
Bachelor’s thesis

Degree programme of Information Technology, International

PINFOS15

2019

DUY LE

DEVELOPING A USER
MANAGEMENT DASHBOARD
WITH FULLSTACK JAVASCRIPT

BACHELOR’S THESIS | ABSTRACT

TURKU UNIVERSITY OF APPLIED SCIENCES

Degree programme of Information Technology

2019 | 35

Author: Duy Le

DEVELOPING A USER MANAGEMENT
DASHBOARD WITH FULLSTACK JAVASCRIPT
The goal of the thesis was to develop a full stack web application using only JavaScript

frameworks and libraries, which are known as MERN stack (MongoDB, Express.js, React.js and

Node.js). This thesis assesses each technology stack, presents the application implementation,

and provides suggestions for future improvement and development. The final result was a
functional web-based MVP that allows authentication with JWT and contains simple UI interfaces

for optimizing workforce management in small and medium-sized business.

KEYWORDS:

React, Redux, MongoDB, Node.js, Express.js

CONTENTS

LIST OF ABBREVIATIONS (OR) SYMBOLS 4

FIGURES 5

1 INTRODUCTION 6

1.1 Background 6
1.2 Objectives 6

2 APPLICATION TECHNOLOGIES AND CONCEPTS 7

2.1 Frontend 7

2.1.1 React 7
2.1.2 Redux 8

2.2 Backend 10
2.2.1 Node.js 10
2.2.2 NoSQL and MongoDB 11

3 IMPLEMENTATION FUNCTIONALITIES 13
3.1 Functionalities 13
3.2 Getting started 13

3.3 Authentication and Authorization 15
3.3.1 Back-end 15
3.3.2 Front-end 22

3.4 Preference form submission for working days of week 26

3.4.1 Back end 26
3.4.2 Front end 28

4 CONCLUSION 34

REFERENCES 35

LIST OF ABBREVIATIONS (OR) SYMBOLS

CORS Cross-Origin Resource Sharing

CMS Content Management System

DOM Document Object Model

JWT JSON Web Token

MERN MongoDB, Express.js, React.js, Node.js

MVC Model View Controller

React Synonym to React.js

UI/UX User Interface/User Experience

URI Uniform Resource Identifier

URL Uniform Resource Locator

FIGURES

Figure 1. A simple React component.

Figure 2. Example of state in Redux.

Figure 3. Example of action creator and reducer in Redux.

Figure 4. Example of a simple server in Node.js.

Figure 5. Example of server built in Express.js.

Figure 6. Example of MongoDB URI in mLab.

Figure 7. Server implementation with Node.js, Passport.js and Mongoose.

Figure 8. Main app.js React component with Routing.

Figure 9. Company Model.

Figure 10. Example of a Company document in JSON.

Figure 11. User Model.

Figure 12. Example of User document.

Figure 13. Passport strategies implementation in services/passport.js file.

Figure 14. Action creators and reducer for signing up.

Figure 15. Action creator for signing in.

Figure 16. Action creator for signing out.

Figure 17. Authorization Higher Order Component (HOC).

Figure 18. Preference Form Schema.

Figure 19. Setting up custom calls that triggers middleware.

Figure 20. Basic view for submitting form.

Figure 21. Action creator for submitting preference form.

Figure 22. Admin view for listing all submitted preference forms.

Figure 23. Simple selector to map users’ data.

Figure 24. Admin view for evaluating a preference form.

Figure 25. Example of an updated User document after admin’s evaluation.

6

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Duy Le Nguyen

1 INTRODUCTION

1.1 Background

During my previous job in the service industry, the company at the time did not have a

good solution to manage shifts and employees could not easily select their desired

working timetable at their own paces. All of the work was recorded in papers and this

took a considerable amount of time to proceed. Therefore, a solution was needed to

facilitate and simplify all of the above nuisances by building a web application and

digitalize them. The core idea was to let employees submit their preference form online

which the supervisor can later check and validate.

There have not been any thesis works that builds a dashboard from scratch as nearly all

of them, which are written in English, are built with CMS like Wordpress or Drupal.

Therefore, it was decided to implement such an application.

1.2 Objectives

This thesis will cover the development process of building a full-stack web application

which is written solely with Javascript. The tech stacks includes React.js Front-end

library, Node.js runtime environment for backend, MongoDB as database and Express

web framework for Node.js. Together, they are known as MERN stack. The thesis starts

with a brief introduction of each tech stack and then goes to the implementation process

in greater details.

The final product will be a workforce optimization application, including dashboard

systems for different roles of users, aiming to automates trivial daily tasks of small or

medium-sized enterprises. Since the web application is written fully in JavaScript and

this thesis will not cover the language’s basic concepts, a fundamental understanding of

the Javascript and minor experience with full stack web development are recommended.

7

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Duy Le Nguyen

2 APPLICATION TECHNOLOGIES AND CONCEPTS

The application described in this thesis is developed with React.js in the front-end, with

the help of Redux, a state container library, to provide better state management for

maintainability and scalability. In the back-end, Node.js plays the main role, along with

Express.js framework to minimalise the verbosity of Node.js and MongoDB for database

storage. This chapter will introduce briefly through each technology and provide general

insights before moving to the practical development in the next chapter.

2.1 Frontend

2.1.1 React

React is a declarative, component-based JavaScript library that helps build simple,

interactive UIs which can be reused for multiple projects [1]. Comparing to the familiar

MVC web architecture, React can be considered as the view in the stack. However,

React introduces a totally different way of thinking when developing web application. In

React, components are the fundamental element. Each component can store its own

state and can “re-render”(or update) itself whenever the state of that component changes

[2]. Also, components can be composed together to make a complex component

hierarchy. Each follows the single responsility principle, which results to a more robust

and scalable application.[3]

Figure 1. A simple React Component.

The snippet above (Fig.1) displays a simple React component and how to have it

rendered in the browser. A div tag with content of plain text “Welcome, John Doe” will

appear in a DOM-element with id “mydiv”. The HTML-like element in the return statement

8

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Duy Le Nguyen

is called JSX and it is a syntax extension to JavaScript. JSX may look like a template

language but it comes with the full power of JavaScript [4].

A React component is nothing but a normal JavaScript function, which can take input, or

props (stands for properties). Components use props to decide what will appear on the

browser.[5] The ReactDOM package comes along when developing React applications.

Apart from the main React package which is normally used for producing components,

ReactDOM exposes different methods to manipulate DOM element.

2.1.2 Redux

“As the requirements for Javascript SPA have become increasingly complicated, our

code must manage more state than ever before. This state can include server responses

and cached data, as well as locally created data that has not yet been persisted to the

server. UI state is also increasing in complexity, as we need to manage active routes,

selected tabs, spinners, pagination controls, and so on.”[6] Redux provides a solution

those problems, in which state mutations are predictable and can only be changed under

specific and monitored circumstances.

Redux has 3 core concepts: state to store necessary data, action to dispatch changes

made to state, reducer to actually make the changes.

State in redux is basically a plain object. For example,

Figure 2. Example of state in Redux.

9

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Duy Le Nguyen

Whenever state needs changing, an action is dispatched and reducer will take the role

of making the changes to our state.

Figure 3. Example of action creator and reducer in Redux.

“Enforcing that every change is described as an action lets us have a clear understanding

of what’s going on in the app. If something changed, we know why it changed. Actions

are like breadcrumbs of what has happened.” [7]

Finally, the reducer makes changes to the state accordingly to which action has been

dispatched. Reducers must be a pure function, that contains no side-effect and the same

input(arguments) must provide the same output, regardless of the number of executions

[8].

It should be taken into consideration that the reducer will not alter the state directly. A

copy of the state is created and a new person is added to this state. This is one of the

principle of redux: to avoid directly mutating the previous state. [9]

10

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Duy Le Nguyen

2.2 Backend

2.2.1 Node.js

Node.js is the JavaScript runtime that allows the JavaScript code to be able to run outside

the scope of web browsers. Under the hood, Node.js is based on Google Chrome’s V8

JavaScript engine, which is written in C++, translating JavaScript code into machine

code. Like other JS engines, V8 has to comply with all the standards from the

ECMAScript that specify how the language works and what features it should have.

Node.js helps use JavaScript to write command line tools and server-side scripting

(running scripts server-side) to produce dynamic web page content before the page is

sent to the user's web browser.[10] It is possible to claim that JavaScript has come to its

prime from the birth of Node.js.

Figure 4. Example of a simple server in Node.js.

Node.js comes with multiple built-in modules that makes it powerful. From the code

above (Fig.4), the built-in http module is leveraged and creates a server listening on port

8080 of our machine. When a browser makes a request, the server will respond with the

text ‘Hello Node.js World!’.

Node package manager (NPM)

Usually in the development process, developers not only make codes on their own but

also reuse others’ works, which usually comes in packages. Each package is collection

of codes managed and maintained by a package management system. “Node Package

Manager (npm) is a package manager for Javascript programming language. Npm is

included as a recommended feature in Node.js installer [11].” NPM is one of largest

JavaScript package manager, which installs and updates JavaScript packages

11

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Duy Le Nguyen

automatically. There will be many packages, both front-end and back-end wises, to be

installed later on during the development of the application.

Express.js

Express.js is a web framework that help simplify the process of building Node.js web

server. The same server creation from above code (Fig.4) can also be achieved with

Express:

Figure 5. Example of server built in Express.js.

Later on, the power of Express can be harnessed when this thesis demonstrates different

functionalities of the application such as authentication and authorization, building route

sets.

2.2.2 NoSQL and MongoDB

NoSQL

NoSQL databases have a different mechanism to store and retrieve data than the

traditional relational databases. Due to the increase of web usage and its complexity,

relational databases sometimes cannot catch up to the need due to manual sharding

and distributed caching and lack of scalability. NoSQL provides many features to mitigate

these drawbacks. NoSQL is built to allow the insertion of data without a predefined

schema. That makes it seamless to make significant application changes in real-time,

without worrying about service interruptions, meaning that development is faster, code

integration is more reliable, and less database administrator time is needed. [12] The

application in this thesis will make use of one of the most popular NoSQL database, in

particular, MongoDB to help with data storage.

12

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Duy Le Nguyen

MongoDB

MongoDB is a NoSQL open-source database with dynamic schema. It uses a document

storage format call BSON (JSON-like documents in binary style). MongoDB is based on

collections and documents. From relational database point of view, they can be

considered them as tables and records. The dynamic schema allows each document to

have flexible fields and different from one another. Data structures can be changed at

any time. MongoDB has simple APIs with support for over 10 programming languages

and is still increasing. [13]

mLab

mLab is a fully managed cloud database service featuring automated provisioning and

scaling of MongoDB databases, backup and recovery, 24/7 monitoring and alerting, web-

based management tools, and expert support [14]. To avoid the steps of installing and

running MongoDB in our own operating systems, which sometimes causes some

problems, using mLab has been the choice for hosting the database for the application.

After signing in to mLab, the next actions are creating a new deployment and adding a

new database user with username and password.

Figure 6. Example of MongoDB URI in mLab.

Lastly, MongoDB URI is finished and ready to be connected by filling the “<dbuser>” and

“<dbpassword>” with the newly-created user’s credentials.

13

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Duy Le Nguyen

3 IMPLEMENTATION FUNCTIONALITIES

3.1 Functionalities

This thesis guides through the process of making a management dashboard for small

and middle-sized companies. Employees(basic) and employers(admin) can register and

represent the company they are from. The sole functionality for the app is to help

employee to submit their shift preference to choose which days of the week they are

willing to work.

There are two different user dashboards for both admin and basic. Users(both roles) are

able to register and login to the system. Admin has to do the sign-up first. Then they are

given a company code that can be passed on to the basic to register. Basic can select

which days they want to go to work, while admin can assess them by choosing to accept

or reject it. By default, the application will assume that there would be two shifts a day –

morning and evening, no matter which day of the week is that. This is the only feature

for now and other features or improvement will be considered if the application continues

to be developed.

3.2 Getting started

Back-end

After registering in mLab, mongoose package is used to make connection to Mongo URI.

Combining with passport.js and express.js, the following code snippet is a basic starting

point:

14

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Duy Le Nguyen

Figure 7. Server implementation with Node.js, Passport.js and Mongoose.

Stored in .env file as environment variable, MongoDB URI is connected by mongoose

and allows us full permissions to all collections in the database.

Express.js is a great framework due to its ability to have middlewares. These intercepts

each request, just before it gets to our route handlers, and do some “intermediate” works.

In the above figure (Fig.7), body-parser and cors package are used. Body-parser turns

incoming request details available under req.body property.

By default, any front-end requests will be stopped by CORS due to difference between

front-end and back-end origins. For simplicity, cors is enabled for all requests to the

server.

Front-end

In term of client-side, there are create-react-app package for quickly scaffolding a React

application and ant-design package for ready-made React UI components. Since the

15

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Duy Le Nguyen

thesis’s plan is to make a SPA, it is necessary to have a method to navigate between

different pages.

React-router supports routing provided there are a path (relative URL) and a React

component to render.

Figure 8. Main app.js React component with Routing.

3.3 Authentication and Authorization

3.3.1 Back-end

Below (Table.1) is the list of all the routes created for authentication process:

16

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Duy Le Nguyen

Table 1. Main URL endpoints for authentication

Route Purpose
/api/admin/signup POST save new admin user and company

in the database.

/api/basic/signup POST save a new basic user into the

database.

/api/signin POST receive the credentials and check

if it is correct. If yes, send back a JWT to

the client.

/api/current_user GET require authorization by checking

JWT in the header request. If the token is

valid, the information of the user

embedded in the token will be sent back.

/api/company GET require authorization by checking

the JWT in the header request. If the

token is valid, the information of the

company that user belongs to will be sent

back.

Models and Collections

As a dashboard, the app must allow users to sign up and sign in. Since each user will

belong to a company, let’s start with creating a Company model.

17

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Duy Le Nguyen

Figure 9. Company model.

An instance of mongoose’s Schema is formed and named companySchema. Schema

represents the structure of a single document in a collection. Thus, the company has 2

main keys: name and company_code. Each is specified as “required”, which has to be

filled whenever a new company is formed.

Finally, Company model is compiled and exported. Newly-created company will be an

instance of Company model. This model allows to create and modify any documents in

the Company collections.

Figure 10. Example of a Company document in JSON.

The key “company_code” is a unique auto-generated 8-character-length random

alphanumeric letters. Basic users will fill in this code during registering, along with their

18

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Duy Le Nguyen

credentials, to eventually let the application know which company user belong before

saving them into database.

19

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Duy Le Nguyen

Figure 11. User Model.

20

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Duy Le Nguyen

The User model file has the same pattern as Company model but more complex. There

are 5 keys in each User document: role, email, password, full_name and _company. The

key _company is the most unique. This must have the value to be the id of a company

in the Company collection. This is how collections connect to each other. By specifying

the id of a company in this field, this makes it simple to check which company a user is

from and how to group users in the same company.

In line 30, a hook is attached to the Schema. Whenever a document is about to be saved

in the collection, this hook will be called. A general rule of thumb is that user’s password

is never stored in plain text without encryption. This is where bcryptjs comes in. The

package generates random bytes (salt) and combines it with the password sent from

front-end before hashing to create unique hashes across each user’s password.[15]

Due to the fact that encrypting passwords is a one way process, bcryptjs provide a

method to decrypt, which compares password when users request to sign in. A

“compare” method is used on line 42, receiving the password that user submits when

signing in and compare it with the encrypted password in the database, provided there

has been the same email has been registered in the system.

Let’s take an example of a basic user with email “test2@mail.com” with password of

“123456” that belongs to the above company, the final User document would be:

Figure 12. Example of User document.

21

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Duy Le Nguyen

Handling authentication

The key concept of handling authentication in this app is using JWT. Each time a user

signs in, a JWT will be sent back and stored in the local storage of the browser. Each

subsequent API call from the client-side requesting for authorized route access must

have header attached with a JWT, which tell the identity of the person that makes the

request and if he/she has the necessary permission. Passport.js facilitates this. It is a

middleware authentication package, when specified, that intercepts the request and

check if it passes the conditions to receive the response from server. It is extremely

flexible and modular, with a comprehensive set of strategies that assists multiple

methods of authentication using a username and password, Facebook, Twitter,…[16].

Our server will use two strategies which are passport-jwt and passport-local.

Firstly, Passport-local leverages the traditional sign-in with username, or email in our

app, and password. Below, in line 16, a familiar comparePassword function is

implemented, almost the same as the identically-named function that the User model

declares. The second strategy is the passport-jwt. The jwtOptions object created in line

28 instructs the passport-jwt how to look for the JWT in the request. Literally, the package

is told to search a key in the request’s header with the name “authorization”. As JWT

consists of a header, payload and a secret, the secret stored in .env file in the root level

folder is provided so that passport knows how to decode the payload underlying within

the token. The last step is to prompt passport.js to use the strategies by calling

“passport.use”.

22

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Duy Le Nguyen

Figure 13. Passport strategies implementation in services/passport.js file.

3.3.2 Front-end

To minimize the work of doing CSS styling from scratch, this app will utilize 2 packages:

ant-design and styled-component. Ant-design (antd for short) is a React UI-framework

that provides ready-to-use components containing basic styling and functionalities.

Obviously, not every UI framework can fit our need. That’s when styled-component

comes in. This supports styling to any React components given to it. Due to the fact that

React components with rich UI designs are verbose and lengthy, only reducers and

actions and some screenshots of the app on browser will be shown to demonstrate the

logics and final results.

23

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Duy Le Nguyen

Sign up

Figure 14. Action creators and reducer for signing up.

24

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Duy Le Nguyen

When user requests for signing up, provided all form’s validations passed, signupUser

function is called. The first requestSignup action creators is dispatched immediately. This

passes a new state to the reducers and implies that the app is doing some asynchronous

work which requires waiting time. A loading/spinner indicator is shown in the browser to

let users know something is happening.

During this time, a POST request to /api/signup is made. It contains the data from the

sign up form that user has just submitted. The call is wrapped in a Javascript try catch

phrase, which throws any errors gracefully that may happen during the request. If the

request did not return any error, the second action creator signupSuccess is dispatched.

This stopped the fetching process and then redirect user to the main page to start signing

in. Else, when errors occur, signupFailure is called, together with a user-friendly error

message appearing in the browser.

Sign in

Same pattern is applied in signing in.

Figure 15. Action creator for signing in

25

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Duy Le Nguyen

This is where all the magic for making requests to authorized routes comes from. After

user successfully signs in, JWT is set to the local storage of the browser. Local storage

is just a plain object containing key-value pairs. A key “token” is stored with value of the

JWT string. Then the configuration of axios (the fetching package) is changed. For any

future requests made by axios, request’s header will always contain a key of

“authorization” with the value of JWT string. By doing this, all requests to server’s

protected routes will satisfy the requirement of the server.

Sign out

Figure 16. Action creator for signing out.

This is the reverse version of signing in. Firstly, JWT is removed from local storage, as

well as its value in axios configuration. Finally, browser redirects user to the main page

to let them know that they are logged out successfully.

Higher-order components (HOC) for authorization

Not all the routes are freely accessible for everyone. An approach has to be made to

prevent unauthorized entries. This is also a good chance to introduce an advance

concept in React, higher-order components (HOC). They are simply another React

components but rather than emitting JSX, they produce another React components, or

be more exact, enhanced ones. The aim here is to create an HOC that wraps every

component demanding authorization before accessing.

26

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Duy Le Nguyen

Figure 17. Authorization Higher Order Component (HOC).

Simply put, we first make a higher-order function that receives a role as parameter. The

returned is a HOC. There are some routes that are only available to either type of users

and some must be accessible to both. There are 3 different HOCs made for this purpose:

Admin, Basic and User. Then, we decide who can navigate to which route, before

wrapping the component with equivalent HOC.

3.4 Preference form submission for working days of week

3.4.1 Back end

27

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Duy Le Nguyen

Table 2. URL Endpoints for handling preference form

Route Purpose
/api/admin/preference/all GET get all basic preference forms

/api/basic/preference/new POST create a new preference form for

basic

/api/admin/preference/edit/:form_id UPDATE update a preference form.

Route parameter “form_id” let the server

know which form it has to make changes

to

As always, it starts with creating schema for a preference form in MongoDB:

Figure 18. Preference Form Schema.

28

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Duy Le Nguyen

This schema contains two fields with type ObjectId, which are “_company” and “_user”.

Since a form must have a sender, “_user” is an id of any basic user in the database.

Each schema can have fields to be another schema. “preference_detail” is an array of

instance of preferenceDetailSchema. This new schema contains date which implies a

day in week. The “date” field runs from 1 to 7 representing Monday to Sunday

3.4.2 Front end

Redux-axios-middleware

As the principle here is to bring the best possible UX for user, each asynchronous call

should be handled gracefully by having 3 corresponding action creators listening to it.

This can be seen clearly in the authentication process. However, there would be a lot of

repetitive code as there are many requests in this section. This is where redux

middleware is utilized to do us the favour of the “boring” work.

Figure 19. Setting up custom calls that triggers middleware.

29

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Duy Le Nguyen

“Redux-axios-middleware” middleware handles any actions that have payload containing

a “request” key. Thus, a custom “apiCall” (whose job is to make API calls) is made that

contains a payload object with “request” key. It does the normal request at first, but the

catch is that after receiving response, depending on status code (successful if 2xx and

vice versa), it chains with another action. So a successful or error response will trigger

“handleApiSuccess” and “handleApiError” respectively. With this, our codebase clean

and readable and reuse it for every future network requests.

Basic user’s view

The main functionality for this app is to let basic users submit their decision to choose

which days of the week they can work. The page includes:

- Checkboxes representing each workday from Monday to Sunday and

morning/evening shifts.

- Button to submit

The sole form validation is that at least four boxes are checked, until then the button will

be enabled. From a business point of view, this guarantees each user has to go to work

at least 4 times a day. In the future, this app can be made to be able to adjust this limit

in the application settings, which varies between different company’s requirements.

Figure 20. Basic view for submitting form.

After a submission, user will be redirected to the main dashboard and a successful/error

message will be shown.

30

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Duy Le Nguyen

Figure 21. Action creator for submitting preference form.

Admin user’s view

Admin’s view is more complicated. There will be two smaller views: list of all submitted

preference forms and assessment view.

Figure 22. Admin view for listing all submitted preference forms.

The former is where admin sees all basic preference forms. The main view is a simple

table with 3 columns: Employee name, status and Operation. Each row tells user whose

the form belongs to, its status and action that admin can take.

31

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Duy Le Nguyen

Figure 23. Simple selector to map users’ data.

A commonly-used redux pattern is introduced: selectors. In short, this is where complex

business logics are stored. It is recommended that developers separate concerns when

doing things (create view components and compute logics) and this is also the way of

thinking in React and Redux. We avoid doing expensive data computation in

action/reducer or UI component files but in other selector files. This helps our codebase

modular and readable and easier to fix if a bug shows up.

In preference form schema, it does not hold user detail but only user’s id as “_user”. So

how does React show basic users’ names? There is the list of basic users kept in redux

store and map it with the list of preference forms to create a

“computedPreferenceForms”, which is now attached with basic users’ “full_name”,

without having to make another request to server.

As admin chooses “Reply”, for instance to the form belonging to “Basic 1”, the next view

is:

32

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Duy Le Nguyen

Figure 24. Admin view for evaluating a preference form.

This form contains:

- Details about this shift preference form: name of employee, form status,

submitted date, the desired timetable

- Action to take: accept or decline. Comment is optional.

If “decline” is chosen, the submission must be redone by basic user. If admin takes

“accept”, the equivalent User document will be changed to the following:

33

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Duy Le Nguyen

Figure 25. Example of an updated User document after admin’s evaluation.

34

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Duy Le Nguyen

4 CONCLUSION

This thesis aimed to build a full stack web application that utilizes the power of Javascript

under MERN technology stacks (MongoDB, Express.js, React.js and Node.js). Each

major technology that contributes to the development of the application and their

examples was discussed, followed by presenting the implementation process with

authentication/authorization, preference form submission from the view’s point of front-

end and back-end respectively.

Eventually, the end product was a workforce management dashboard for small and mid-

sized companies in the service industry. Employees were able to register in the app’s

system and express the requests to select which days they want to work and their

employers would validate them accordingly. Overall, this application fulfilled the feature

requirements planned out from the beginning and it can be tested in very small scale

businesses.

Nevertheless, this application should be treated with care if deployed live in production

since there are still some areas for improvement. For example, testing is still missing.

Without tests, it is unsafe to continue developing since it is highly likely for developers to

make mistakes during development. Besides, new features could be implemented such

as making a scheduler from each basic user’s shift preference, custom configuration for

admins. If properly nurtured, this application could be a success and widely adopted by

multiple companies in Finland.

35

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Duy Le Nguyen

REFERENCES

[1] React – A Javascript library for writing interfaces. Available at https://reactjs.org, accessed
July 5, 2019

[2] State and Lifecycles – React. Available at https://reactjs.org/docs/state-and-lifecycle.html,
accessed Sep 1, 2019

[3] Thinking in React – React. Available at https://reactjs.org/docs/thinking-in-react.html,
accessed Sep 1, 2019

[4] Introducing JSX – React. Available at https://reactjs.org/docs/introducing-jsx.html, accessed
July 5, 2019

[5] Components and Props – React. Available at https://reactjs.org/docs/components-and-
props.html, accessed July 5, 2019

[6] Motivation • Redux. Available at redux.js.org/introduction/motivation, accessed July 8, 2019

[7] Core concepts • Redux. Available at https://redux.js.org/introduction/core-concepts,
accessed July 8, 2019

[8] Side effect (computer sciences) - Wikipedia. Avaiable at
https://en.wikipedia.org/wiki/Side_effect_(computer_science), accessed July 8, 2019

[9] Three principles • Redux. Avaiable at https://redux.js.org/introduction/three-principles,
accessed Sep 1, 2019

[10] Node.js – Wikipedia. Available at https://en.wikipedia.org/wiki/Node.js, accessed July 10,
2019

[11] npm (software) – Wikipedia. Available at https://en.wikipedia.org/wiki/Npm_(software),
accessed July 15, 2019

[12] What is NoSQL | MongoDB. Available at mongodb.com/nosql-inline, accessed July 21,
2019

[13] What is MongoDB | MongoDB. Available at https://www.mongodb.com/what-is-mongodb,
accessed July 21, 2019

[14] About | mLab Cloud MongoDB Hosting. Available at https://mlab.com/company, accessed
July 22, 2019

[15] How bcryptjs works – Rohan Paul – Medium. Avaiable at
https://medium.com/@paulrohan/how-bcryptjs-works-90ef4cb85bf4, accessed August 1, 2019

[16] Passport.js. Available at http://www.passportjs.org, accessed August 2, 2019

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Duy Le Nguyen

