com/4-Channel-Infrared-Receiver-Tracking-Sensor-Module-IR-

Line-Patrol-For-Arduino-p-

1414298.html?utm_design=41&utm_source=emarsys&utm_medium=Shipoutinform171



40 

  

129&utm_campaign=trigger-

emarsys&utm_content=Winna&sc_src=email_2671705&sc_eh 

 

17. Arduino.cc. ARDUINO UNO REV3. Arduino.cc. [Online] Arduino.cc. [Cited: July 30, 

2019.] https://store.arduino.cc/arduino-uno-rev3 

 

18. Aqeel, Adnan. Introduction to Arduino Uno. The Engineering Projects. [Online] The 

Engineering Projects, 21 June 2018. [Cited: 24 July 2019.] 

https://www.theengineeringprojects.com/2018/06/introduction-to-arduino-uno.html 

 

19. el gammal electronics. Arduino sensor Shield V5.0 . el gammal electronics. [Online] 

[Cited: July 30, 2019.] 

http://www.elgammalelectronics.com/Products/Download/f18faaa0-8a40-493b-b754-

8b33a7a06b59?Name=XX30-

Arduino%20Sensor%20Shield%20V5.0%20sensor%20expansion%20board%20electro

nic%20building%20blocks%20new-DATASHEET 

 

20. Dejan. Arduino DC Motor Control Tutorial – L298N | PWM | H-Bridge. 

HowToMechatronics. [Online] HowToMechatronics. [Cited: 25 July 2019.] 

https://howtomechatronics.com/tutorials/arduino/arduino-dc-motor-control-tutorial-

l298n-pwm-h-bridge/ 

 

21. Geekcreit. Banggood. Banggood. [Online] Banggood. [Cited: July 30, 2019.] 

https://www.banggood.com/Wholesale-Dual-H-Bridge-DC-Stepper-Motor-Drive-

Controller-Board-Module-Arduino-L298N-p-

42826.html?utm_design=41&utm_source=emarsys&utm_medium=Shipoutinform17112

9&utm_campaign=trigger-emarsys&utm_content=Winna&sc_src=email_2671705& 

 



Appendix 1 

  1 (7) 

 

  

Appendix 1. Joystick-control prototype code 

#include <Wire.h>  

#include <LiquidCrystal_I2C.h> 

#include <NewPing.h> 

#include <TimerOne.h> 

 

#define TRIGGER_PIN  5 

#define ECHO_PIN     4 

#define MAX_DISTANCE 400 

#define buttonPin 10 

#define ledPin 6 

 

LiquidCrystal_I2C lcd(0x27, 16, 2); 

 

NewPing sonar(TRIGGER_PIN, ECHO_PIN, MAX_DISTANCE); 

 

float duration;   

float distance;                    // in cm 

float diskslots = 20;           // encoder plate has 20 holes 

float rotation; 

float velocity; 

float p = 21;                       // perimeter of the wheel in cm 

int   flag = 0; 

int   buttonState = 0; 

const byte   MOTOR = 3;  // motor interrupt pin  

unsigned int counter = 0;  // integers for pulse counters 

 

// Motor A - Right 

int enA = 9; 

int in1 = 2; 

int in2 = 8; 

  



Appendix 1 

  2 (7) 

 

  

// Motor B - Left 

int in3 = 13; 

int in4 = 12; 

int enB = 11; 

 

int joyY = A1;  // Vertical Y 

int joyX = A0;  // Horizontal X 

 

int MotorSpeed1 = 0; 

int MotorSpeed2 = 0; 

 

// Joystick Values - Start at 512 (middle position) 

int joyposY = 512; 

int joyposX = 512;   

 

void ISR_count()   

{ 

  counter++;  

}  

 

void ISR_timerone() 

{ 

  Timer1.detachInterrupt();                      // stop the timer 

  rotation = (counter / diskslots) * 60.00;     // calculate RPM for Motor  

  velocity = rotation * p / 1666.67;               // convert RPM to cm/m and then to km/h 

  counter = 0;                                              // reset counter to zero 

  Timer1.attachInterrupt( ISR_timerone );  // enable the timer 

} 

 

void setup()  

{ 

  Serial.begin(9600); 

  lcd.begin(); 

  lcd.backlight(); 



Appendix 1 

  3 (7) 

 

  

  Timer1.initialize(1000000); // set timer for 1sec 

  attachInterrupt(digitalPinToInterrupt (MOTOR), ISR_count, RISING);  // Increase coun-

ter when speed sensor pin goes High 

  Timer1.attachInterrupt( ISR_timerone ); // Enable the timer 

   

  pinMode(enA, OUTPUT); 

  pinMode(enB, OUTPUT); 

  pinMode(in1, OUTPUT); 

  pinMode(in2, OUTPUT); 

  pinMode(in3, OUTPUT); 

  pinMode(in4, OUTPUT); 

 

  pinMode(ledPin, OUTPUT); 

  pinMode(buttonPin, INPUT_PULLUP); 

 

  digitalWrite(ledPin, LOW); 

 

  // Motor A - Right 

  digitalWrite(enA, LOW); 

  digitalWrite(in1, HIGH); 

  digitalWrite(in2, LOW); 

   

  // Motor B - Right 

  digitalWrite(enB, LOW); 

  digitalWrite(in3, HIGH); 

  digitalWrite(in4, LOW); 

} 

 

void loop()  

{ 

  joyposY = analogRead(joyY);  

  joyposX = analogRead(joyX); 

 

  buttonState = digitalRead(buttonPin); 



Appendix 1 

  4 (7) 

 

  

  if (velocity > 5)  

    { 

    digitalWrite(ledPin,HIGH); 

    flag = 1; 

    } 

  

  if (buttonState == HIGH)  

    { 

    digitalWrite(ledPin, LOW); 

    flag = 0; 

    } 

 

  if  (((joyposY < 460) && (flag == 0) && (distance > 10)) || ((joyposY < 460) && (flag == 

1) && (distance > 20)) ) 

  { 

    // Move forward   

     

    // Set right Motor forward 

    digitalWrite(in1, LOW); 

    digitalWrite(in2, HIGH); 

  

    // Set left Motor forward 

    digitalWrite(in3, LOW); 

    digitalWrite(in4, HIGH); 

  

    //Determine Motor Speeds 

    joyposY = joyposY - 460;   // This produces a negative number 

    joyposY = joyposY * -1;     // Make the number positive 

  

    MotorSpeed1 = map(joyposY, 0, 460, 0, 255); 

    MotorSpeed2 = map(joyposY, 0, 460, 0, 255); 

 

    rotation = rotation;   

  } 



Appendix 1 

  5 (7) 

 

  

  else if (joyposY > 564)  

  { 

    // Move backward 

  

    // Set right Motor backward 

    digitalWrite(in1, HIGH); 

    digitalWrite(in2, LOW); 

  

    // Set left Motor backward 

    digitalWrite(in3, HIGH); 

    digitalWrite(in4, LOW); 

  

    //Determine Motor Speeds  

    MotorSpeed1 = map(joyposY, 564, 1023, 0, 255); 

    MotorSpeed2 = map(joyposY, 564, 1023, 0, 255);  

  } 

   

  else 

  { 

    MotorSpeed1 = 0; 

    MotorSpeed2 = 0;  

  } 

   

  if (joyposX < 460) 

  { 

    // Move left 

     

    joyposX = joyposX - 460;  

    joyposX = joyposX * -1;   

    joyposX = map(joyposX, 0, 460, 0, 255); 

       

 

 

 



Appendix 1 

  6 (7) 

 

  

    MotorSpeed2 = MotorSpeed2 - joyposX; 

    MotorSpeed1 = MotorSpeed1 + joyposX; 

  

    if (MotorSpeed2 < 0) MotorSpeed2 = 0; 

    if (MotorSpeed1 > 255) MotorSpeed1 = 255; 

  } 

   

  else if (joyposX > 564) 

  { 

    // Move right 

    joyposX = map(joyposX, 564, 1023, 0, 255); 

         

    MotorSpeed2 = MotorSpeed2 + joyposX; 

    MotorSpeed1 = MotorSpeed1 - joyposX; 

   

    if (MotorSpeed2 > 255) MotorSpeed2 = 255; 

    if (MotorSpeed1 < 0) MotorSpeed1 = 0;       

  } 

 

  // Prevent motor buzzing at very low speed 

  if (MotorSpeed1 < 8) MotorSpeed1 = 0; 

  if (MotorSpeed2 < 8) MotorSpeed2 = 0; 

 

  // Set the motor speeds 

  analogWrite(enA, MotorSpeed1); 

  analogWrite(enB, MotorSpeed2); 

   

  duration = sonar.ping();                   // Determine distance from duration  

  distance = (duration / 2) * 0.0343;   // Use 343 meters per second as speed of sound 

   

  lcd.clear(); 

  lcd.print("Dist: "); 

  lcd.setCursor (6,0); 

  lcd.print(distance); 



Appendix 1 

  7 (7) 

 

  

  lcd.print(" cm"); 

  lcd.setCursor (0,1); 

  lcd.print("Velo: "); 

  lcd.setCursor (6,1); 

  lcd.print(velocity); 

  lcd.print(" km/h "); 

   

  delay(500);



Appendix 2 

  1 (7) 

 

  

Appendix 2. Line Following Prototype code 

#include <Wire.h>  

#include <LiquidCrystal_I2C.h> 

#include <NewPing.h> 

#include <TimerOne.h> 

 

#define TRIGGER_PIN  7 

#define ECHO_PIN     6 

#define MAX_DISTANCE 400 

#define buttonPin 4 

#define ledPin 13 

 

LiquidCrystal_I2C lcd(0x27, 16, 2); 

 

NewPing sonar(TRIGGER_PIN, ECHO_PIN, MAX_DISTANCE); 

 

float duration;  

float distance;  // in cm 

float diskslots = 20;  // encoder plate has 20 holes 

float rotation; 

float velocity; 

int flag = 1; 

int buttonState = 0; 

 

float safe = 20; 

 

float p = 21;    // perimeter of the wheel in cm 

const byte   MOTOR = 2;   // motor interrupt pin  

unsigned int counter = 0;  // integers for pulse counters 

 

float pTerm, iTerm, dTerm; 

int error; 



Appendix 2 

  2 (7) 

 

  

int previousError; 

float kp = 15;  

float ki = 0; 

float kd = 20; 

 

float output; 

int integral, derivative; 

int irSensors[] = {12, 11, 10, 8}; //IR sensor pins 

int irReadings[4]; 

 

int motor1Forward = A1; 

int motor1Backward = A0; 

int motor1pwmPin = 5; 

int motor2Forward = A2; 

int motor2Backward = A3; 

int motor2pwmPin = 3; 

 

int motor1newSpeed; 

int motor2newSpeed; 

int motor2Speed = 70;  

int motor1Speed = 125;  

 

void ISR_count()   

{ 

  counter++;  

}  

void ISR_timerone() 

{ 

  Timer1.detachInterrupt();                        // stop the timer 

  rotation = (counter / diskslots) * 20.00;   // calculate RPM for Motor  

  velocity = rotation * p / 1666.67;             // convert RPM to cm/m and then to km/h 

  counter = 0;                            // reset counter to zero 

  Timer1.attachInterrupt( ISR_timerone ); // enable the timer 

}  



Appendix 2 

  3 (7) 

 

  

void setup() { 

  Serial.begin(9600); 

  lcd.begin(); 

  lcd.backlight(); 

 

  Timer1.initialize(3000000); // set timer for 3sec 

  attachInterrupt(digitalPinToInterrupt (MOTOR), ISR_count, RISING);  // Increase coun-

ter when speed sensor pin goes High 

  Timer1.attachInterrupt( ISR_timerone ); // Enable the timer 

   

  for (int pin = 0; pin < 4; pin++) { 

    int pinNum = irSensors[pin]; 

    pinMode(pinNum, INPUT); 

  } 

 

  pinMode(motor1Forward, OUTPUT); 

  pinMode(motor1Backward, OUTPUT); 

  pinMode(motor1pwmPin, OUTPUT); 

  pinMode(motor2Forward, OUTPUT); 

  pinMode(motor2Backward, OUTPUT); 

  pinMode(motor2pwmPin, OUTPUT); 

 

  pinMode(ledPin, OUTPUT); 

  pinMode(buttonPin, INPUT_PULLUP); 

 

  digitalWrite(ledPin, HIGH); 

} 

 void readIRSensors() { 

  for (int pin = 0; pin < 4; pin++) { 

    int pinNum = irSensors[pin]; 

    irReadings[pin] = digitalRead(pinNum); 

  } 

} 

 



Appendix 2 

  4 (7) 

 

  

void calculateError() { 

  if ((irReadings[0] == 0) && (irReadings[1] == 1) && (irReadings[2] == 1) && 

(irReadings[3] == 1)) { 

    error = -4; 

  } else if ((irReadings[0] == 0) && (irReadings[1] == 0) && (irReadings[2] == 1) && 

(irReadings[3] == 1) ) { 

    error = -3; 

  } else if ((irReadings[0] == 0) && (irReadings[1] == 0) && (irReadings[2] == 0) && 

(irReadings[3] == 1) ) { 

    error = -2; 

  } else if ((irReadings[0] == 0) && (irReadings[1] == 0) && (irReadings[2] == 1) && 

(irReadings[3] == 0) ) { 

    error = -1; 

  } else if ((irReadings[0] == 0) && (irReadings[1] == 1) && (irReadings[2] == 1) && 

(irReadings[3] == 0) ) { 

    error = 0; 

  } else if ((irReadings[0] == 0) && (irReadings[1] == 1) && (irReadings[2] == 0) && 

(irReadings[3] == 0) ) { 

    error = 1; 

  } else if ((irReadings[0] == 1) && (irReadings[1] == 0) && (irReadings[2] == 0) && 

(irReadings[3] == 0) ) { 

    error = 2; 

  } else if ((irReadings[0] == 1) && (irReadings[1] == 1) && (irReadings[2] == 0) && 

(irReadings[3] == 0) ) { 

    error = 3; 

  } else if ((irReadings[0] == 1) && (irReadings[1] == 1) && (irReadings[2] == 1) && 

(irReadings[3] == 0) ) { 

    error = 4; 

  } else if ((irReadings[0] == 0) && (irReadings[1] == 0) && (irReadings[2] == 0) && 

(irReadings[3] == 0) ) { 

    error = 0; 

  } else if ((irReadings[0] == 1) && (irReadings[1] == 1) && (irReadings[2] == 1) && 

(irReadings[3] == 1) ) { 

    error = 0; 



Appendix 2 

  5 (7) 

 

  

  } 

} 

 

void pidCalculations() { 

  pTerm = kp * error; 

  integral += error; 

  iTerm = ki * integral; 

  derivative = error - previousError; 

  dTerm = kd * derivative; 

  output = pTerm + iTerm + dTerm; 

  previousError = error; 

} 

 

void changeMotorSpeed() { 

  motor2newSpeed = motor2Speed + output; 

  motor1newSpeed = motor1Speed - output; 

  

  constrain(motor2newSpeed, 0, 255); 

  constrain(motor1newSpeed, 0, 255); 

 

  analogWrite(motor2pwmPin, motor2newSpeed); 

  analogWrite(motor1pwmPin, motor1newSpeed); 

  digitalWrite(motor2Forward, HIGH); 

  digitalWrite(motor2Backward, LOW); 

  digitalWrite(motor1Forward, HIGH); 

  digitalWrite(motor1Backward, LOW); 

 

  if (distance < safe) { 

    analogWrite(motor2pwmPin, 0); 

    analogWrite(motor1pwmPin, 0); 

    digitalWrite(motor2Forward, LOW); 

    digitalWrite(motor2Backward, LOW); 

    digitalWrite(motor1Forward, LOW); 

    digitalWrite(motor1Backward, LOW); 



Appendix 2 

  6 (7) 

 

  

  } 

} 

 

void loop() {   

  buttonState = digitalRead(buttonPin); 

   

  if (flag == 1){ 

    digitalWrite(ledPin,HIGH); 

    safe = 20; 

    motor2Speed = 70; //Default faster speed 

    motor1Speed = 125; //Default faster speed   

  } 

 

  if (buttonState == HIGH) { 

    digitalWrite(ledPin, LOW); 

    safe = 10; 

    flag = 0; 

    motor2Speed = 60; //Set lower speed 

    motor1Speed = 90; //Set lower speed 

  }  

   

  duration = sonar.ping(); // Determine distance from duration  

  distance = (duration / 2) * 0.0343; // Use 343 metres per second as speed of sound 

 

  readIRSensors(); 

  calculateError(); 

  pidCalculations(); 

  changeMotorSpeed(); 

   

  lcd.clear(); 

  lcd.print("Dist: "); 

  lcd.setCursor (6,0); 

  lcd.print(distance); 

  lcd.print(" cm"); 



Appendix 2 

  7 (7) 

 

  

  lcd.setCursor (0,1); 

  lcd.print("Velo: "); 

  lcd.setCursor (6,1); 

  lcd.print(velocity); 

  lcd.print(" km/h "); 

} 

 


