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The Internet of Things (IoT) field and the development of new IoT devices and solutions are 
growing rapidly. Many A lot of IoT related projects are also being conducted in Metropolia 
University of Applied Science. 
 
However, the IoT end-devices are often low-powered devices and as such, they often use 
communication protocols that require low power to function. One communication technology 
that has gained a lot of popularity in the field of low power data transport is LoRa and the 
higher-level implementation of the technology, LoRaWAN (LoRa wide area network) is al-
ready widely used in most countries around the world. 
 
The primary goal of this thesis was to set up a private LoRaWAN, a low power, wide area 
network, on one or more Metropolia UAS campuses which could be used by Metropolia 
students in their projects and studies. A secondary goal of the thesis was to also implement 
an authentication method to the network which utilizes Metropolia’s user database to au-
thenticate and authorize the users. Another goal was to test the network using possibly sev-
eral different evaluation boards to see which board would require the least amount of work 
to use the network with. 
 
The network was implemented using LoRa Server, an open-source LoRaWAN network 
server, to create the backend and LORIX One LoRaWAN gateways to create the physical 
network. The LoRa Server was implemented on CentOS 7 running in Metropolia’s educloud-
platform. 
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Esineiden internet on nopeasti kasvava ala ja tuotekehitys sen parissa lisääntyy jatkuvasti. 
Myös Metropolian Ammattikorkeakoulussa tehdään useita esineiden internetiin liittyviä 
projekteja. 
 
Esineiden internetiin liittyvät laitteet ovat hyvin usein vähävirtaisia, joten ne myös usein 
hyödyntävät energiatehokkaita kommunikointimenetelmiä. Energiatehokkaiden 
kommunikointimenetelmien parissa erityistä huomiota on saanut LoRa-teknologia, ja sen 
korkeamman tason ilmentymä LoRaWAN on jo maailmanlaajuisesti hyödynnettynä 
esineiden internetin applikaatioissa. 
 
Tämä insinöörityön päätavoitteena oli toteuttaa yksityinen LoRaWAN-verkko yhdelle tai 
useammalle Metropolian AMK:n kampukselle, jota opiskelijat voivat hyödyntää 
projekteissaan ja opinnoissaan. Sekundäärinen tavoite projektille, oli toteuttaa verkko 
siten, että siihen tunnistautuminen käyttäjänä onnistuu Metropolian yleisiä 
kirjautumistunnuksia käyttäen. Tämän lisäksi tavoitteena oli testata verkkoa eri 
kehityslautoja käyttäen, tarkoituksena löytää mahdollisimman helposti käyttöönotettava 
kehityslauta. 
 
LoRaWAN verkko toteutettiin hyödyntämällä avoimen lähdekoodin alustaa, LoRa Serveriä. 
Yhdyskäytävänä päätelaitteen ja verkon välillä käytettiin LORIX One yhdyskäytävää. 
Palvelin, jolle LoRa Server asennettiin, toimii CentOS 7 pohjaisella virtuaalikoneella 
Metropolian educloud-pilvipalvelussa. 
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List of Abbreviations 

ABP  Activation by Personalization. An activation scheme, where an end-device 

is activated on a network using pre-defined hard-coded credentials. 

AES Advanced Encryption Standard. A data encryption specification standard-

ized by NIST. 

CMAC Cipher-based Message Authentication Code. Ambiguous to OMAC 

CTR Counter. A mode that turns a block cipher into a stream cipher. 

FUOTA Firmware-update-over-the-air. 

gRPC An open source remote procedure call system. Among other things, it sim-

plifies the complex remote calls between a server and a client. 

JSON JavaScript Object Notation. An open-standard lightweight data-interchange 

format. 

LDAP Lightweight Directory Access Protocol for accessing directory services be-

tween a client and a server. 

LoRa A spread spectrum modulation used in the long range, low power LoRa 

Technology in the field of Internet of Things. 

LoRaWAN LoRa Wide Area Networking protocol. A protocol that is used to connect 

low-power devices to a larger network. 

MAC Message authentication code is used to authenticate a message. It is often 

substituted by MIC to distinguish it from media access control (MAC). 

MAC layer Media access control layer. A sublayer of the data link layer of OSI model, 

responsible for moving data packets from one network interface card to 

another. 

MIC Message integrity code. Often used interchangeably with MAC. 



 

 

MQTT Message Queuing Telemetry Transport. A publish-subscribe-based light-

weight messaging protocol. 

NIST National Institute of Standards and Technology. An American institute op-

erating that aims to promote innovation and industrial competitiveness. 

OMAC One-key MAC. A message authentication code constructed from a block 

cipher. 

OS  Operating system. A system software that manages all the hardware and 

other application programs in a computer. 

OSI model Open Systems Interconnection model. A model that standardizes the com-

munication between computers. 

OTAA Over-the-air activation. An activation scheme, where an end-device joins 

the network by performing a join-procedure. 

PostgreSQL A free, open-source relational database management system. 

REST Representational State Transfer. An application programming interface 

protocol that defines a set of rules to be used when creating web services. 

SSH Secure Shell. A protocol that allows a secure connection to a computer 

over an unsecure network. 

TCP Transmission Control Protocol. A standard that defines how two hosts con-

nect to each other and exchange data. 

TLS Transport Layer Security. An encryption protocol that secures communica-

tion on the internet. 

TTN The Things Network. A project that aims to build a global network for the 

Internet of Things. 

TTI The Things Industries. An IoT company that provides solutions and assis-

tance for other companies in their LoRaWAN implementations. 



 

 

UDP User Datagram Protocol. A communication protocol used mainly to estab-

lish low-latency and loss-tolerating communications between hosts. Due to 

its simplicity, the protocol is prone to packet losses, errors and duplication. 

VM Virtual Machine. A software that emulates the behavior of a separate com-

puter. 

XOR Exclusive OR. A logical operation that outputs true if the inputs differ.
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1 Introduction 

This thesis examines ways of setting up a private LoRaWAN network with user authen-

tication. LoRaWAN is a higher-level network architecture utilizing LoRa protocol and add-

ing on top of it a structure with which IoT devices can efficiently communicate over to 

end-user interfaces. LoRa is a fairly recently emerged low power, long range wireless 

communication protocol developed to meet the needs of the rapidly expanding IoT infra-

structure. 

The thesis was carried out for Metropolia University of Applied Sciences with a funda-

mental purpose of enabling easier and faster development of devices utilizing LoRa tech-

nology in the Metropolia UAS premises. A secondary goal of the thesis was to enable an 

authentication method on the network which uses Metropolia user credentials as a valid 

way of authenticating. 

This thesis is divided into six sections. The first section introduces the topic of the thesis 

along with a brief explanation of the technologies utilized in it. The second section de-

scribes in detail the LoRaWAN network protocol with all its components while section 

three introduces in detail the network server project which is used in the thesis to set up 

a private LoRaWAN. 

The fourth section gives an explanation on how the thesis was planned and which meet-

ings were held and which discussions were had. Section five focuses on describing the 

steps taken in the development and testing of the network. In section six, the conclusion 

of the thesis is discussed, and possible future steps are considered. 
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2 LoRaWAN network protocol 

This chapter describes the LoRaWAN network protocol in detail. LoRaWAN is consid-

ered to be equivalent to the data link and network layer (layers 2 and 3) of the OSI model 

and it operates on top of LoRa modulation technology which is the equivalent of the 

physical layer (layer 1) of the OSI model. If not otherwise specified, this chapter de-

scribes LoRaWAN v1.1, which has some major upgrades in security and otherwise over 

the first stable version LoRaWAN v1.0. 

2.1 Overview 

LoRaWAN network usually uses the star-of-stars topology where each end-device is 

connected to one or more gateways over a single-hop LoRa connection. The network 

itself usually consists of a cluster of servers that often reside at the same location in the 

network. The servers can, however, also be distributed across the LoRaWAN network. 

 

The usual way of implementing a LoRaWAN network is shown in the following figure: 

 

Figure 1. Example of a LoRaWan network device at home. [2, p. 8.] 

The message flow of the network is bidirectional. In up-link messages, the end-device 

transmits a message over the LoRa network. One or more gateways relay this message 

to a Network Server over a secured standard IP connection. The Network Server then 

routes it to the correct Application Server. The Application Server provides the end user 

interface, such as a mobile application or a web page.  

In case the Network Server receives a Join-request from an end-device initiating the 

connection, it forwards the end-device information to a Join Server. The Join Server 
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takes care of the Over-The-Air (OTA) -activation of the end-device. It associates the end-

device with its Network Server and some specific Application Server. This scheme known 

as Join Procedure is described in detail in [2, p. 8.]  

The communication between the end-devices and the gateways is spread out on multiple 

frequency channels and data rates. Any end-device may use any desired channel or 

data rate as long as they switch their channel on each transmission randomly and re-

spect the maximum transmit duty cycle and duration dictated by the local regulations. 

 

As specified in LoRaWAN 1.1 Specification by LoRa Alliance [1, p. 8.], LoRaWAN uses 

symmetric cryptography with session keys to ensure a secure radio transmission. This 

is discussed in more detail in chapter 2.4.1. The session keys are derived from unique 

device root keys. Both of the root keys and the session keys are stored in a Join Server. 

2.2 LoRaWAN components 

All LoRaWAN networks fundamentally consist of the same building blocks: the end-de-

vice sending or receiving data over LoRa radio frequencies, one or more gateways re-

laying the data between the end device and the server, and finally the back-end servers 

handling the data. 

The different protocols over which the LoRaWAN connects, are illustrated in the following 

figure: 
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Figure 2. LoRaWAN network protocols [7]. 

2.2.1 End-device 

The end-devices, also known as motes, along with the gateways are the components of 

the network that communicate over radio frequencies specified by the LoRa Alliance. 

All end-devices have an application layer and a MAC layer. The application layer is con-

nected to an Application Server over the network, while the MAC layer is terminated at 

the Network Server. The MAC layer communication is secured by a Network Session 

Key, NwkSKey and the Application Layer communication by an Application Session Key, 

AppSKey. 

End-devices can be activated on the network in two ways. Activation-by-Personalization 

(ABP) activates the end-device to a specific network with preconfigured server infor-

mation. In this method, the end-device will use the same sessions keys during its lifetime.  

Over-the-Air (OTA) activation makes the end-device perform a Join Procedure with the 

corresponding Join Server to get activated in the network as specified by [2, p. 12]. This 

is a more flexible and usually the preferred approach to device activation as it has less 

security implications and allows for re-keying when compromised according to [10, p. 9.]. 

LoRaWAN end-devices can be divided into three classes based on their functionality: 

Class A, B and C. All the end-devices allow for bi-directional communication. The differ-

ence between the classes lie in the way they receive downlink messages. 

Class A end-devices are the very basic, lowest power devices. The downlink messages 

in this class are only received in two short windows right after an uplink message has 

been transmitted. The following figure by The Things Network illustrates how a server 

can respond in either the first window, or the second one or in neither one, but not in 

both of the receive windows. 
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Figure 3. Transmit/receive scenarios of a Class A end-device [3]. 

The Class B devices allow for flexibility in the receive scenarios by enabling a scheduled 

receive window. These devices can open one or more extra receive windows allowing 

the gateway to send time-synchronized beacons to the end-device. 

The Class C devices are the most power consuming with the lowest latency. Devices of 

this class always have their receive window open when they are not transmitting. 

2.2.2 Gateway 

Gateways function as a bridge between the end-device and the Network Server of the 

LoRaWAN network. Different gateways can vary in complexity of the software running 

on them, but all gateways have at least the same fundamental functions. 
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The gateways are routers with a LoRa concentrator running on them. The concentrator 

is capable of decoding LoRa modulation variants on different frequencies in parallel uti-

lizing a LoRa demodulator. The gateways use higher bandwidth networks to relay the 

data over to the Network Server as described in [4] and [5]. 

The very basic gateway on a minimal firmware only decodes incoming data and relays 

it, thus acting only as a packet forwarder. Gateways can, however, run on an operating 

system, which allows them to have more sophisticated data handling software running 

on them, such as authentication and authorization. Such a gateway is used in this pro-

ject.  

2.2.3 Network Server 

The Network Server is at the center of the star topology and is responsible for some of 

the core features of LoRaWAN. Its functionality varies depending on the architecture of 

the network. The following figure shows a standard non-roaming implementation of a 

LoRaWAN. The gateway–end-device connection is simplified to simply being an end-

device. 
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Figure 4. Simple LoRaWAN 1.1 architecture [6, p. 27]. 

The Network Server checks the end-device address. It forwards all the uplink messages 

sent by end-devices to their corresponding Application Server and queues the downlink 

messages originating from the Application Server to an end-device. It also forwards the 

messages between an end-device and a Join Server in case of an OTA end-device ac-

tivation. [2, p. 9.] 

2.2.4 Application Server 

The Application Server is responsible for the interface accessed by the end-user. It han-

dles the uplink messages from end-devices and generates the downlink payloads to end-

devices as described in [2, p. 11.]. The Application Server used in this project provides 

a web-interface for the end-user. It can also be interfaced over RESTful or gRPC APIs. 
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2.2.5  Join Server 

The Join Server handles all the OTA end-device activations. It holds all the necessary 

information about the end-device in order to handle the activation process. 

The Join Server sends the Network Session Key of the end-device to the Network Server 

and the Application Session Key to the corresponding Application Server [2, p. 10]. By 

doing this, it makes the corresponding servers acknowledge the presence of the end-

device, thus allowing the end-device to connect to the servers. 

In addition to the end-device, the Join Server is the only place the AppKey and the 

NwkKey of the end-device are stored in addition to the end-device itself [2, p. 10]. 

2.3 Roaming 

The LoRaWAN supports roaming and there are two types of roaming schemes for the 

network, Passive Roaming and Handover Roaming. 

In Passive Roaming, the end-device connected to a gateway in one LoRaWAN network 

can use the services of a Network Server in another network. In this scheme, the foreign 

Network Server is referred to as the Serving Network Server, and it handles the LoRa 

session and the MAC-layer control of the end-device. The Network Server that is in the 

same network as the end-device is called the Forwarding Network Server, and as the 

name suggests, its responsibility is to forward the frames between the end-device and 

the Serving Network Server.  

The Forwarding Network Server can be configured to be stateful or stateless. When 

stateful, the Network Server creates context for end-devices and utilizes that context to 

process all subsequent packets of the corresponding end-devices. If the Network Server 

is configured to be stateless, it will handle each packet independent of each other. [2, p. 

22.] 

In the Handover Roaming scheme, the home Network Server of an end-device can trans-

fer MAC-control from one Network Server to another. In this scheme, the home Network 

Server handing over the control will stay the same during the whole session. These two 
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roaming schemes can also be combined to create a more flexible network as seen in the 

figure below:  

 

Figure 5. Example use-case of Handover and Passive Roaming together [2, p. 23]. 

In this thesis, no roaming functionality is implemented not only due to it being obsolete 

at this time, but also due to the LoRa Server not having support for roaming at the time 

of writing. 

2.4 LoRaWAN Cryptography 

LoRaWAN uses a cryptography based on AES encryption algorithm with several opera-

tion modes. The encryption of payloads is carried out with AES-CTR and the Message 

Integrity Code (MIC) is computed utilizing AES-CMAC. These aforementioned abbrevi-

ations will be discussed in a bit more detail in this chapter. 

2.4.1 AES encryption algorithm 

AES (Advanced Encryption Standard) is a specification for data encryption by National 

Institute of Standards and Technology (NIST). AES is a subset of a block cipher, 

Rijndael, which was the winner of the AES selection process conducted by NIST to come 

up with a successor for the Data Encryption Standard (DES). AES differs from Rijndael 



  10 (40) 

 

 

 

only by its number of supported block lengths and cipher key lengths as described in [19, 

p. 31]. 

AES is a is symmetric cipher which means that it uses the same key to encrypt and 

decrypt the data. This key must be known both by the sender and the receiver. The data 

to be encrypted is first placed in a byte array. This array is then manipulated with a trans-

formation specific to the standard several times. The amount of transformation rotations 

varies from 10 to 14 depending on the AES key size (128-, 196- or 256-bits). [18.] 

 

Figure 6. AES Design [18]. 

In the Cipher-block of the illustration above, the actual algorithm is applied. A single ro-

tation of transformations consists of four steps: 

• Substitution: The array of bytes is substituted with a non-linear array with as little 

input-output correlation and difference propagation probability as possible. 

• Shift data rows: The data rows of the array are cyclically shifted with each of the 

rows having a different shift offset. 

• Mix columns: The columns of the data array are mixed with efficiency. 



  11 (40) 

 

 

 

• Key addition: Lastly a XOR-operation is performed on each column of the data 

with the encryption key [18]. A XOR- or exclusive or -operation is a logical oper-

ation that outputs true when the inputs are different, i.e. 1 XOR 0 = TRUE. 

General design guidelines for each of these steps are defined by Daemen and Rijmen in 

[19, p. 34-41]. 

2.4.2 AES-CTR 

AES-CTR (Counter-Mode) is an AES operation mode defined by NIST. A total of 5 dif-

ferent AES operation modes are defined by NIST at the time of writing out of which AES-

CTR is considered to be the best according to [20] and numerous other sources. 

 

Figure 7. CTR mode of operation scheme [20]. 

In the figure above the operation of the CTR mode is described. To define the compo-

nents in the figure: (Counter, Counter +1, …, Counter + N - 1) is the input or initialization 

vector of the block cipher in AES-CTR mode. In the scheme above, the counter is a 
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randomly generated, non-repeatable number that is on the order of 96 bits, according to 

[20]. In [21, p.1] it is, however, pointed out that this is just one of many ways to implement 

this encryption scheme. K is the encryption key used with the block cipher and it is the 

same for all the blocks. A XOR-operation is performed on the output of the block cipher 

using a plaintext message (P1, P2, …, PN). This message is the actual data to be en-

crypted.  

The output of the XOR-operation (C1, C2, …, CN) and the Counter are the parts that are 

typically transmitted to the decrypting end. The receiving end knows the encryption key 

K and performs the same exact encryption process using the Counter it received. The 

only difference is that the XOR-operation is performed on the output of the block cipher 

using the output of the XOR-operation performed in the encryption process (C1, C2, …, 

CN). The output of this operation is the original message in plain text.  

AES-CTR provides a simple, yet powerful encryption method which at the time of writing 

is still unbreakable if implemented correctly. It does not, however, provide any form of 

authentication. 

2.4.3 AES-CMAC 

For authentication, LoRaWAN uses AES-CMAC. This is an authentication protocol fun-

damentally based on a technique called cipher block chaining message authentication 

code (CBC-MAC).  

CBC is a method where a block of a message is encrypted with a block cipher algorithm. 

This encrypted block is then forwarded as a parameter to encrypt the next block of the 

message. Hence the name cipher block chaining. Because each block relies on the 

proper encryption of the previous block, this method effectively ensures the authenticity 

of the message, because if one the encryption of a single block along the way is some-

how altered, the resulting message will change in an unpredictable way. 

CBC-MAC is almost identical to CBC except for a couple of details. CBC-MAC uses a 

static initialization vector, usually consisting of zeroes, and only outputs one result as 

shown in the figure below.  
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Figure 8. CBC-MAC algorithm [22]. 

CBC-MAC and CBC are, however, only secure when the message is of fixed length. For 

this flaw a several fixes were introduced, one of which is CMAC, also known as OMAC 

(One-key MAC). CMAC improves the CBC-MAC by adding an extra layer of security to 

the last XOR-operation of the block chain [23, p.3]. 

AES-CMAC is thus simply CMAC which uses AES encryption as its block cipher and 

performs the XOR-operation on the last block with an encryption key that is generated 

utilizing AES [24].  

2.4.4 LoRaWAN packet 

Each LoRaWAN packet is secured utilizing all the previously mentioned encryption 

schemes. The figure below illustrates the encryption scheme. 

 

Figure 9. LoRaWAN packet structure [17]. 
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The payload within the packet is encrypted by AES-CTR. As described in [1, p. 25] , the 

encryption key used in the AES-CTR encryption process is either AppSKey or NwkSKey 

depending on the endpoints of the communication. The different LoRaWAN keys are 

discussed in detail in chapter 2.6.  

The message integrity code (MIC) is calculated over all the fields of the packet frame 

using the NwkSKey. This encryption is carried out by AES-CMAC. The MIC comprises 

the encrypted payload and the encrypted frame, which means that both the integrity and 

the authenticity of the frame can be verified by simply checking the MIC. 

2.5 LoRaWAN security 

The security aspects of the initial release of the LoRaWAN specification 1.0 have been 

reviewed on several papers and a lot of security faults were found. Most of these faults 

were, however, addressed in the newer version 1.1 of the LoRaWAN specification. In 

this chapter the security aspects of the updated LoRaWAN version 1.1 will be viewed. 

2.5.1 Security challenges 

LoRaWAN has several security challenges even in the updated version 1.1. Depending 

on the size of the network and the number of functionalities implemented, the amount of 

challenges varies. 

Merely the sheer amount of different type of servers required to set up a fully functioning 

network makes it compilated to manage and to ensure its security. However, according 

to [10] the weakest link of LoRaWAN are its gateways. Because there are typically only 

a few gateways deployed to cover a rather large area, if a gateway was captured or 

tampered with, it could easily destroy a connection of quite many end-devices. 

There are security implications regarding the security key distribution in LoRaWAN. As 

mentioned in more detail in section 2.2, the keys can be distributed by two different 

mechanisms, ABP or OTAA. While ABP is more straightforward and makes deployment 

slightly easier, it has a clear disadvantage over OTAA: ABP does not allow for re-keying, 

which means that if a device is compromised, there is very little to be done to fix the 
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situation. As mentioned in [10 p. 9], the root keys, AppKey and NwkKey, need to be 

securely stored. For this, it is also pointed out in [10] that a hardware-secure way of using 

tamper-proof or -resistant memory elements needs to be used. 

Even though the possibility for re-keying is introduced for OTAA devices, no mechanism 

to perform a scheduled and organized re-keying is given which means that it is up to the 

provider to implement a re-keying scheme. Neglecting this may reduce security consid-

erably. 

  

Figure 10. Root key re-keying scheme [15, p.9]. 

The figure above illustrates a possible re-keying scheme for the root key. In this scheme 

the update routine is carried out between the end-device and the Join Server over the 

Network Server, and the Application Server is not involved at all. 

The re-keying challenge appears also in a situation where the JoinEUI of a Join Server 

requires modification. If the JoinEUI is modified, all the end-devices connected through 
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that Join Server will become useless, due there being currently no scheme for re-distrib-

uting a new JoinEUI to all the end-devices. 

In this project, the OTAA method is used and the keys are stored in a PostgreSQL data-

base protected by a strong password. The server in which the database is located re-

sides in Metropolia’s local network, and is only accessible over password protected SSH 

connection originating from within Metropolia’s local network. Due to all these re-

strictions, the root keys can be considered safely stored. No re-keying scheme is imple-

mented in this project. 

In addition to the re-keying scheme, several other security aspects are left for the network 

provider to be solved. The exit procedure of end-devices is one of these. This procedure 

is only vaguely described in the description as mentioned in [10, p, 10], but is strongly 

suggested to be thoroughly implemented by the provider. This includes permanently de-

leting all information about the end-device from the Application Server after an end-de-

vice has exited. 

2.5.2 Security threats 

According to [10] LoRaWAN is more susceptible to physical attacks than higher layer 

attacks as illustrated in the following figure. 
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Figure 11. Security evaluation of LoRaWAN v1.1 [10, p. 17]. 

In the diagram above several different security threats are evaluated. Even though many 

of the known threats were eliminated in LoRaWAN 1.1 there are still many scenarios left 

where a part of the network is compromised.  

Man-in-the-middle (MITM) attacks include bit-flipping and frame payload attacks. Bit-flip-

ping is a scenario where an adversary changes the content of a message between serv-

ers, namely Application Server and Network Server. Frame payload attacks are more 

likely to be used in a network that supports roaming, because the FRMPayloads are 

transported between Network Servers which consider each other safe by default. [10, p. 

14.] 
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Physical attacks include not only destroying or stealing a device but also cloning the 

firmware or replacing it altogether. To prevent an adversary from tampering with the firm-

ware, a secure element can be implemented into the end-device, making it very difficult 

if not impossible to access the protected memory. 

In this project, the servers are running on a virtual machine in Metropolia’s local network, 

so they are very unlikely to become physically attacked. The gateway, however, is in a 

very open and easily accessible location in the public spaces of the Metropolia Myyrmäki 

Campus and could very easily be captured or otherwise harmed by someone with mali-

cious intent. This flaw in security is however overlooked until the end of the testing since 

the open and centered location was purposely selected to optimize the reach of the gate-

way over the campus. Once the testing of the network is over, a more secure location 

will be chosen for the gateway. 

2.6 Key distribution 

LoRaWAN utilizes a wide variety of different authentication keys depending on the im-

plementation. In the case of OTAA devices, there are always two root keys, namely Ap-

pKey and NwkKey, from which most of the other keys are derived. The root keys are 

stored in the end-device as well as in the Join-server that is responsible for enabling the 

connection of an end-device to the Network Server. The key scheme as whole is de-

scribed by [15]. 

In LoRaWAN v1.0, the AppKey was the sole root key from which the session keys were 

derived. In addition to being the only root key, it was unchangeable. These issues posed 

several security threats that were pointed out by Jaehyu Kim and JooSeok Song in [16]. 

These threats were addressed in LoRaWAN v1.1 by introducing the dual-key scheme 

and an updated OTAA join-procedure, both of which were proposed by Kim and Song. 

The following figure illustrates the key distribution scheme of LoRaWAN v1.1. 
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Figure 12. LoRaWAN 1.1 key distribution scheme [15, p. 3]. 

As seen in the previous figure, the session keys (FNwkSIntKey, SNwkSIntKey, 

NwkSEncKey, AppSKey) are derived from the root keys in the Join Server. These ses-

sion keys are then used by the end-device and the corresponding server to ensure a 

secure connection. 

According to [10, p. 9] there is currently no definition on the session durations of Lo-

RaWAN, which means that it is up to the provider to define the time to live for each 

session. In LoRa Server the device session TTL is defined in the configuration of the 

Network Server component. 

In order to enable remote multicasting in a secure way, LoRa Alliance introduced a set 

of new keys in [13] at the end of 2018. The generation of these keys follow a logic similar 

to the basic LoRaWAN 1.1 key distribution scheme shown in Figure 8.  A new multicast 

root-key is derived from the existing AppKey and from that key, all the other multicast 

related keys are derived. This process is described in more detail in chapter 2.6.3. 
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2.7 LoRaWAN FUOTA Process 

LoRaWAN supports Firmware Update Over-The-Air (FUOTA). The process runs at the 

application layer of the OSI model which means the whole process is version agnostic 

as the different versions of LoRaWAN have differences on the MAC sublayer of the OSI 

model. At the time of writing, the FUOTA update was fairly recently specified by LoRa 

Alliance. LoRa Server has already support for limited functionality of FUOTA. However, 

it is in experimental stage and only supports firmware updates to single devices, whereas 

the specification by LoRa Alliance allows updating multiple devices at once by multi-

casting. Even though the FUOTA method is not being utilized in this project, the inner 

functionality of it will be quite thoroughly discussed in the following sections due to it 

being a functionality of high importance in development environment. 

2.7.1 Update Process Summary 

LoRa Alliance defines several new components for the FUOTA process, and the firm-

ware update happens between these components: 

• Firmware Update Server: The firmware update images are generated on this 

server and passed on to the Application Server. The images contain a header 

and a digital signature using a private/public key scheme. 

• File Distribution Server: On the Application Server resides File Distribution Server 

(FDS), which is tasked to deliver the firmware update images to the end-device. 

If a multicast group is used, the FDS gathers the identifiers of all the end-devices 

that will be updated. The FDS sets up the fragmentation session for the end-

devices to be updated and sends the fragmented file to the Network Server. The 

Network Server will then broadcast or unicast the fragmented file to the end-de-

vices as specified in [11, p. 8]. 

• File Distribution Client: The counterpart of the FDS resides on the end-device. 

The end-device reconstructs the firmware image once it has received enough 

fragments.  
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• Firmware Update Agent: Once the File Distribution Client on the end-device has 

reconstructed the image, the Firmware Update Agent verifies the digital signature 

signed by the Firmware Update Server and confirms that the received image is 

compatible with the end-device. Once confirmed and verified, the end-device 

marks the image “ready”, which means that the bootloader will know to install it 

at the next reboot. Once the end-device reboots, the bootloader will decompress 

and install the new firmware and reboot again. It rejoins the network if in OTAA 

mode. Once completed, the end-device may optionally send its firmware version 

to the Firmware update server which can then collect the firmware versions of all 

the end-devices and mark them as updated. As pointed out in [11, p. 8], this last 

feature is yet to be defined by the LoRa Alliance. 

The following figure illustrates how the different FUOTA components interact with each 

other: 

 

Figure 13. FUOTA architecture [11, p.7]. 

As seen in the figure, the File Distribution Server and the File Distribution Client comprise 

three subfunctions which will be further discussed in the following sections.  
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2.7.2 LoRaWAN Clock Synchronization 

LoRa Alliance has introduced a package for end-device clock synchronization. It is useful 

for devices that do not have access to an accurate time source. If an end-device is run-

ning on LoRaWAN 1.1, it should use the DeviceTimeReq MAC command instead to re-

quest the correct time from the server. [12, p.7.] 

A synchronized clock is essential to FUOTA process as it enables the synchronized 

transaction of fragmented packets between server and end-device. It is also needed for 

multicast group synchronization. This is discussed further in the next section. 

The clock synchronization message package consists of a set of unicast uplink/downlink 

messages that the end-device and the server us to synchronize the clock: 

 

Figure 14. Clock Synchronization Message package messages [12, p. 6]. 

The figure above describes each of the commands used to synchronize the clock of the 

end-device with the clock of the server. The parameters for each of the commands are 

out of the scope of this thesis. 
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2.7.3 Remote Multicast 

In [13] Lora Alliance specifies an application layer messaging package which is designed 

to perform a set of operations on multiple end-devices synchronously. This method can 

be used in a wide set of applications in addition to the multicast FUOTA process. 

The defined operations consist of programming a multicast distribution window into the 

end-devices, having the end-devices in a group switch to Class B or Class C temporarily 

in order to allow for higher transmission rates, and finally closing the multicast distribution 

window. These operations can be used on a set of end-devices once they have their 

clocks synchronized with the server. 

A new encryption key derivation scheme is introduced for the downlink multicast mes-

sage encryption. In this scheme all downlink data is encrypted using a multicast group 

McAppSKey, which is derived from a multicast group key called McKey. The McKey is 

decrypted from a McKey_encrypted key sent by the server. The decryption is done using 

the following formula: McKey = aes128_encrypt(McKEKey, McKey_encrypted), where 

the McKEKey is a lifetime end-device specific key derived from either from the end-de-

vice root key or the AppKey, depending on the LoRaWAN version of the end-device. The 

McKey and the McAppSKey are the same for all the end-devices of the same group. [13, 

p. 9-10.] 
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Figure 15. Multicast key derivation scheme [13, p.10]. 

The figure above illustrates the multicast key derivation scheme. As seen in the figure, 

in addition to the McAppSKey, a McNwkSKey is also derived from the McKey. The 

McNwkSKey is used to encrypt the messages between the end-device and the Network 

Server. 

2.7.4 Fragmented Data Block Transport 

As specified by the LoRa Alliance, the fragmented data block transportation package can 

be used not just in the FUOTA process, but in all data transfer where a large (from 1kB 

up) amount of data is transferred to an end-device. It is a process where, as threcee 

name suggests, a large amount of data is separated (fragmented) into data blocks and 

sent separately to the end-device. Data transferred this way is less likely to become 

corrupted due to connection errors and such. 

To ensure that the data received by the end-device is valid, the payloads are encrypted 

and authenticated using the McAppSkey and McNwkSKey. However, this method alone 
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does not guarantee data validity, because these keys are the same on all the end-de-

vices in the same group, and if one of the devices is compromised, the keys can no 

longer be considered secure. 

To address the shortcomings of the key authentication scheme, LoRa Alliance provides 

guidelines to an additional step of authentication based on public/private cryptography 

certificate in [14, p.13].  
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3 LoRa Server  

LoRa Server is an open-source LoRaWAN network server project. It was created by 

Orne Brocaar, a Dutch freelance software engineer. 

Lora Server introduces a secure and an easy-to-use method of implementing a private 

or public LoRaWAN network. It abstracts each of the core components of the LoRaWAN 

as specified by the LoRa Alliance and adds to them features such as authentication over 

MQTT and PostgreSQL databases. 

The reason LoRa Server was used in our implementation was precisely because of its 

clear, open-source interface along with its modifiability to our needs. It also utilizes well-

known technologies, making the learning curve for using it a bit less steep. 

The architecture of LoRa Server can be seen in the following figure. 

 

Figure 16. LoRa Server architecture [8] 
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As seen in Figure 6, LoRa Server uses MQTT and gRPC as the primary way of com-

municating between different components. 

In the heart of the LoRa Server project there is the Network Server -component of the 

LoRaWAN, confusingly also called LoRa Server. This LoRa Server is responsible for 

implementing all the functions that the Network Server of LoRaWAN has. Inter-compo-

nent communication between the server components is communicated over gRPC. [8.] 

Another important component of the LoRa Server is the LoRa Gateway Bridge. It ab-

stracts the packet-forwarder UDP protocol used by minimal firmware gateways into 

JSON packets over MQTT protocol. This LoRa Gateway Bridge can be implemented 

either in the backend or in the gateway itself. Both implementations are illustrated in 

Figure 6. Configuring it on the gateway adds a layer of security over the communication, 

by using MQTT with TLS instead of UDP in gateway-server connections.  

LoRa Server project introduces LoRa Gateway OS as a way for quickly setting a gateway 

up and running as well as bundling the packet forwarder and LoRa Gateway Bridge in 

the same packet. Our project uses the LoRa Gateway OS for Wifx LORIX One gateway. 

The Application Server in LoRa Server is abstracted to the LoRa App Server which in 

addition to providing the required functions of an Application Server, also provides a web 

user interface as well as a RESTful and gRPC API. It can handle end-device data over 

different protocols such as MQTT or HTTP and the data can be written to InfluxDB data-

base directly. Our implementation uses MQTT over TLS. 

LoRa App Server uses JSON web-tokens for authentication and authorization on its 

gRPC and JSON REST interfaces, while the communication over MQTT uses its own 

way of authenticating. 

LoRa Server also has a component for geolocation services called LoRa Geo Server. It 

is used to resolve end-device locations based on time difference of arrival (TDoA) meta-

data provided by the gateways [9]. This component is not included in our implementation 

of the network but could be added to it at later development. 
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4 Project specifications and Methods 

4.1 Meetings and Discussions 

The initial project meeting was held at Metropolia with the instructor of the thesis. In this 

meeting the framework for the project was discussed. A decision was made that that the 

project would start by studying the background of the subject. It was also discussed that 

the project would possibly be carried out in cooperation with another student from Swit-

zerland.  

According to the project plan the hardware part, including setting up and configuring the 

gateways and doing the testing of the network with self-configured devices, would be 

carried out by the author. The network related area, including the backend and the au-

thentication services, would be implemented by the collaborator from Switzerland. 

The second meeting with the instructor was held at Metropolia on 11 February, 2019. 

The implementation was further discussed in detail. It was decided that the author would 

investigate the implementation of the whole network utilizing the TTN open-source librar-

ies in more detail. The goal was to find out if the source code offered by TTN would be 

suitable for this project. 

During the second meeting, it was also discussed how to test the network once it had 

been set up. The instructor of the thesis handed out an expansion board and a discovery 

kit to the author which could be used to test the network. It was discussed that the ex-

pansion board, USI STM32 Nucleo expansion board for LoRa, would be researched first. 

The goal was to see how wide usage the AT-command interface of the board provided, 

and if the board was relatively easy to connect to an evaluation board to be later easily 

usable by students. 

After the second meeting, the customer service of The Things Industries (TTI) was con-

tacted and asked whether the TTN could be used for the needs of this project. The re-

sponse from TTI did not mention if there would be a way of implementing the LoRaWAN 

using TTN free of charge. The TTI customer service was contacted again with a follow-

up question regarding this issue, but no reply was received. 
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Later, it was discovered that TTN also had their own separate email address for Q&A. 

Thus, the same questions regarding the implementation were asked again, this time from 

the email provided by TTN.   

The CEO of TTI replied to the email sent and confirmed that the TTN could be used 

freely, now and in the future, to implement a private network. He also confirmed that the 

Identity server, a feature of TTN which enables user authentication, could be used in a 

private network. Lastly, he confirmed that the whole network could be hosted and man-

aged privately independent of the global network provided by TTN. 

A third meeting with the instructor was held on 13 May, 2019 at Metropolia Myyrmäki 

Campus. During this meeting the porting of the LoRaWAN to the Metropolia premises 

was discussed. A decision was made that the LoRaWAN would be installed in Myyrmäki 

Campus during the summer. Another topic discussed with the instructor was the imple-

mentation of the user authentication of the server. The authentication could be done 

utilizing LDAP (Lightweight Directory Access Protocol) and that Ilkka Kylmäniemi, a lec-

turer at Metropolia, would possibly be able to give further information regarding this mat-

ter. 

Kylmäniemi was approached via email on 15 May, 2019 regarding the user authentica-

tion. He confirmed that the API to use is indeed LDAP and that Metropolia’s IT Services 

could tell more about it. 

A series of emails was exchanged with Metropolia Helpdesk starting from 10 May, 2019. 

The topic of discussion was the implementation of the Metropolia’s user authentication. 

Initially the Helpdesk was asked about the usage of user credentials in MQTT authenti-

cation. The conversation was continued over the phone on 5 June, 2019 with Juhana 

Lähteenmäki from Helpdesk. All the matters to consider when moving the LoRaWAN to 

Metropolia premises were discussed over the phone. Lähteenmäki provided detailed in-

formation on who to contact on which matter. 

After the discussion with Lähteenmäki, the webmaster of Metropolia, Pekka Perälampi 

was approached with an email requesting for general guidance on the migration of the 

server to Metropolia’s local network. Perälampi forwarded the request over to Metropo-

lia’s IT Services, but no response was ever received from their end. 
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From June to July of 2019, the thesis work was carried out at Metropolia’s Myyrmäki 

Campus. During this time the Helpdesk operating on campus was aiding with the inte-

gration of the LoRaWAN to the Metropolia’s network. Janne Teräslahti from IT support 

helped finding a suitable place for the LoRaWAN gateway and gave general advice about 

the network infrastructure of Metropolia and details on who to contact on which matter if 

needed.  

4.2 Researching and Planning 

The planning of the project was started after the first meeting. The first step was to find 

out what the currently existing implementations for a LoRaWAN are, and which method 

would best suit the needs of this project, if any. 

The first option researched that could have been possibly used for the implementation 

was The Things Network (TTN). TTN refers to the public LoRaWAN network currently 

funded by The Things Industries. 

The reason that this was researched first was that the TTN has a lot of their data open 

source and if they had offered a way to create a custom-made backend that could have 

been hosted by Metropolia, but still be connected to the vast TTN, it would have been an 

ideal way of creating the Metropolia LoRaWAN. 

Another seemingly viable existing way to implement the LoRaWAN was the LoRa Server 

project, which is another open source set of applications with which one can implement 

their own private LoRaWAN. The positive features of LoRa Server were its easy config-

urability and the fact that it uses MQTT, a lightweight messaging protocol, as its primary 

communication protocol. 

After the second meeting with the instructor, the extent of the usage possibilities of the 

Things Network were researched. After some research it was concluded that the TTN 

V3, which was released at the beginning of 2019, could possibly be suitable for the im-

plementation. 
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While waiting for the response from TTN to the mail querying the usage limitations of the 

TTN, the alternative option, LoRa Server, for the implementation of the LoRaWAN was 

researched further. 

Based on the information provided on the website of LoRa Server, it also seemed like a 

very promising solution for the implementation. The LoRa Server provided the necessary 

level of security over the connections between the gateways and the backend. It also 

provided the possibility of setting up a custom user database, which could potentially be 

used to map the Metropolia accounts to the backend. 

Ultimately, after some research on both implementation options, the LoRa Server was 

chosen as the platform and the development of the LoRaWAN was initiated. 
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5 Development and Implementation 

Initially the network was intended to be implemented utilizing The Things Network, and 

the open source libraries related to it. However, due to the mechanics of it not being 

completely transparent and the implementation being unfamiliar and abstract, it was con-

cluded that a more suitable approach for the implementation would be utilizing an open-

source project, LoRa Server. Most of the configuration was carried out by following the 

guidelines provided by LoRa Server documentation. 

5.1 Gateway Configuration 

Once the approach was chosen, the implementation was initiated by configuring a gate-

way for the network. LORIX One, a low cost LoRa IP43/IP46 gateway by Wifx, was used 

for this purpose. LoRa Server provided a bootable LoRa Gateway OS which enabled a 

relatively fast configuration of the gateway. 

The LoRa Gateway OS was flashed on an SD card and the LORIX One gateway module 

was then booted up using this SD card. Once the gateway was up and running, it was 

configured over an SSH connection. In order to make the gateway forward the messages 

that it received to the Network Server; necessary parameters had to configured. 

The LoRa Gateway OS includes two fundamental message relay functions, the first be-

ing the packet forwarder UDP protocol. This is the very basic protocol which handles the 

forwarding of data from an end-device to a server through an UDP/IP link. Due to the 

unreliability of UDP, LoRa Server adds a level of abstraction on the packets before send-

ing them to a server. This level of abstraction is called the LoRa Gateway Bridge. It 

abstracts all outgoing packets into JSON over MQTT, which makes them easy to monitor 

and secure. 

The packet-forwarder was thus configured to forward all packets locally within the gate-

way module to the LoRa Gateway Bridge, which was then configured to send the abstract 

JSON packets to the correct Network Server over TCP/IP protocol.  In the first stage of 

development, little to no security measures were taken.  
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5.2 Server-side Configuration 

Initially the backend was deployed on Cloud IoT Core, an IoT service by Google. How-

ever, the configuration of the connection between the gateway module and the Cloud 

IoT Core took unnecessarily much time and work, and eventually resulted in a failure. 

Thus, a more familiar approach for the backend was chosen. The Network Server along 

with the Application Server was deployed on an Ubuntu VM running on Google Cloud 

Platform. 

A PostgreSQL database was set up for the Network Server to persist gateway infor-

mation. Then the actual LoRa Server was installed, using a Debian package. The Net-

work Server was configured to have the correct network parameters. 

After the Network Server had been verified to be functional, the Application Server, LoRa 

App Server, was configured following the same structure as the Network Server config-

uration.  

5.3 Testing the Network 

Along the development and initial set up of the network, there were steps of testing each 

individual component of the network. Finally, when everything seemed to function as it 

was intended, the functionality of the network was tested by connecting an end-device 

to the gateway and sending test data in. 

B-L072NZ-LRWAN1, a LoRa Discovery kit by ST was used. This device was chosen due 

to its seemingly quick prototyping and the author being already familiar with STM32 mi-

crocontrollers. The test device was set up utilizing the example libraries provided by 

STMicroelectronics. 

After getting all the device and network configurations correct, the end-device sent data 

to the Application Server successfully. The following figure shows the uplink message 

sent by the end-device, displayed on the web user interface of the LoRa App Server. 
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Figure 17. An uplink message sent by an end-node to the Application Server. 

5.4 Network Integration 

Before starting the integration of the LoRaWAN into the Metropolia network some secu-

rity configurations had to be carried out. The MQTT communication between the LoRa 

Server and the gateway as well as the internal MQTT communication of the LoRa Server 

was configured to transfer data over a TLS secured port 8883 instead of the MQTT de-

fault port 1883. 

The first step in the integration was to install the gateway to Metropolia’s Myyrmäki Cam-

pus. The following figure shows how the gateway was installed. 
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Figure 18. Gateway installed at Metropolia’s Myyrmäki Campus 

The location of the gateway was discussed with the instructor of the thesis, a space 

which is  one floor above the cafeteria of the Myyrmäki Campus was chosen because it 

is at the center of the whole campus and the space is wide and open, which will minimize 

the signal loss caused by obstacles. 

The server was configured on a virtual machine running on a Red Hat CFME (Cloud-

Forms Management Engine) managed by Metropolia. The platform only supported the 

creation of Windows Servers or CentOS; thus, CentOS was chosen as the operating 

system for the server. 
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The migration of the backend from a Debian-based architecture to a Red Hat Enterprise 

Linux (RHEL) based one was not without some complications. Whereas LoRa Server’s 

website provided a lot of detail on the setup of the backend on Debian distributions, there 

was very little detail about how to do the same on RHEL distributions. In addition to the 

little amount of information, RHEL was also unfamiliar to the author, making the transition 

quite slow and complicated. 

Because there were no ready-made installation packages for the images of the backend 

for RHEL-based distributions, the backend was first set up using Docker-Compose, 

which is a tool that enables running of multi-container Docker applications. The backend 

was successfully set up and running using Docker-compose and the process was quite 

trivial. However, trying to configure the MQTT broker on the Docker-compose configura-

tion files ended up being not only non-trivial, but too complicated. 

Because the Docker-compose was not familiar to the author and the project did not move 

forward, another approach was taken. The backend was installed component by compo-

nent by downloading the source files as RPM packages and configuring them one by 

one. This approach ended up being fruitful and the backend was once again set up suc-

cessfully and this time the MQTT broker was also configured successfully to use port 

8883 and use ACLs and usernames and passwords to authenticate users. 

After the backend was set up and running, the gateway was configured to connect to the 

IP address of the backend now running on Metropolia’s Educloud. However, the gateway 

failed to connect to the backend after all the configurations. This issue was thoroughly 

investigated using different packet monitoring methods to no end. Metropolia’s IT Ser-

vices were also consulted regarding this issue, but according to their systems, there 

should nott have been anything blocking the communication. 
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6 Conclusion 

The thesis aimed to implement a private LoRaWAN network on Metropolia’s premises. 

The network would consist of the server-side backend functionalities as well as the phys-

ical gateway converting and relaying RF messages to the backend. In addition to the 

basic operation, an authentication method was intended to be implemented to the net-

work, which would only allow Metropolia students to utilize the network. 

The initial setup and testing of the LoRaWAN outside Metropolia’s premises were suc-

cessful. In this phase, only the basic operation was tested. The gateway seemed to suc-

cessfully forward packets to the backend from which they are correctly displayed to the 

front-end.  

However, when migrating the server to Metropolia’s local network there seemed to be 

some complications. The development was hindered by the limitation of only being able 

to use a RHEL-based distribution, CentOS 7, for the server whereas the initial setup was 

carried out using a Debian-based distribution. The server was successfully set up. How-

ever, the connection between the server and the gateway was never established on 

Myyrmäki Campus, due to an unknown blockage between the two. 

The secondary goal of implementing the user authentication was set up so that the 

MQTT broker would allow only specific topics to be published/subscribed to by only the 

users found from the server’s PostgreSQL database.  

Instead of implementing a login system that could be used with Metropolia login creden-

tials or creating a user on the server for each student, the system was set up so that only 

a set of user accounts would be generated by a script located on the backend. Each of 

these user accounts would be shared by different groups of students defined by the lec-

turer. This approach was an attempt to minimize the amount of manual configuration 

needed, when new users start using the network. 
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