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ABSTRACT 
 
In 2016, Healthy China 2030 has been announced and with it its five specific goals: 

controlling major risk factors, increasing the capacity of the health service, enlarging the 

scale of the health industry, perfecting the health service system and improving the 

health nationwide. Nevertheless, Diabetes continues to be a leading public health 

challenge in China. In this thesis, the author explores reasons for the rapid diabetes 

prevalence, as well as how a simple supervised machine learning model build in Python, 

based on the China Health and Retirement Longitudinal Study (CHARLS), can predict the 

risk of a Chinese citizen aged 45 and above having diabetes. Three different algorithms, 

Random Forest, Support Vector Machine and Logistic Regression are compared. The 

model is built with the help of SciKit-learn and imbalanced-learn. Findings obtained are 

correlations between diabetes and dyslipidemia, as well as correlations among diabetes 

and education level among other things. The most suited algorithm for prediction is 

Support Vector Machine, after introducing over-sampling. Generally, the findings 

demonstrate that the blueprint Healthy China 2030 is a thought-out and needed 

strategy change. 
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1 INTRODUCTION 

1.1 Background 

 
China´s role as a leader in the world’s economy is in fact, nothing new with 
historical sources stating its technological leadership going back to the 
eighth century. However, during the mid-eighteenth century, China´s 
economy started stagnating because of the lack of industrialization 
(Maddison, 2007). The economic instability continued throughout the first 
half of the next century and only came to a halt 30 years after the 
proclamation of the People´s Republic of China, through the economic 
reforms under Deng Xiaoping, starting in 1979.  
 
His reforms, a shift from central-planned economy to a more market-
based one, enabled an economic miracle and allowed the economy to 
become the fastest growing one in the world (Witt, 2018). Nowadays, the 
People´s Republic of China, having a population of almost 1.4 billion, is the 
country with the second biggest gross domestic product (GDP) worldwide. 
Its GDP at purchasing power parity is the largest in the world, with an 
estimated 25.1 trillion USD in 2018 (International Monetary Fund, 2018).  
 
Despite this, the Chinese health care sector, especially when comparing 
the rural and urban areas, did not evolve at the same rate. Paradoxically, 
health care is an integral part of the Chinese culture, with the beginning of 
Chinese medicine and health care going back as far as 2700 BC, to the 
legendary emperor Shennong who is said to have introduced acupuncture 
(Ho & Lisowski, 1997).   
 
De facto, the Chinese health care sector was a subject of domestic and 
international criticism for its poor allocative efficiency performance in the 
early beginning of the millennium (Blumenthal & Hsiao, 2005). As the 
Chinese government under Xi Jinping fully recognized the need for a 
strategic shift, it launched the health care system reform in 2009. The 
overall goal of health care reform was the establishment and improvement 
of the basic health care system, covering urban as well as rural residents, 
and providing the people with affordable, secure, convenient and efficient 
health care services until 2020 (Ling & Hongqiao, 2017).   
 
The health care system reform was further supported by the 12th 5-Year 
Plan for economic and social development of the people´s republic in 
China. Its healthcare development was split into three sequences. 

 
The first sequence, taking place between 2009 and 2012, set the focus of 
the government on the health care reform. It was succeeded by the reform 
of the wasteful and inefficient public hospitals and financial investments 
into the health care sector between 2012 and 2015. The reform´s final 
sequence began in 2016 after the Chinese government announced the 13th 
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5-Year Plan for economic and social development of the people´s republic 
in China. It set the emphasis of the health care reform on prevention, as 
well as reconfirming the coverage of all basic health care services.  
 
The plans crucial subjects include improving the medical insurance system 
for all citizens, improving major disease prevention and treatment, 
improving maternal and infant health care and childbirth services, 
optimizing the structure of the medical institution systems, improving the 
traditional Chinese medicine, implementing a fitness strategy and lastly 
implement a food and medicine safety strategy. Adding to that, the 
government introduced the Basic Health Care Law, which would define 
essential elements of the health care system (Central Committee of the 
Communist Party in China, 2016). 
 
As a successor to the previous reform, the Chinese government announced 
a blueprint of Healthy China 2030 on October 25, 2016. It is China´s newest 
national medium- and long-term strategic plan for health care and made 
public health a priority for the economic and social development of the 
People´s Republic of China.  
 

1.2 Purpose, State of the Art and Objectives 

 
 
The research question the author seeks to answer is “How can Machine 
Learning, as a possible part of scientific development in Healthy China 
2030, be utilized to reduce the prevalence of Diabetes among Chinese 
citizen aged 45 and above?” 
The reason for that is that China has an ageing population, with an 
estimated average age of 50 by 2070, and a steadily increasing elderly 
dependency (Statista, 2019).  Adding to that, the People´s Republic of 
China faces some healthcare problems, such as the rapid prevalence of 
diabetes (Xu et al., 2013).  
 
This is relevant as diabetes and other chronic diseases increase the risk of 
disability or even premature death, if not treated properly and are thus 
leading to a burden on both the economy, as well as the society of the 
People´s Republic of China (Soumya & Srilatha, 2011; Papatheodorou et 
al., 2015; Nather et al., 2008). Also, health is the basis for human - and 
socio-economic development, and to support a prospering economy and 
society in the People´s Republic of China, the researcher decided to make 
use of the rapid advancements in technology that are occurring today, 
namely through Machine Learning, which is seeing many different use 
cases in today’s business world. One of its applications is the prediction of 
diabetes as a part of healthcare management. 
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In medicine, diabetes is diagnosed through fasting blood glucose, glucose 
tolerance and random blood glucose levels (Iancu et al., 2008; Cox and 
Edelmann, 2009; American Diabetes Association, 2012). Recent studies 
showed that Machine Learning can be used to make a preliminary 
judgment about diabetes through their daily physical examination data, as 
well as being a reference for doctors (Lee and Kim, 2016; Alghamdi et al., 
2017; Kavakiotis et al., 2017). 
 
Numerous different algorithms were used in recent research papers to 
predict diabetes. Zou et al. (2018) used Neural Networks, Random Forests 
and Decision Trees, and found out that fasting glucose is the most 
important index for prediction. Kavakiotis et al. (2017) conducted a study 
to create a systematic review of machine learning, data mining techniques 
and tools in diabetes research. The result showed that 85 percent of the 
approaches were supervised ones, while only 15 percent were 
unsupervised. Support vector machines proved to be the most successful 
algorithms in diabetes prediction. While Georga et al. (2013) used support 
vector machines and focused on glucose, Ravazian et al. (2015) used 
logistic regression for different onset type 2 diabetes predictions. Duygu 
and Esin (2011) focused on dimension reduction and feature extraction 
through Linear Discriminant Analysis.   
Additionally, more studies emerge that use ensemble methods to improve 
accuracy (Kavakiotis et al., 2017).  
 
Nearly all recent papers focus on fasting glucose level as their main 
predictor. In order to gain new insight, the author of this thesis uses 
predictors such as demographic information or activity level to predict 
diabetes. The reason for that is while diabetes type 1 is mostly caused by 
genes and environmental factors such as viruses, the most common form 
of diabetes, diabetes type 2, is caused mostly by high-risk behaviours, such 
as smoking, alcohol consumption or poor diets, or environmental factors 
such as air pollution (Batis et al. 2014; Chan et al., 2009). Therefore, a 
machine learning classifier based on the living circumstances of Chinese 
citizen can be built and used for generalization in order to predict diabetes 
risk patients.  
 
The algorithms used for creating the prediction model, Random Forests, 
Linear Regression and Support Vector Machines, are chosen after 
discussing constraints such as processing power or the speed of prediction, 
as well as type of problem such as classification or regression.  
Random forests are, as ensembled decision trees, through their 
classification power a favoured algorithm used in medical machine 
learning. Linear regression is an algorithm used to find the relationship 
between variables and forecasting. Therefore, it also used in this thesis. 
Additionally, as support vector machines are the most widely used 
algorithms in diabetes prediction, it is the final algorithm used. 
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Thus, the objects of this interdisciplinary thesis are to explain problems in 
the Chinese healthcare sector, especially the rapid prevalence of diabetes 
in China,  to examine the policy changes of Healthy China 2030 as a 
possible control solution, and lastly also wishes to offer an example for 
possible helpful scientific development in the form of a supervised 
machine learning model for diabetes detection, that could help reduce the 
burden on society and economy of the People´s Republic of China. 
 

1.3 Thesis structure 

 
The thesis consists of seven sections: Introduction, Chinas Healthcare 
Development, Machine Learning, Analysis and Presentation of Diabetes 
Data, Supervised Machine Learning Solution, Recommendations and 
Limitations, Conclusion and Acknowledgment. 
The first chapter served as an introduction to the thesis and briefly 
explained the history of China´s health care sector, as well as the 
objectives, purpose, state of the art and structure of this thesis. The second 
chapter offers basic insights and information on the health care reform 
Healthy China 2030, as well as the causes for the rapid prevalence of 
diabetes, and general healthcare problems that are contributing to the 
problems in the Chinese healthcare system. The third chapter gives the 
reader an overview of the theory of supervised machine learning, 
specifically based on three different classification algorithms, Logistic 
Regression, Support Vector Machines and Random Forests. The fourth 
chapter digs deeper into the reasons for diabetes for participants of 
CHARLS. 
The fifth chapter explains the results of the supervised machine learning 
classifier and different statistic results. The seventh chapter discusses 
recommendations as well as limitations of the thesis. The final seventh 
chapter will conclude the thesis. 
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2 CHINAS HEALTHCARE DEVELOPMENT 

The introduction of barefoot-doctors and ambitious health care reforms in 
the past culminated in a significant decrease in mortality, while steadily 
increasing life expectancy in China (Yang et al., 2008; Babiarz et al., 2015).  
Chinese life expectancy has increased to 76.2 years in 2015, which was 4.4 
years higher than the international average of 71.8 (Tan et al., 2018). This 
development, as well as the in 2015 abandoned one-child policy, led to the 
ageing of the population. 
In 2013, 15 percent of the people in China were 60 or older, while the 
amount is supposed to double until 2030 (China National Bureau of 
Statistics, 2014). This leads to issues, for example to increasing costs 
related to health and long-term care, as older people are more likely to 
suffer from health problems such as weaker functionality (Mihovska et al., 
2014; Goodpaster et al., 2006). In the following section, China´s newest 
healthcare reform, Healthy China 2030, will be discussed, as well as 
general healthcare system problems, the rapid prevalence of diabetes. 
 

2.1 General Healthcare System Problems 

 
Although the Chinese government initiated a strategic drift in healthcare 
through Healthy China 2030, which will be discussed later in this chapter, 
it is still important to discuss the challenges that are contributing to the 
difficulties within the healthcare system. In total, there are three 
challenges: demographic and epidemiological trends, the quality of care 
and lastly internal system factors. 
 
Demographic and epidemiological trends 

 
Communicable diseases, injuries and nutritional as well as maternal 
conditions only accounted for 15 percent of deaths in 2014. Non-
communicable diseases are responsible for 85 percent, with cancer alone 
being responsible for over 66 percent (World Health Organization, 2014). 
Non-communicable diseases are estimated to double or triple over the 
next 20 years for people above 40 (Wang et al., 2011).  
 
 
Disparities in the quality of primary care 

 
The disparities in the quality of care perceived by patients among different 
level of providers are one of the main reasons for the inability to re-direct 
patients to primary care facilities (Yang et al., 2008).  
 
Another reason is the scarcity of competent health care professionals, 
especially in the urban regions, as doctors training varies strongly between 
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the different levels of care. This scarcity further amplifies the disparity and 
leads to unnecessary and avoidable hospitalizations in the primary care 
level. A problem in all facilities is the drug over-prescription (World Bank, 
2016; Qu et al., 2018). 
 
Internal System Factors 
 
The disparities in the quality of care in primary care, as well as the 
demographic and epidemiological trends, led to a decline of 6 percent in 
the number of primary care providers between 2002 and 2013, and an 
increase by 82 and 29 percent respectively in the number of tertiary and 
secondary hospitals (World Bank, 2016). Healthcare practitioners with a 
high-quality education are also moving away from primary care and can be 
found concentrated in hospitals (Sun, et al., 2015). This trend further 
increases the client/practitioner ratio in the tertiary and secondary 
healthcare facilities.  
 
Another internal system factor that negatively affects the healthcare 
system is institutional fragmentation. As too many governmental agencies 
are involved in the health care sector, with each one trying to reach its own 
bureaucratic goals, the development gets consequently hindered (Qian, 
2015).   

2.2 Prevalence of Diabetes in China 

After the rapid economic growth, the changes in lifestyle and an increasing 
life expectancy, cardiovascular disease has become the leading cause of 
death in China (He et al., 2005; Zhao et al., 2019). Additionally, the 
prevalence of diabetes has reached more than 10 percent in Chinese 
citizen. It is increasing to more than 20 percent if aged 60 or above, but 
especially worrisome is the prevalence of diabetes in young people, which 
amounts to nearly 5 percent (Wang et al., 2013; Hu & Jia, 2018). With that, 
China has the largest number of people with diabetes worldwide. As 
diabetes is a major risk factor for cardiovascular diseases, this is especially 
concerning (Gu et al., 2003; Luk et al., 2014). 
 
While diabetes type 1 is mostly caused by genes and environmental factors 
such as viruses, but the most common form of diabetes, diabetes type 2, 
is caused mostly by high-risk behaviours. Recent research showed that 
there are three major risk factors for type 2 diabetes: urbanisation, obesity 
and diet (Ma et al., 2014; Whiting et al., 2010).  
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Urbanization  
 
Half of China´s population is nowadays living in cities, compared to 20 
percent in the 1970s (Peng, 2011; Shin, 2015).  Associated lifestyle 
changes, such as reduced physical activity or changes in dietary behaviour, 
are main reasons for an increase in obesity in China (Gong et al., 2012; Wu, 
2006).  Adding to that, the concentration of health care professionals in 
cities led to an especially increasing life expectancy in urban China.  

 
Figure 1 Life expectancy at birth in China 

 
Decreasing birth rates, which can be explained by both the nowadays 
abolished one-child policy and urbanization, fundamentally changed the 
population structure, and simultaneously increases the people at risk of 
diabetes – as already mentioned, studies show that older people are at a 
higher risk of suffering from diabetes.  

 
Figure 2 Birth rates in China 

Obesity 
 
Many factors, such as urbanization, changes in the diet or reduced physical 
activities, contribute to the increasing obesity in China. When compared 
to the WHO definitions obesity (BMI ≥30 kg/m²), the prevalence increased 
roughly 6-times between 1990 and 2016 for men, from 0.9 percent to 5.9 
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percent as seen in figure 3, and roughly 4-times for women, from 1.8 
percent to 6.5 percent, as seen in figure 4. The tendency in the Asian 
population to have low muscle mass, coupled with visceral adiposity and 
the resulting metabolically obese phenotype could be an explanation for 
the increasing prevalence of diabetes in China (Ma et al., 2014). 
 

 
Figure 3 Male obesity in China 

 

 
Figure 4 Female obesity in China 

 
 
 
 
Diet 
 
Healthy diets, which consist for example of fibre-rich foods, unrefined 
grain or unsaturated fats, is shown to decrease the risk of diabetes type 2 
(Alhazmi et al., 2014). Simultaneously, following a so-called Western 
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pattern diet, characterized by high amounts of dietary fat, refined grain, 
high-sugar drinks or pre-packaged food, increases the risk (Kant, 2004). 
In the last decades, the eating habits of the Chinese population were more 
and more characterized by the latter, with the growing influence of the 
West on the East (Hu et al., 2011). Adding to that, the high consumption 
of white rice, and its associated high glycemic index, might also increase 
the risk of diabetes in Chinese citizen (Villegas et al., 2007).    

2.3 Healthy China 2030 

 
As the Chinese government understood the need for a strategic drift in 
healthcare, the blueprint of Healthy China 2030, was passed on October 
25, 2016. It is China´s national medium- and long-term strategic plan for 
health care and aims to make public health a priority for the economic and 
social development of the People´s Republic of China. This section is a 
summary of the blueprint, based on the “Outline of the Healthy China 2030 
Plan” written by Ning Zhuang, the Deputy Director-General of the 
Department for Healthcare Reform in P.R. China. Its framework can be 
seen in figure 5.  
 

 
Figure 5 Healthy China 2030: A Vision for Health Care - Scientific Figure on ResearchGate. Available from: 
https://www.researchgate.net/figure/The-framework-of-the-Healthy-China-2030-vision_fig1_317128652 [accessed 
9 May, 2019] 

 
 

Principles and Goals 
 
Four principles are stated: health will be prioritized and set up in a strategic 
position in the public policy implementation. Government-led reforms and 
innovations, allowed through market mechanism, will help to speed up the 
improvement of people´s help.  Through scientific development, the 
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Chinese healthcare sector is supposed to prevent first while supporting 
traditional Chinese medicine as well as Western medicine. It is also stated 
that the overall healthcare service mode is bound to change. The last 
principle, equity and justice, promotes equal access to basic public health 
services for rural areas, as well as maintaining public welfare.  
 
The reform aims to reach five specific goals: improving the general health 
status, supporting a healthy life, optimizing healthcare services and 
security, building a healthy environment and further developing the 
healthcare industry.  
 
Supporting a healthy life 
 
Improving the health literacy among urban and rural citizens through 
health mentoring and interventions to high-risk groups and households, as 
well as promoting health education in school through integrating it into 
the national curriculum is supposed to improve the national health 
education. This should further support the encouragement of healthy 
habits, as knowledge is the key to the development of well-balanced diets. 
Tightening tobacco and alcohol control is supposed to reduce unhealthy 
lifestyles. Intervening in mental health disorders through an increasement 
of competence identifying such and reducing drug abuse as well as unsafe 
sexual behaviours are also tasks set in the blueprint.  
 
 
Optimizing Healthcare Services and Security 
 
Major illnesses are to be prevented and to be controlled, management of 
family planning services are to be reformed and improved, while also 
ensuring equity of primary healthcare services among urban and rural 
residents. Medical care delivery is to be improved, through increasing the 
nurse/permanent resident rate, and building more primary care facilities 
in close proximity to all communities. Medical care supply is to be 
improved by integrating curative, rehabilitate and long-term care, while 
also improving the quality and effectiveness through control systems. 
Traditional Chinese medicine is also to be enhanced, mainly through health 
increased capacity, further promotion and strengthening of Traditional 
Chinese medicine technologies. Priority groups, such as mothers and their 
respective children, or elderly and disabled citizen, are to get increased 
attention, for example through strengthening birth defect controlment, 
expanding elderly care or the development of barrier-free facilities. The 
basis for this enhanced healthcare system will be optimized health 
insurance, through universal health insurance coverage, as well as better 
management and promotion of commercial health insurances.   Another 
structure to improve is the drug supply and security system. More reforms, 
specifically for pricing and the supply-chain of drugs, are to be 
implemented, while also changing drug policy to access to essential drugs, 
especially for children. 
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Building a healthy environment  
 
Health campaigns, with the goal of improving the rural and urban health 
environment as well as sanitary conditions, are to be deepened. Healthy 
cities, towns and villages are planned. Environmental problems, such as 
air, water and land pollution, are to be diminished through legal actions, 
while simultaneously implementing plans on industrial discharge 
controlling. Health and environment are to be monitored, and risk 
assessment systems are to be implemented. Food safety will be increased 
through improving food safety standards, while also regulating drug 
safety.  
 
Developing the healthcare industry 
 
The pluralistic structure of medical care services is to be optimized through 
investments, for example in medical technology innovation, and political 
means, such as a change in intellectual property rights. New additions 
planned are for example internet-based health services or health tourism. 
International standards of drug and medical equipment are to be met by 
2030. Public safety systems, such as road traffic safety systems or 
emergency management systems, are also to be improved.  
 
Support Mechanisms  
 
There are also additional mechanisms planned to ensure the success of 
Healthy China 2030. First, Health is set to be the priority in all policies. 
Additional financing mechanisms for healthcare are planned, as well as 
additional healthcare reforms and decentralization in the healthcare 
sector. Health personnel is to be strengthened, through means like better 
education, and additional task forces such as social sport mentors. 
Incentives, namely contract-based employment or remuneration of 
primary healthcare staff are further support mechanisms. Lastly, science 
and technology are to be promoted, and a national medical innovation 
system is planned. 

2.4 Healthy Chinas effect on diabetes control 

 
While Healthy China 2030 is supposed to be a general direction for Chinese 
healthcare development, the researcher tested whether it is also suitable 
to control the diabetes prevalence in mainland China. For that, he 
reviewed literature in the field of the five main tasks and added diabetes 
as a keyword for specified actions, e.g. searching for health education 
diabetes, in order to review the effectiveness of the policy change on 
diabetes control.  
 
Health education, as well as improving physical activity, are shown to help 
in controlling diabetes. MakkiAwouda et al. (2014) conducted a study on 
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diabetic patients to determine the effects of health education regarding 
the improvement of health status and its control. The results of the study 
show that health education is both suitable and helpful for different levels 
of age, sex and education. In the research article written by Qi et al. (2008), 
different prospective studies were compared, and their results 
consistently indicated that improving physical activity reduces the risk of 
type 2 diabetes.   
Universal access to public health services also helps with the control of 
diabetes. Zhang et al. (2012) examined the relationship between access to 
healthcare access and diabetes control through a survey and concluded 
that people without access to healthcare are more likely to have worse 
diabetes control profiles than their counterparts. 
 A review of 84 different controlled clinical studies done by Zhao et al. 
(2006) focused on the effectiveness and safety of Chinese medicine in the 
treatment of diabetes type 2, and reported improvement in glycemia, 
insulin resistance, secondary failure and adverse effects, while 
simultaneously relieving diabetes symptoms.   
Valk et al. (2004) conducted an observational study in two different 
diabetes cohorts with implemented quality improvement programs. After 
the implementation, the glycemic control improved at both cohorts. 
Lee et al. (2006) reported a strong correlation between insulin resistance 
and serum concentrations of persistent organic pollutions, after using 
cross-sectional data from the 1999 – 2002 US National Health and 
Examination Survey. Therefore, reducing pollution, especially persistent 
organic pollutants, can help to reduce the prevalence of diabetes.  
 
Medical technological innovations, for example, internet-based health 
services are expected to be usable in diabetes prevention and help in 
diabetes research through the generation of data. Fagherazzi & Ravaud 
(2018) discuss that digitosome data, a term they suggest to be used for 
data generated online by individuals as well as digital technologies, will 
profoundly change the way diabetes is controlled and prevented, as the 
patients will not only be characterized by glucose levels and glycated 
haemoglobin, but rather by for example real-time psychological well-
being. Thus, the blueprint Healthy China 2030 is expected to help with 
controlling diabetes. 
Fagherazzi & Ravaud (2018) also discuss the application of machine 
learning in diabetes research. Machine learning will be discussed in the 
next chapter. 
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3 MACHINE LEARNING 

Machine learning in research seeks to provide knowledge to computers 
through data, observations and interacting with the world, in order to 
acquire knowledge to generalize new settings (Bengo, 2019). 
Thus, it is the computational task of producing general hypotheses or 
learning correlations from data. In order to learn those, a training set is 
deployed and validated through various ways with a test set. The found 
information is then used by the data scientist to create a model, which is 
able to make predictions of future data. If the data is labelled, the process 
is called supervised machine learning, if unlabelled, it is called 
unsupervised machine learning.  
 
In this section, the process of supervised machine learning, as the basis of 
the later build predictive classifier, will be discussed in detail, while also 
explaining the three classification algorithms used in the prediction model 
in section 4, namely Logistic Regression, Support Vector Machines and 
Random Forests, briefly and understandably for laymen, .    

 

3.1 The Process of Supervised Machine Learning 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If the data in machine learning process is labelled, meaning it has attached 
metadata which provides information about the initial data, one speaks of 
supervised machine learning. A general model of supervised machine 
learning can be seen in figure 6.  
 

Figure 6  Supervised Machine Learning Model, adapted 
from “Supervised Machine Learning: A Review of 
Classification Techniques” by Kotsiantis et al., 2007. 
Copyright 2007 by the Authors. 
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Understanding the Problem  
 
To understand the problem, the data scientist must understand what kind 
of data he/she has at hand, either labelled or unlabelled, to categorize the 
problem into supervised or unsupervised. 
In the process of supervised machine learning, is there are two problem 
categories: regression problems, which are solved by creating predictions 
on a continuous scale, and categorization problems, which are solved by 
predicting categories. Regression results fit the data, while classification 
results divide it. Categorization problems can furthermore be divided into 
binary classification, a classification with only two classes, and multi-class 
classification, classification with more than two classes.  
 
Identification of required data 
 
Once the problem is understood, the data that is required for solving the 
problem must be identified.  Preferably, an expert suggests the attributes 
and features that are important. If that is not the case, brute-forcing, 
meaning simply measuring all data available, can be used. However, 
datasets that are collected by brute-forcing require significant pre-
processing, as it often contains missing feature values or distortion in data, 
called noise (Zhang et al., 2002).  
 
Data pre-processing  
 
When trying to analyse data, data pre-processing is an important step, as 
for example some classification techniques, such as Logistic Regression, 
are highly vulnerable to missing data, noise in the data set or outliers. The 
process generally consists of data cleaning and/or data imputation and 
feature reduction.  
The basic principle of data cleaning is to analyse the reason for so-called 
dirty data, and to propose cleaning rules in order to improve the quality of 
data (Yang et al., 2015). An example for dirty data are, depending on the 
circumstance, NULL values. They signify missing or unknown values.  
Three main types of missing data exist: Missing completely at random 
(MCAR), missing at random (MAR) and not missing at random (NMAR). 
MCAR data is not related to other values or the missingness of the 
hypothetical value, in other words, the missingness is not systematic. MAR 
data has a systematic relationship between observed data and the 
propensity of missing values, but not the missing data, e.g. if men are more 
likely to tell their weight then woman, weight data would be MAR. MNAR 
data is data with a relationship between the propensity of a missing value 
and its hypothetical value, e.g. when sick people drop out of a longitudinal 
study (Graham, 2009).  
When faced with them, the data scientist must understand why the data 
is missing, in order to proceed with either deletion or imputation through 
various means (Batista & Monard, 2003). In order to increase the 
operation time and efficiency of supervised machine learning models, 
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feature selection is used. It is the process of first identifying and then 
removing irrelevant and redundant variables. (Yu & Lui, 2004).  
 
Definition of the training set 
 
When the data set was cleaned, a training set needs to be deployed. In a 
supervised classification problem, training data is the split of the initial set 
of information used to learn the rules of assigning the different instances 
to the different groups. The idea of using training data in machine learning 
is while being simple, the very foundation of the learning process. There 
are two competing concerns when it comes to choosing the correct split: 
with less training data and more testing data, parameter estimates have 
greater variance. On the other hand, with more training data and less 
testing data, there will be greater variance.  In the end, the split depends 
on the total amount of instances. 
 
Another concern specifically in classification problems are imbalanced 
training sets, which have a different number of data points available for 
the different classes and are therefore not equally presented, which leads 
to faulty learning and data understanding (Japkowicz & Stephen, 2002).  

 
Training, evaluation of results with the test set and parameter tuning 
 
Once the training set is defined, and the algorithms are chosen, the actual 
training of the model is done. How the different algorithms learn is briefly 
discussed in chapter 3.2, 3.3 and 3.4 respectively.  
 
When evaluating the results of the training, a test set is deployed. It is the 
other split of the initial data set to access the use of the classification 
model. When evaluating the accuracy of a machine learning model for 
classification, there are three different metrics to evaluate. First, there is 
the accuracy, which is the ratio of correctly predicted observations to the 
total observations. The second is called precision and is the ratio of 
correctly predicted positive observations to the total predicted positive 
observation. The recall is the ratio of correctly predicted positive 
observations to all observations in the actual class.  
If the received metrics are low, parameter tuning can be done, which again 
depends on the different used algorithms. Once better results are 
achieved, the model can be deployed.  
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3.2 Logistic Regression 

 
Figure 7 Sigmoid Function 

 
Logistic regression is based on the idea of finding the relationship of a 
feature, and the probability of a particular outcome. Its origin is the 
sigmoid function as seen in Figure 7, and its output is a probability that a 
given input belongs to a certain class. Therefore, the output always lies 
between 0 and 1. The algorithm learns through maximum likelihood 
estimation (Pant, 2019). 

3.3 Support Vector Machines 

 

 
Figure 8 5 A 2-dimensional Support Vector Machine, “Support Vector Machines: A Simple 
Explanation” by Bambrick N., 2016, KD Nuggets, retrieved April 29, 2019, from 
https://www.kdnuggets.com/2016/07/support-vector-machines-simple-explanation.html 

 
Support Vector Machines (SVM) are based on the idea of a margin – either 
side of a hyperplane which separates two classes. When the margin is 
maximized, the largest possible distance between hyperplane and instance 
is created, which reduces the expected generalization error. If data is 
linearly separable and an optimum separating hyperplane has been found, 
the data points that lie on its margin are called support vectors, and the 
results are a linear combination of those points (Suykens & Vandewalle) 
1999).  
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In classification, the hyperplane finds an optimum hyperplane, or margin 
maximizing hyperplane, which best separates the features into different 
domains, as for example seen in figure 8. 
 
 

3.4 Random Forest 

 

 
Figure 9 Random Forest Model, adapted from “Electromyographic Patterns during Golf Swing: 
Activation Sequence Profiling and Prediction of Shot Effectiveness” by Verikas A. et al., 2016. 
Copyright 2016 by the Authors. 

 
Random forests are ensembles of many classification trees. The algorithm 
fits many classification trees into a data set and uses them to create 
predictions from all the trees. Instead of searching for the most important 
feature while splitting a node, it searches for the best feature among a 
random subset of features, hence it being random. In classification, a 
prediction is done by taking a majority vote for the predicted class 
(Breiman, 2001). 
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4 ANALYSIS AND PRESENTATION OF DIABETES DATA 

This chapter discusses the data analysis and findings through statistical 
means, in order analyse the impact of the blueprint Healthy China 2030 
specifically on diabetes prevention on the elderly in China. The data will be 
analysed with SPSS 24, and results are given in valid percent, as some cases 
are missing. It is mentioned if missing cases reach a higher threshold than 
10 percent.  

4.1 Frequency Analysis on demographic information 

The dataset consists of 20.411 participants in total, after deleting cases 
born after 1979, as they are not 40 yet. Out of those 48 percent are male, 
and 52 percent are female. Most of the interviewed people, 70,8 percent, 
live in a village, and 14,6 percent in a main city zone, the other five options, 
such as combination zones or special area, amount to a total of 14,6 
percent. This result seems quite contradictory to chapter 2.2, specifically 
urbanization, but can be explained by the nature of the study, as the 
majority of the survey was conducted in villages. 
The birth time ranges from 1910 to 1978, the mean being 1956. The 
standard deviation with a confidence interval of 95 percent is rounded 11, 
which means that 95 percent of the participants are born between 1945 
and 1967. Only a low of amount of people, 37,1 valid percent, is literate, 
which can partly be explained by the difference of rural and urban areas, 
as well as with missing cases of 88 percent.   
 

 
Figure 10 Histogram Diagnosed Age Diabetes 

 

As seen in figure 10, the earliest age someone was diagnosed with diabetes 
was 17, the oldest 87. 95 percent of the respondents are within 33 and 63 
when diagnosed with diabetes, with the mean being rounded 48, and the 
standard deviation 15. There is only a small amount of people that 
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responded to the question, n = 30, which is why the result is not 
representative. Nevertheless, it still shows that an increase in age 
increases the chance of suffering from diabetes.  
 

 
Figure 11 Pie Chart Diabetes Status 

1090 people in total suffer from diabetes, which amounts to 5.4 percent 
of the population. In the next chapter, relationships between diabetes and 
other variables will be explored. The results discussed can be seen in 
Appendix A. 

4.2 Cross-Tabulation Analysis 

To get a better understanding of the data at hand, the researcher 
conducted cross-tabulations between diabetes and various other variables 
to establish possible relationships.  
 
Differences between gender 
 
Out of 1090 people suffering from diabetes in total, 56.7 percent are 
female, and 43.3 percent are male.  

 
Figure 12 Cross-Tabulation Literacy/Gender 
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 One of the reasons for the increase could be the higher likelihood of 
women to be obese, as shown and explained in chapter 2.2. Also, as 
explained in chapter 4.1, the database consists of more male participants 
than female. Adding to that, more females than men are not literate in this 
database, as seen in figure 12, with 88 percent and 12 percent respectively, 
which consequently is a sign for a lower education level among the female 
population. This is explainable by the patriarchal structure, the male 
dominance in both society and culture, that China used to have (Liu & 
Carpenter, 2005).  

 

 Additional Disease  

  

The results show that if suffering from diabetes, participants are likely to 
have another illness as well. Predominantly hypertension, which 56.3 
percent of cases suffer from, followed by dyslipidemia with 45,8 percent, 
heart attacks with 26,7 percent, stomache diseases with 25,6 percent, 
chronic lung disease with 14, 2 percent, kidney disease with 13,4 percent, 
liver disease with 8,4 percent, other medical diseases with 6,7 percent, 
stroke with 6,4 percent, and cancer with 2,4 percent. A visualization of 
the hypertension/diabetes crosstabulation can be seen in figure 13. 
 

 
Figure 13 Crosstabulation Suffering from Diabetes and Hypertension 

 
This is not surprising, as diabetes is known to be a catalyst for 
cardiovascular diseases, such as hypertension, heart attacks or strokes, as 
mentioned in chapter 2.2. Dyslipidemia is caused by either genetic factors 
or lifestyle factors, such as diet or obesity level (Huizen, 2018). As the 
other diseases, such as kidney diseases or stomache diseases, are not 
specified, the researcher was not able to establish a link between 
diabetes and the illnesses. Additional data can be found in Appendix C.  
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Activity Level 
 
The activity level of participants was assessed on a weekly basis, 
consisting of either high-intensity, medium-intensity or low intensity 
sports, also separated by time – a minimum of 10 minutes, at least 30 
minutes, at least two hours, at least four hours. The highest amount of 
cases suffering from diabetes was found in the low-intensity category 
specifically at least 10 minutes, with the amount significantly decreasing 
when increasing the time as well as the activity level. 
 

 
Figure 14 Crosstabulation High-Intensity Sport at least 10 minutes Diabetes/No Diabetes 

 

Also, a clear trend can be observed when comparing people suffering 
from diabetes and participants not suffering. While having nearly the 
same ratios of doing low-intensity sports for at least 10 minutes (78,8 
percent and 79.0 percent are doing at least 10 minutes of low-intensity 
activity, for diabetes and non-diabetes respectively), the ratios start to 
differ in the medium-activity category, 50,4 percent and 56,4 percent. 
When comparing high-intensity level, an even bigger discrepancy can be 
observed. Only 22,7 percent of participants suffering from diabetes are 
doing high-intensity sports for at least 10 minutes, compared to 36,0 
percent of the healthy people. The same trend can be observed when 
comparing data for 30-minutes, two hours or 4 hours. The data can be 
found in Appendix B. 
 
Smoking and Alcohol Consumption 
 
Interestingly, when comparing drinking habits of Chinese citizen suffering 
from diabetes and healthy citizen, ill people are less likely to drink more 
than once a month, with only 19,8 percent compared to 27,3 percent, as 
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well as less than once a month, 6,5 percent compared to 9,0 percent. A 
third answer, none of the other two options, was chosen by 73,7 percent 
for ill persons, and 63,7 persons, which could both indicate drinking more 
heavily than only once or less a month or being completely abstinent.   
Ill people are also less likely to smoke, 8,4 percent compared to 13,8 
percent for healthy people. A possible explanation for that could be 
advice given by doctors regarding smoking and drinking, as it can make 
the sickness worse, and lead to complications (Vieira, n.d). The data can 
be found in Appendix D. 
 

 
Figure 15 Smoking Cross-Tabulation Diabetes/No Diabetes 

 

4.3 Chi-Square Test of Independence  

To calculate whether relationships between the different categorical 
values do have a statistical significance, the Chi-Square test is used. 
Dependent variable is always Diabetes, independent ones are: 
Hypertension, Dyslipidemia, Heart Attack, Stroke, Literacy, Village or 
Town, Gender, Drinking Habits, Smoking Habits, High-Intensity Sports for 
at least 10 minutes, Medium-Intensity Sports for at least 10 minutes, Low-
Intensity Sports for at least 10 minutes. Two hypotheses are tested, with a 
significance level of α = 0.05: 
 
H0 = Diabetes is not associated with variable X 
 
H1 = Diabetes is associated with variable X 
 
H0 is rejected if the result in form of the p-value is equal or smaller than 
the significance level α = 0.05. If the p-value is larger then the significance 
level α = 0.05, there is not enough evidence to reject H0. The author will 
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demonstrate the process of Chi-Square test on diabetes paired with 
hypertension in detail, while only explaining results for the other pairings. 
 

 Process of Chi-Square testing in detail 

 
Figure 16 Example of Crosstab: Hypertension with expected count and Chi-Square Tests 

 
Figure 17 Symmetric Measures of Chi-Square Test as seen in Figure 16 

If the different variables, in the case of figure 16 Hypertension and 
Diabetes, were independent or not associated, the scientist would expect 
a count of 225 people with Hypertension and Diabetes, 865 with Diabetes 
and no Hypertension, 3969 without Diabetes but with Hypertension, and 
15251 without both Hypertension and Diabetes, as seen in the expected 
count in figure 16. The Chi-Square count shows whether these differences 
between count and expected count are enough for the test to be 
significant. The two assumptions, both found in figure 16 under the table, 
called a and b, which are needed for the test, are met.  
Therefore, the result important for the research, called p-value, found 
under Asymptotic Significance (2-sided), found in figure 16, can be 
explained. As the observed p-value 0,000, is smaller than the significance 
level α = 0.05, the alternative Hypothesis H1 can be accepted. Thus, the 
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result is statistically significant. In other words, Hypertension is dependent 
on Diabetes.  
 
Next up is the Phi coefficient, found in figure 17. It tells the effect size, or 
correlation coefficient, and ranges from -1 to 1 (Davenport & El-Sanhury, 
1991). 
The researcher is able to interpret the value as a weak positive relationship 
meaning that if the class of Diabetes increases, it is likely that the group of 
Hypertension also increases. 
 
Other results 
 
When comparing observed counts and expected counts of cases suffering 
from diabetes, the observed ones were always greater or smaller than 
expected ones, especially for the different illnesses.  Thus, the scientist was 
able to reject H0 for all twelve variables. The effect ranges differed but 
were especially high for illnesses. Also, increasing the activity level resulted 
in a bigger negative relationship. Overall, the results already mentioned in 
chapter 2.2 as well as 4.2, were proven correct. Additional data is found in 
Appendix B, C and D. 
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5 SUPERVISED MACHINE LEARNING SOLUTION 

As diabetes was now discussed in detail, a predictive machine learning 
classifier will now be introduced. The purpose is the demonstration of the 
capabilities of machine learning for diabetes detection. Three different 
models are written in Python and will be trained with the help of the 
CHARLS 2015 dataset, in order to make decisions of the diabetes class of 
participants in the survey. 
 

5.1  Python and SciKit-Learn 

 
Python is an object-oriented, high-level programming language, with 
integrated dynamic semantics. It supports the use of modules and 
packages called libraries, such as SciKit-learn. The later is a library which 
provides algorithms specifically for machine-learning, which was the 
reason why the researcher chose this specific language. Prerequisites for 
the use of SciKit-learn are NumPy, SciPy, and Pandas. Those libraries are 
used for the manipulation of data, specifically its structure and 
dimensionality.  

5.2 Methodology of the Machine Learning model 

 
The foundation of a well-functioning machine learning model is the data 
that it uses. Therefore, the researcher used parts of the China Health and 
Retirement Longitudinal Study, in short CHARLS. It is a longitudinal survey 
of persons in China that are 45 years of age or older. Using CHARLS ensures 
that the research fits the needs of the aging Chinese society. 
The survey is of national representation and includes information about 
the health, social and economic conditions of the participants. 
The parts used for building the model in Python were the health status and 
functioning section, as well as parts of the demographic section, and are 
from CHARLS 2015. The reason for choosing those specific sections is that 
they contain information about diabetes of the participants and living 
conditions of the participants, while also being of national representation.  
The methodology applied in the thesis is thus of quantitative nature, 
specifically of secondary quantitative nature, as the researcher uses 
CHARLS. 
 The cleaning of the dataset is described in chapter 4.3. As the datasets 
dependent variable is heavily unbalanced, with less than 5 percent of the 
participants suffering from diabetes, the synthetic minority over-sampling 
technique is used on the training set. Diabetes is used as the binary 
predictor, and the evaluation of the different models is done through a 
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comparison of accuracy, precision and recall scores, as well as the F1-
score. 

5.3 Pre-emptive feature selection of the dataset  

The dataset consists of 1135 variables without pre-processing. Therefore, 
pre-emptive feature selection must be done, as the computing time in 
Python is otherwise very high. In order to do so, NMAR variables were 
deleted, and the others selected on the basis of Healthy China 2030 goals. 
The total amount of variables after feature selection was 21. Categories 
used were illnesses, information on the physical activity of respondents, 
and demographic information such as gender or education level. The 
different variables were discussed in chapter 4.   After that, Null values 
were deleted, as reasonable imputation wouldn’t have been possible with 
the system at hand. This left the researcher with a total of 5944 cases, split 
into 5654 cases without diabetes (group 2), and 290 with diabetes (group 
1), as seen in figure 18 
 

 
Figure 18 Dataset after cleaning, split into Diabetes types 

  
 
 

5.4 Diabetes prediction model 

The first model introduced by the author is built with the Random Forest 
algorithm, which is discussed in chapter 3.3. The scientist will discuss the 
process of building the model in detail. Following algorithms will only 
discuss results.  
 

 
Figure 19 Importing libraries into Python 

 
The first step was to import the libraries needed for building the classifier, 
as discussed in chapter 5.1. The process can be seen in figure 19. The name 
of the dataset is df_for_modeling, in the following called dataset.  
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Figure 20 Removing NULL values 

Next up was the removing of the NULL values from the dataset, as all 
Random Forest cannot work with them, as seen in figure 20.  
 

 
Figure 21 Defining dependent and independent values 

Once they were removed, the dataset was split into two parts, dependent 
variable, set as Diabetes as this was the variable the scientist wanted to 
predict, and independent variables, which were all other variables. The 
process can be seen in figure 21. 
 

 
Figure 22 Splitting the dataset into training data and testing data 

 As already explained in chapter 3.1, the dataset must be split into testing 
data and training data. This was done for both, dependent and 
independent variables, which amounted to a total of four different sets. 
The training-test split was 80/20, meaning 80 percent of the data in the 
training set, and 20 percent of the data in the testing set, as seen in figure 
22 under test_size=0.2. 
 

 
Figure 23 Training the Random Forest algorithm 

The algorithm was then trained with the help of training data, as seen in 
figure 23.  This was followed by checking of the three different metrics 
used for evaluating a machine learning model, as seen in figure 24.  
 

 
Figure 24 Random Forest Metrics without SMOTE  
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The first is called precision and is the ratio of correctly predicted positive 
observations to the total predicted positive observation. The score is 33 
percent, which in other words means that it is the amount of predicted 
diabetes instances that actually have diabetes is 33 percent. Therefore, 67 
percent of healthy people were falsely classified.  
Following is recall, the ratio of correctly predicted positive observations to 
all observations in the actual class. Thus, recall shows that out of all the 
instances that truly have diabetes, rounded 14,3 percent were predicted 
by the algorithm.  
Last, there is the accuracy, which is the ratio of correctly predicted 
observations to the total observations. As the accuracy is quite high with 
nearly 96 percent, as it was able to nearly correctly classify all participants 
without diabetes.  
The reason for the low precision and recall values, as well as the high 
accuracy, is overfitting. It is briefly explained in chapter 3.1.  A possible 
solution for that is the synthetic minority over-sampling technique 
(SMOTE), which under-samples the majority class, and over-samples the 
minority class, in order to generate a balanced training set (Chawla et al., 
2002).   
 

 
Figure 25 Introduction of SMOTE into the model 

 
Once SMOTE was introduced to the model, as seen in figure 25, the 
classifier had to be trained again, which was the same code seen in figure 
23.  Interestingly, SMOTE didn´t increase the precision, accuracy or recall, 
but rather decreased all three, as seen in figure 26.  
 

 
Figure 26 Random Forest Metrics after SMOTE  
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Logistic Regression Model 
 
As already mentioned previously, only results will be discussed now, as the 
only things that changed were algorithm and results.  
 

 
Figure 27 Logistic Regression Metrics without SMOTE  

In figure 27, the results of Logistic Regression without SMOTE can be seen. 
It achieves the highest precision yet with 40 percent but has a very low 
recall score with only 3,5 percent. The accuracy is also quite high with 95,2 
percent. The results change quite drastically when introducing SMOTE to 
the model. The precision reduces to 12,9 percent, the accuracy by nearly 
17 percent to 78,5 percent, but recall increases by 56 percent to a total of 
59,7. 
 

 
Figure 28 Logistic Regression Metrics with SMOTE  
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 Support Vector Machine 
 

Interestingly, without SMOTE, Support Vector Machines did not produce 
any results for diabetes but was still able to predict all non-diabetes cases, 
reflected in its high accuracy score seen in figure 29. 
 

 
Figure 29 Support Vector Machine Accuracy without SMOTE 

  
  

Once SMOTE was introduced, the Support Vector Machine was able to 
increase its precision score to 14,5 percent, its recall score to 58,3 percent 
and decreased its accuracy to 81,3 percent, as seen in figure 30. 
 

 
Figure 30 Support Vector Machines Metrics with SMOTE  

 
 Concluding the machine learning algorithm 
  

While the accuracy is consistently the highest score, it is the least 
important one in this specific thesis, as it only works well if there are an 
equal number of samples in both classes, which is not the case as seen in 
figure 18. Therefore, precision and recall are more important, as they give 
us information regarding the precision of diabetes prediction, and whether 
it misses many cases. Naturally, there is always a trade-off between recall 
and precision, which can be concluded from the different results in the 
different results. 
 Thus, the F1-score will be calculated, which is the harmonic mean 
between the two metrics, and used to select a model. Its formula can be 
seen in figure 31. 

 
Figure 31 Calculation of the F1 Score 
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The Support Vector Machine with SMOTE had the highest F1 score with 
22,5 percent, followed by Logistic Regression with SMOTE with 20 percent. 
The Random Forest model without SMOTE was able to score 18 percent 
and with SMOTE 14 percent. Logistic Regression without SMOTE had 5 
percent, Support Vector Machine 0 percent.  
 
Therefore, the Support Vector Machine with SMOTE is the best model for 
diabetes detection, with an accuracy of 81,3 percent. 
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6 RECOMMENDATIONS AND LIMITATIONS 

When comparing the results of chapter 2.1, 2.2, section 4 and section 5 to 
the contents of Healthy China 2030, it is apparent that the Chinese 
government understood the need for the strategic drift. The five stated 
goals, improving the general health status, supporting a healthy life, 
optimizing healthcare services and security, building a healthy 
environment and further developing the healthcare industry, are all 
interconnected, and will help to reduce the prevalence of diabetes, as they 
will diminish the risk factors of diabetes. Specified actions, such as 
reducing the environmental pollution, are proven to help, as seen in 
chapter 2.4. 
Strengthening the health education as well as the encouragement of 
healthy habits will decrease both obesity and dietary causes. Also, an 
improvement of the physical fitness of individuals will help reducing the 
prevalence of diabetes.  
Once universal access to public health services is granted and high-quality 
and efficient care are in place, the negative effects of urbanization will 
diminish. Also, healthcare services for priority groups such as the elderly, 
who are as shown in more need of healthcare, will help to reduce the 
diabetes prevalence as well. Also, once the pluralistic structure of medical 
care services is optimized through investments, and science and 
technology were promoted, the researcher recommends both investment 
as well as additional research in the field of Machine Learning.  
As shown in this thesis, predictive machine learning classifier can be built, 
and help both the detection of diabetes, and even prevention if detected 
early enough. It must be mentioned that this does not happen with the 
same accuracy as traditional classifiers that are based on glucose level.   
China does not only have a government that understands the need for 
change, but also the resources to implement these measures. With those 
policy changes coming, China is bound to reduce the diabetes rate, and to 
flourish again.   
 

6.1 Limitations of the thesis 

In this thesis, some limitations were taking place. First, the scientist does 
not speak Chinese and was thus not able to access all literature regarding 
Healthy China 2030. Additionally, due to a lack of monetary resources, a 
more detailed literature review was not possible.  
More importantly, the database, while being of high-quality, does not 
differentiate between Diabetes Type 1 or Diabetes Type 2. Adding to that, 
many of its variables contain NULL values, which is generally a big problem 
in research. The author used the assumption of not mentioning being sick 
means being healthy, which is the reason why there were no NULL values 
for diabetes, hypertension, etc.  



36 
 

 
 

As the author was not able to build the models on a strong computer 
system, no imputation for missing values was possible, which decreased 
both precision and recall. Therefore, the model cannot be deployed in a 
real-case scenario, but only used for demonstration purposes of machine 
learning usage in healthcare. Additionally, as a result of the scope of this 
thesis, only problems in the Chinese healthcare sector are discussed, while 
in a larger research, positive aspects could have been provided. Hence, no 
evaluation of the Chinese healthcare sector was possible. 
Due to the methodological choices for the thesis as well as through the 
systemic restriction, found data did not provide sufficient details to answer 
the research question comprehensively. 
      

7 CONCLUSION 

Problematic demographic and epidemiological trends, such as the aging 
society, or the discrepancy of quality of care in urban and rural regions are 
problems from which the Chinese healthcare sector is still suffering from. 
Another major challenge is the rapid prevalence of diabetes in China, 
especially among the elderly. Reasons for that are urbanization and 
associated lifestyles, such as the diet, which consequently lead to obesity 
and a low level of activity. Other reasons are the absence of education 
among older residents of predominantly rural areas or low activity level, 
what also leads to additional diseases, such as hypertension or 
dyslipidemia, particularly found in people suffering from diabetes.  
The Chinese government understood the need for a strategic shift, and 
announced Healthy China 2030, a blueprint for the national healthcare 
policy as a medium- and long-term strategic plan for healthcare. It aims to 
make public health a priority for the economic and social development of 
the People´s Republic of China. That is made possible by government-led 
reforms and innovations, scientific development, a change in the 
healthcare service mode and lastly through the promotion of equity and 
justice. Three different machine algorithms, Random Forests, Logistic 
Regression and Support Vector Machines, were used to create a machine 
learning classifier, as an example of the possible scientific development, 
that could be used for both prevention and detection, and ultimately 
control of diabetes. 
In conclusion, it can be said that the Chinese government is steering the 
right course and tries its best do reduce or completely remove underlying 
causes of the healthcare problems. The Central Council deserves praise for 
the blueprint of Healthy China 2030.  
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APPENDIX A 

Frequency Tables and Descriptives for Chapter 4.1 
 
 

Are You Literate? 

 Frequency Percent Valid Percent 

Cumulative 

Percent 

Valid 1 Yes 919 4,5 37,1 37,1 

2 No 1555 7,6 62,9 100,0 

Total 2474 12,1 100,0  

Missing System 17937 87,9   

Total 20411 100,0   

  

 
 

Gender 

 Frequency Percent Valid Percent 

Cumulative 

Percent 

Valid 1 9746 47,7 48,0 48,0 

2 10564 51,8 52,0 100,0 

Total 20310 99,5 100,0  

Missing System 101 ,5   

Total 20411 100,0   

 

 

Village_or_Town 

 Frequency Percent Valid Percent 

Cumulative 

Percent 

Valid 1 2873 14,1 14,6 14,6 

2 956 4,7 4,8 19,4 

3 1049 5,1 5,3 24,7 

4 538 2,6 2,7 27,5 

5 81 ,4 ,4 27,9 

6 270 1,3 1,4 29,2 

7 13952 68,4 70,8 100,0 

Total 19719 96,6 100,0  

Missing System 692 3,4   

Total 20411 100,0   
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Descriptive Statistics 

 N Minimum Maximum Mean Std. Deviation 

Birthyear 20411 1910 1978 1955,54 10,590 

Valid N (listwise) 20411     
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APPENDIX B 

Crosstabulation and Chi-Square for Activity Levels, Chapter 4.2 + 4.3 
 

Diabetes * High_Intensity_Sport_At_Least_10_Minutes 
 

Crosstab 

 

High_Intensity_Sport_At_Least_10_Mi

nutes 

Total 1 2 

Diabetes 1 Count 119 399 518 

Expected Count 182,5 335,5 518,0 

2 Count 3349 5978 9327 

Expected Count 3285,5 6041,5 9327,0 

Total Count 3468 6377 9845 

Expected Count 3468,0 6377,0 9845,0 

 

 

Chi-Square Tests 

 Value df 

Asymptotic 

Significance (2-

sided) 

Exact Sig. (2-

sided) 

Exact Sig. (1-

sided) 

Pearson Chi-Square 35,977a 1 ,000   

Continuity Correctionb 35,413 1 ,000   

Likelihood Ratio 38,406 1 ,000   

Fisher's Exact Test    ,000 ,000 

Linear-by-Linear Association 35,973 1 ,000   

N of Valid Cases 9845     

a. 0 cells (0,0%) have expected count less than 5. The minimum expected count is 182,47. 

b. Computed only for a 2x2 table 

 

 

Symmetric Measures 

 Value 

Approximate 

Significance 

Nominal by Nominal Phi -,060 ,000 

Cramer's V ,060 ,000 

N of Valid Cases 9845  
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Diabetes * Medium_Intensity_Sport_At_Least_10_Minutes 
 

 

 

Crosstab 

 

Medium_Intensity_Sport_At_Least_10

_Minutes 

Total 1 2 

Diabetes 1 Count 260 257 517 

Expected Count 289,2 227,8 517,0 

2 Count 5241 4077 9318 

Expected Count 5211,8 4106,2 9318,0 

Total Count 5501 4334 9835 

Expected Count 5501,0 4334,0 9835,0 

 

 

Chi-Square Tests 

 Value df 

Asymptotic 

Significance (2-

sided) 

Exact Sig. (2-

sided) 

Exact Sig. (1-

sided) 

Pearson Chi-Square 7,049a 1 ,008   

Continuity Correctionb 6,810 1 ,009   

Likelihood Ratio 7,004 1 ,008   

Fisher's Exact Test    ,008 ,005 

Linear-by-Linear Association 7,049 1 ,008   

N of Valid Cases 9835     

a. 0 cells (0,0%) have expected count less than 5. The minimum expected count is 227,83. 

b. Computed only for a 2x2 table 

 

 

Symmetric Measures 

 Value 

Approximate 

Significance 

Nominal by Nominal Phi -,027 ,008 

Cramer's V ,027 ,008 

N of Valid Cases 9835  
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Diabetes * Low_Intensity_Sport_At_Least_10_Minutes 
 

 

 

Crosstab 

 

Low_Intensity_Sport_At_Least_10_Min

utes 

Total 1 2 

Diabetes 1 Count 406 112 518 

Expected Count 410,2 107,8 518,0 

2 Count 7386 1936 9322 

Expected Count 7381,8 1940,2 9322,0 

Total Count 7792 2048 9840 

Expected Count 7792,0 2048,0 9840,0 

 

 

Chi-Square Tests 

 Value df 

Asymptotic 

Significance (2-

sided) 

Exact Sig. (2-

sided) 

Exact Sig. (1-

sided) 

Pearson Chi-Square ,217a 1 ,641   

Continuity Correctionb ,168 1 ,682   

Likelihood Ratio ,215 1 ,643   

Fisher's Exact Test    ,656 ,338 

Linear-by-Linear Association ,217 1 ,641   

N of Valid Cases 9840     

a. 0 cells (0,0%) have expected count less than 5. The minimum expected count is 107,81. 

b. Computed only for a 2x2 table 

 

 

Symmetric Measures 

 Value 

Approximate 

Significance 

Nominal by Nominal Phi -,005 ,641 

Cramer's V ,005 ,641 

N of Valid Cases 9840  
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Diabetes * High_Intensity_Sport_2_hours 
 

 

 

Crosstab 

 

High_Intensity_Sport_2_hours 

Total 1 2 

Diabetes 1 Count 36 82 118 

Expected Count 23,7 94,3 118,0 

2 Count 663 2695 3358 

Expected Count 675,3 2682,7 3358,0 

Total Count 699 2777 3476 

Expected Count 699,0 2777,0 3476,0 

 

 

Chi-Square Tests 

 Value df 

Asymptotic 

Significance (2-

sided) 

Exact Sig. (2-

sided) 

Exact Sig. (1-

sided) 

Pearson Chi-Square 8,222a 1 ,004   

Continuity Correctionb 7,566 1 ,006   

Likelihood Ratio 7,421 1 ,006   

Fisher's Exact Test    ,007 ,004 

Linear-by-Linear Association 8,220 1 ,004   

N of Valid Cases 3476     

a. 0 cells (0,0%) have expected count less than 5. The minimum expected count is 23,73. 

b. Computed only for a 2x2 table 

 

 

Symmetric Measures 

 Value 

Approximate 

Significance 

Nominal by Nominal Phi ,049 ,004 

Cramer's V ,049 ,004 

N of Valid Cases 3476  
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Diabetes * Medium_Intensity_Sport_2_hours 
 

 

 

Crosstab 

 

Medium_Intensity_Sport_2_hours 

Total 1 2 

Diabetes 1 Count 163 97 260 

Expected Count 126,7 133,3 260,0 

2 Count 2508 2711 5219 

Expected Count 2544,3 2674,7 5219,0 

Total Count 2671 2808 5479 

Expected Count 2671,0 2808,0 5479,0 

 

 

Chi-Square Tests 

 Value df 

Asymptotic 

Significance (2-

sided) 

Exact Sig. (2-

sided) 

Exact Sig. (1-

sided) 

Pearson Chi-Square 21,237a 1 ,000   

Continuity Correctionb 20,656 1 ,000   

Likelihood Ratio 21,411 1 ,000   

Fisher's Exact Test    ,000 ,000 

Linear-by-Linear Association 21,234 1 ,000   

N of Valid Cases 5479     

a. 0 cells (0,0%) have expected count less than 5. The minimum expected count is 126,75. 

b. Computed only for a 2x2 table 

 

 

Symmetric Measures 

 Value 

Approximate 

Significance 

Nominal by Nominal Phi ,062 ,000 

Cramer's V ,062 ,000 

N of Valid Cases 5479  
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Diabetes * Low_Intensity_Sport_2_hours 
 
 

 

Crosstab 

 

Low_Intensity_Sport_2_hours 

Total 1 2 

Diabetes 1 Count 285 120 405 

Expected Count 250,5 154,5 405,0 

2 Count 4504 2833 7337 

Expected Count 4538,5 2798,5 7337,0 

Total Count 4789 2953 7742 

Expected Count 4789,0 2953,0 7742,0 

 

 

 

 

Chi-Square Tests 

 Value df 

Asymptotic 

Significance (2-

sided) 

Exact Sig. (2-

sided) 

Exact Sig. (1-

sided) 

Pearson Chi-Square 13,127a 1 ,000   

Continuity Correctionb 12,749 1 ,000   

Likelihood Ratio 13,568 1 ,000   

Fisher's Exact Test    ,000 ,000 

Linear-by-Linear Association 13,125 1 ,000   

N of Valid Cases 7742     

a. 0 cells (0,0%) have expected count less than 5. The minimum expected count is 154,48. 

b. Computed only for a 2x2 table 

 

 

Symmetric Measures 

 Value 

Approximate 

Significance 

Nominal by Nominal Phi ,041 ,000 
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Cramer's V ,041 ,000 

N of Valid Cases 7742  

 

 
 
Diabetes * High_intensity_Sport_30_minutes 
 

 

 

Crosstab 

 

High_intensity_Sport_30_minutes 

Total 1 2 

Diabetes 1 Count 5 30 35 

Expected Count 8,3 26,7 35,0 

2 Count 162 508 670 

Expected Count 158,7 511,3 670,0 

Total Count 167 538 705 

Expected Count 167,0 538,0 705,0 

 

 

Chi-Square Tests 

 Value df 

Asymptotic 

Significance (2-

sided) 

Exact Sig. (2-

sided) 

Exact Sig. (1-

sided) 

Pearson Chi-Square 1,801a 1 ,180   

Continuity Correctionb 1,295 1 ,255   

Likelihood Ratio 2,003 1 ,157   

Fisher's Exact Test    ,223 ,125 

Linear-by-Linear Association 1,798 1 ,180   

N of Valid Cases 705     

a. 0 cells (0,0%) have expected count less than 5. The minimum expected count is 8,29. 

b. Computed only for a 2x2 table 

 

 

Symmetric Measures 

 Value 

Approximate 

Significance 

Nominal by Nominal Phi -,051 ,180 

Cramer's V ,051 ,180 

N of Valid Cases 705  
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Diabetes * Medium_Intensity_Sport_30_minutes 
 

 

 

Crosstab 

 

Medium_Intensity_Sport_32_minutes 

Total 1 2 

Diabetes 1 Count 45 119 164 

Expected Count 40,9 123,1 164,0 

2 Count 624 1895 2519 

Expected Count 628,1 1890,9 2519,0 

Total Count 669 2014 2683 

Expected Count 669,0 2014,0 2683,0 

 

 

Chi-Square Tests 

 Value df 

Asymptotic 

Significance (2-

sided) 

Exact Sig. (2-

sided) 

Exact Sig. (1-

sided) 

Pearson Chi-Square ,585a 1 ,444   

Continuity Correctionb ,451 1 ,502   

Likelihood Ratio ,574 1 ,449   

Fisher's Exact Test    ,456 ,248 

Linear-by-Linear Association ,585 1 ,444   

N of Valid Cases 2683     

a. 0 cells (0,0%) have expected count less than 5. The minimum expected count is 40,89. 

b. Computed only for a 2x2 table 

 

 

Symmetric Measures 

 Value 

Approximate 

Significance 

Nominal by Nominal Phi ,015 ,444 

Cramer's V ,015 ,444 

N of Valid Cases 2683  
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Diabetes * Low_Intensity_Sport_30_minutes 
 

 

 

Crosstab 

 

Low_Intensity_Sport_32_minutes 

Total 1 2 

Diabetes 1 Count 50 236 286 

Expected Count 69,5 216,5 286,0 

2 Count 1118 3401 4519 

Expected Count 1098,5 3420,5 4519,0 

Total Count 1168 3637 4805 

Expected Count 1168,0 3637,0 4805,0 

 

 

Chi-Square Tests 

 Value df 

Asymptotic 

Significance (2-

sided) 

Exact Sig. (2-

sided) 

Exact Sig. (1-

sided) 

Pearson Chi-Square 7,700a 1 ,006   

Continuity Correctionb 7,311 1 ,007   

Likelihood Ratio 8,247 1 ,004   

Fisher's Exact Test    ,005 ,003 

Linear-by-Linear Association 7,698 1 ,006   

N of Valid Cases 4805     

a. 0 cells (0,0%) have expected count less than 5. The minimum expected count is 69,52. 

b. Computed only for a 2x2 table 

 

 

 

 

 

Symmetric Measures 

 Value 

Approximate 

Significance 
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Nominal by Nominal Phi -,040 ,006 

Cramer's V ,040 ,006 

N of Valid Cases 4805  

 

 
 
Diabetes * High_Intensity_Sport_4_hours 
 

 

 

Crosstab 

 

High_Intensity_Sport_4_hours 

Total 1 2 

Diabetes 1 Count 20 62 82 

Expected Count 23,1 58,9 82,0 

2 Count 762 1933 2695 

Expected Count 758,9 1936,1 2695,0 

Total Count 782 1995 2777 

Expected Count 782,0 1995,0 2777,0 

 

 

Chi-Square Tests 

 Value df 

Asymptotic 

Significance (2-

sided) 

Exact Sig. (2-

sided) 

Exact Sig. (1-

sided) 

Pearson Chi-Square ,594a 1 ,441   

Continuity Correctionb ,417 1 ,518   

Likelihood Ratio ,611 1 ,435   

Fisher's Exact Test    ,533 ,263 

Linear-by-Linear Association ,593 1 ,441   

N of Valid Cases 2777     

a. 0 cells (0,0%) have expected count less than 5. The minimum expected count is 23,09. 

b. Computed only for a 2x2 table 

 

 

Symmetric Measures 

 Value 

Approximate 

Significance 

Nominal by Nominal Phi -,015 ,441 

Cramer's V ,015 ,441 

N of Valid Cases 2777  
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Diabetes * Medium_Intensity_Sport_4_hours 
 

 

 

Crosstab 

 

Medium_Intensity_Sport_4_hours 

Total 1 2 

Diabetes 1 Count 56 41 97 

Expected Count 46,0 51,0 97,0 

2 Count 1276 1433 2709 

Expected Count 1286,0 1423,0 2709,0 

Total Count 1332 1474 2806 

Expected Count 1332,0 1474,0 2806,0 

 

 

Chi-Square Tests 

 Value df 

Asymptotic 

Significance (2-

sided) 

Exact Sig. (2-

sided) 

Exact Sig. (1-

sided) 

Pearson Chi-Square 4,243a 1 ,039   

Continuity Correctionb 3,828 1 ,050   

Likelihood Ratio 4,244 1 ,039   

Fisher's Exact Test    ,049 ,025 

Linear-by-Linear Association 4,242 1 ,039   

N of Valid Cases 2806     

a. 0 cells (0,0%) have expected count less than 5. The minimum expected count is 46,05. 

b. Computed only for a 2x2 table 

 

 

Symmetric Measures 

 Value 

Approximate 

Significance 

Nominal by Nominal Phi ,039 ,039 

Cramer's V ,039 ,039 

N of Valid Cases 2806  
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Diabetes * Low_Intensity_Sport_4_hours 
 

 

 

Crosstab 

 

Low_Intensity_Sport_4_hours 

Total 1 2 

Diabetes 1 Count 86 35 121 

Expected Count 70,8 50,2 121,0 

2 Count 1652 1196 2848 

Expected Count 1667,2 1180,8 2848,0 

Total Count 1738 1231 2969 

Expected Count 1738,0 1231,0 2969,0 

 

 

Chi-Square Tests 

 Value df 

Asymptotic 

Significance (2-

sided) 

Exact Sig. (2-

sided) 

Exact Sig. (1-

sided) 

Pearson Chi-Square 8,168a 1 ,004   

Continuity Correctionb 7,638 1 ,006   

Likelihood Ratio 8,505 1 ,004   

Fisher's Exact Test    ,005 ,002 

Linear-by-Linear Association 8,165 1 ,004   

N of Valid Cases 2969     

a. 0 cells (0,0%) have expected count less than 5. The minimum expected count is 50,17. 

b. Computed only for a 2x2 table 

 

 

Symmetric Measures 

 Value 

Approximate 

Significance 

Nominal by Nominal Phi ,052 ,004 

Cramer's V ,052 ,004 

N of Valid Cases 2969  
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APPENDIX C 

Crosstabulation and Chi-Square for Illnesses, Chapter 4.2 + 4.3 
 

 
Diabetes * Hyptertension 
 

 

 

Crosstab 

 

Hyptertension 

Total 1 2 

Diabetes 1 Count 630 487 1117 

Expected Count 230,9 886,1 1117,0 

2 Count 3704 16146 19850 

Expected Count 4103,1 15746,9 19850,0 

Total Count 4334 16633 20967 

Expected Count 4334,0 16633,0 20967,0 

 

 

Chi-Square Tests 

 Value df 

Asymptotic 

Significance (2-

sided) 

Exact Sig. (2-

sided) 

Exact Sig. (1-

sided) 

Pearson Chi-Square 918,587a 1 ,000   

Continuity Correctionb 916,287 1 ,000   

Likelihood Ratio 731,922 1 ,000   

Fisher's Exact Test    ,000 ,000 

Linear-by-Linear Association 918,543 1 ,000   

N of Valid Cases 20967     

a. 0 cells (0,0%) have expected count less than 5. The minimum expected count is 230,89. 

b. Computed only for a 2x2 table 
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Symmetric Measures 

 Value 

Approximate 

Significance 

Nominal by Nominal Phi ,209 ,000 

Cramer's V ,209 ,000 

N of Valid Cases 20967  

 

 
 
 
Diabetes * Dyslipedimia 
 

 

 

Crosstab 

 

Dyslipedimia 

Total 1 2 

Diabetes 1 Count 509 608 1117 

Expected Count 98,8 1018,2 1117,0 

2 Count 1346 18504 19850 

Expected Count 1756,2 18093,8 19850,0 

Total Count 1855 19112 20967 

Expected Count 1855,0 19112,0 20967,0 

 

 

Chi-Square Tests 

 Value df 

Asymptotic 

Significance (2-

sided) 

Exact Sig. (2-

sided) 

Exact Sig. (1-

sided) 

Pearson Chi-Square 1972,815a 1 ,000   

Continuity Correctionb 1968,009 1 ,000   

Likelihood Ratio 1155,159 1 ,000   

Fisher's Exact Test    ,000 ,000 

Linear-by-Linear Association 1972,721 1 ,000   

N of Valid Cases 20967     

a. 0 cells (0,0%) have expected count less than 5. The minimum expected count is 98,82. 

b. Computed only for a 2x2 table 

 

 

Symmetric Measures 
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 Value 

Approximate 

Significance 

Nominal by Nominal Phi ,307 ,000 

Cramer's V ,307 ,000 

N of Valid Cases 20967  

 

 
 
 
 
 
 
Diabetes * Cancer 
 

 

 

Crosstab 

 

Cancer 

Total 1 2 

Diabetes 1 Count 26 1091 1117 

Expected Count 11,2 1105,8 1117,0 

2 Count 184 19666 19850 

Expected Count 198,8 19651,2 19850,0 

Total Count 210 20757 20967 

Expected Count 210,0 20757,0 20967,0 

 

 

Chi-Square Tests 

 Value df 

Asymptotic 

Significance (2-

sided) 

Exact Sig. (2-

sided) 

Exact Sig. (1-

sided) 

Pearson Chi-Square 20,925a 1 ,000   

Continuity Correctionb 19,536 1 ,000   

Likelihood Ratio 15,569 1 ,000   

Fisher's Exact Test    ,000 ,000 

Linear-by-Linear Association 20,924 1 ,000   

N of Valid Cases 20967     

a. 0 cells (0,0%) have expected count less than 5. The minimum expected count is 11,19. 

b. Computed only for a 2x2 table 

 

 

Symmetric Measures 
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 Value 

Approximate 

Significance 

Nominal by Nominal Phi ,032 ,000 

Cramer's V ,032 ,000 

N of Valid Cases 20967  

 

 
 
 
 
 
 
Diabetes * Chronic_Lung_Disease 
 

 

 

Crosstab 

 

Chronic_Lung_Disease 

Total 1 2 

Diabetes 1 Count 162 955 1117 

Expected Count 105,3 1011,7 1117,0 

2 Count 1814 18036 19850 

Expected Count 1870,7 17979,3 19850,0 

Total Count 1976 18991 20967 

Expected Count 1976,0 18991,0 20967,0 

 

 

Chi-Square Tests 

 Value df 

Asymptotic 

Significance (2-

sided) 

Exact Sig. (2-

sided) 

Exact Sig. (1-

sided) 

Pearson Chi-Square 35,652a 1 ,000   

Continuity Correctionb 35,027 1 ,000   

Likelihood Ratio 31,365 1 ,000   

Fisher's Exact Test    ,000 ,000 

Linear-by-Linear Association 35,651 1 ,000   

N of Valid Cases 20967     

a. 0 cells (0,0%) have expected count less than 5. The minimum expected count is 105,27. 

b. Computed only for a 2x2 table 

 

 

Symmetric Measures 
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 Value 

Approximate 

Significance 

Nominal by Nominal Phi ,041 ,000 

Cramer's V ,041 ,000 

N of Valid Cases 20967  

 

 

 

 

 

 
Diabetes * Liver_disease 
 

 

 

Crosstab 

 

Liver_disease 

Total 1 2 

Diabetes 1 Count 94 1023 1117 

Expected Count 43,1 1073,9 1117,0 

2 Count 715 19135 19850 

Expected Count 765,9 19084,1 19850,0 

Total Count 809 20158 20967 

Expected Count 809,0 20158,0 20967,0 

 

 

Chi-Square Tests 

 Value df 

Asymptotic 

Significance (2-

sided) 

Exact Sig. (2-

sided) 

Exact Sig. (1-

sided) 

Pearson Chi-Square 66,047a 1 ,000   

Continuity Correctionb 64,756 1 ,000   

Likelihood Ratio 50,848 1 ,000   

Fisher's Exact Test    ,000 ,000 

Linear-by-Linear Association 66,044 1 ,000   

N of Valid Cases 20967     

a. 0 cells (0,0%) have expected count less than 5. The minimum expected count is 43,10. 

b. Computed only for a 2x2 table 
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Symmetric Measures 

 Value 

Approximate 

Significance 

Nominal by Nominal Phi ,056 ,000 

Cramer's V ,056 ,000 

N of Valid Cases 20967  

 

 

 

 

 
Diabetes * Heart_Attack 
 

 

 

Crosstab 

 

Heart_Attack 

Total 1 2 

Diabetes 1 Count 312 805 1117 

Expected Count 118,3 998,7 1117,0 

2 Count 1909 17941 19850 

Expected Count 2102,7 17747,3 19850,0 

Total Count 2221 18746 20967 

Expected Count 2221,0 18746,0 20967,0 

 

 

Chi-Square Tests 

 Value df 

Asymptotic 

Significance (2-

sided) 

Exact Sig. (2-

sided) 

Exact Sig. (1-

sided) 

Pearson Chi-Square 374,540a 1 ,000   

Continuity Correctionb 372,609 1 ,000   

Likelihood Ratio 278,446 1 ,000   

Fisher's Exact Test    ,000 ,000 

Linear-by-Linear Association 374,523 1 ,000   

N of Valid Cases 20967     

a. 0 cells (0,0%) have expected count less than 5. The minimum expected count is 118,32. 

b. Computed only for a 2x2 table 

 

 

Symmetric Measures 
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 Value 

Approximate 

Significance 

Nominal by Nominal Phi ,134 ,000 

Cramer's V ,134 ,000 

N of Valid Cases 20967  

 

 

 

 

 

 
Diabetes * Stroke 
 

 

 

Crosstab 

 

Stroke 

Total 1 2 

Diabetes 1 Count 72 1045 1117 

Expected Count 23,5 1093,5 1117,0 

2 Count 369 19481 19850 

Expected Count 417,5 19432,5 19850,0 

Total Count 441 20526 20967 

Expected Count 441,0 20526,0 20967,0 

 

 

Chi-Square Tests 

 Value df 

Asymptotic 

Significance (2-

sided) 

Exact Sig. (2-

sided) 

Exact Sig. (1-

sided) 

Pearson Chi-Square 108,055a 1 ,000   

Continuity Correctionb 105,839 1 ,000   

Likelihood Ratio 72,429 1 ,000   

Fisher's Exact Test    ,000 ,000 

Linear-by-Linear Association 108,050 1 ,000   

N of Valid Cases 20967     

a. 0 cells (0,0%) have expected count less than 5. The minimum expected count is 23,49. 

b. Computed only for a 2x2 table 
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Symmetric Measures 

 Value 

Approximate 

Significance 

Nominal by Nominal Phi ,072 ,000 

Cramer's V ,072 ,000 

N of Valid Cases 20967  

 

 

 

 

 
Diabetes * Kidney_disease 
 

 

 

Crosstab 

 

Kidney_disease 

Total 1 2 

Diabetes 1 Count 151 966 1117 

Expected Count 67,4 1049,6 1117,0 

2 Count 1114 18736 19850 

Expected Count 1197,6 18652,4 19850,0 

Total Count 1265 19702 20967 

Expected Count 1265,0 19702,0 20967,0 

 

 

Chi-Square Tests 

 Value df 

Asymptotic 

Significance (2-

sided) 

Exact Sig. (2-

sided) 

Exact Sig. (1-

sided) 

Pearson Chi-Square 116,598a 1 ,000   

Continuity Correctionb 115,208 1 ,000   

Likelihood Ratio 89,620 1 ,000   

Fisher's Exact Test    ,000 ,000 

Linear-by-Linear Association 116,593 1 ,000   

N of Valid Cases 20967     

a. 0 cells (0,0%) have expected count less than 5. The minimum expected count is 67,39. 

b. Computed only for a 2x2 table 

 

 

Symmetric Measures 
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 Value 

Approximate 

Significance 

Nominal by Nominal Phi ,075 ,000 

Cramer's V ,075 ,000 

N of Valid Cases 20967  

 

 
 
 
 
 
 
Diabetes * Stomage_disease 
 

 

 

Crosstab 

 

Stomage_disease 

Total 1 2 

Diabetes 1 Count 288 829 1117 

Expected Count 243,9 873,1 1117,0 

2 Count 4291 15559 19850 

Expected Count 4335,1 15514,9 19850,0 

Total Count 4579 16388 20967 

Expected Count 4579,0 16388,0 20967,0 

 

 

Chi-Square Tests 

 Value df 

Asymptotic 

Significance (2-

sided) 

Exact Sig. (2-

sided) 

Exact Sig. (1-

sided) 

Pearson Chi-Square 10,753a 1 ,001   

Continuity Correctionb 10,511 1 ,001   

Likelihood Ratio 10,353 1 ,001   

Fisher's Exact Test    ,001 ,001 

Linear-by-Linear Association 10,753 1 ,001   

N of Valid Cases 20967     

a. 0 cells (0,0%) have expected count less than 5. The minimum expected count is 243,94. 

b. Computed only for a 2x2 table 

 

 

Symmetric Measures 
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 Value 

Approximate 

Significance 

Nominal by Nominal Phi ,023 ,001 

Cramer's V ,023 ,001 

N of Valid Cases 20967  

 

 
 
 
 
 
 
Diabetes * Other_Medical_Diseases 
 

 

 

Crosstab 

 

Other_Medical_Diseases 

Total 1 2 

Diabetes 1 Count 73 1041 1114 

Expected Count 88,3 1025,7 1114,0 

2 Count 1584 18218 19802 

Expected Count 1568,7 18233,3 19802,0 

Total Count 1657 19259 20916 

Expected Count 1657,0 19259,0 20916,0 

 

 

Chi-Square Tests 

 Value df 

Asymptotic 

Significance (2-

sided) 

Exact Sig. (2-

sided) 

Exact Sig. (1-

sided) 

Pearson Chi-Square 3,024a 1 ,082   

Continuity Correctionb 2,829 1 ,093   

Likelihood Ratio 3,189 1 ,074   

Fisher's Exact Test    ,090 ,046 

Linear-by-Linear Association 3,024 1 ,082   

N of Valid Cases 20916     

a. 0 cells (0,0%) have expected count less than 5. The minimum expected count is 88,25. 

b. Computed only for a 2x2 table 

 

 

Symmetric Measures 
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 Value 

Approximate 

Significance 

Nominal by Nominal Phi -,012 ,082 

Cramer's V ,012 ,082 

N of Valid Cases 20916  
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APPENDIX D 

Crosstabulation and Chi-Square for Drinking and Smoking, Chapter 4.2 + 4.3 
 

 
Diabetes * Gender 
 

 

 

Crosstab 

 

Gender 

Total 1 2 

Diabetes 1 Count 483 634 1117 

Expected Count 531,5 585,5 1117,0 

2 Count 9489 10350 19839 

Expected Count 9440,5 10398,5 19839,0 

Total Count 9972 10984 20956 

Expected Count 9972,0 10984,0 20956,0 

 

 

Chi-Square Tests 

 Value df 

Asymptotic 

Significance (2-

sided) 

Exact Sig. (2-

sided) 

Exact Sig. (1-

sided) 

Pearson Chi-Square 8,929a 1 ,003   

Continuity Correctionb 8,746 1 ,003   

Likelihood Ratio 8,964 1 ,003   

Fisher's Exact Test    ,003 ,002 

Linear-by-Linear Association 8,929 1 ,003   

N of Valid Cases 20956     

a. 0 cells (0,0%) have expected count less than 5. The minimum expected count is 531,53. 

b. Computed only for a 2x2 table 

 

 

Symmetric Measures 

 Value 

Approximate 

Significance 

Nominal by Nominal Phi -,021 ,003 

Cramer's V ,021 ,003 

N of Valid Cases 20956  
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Diabetes * Drink 
 

 

 

Crosstab 

 

Drink 

Total 1 2 3 

Diabetes 1 Count 217 73 823 1113 

Expected Count 296,1 98,1 718,8 1113,0 

2 Count 5346 1770 12684 19800 

Expected Count 5266,9 1744,9 12788,2 19800,0 

Total Count 5563 1843 13507 20913 

Expected Count 5563,0 1843,0 13507,0 20913,0 

 

 

Chi-Square Tests 

 Value df 

Asymptotic 

Significance (2-

sided) 

Pearson Chi-Square 45,016a 2 ,000 

Likelihood Ratio 47,140 2 ,000 

Linear-by-Linear Association 41,499 1 ,000 

N of Valid Cases 20913   

a. 0 cells (0,0%) have expected count less than 5. The minimum expected count 

is 98,09. 

 

 

Symmetric Measures 

 Value 

Approximate 

Significance 

Nominal by Nominal Phi ,046 ,000 

Cramer's V ,046 ,000 

N of Valid Cases 20913  

 

 


