

Abel Onditi

Implementation of LoRaWAN for
Metropolia University of Applied
Sciences

Metropolia University of Applied Sciences

Bachelor of Engineering

Information and Communication Technology

Bachelor’s Thesis

2 February 2019

 Abstract

Author
Title

Number of Pages
Date

Abel Onditi
Implementation of LoRaWAN for Metropolia University of Ap-
plied Sciences

40 pages + 2 appendices
23 September 2019

Degree Bachelor of Engineering

Degree Programme Information and Communication Technology

Professional Major Smart Systems

Instructors

Keijo Länsikunnas, Senior Lecturer

The Internet of Things (IoT) field and the development of new IoT devices and solutions are
growing rapidly. Many A lot of IoT related projects are also being conducted in Metropolia
University of Applied Science.

However, the IoT end-devices are often low-powered devices and as such, they often use
communication protocols that require low power to function. One communication technology
that has gained a lot of popularity in the field of low power data transport is LoRa and the
higher-level implementation of the technology, LoRaWAN (LoRa wide area network) is al-
ready widely used in most countries around the world.

The primary goal of this thesis was to set up a private LoRaWAN, a low power, wide area
network, on one or more Metropolia UAS campuses which could be used by Metropolia
students in their projects and studies. A secondary goal of the thesis was to also implement
an authentication method to the network which utilizes Metropolia’s user database to au-
thenticate and authorize the users. Another goal was to test the network using possibly sev-
eral different evaluation boards to see which board would require the least amount of work
to use the network with.

The network was implemented using LoRa Server, an open-source LoRaWAN network
server, to create the backend and LORIX One LoRaWAN gateways to create the physical
network. The LoRa Server was implemented on CentOS 7 running in Metropolia’s educloud-
platform.

Keywords LoRa, LoRaWAN, IoT, Network

 Tiivistelmä

Tekijä
Otsikko

Sivumäärä
Aika

Abel Onditi
LoRaWAN-verkon toteuttaminen Metropolian
Ammattikorkeakoululle

40 sivua + 2 liitettä
23.9.2019

Tutkinto Insinööri (AMK)

Tutkinto-ohjelma Tieto- ja viestintätekniikka

Ammatillinen pääaine Älykkäät järjestelmät

Ohjaajat

Lehtori Keijo Länsikunnas

Esineiden internet on nopeasti kasvava ala ja tuotekehitys sen parissa lisääntyy jatkuvasti.
Myös Metropolian Ammattikorkeakoulussa tehdään useita esineiden internetiin liittyviä
projekteja.

Esineiden internetiin liittyvät laitteet ovat hyvin usein vähävirtaisia, joten ne myös usein
hyödyntävät energiatehokkaita kommunikointimenetelmiä. Energiatehokkaiden
kommunikointimenetelmien parissa erityistä huomiota on saanut LoRa-teknologia, ja sen
korkeamman tason ilmentymä LoRaWAN on jo maailmanlaajuisesti hyödynnettynä
esineiden internetin applikaatioissa.

Tämä insinöörityön päätavoitteena oli toteuttaa yksityinen LoRaWAN-verkko yhdelle tai
useammalle Metropolian AMK:n kampukselle, jota opiskelijat voivat hyödyntää
projekteissaan ja opinnoissaan. Sekundäärinen tavoite projektille, oli toteuttaa verkko
siten, että siihen tunnistautuminen käyttäjänä onnistuu Metropolian yleisiä
kirjautumistunnuksia käyttäen. Tämän lisäksi tavoitteena oli testata verkkoa eri
kehityslautoja käyttäen, tarkoituksena löytää mahdollisimman helposti käyttöönotettava
kehityslauta.

LoRaWAN verkko toteutettiin hyödyntämällä avoimen lähdekoodin alustaa, LoRa Serveriä.
Yhdyskäytävänä päätelaitteen ja verkon välillä käytettiin LORIX One yhdyskäytävää.
Palvelin, jolle LoRa Server asennettiin, toimii CentOS 7 pohjaisella virtuaalikoneella
Metropolian educloud-pilvipalvelussa.

Avainsanat LoRa, LoRaWAN, IoT, Verkot

Contents

List of Abbreviations

1 Introduction 1

2 LoRaWAN Network Protocol 2

2.1 Overview 2

2.2 LoRaWAN Components 3

2.2.1 End-device 4

2.2.2 Gateway 5

2.2.3 Network Server 6

2.2.4 Application Server 7

2.2.5 Join Server 8

2.3 Roaming 8

2.4 LoRaWAN Cryptography 9

2.4.1 AES Encryption Algorithm 9

2.4.2 AES-CTR 11

2.4.3 AES-CMAC 12

2.4.4 LoRaWAN Packet 13

2.5 LoRaWAN Security 14

2.5.1 Security Challenges 14

2.5.2 Security Threats 16

2.6 Key Distribution 18

2.7 LoRaWAN FUOTA Process 20

2.7.1 Update Process Summary 20

2.7.2 LoRaWAN Clock Synchronization 22

2.7.3 Remote Multicast 23

2.7.4 Fragmented Data Block Transport 24

3 LoRa Server 26

4 Project Specifications and Methods 28

4.1 Meetings and Discussions 28

4.2 Researching and Planning 30

5 Development and Implementation 32

5.1 Gateway Configuration 32

5.2 Server-side Configuration 33

5.3 Testing the Network 33

5.4 Network Integration 34

6 Conclusion 37

References 38

List of Abbreviations

ABP Activation by Personalization. An activation scheme, where an end-device

is activated on a network using pre-defined hard-coded credentials.

AES Advanced Encryption Standard. A data encryption specification standard-

ized by NIST.

CMAC Cipher-based Message Authentication Code. Ambiguous to OMAC

CTR Counter. A mode that turns a block cipher into a stream cipher.

FUOTA Firmware-update-over-the-air.

gRPC An open source remote procedure call system. Among other things, it sim-

plifies the complex remote calls between a server and a client.

JSON JavaScript Object Notation. An open-standard lightweight data-interchange

format.

LDAP Lightweight Directory Access Protocol for accessing directory services be-

tween a client and a server.

LoRa A spread spectrum modulation used in the long range, low power LoRa

Technology in the field of Internet of Things.

LoRaWAN LoRa Wide Area Networking protocol. A protocol that is used to connect

low-power devices to a larger network.

MAC Message authentication code is used to authenticate a message. It is often

substituted by MIC to distinguish it from media access control (MAC).

MAC layer Media access control layer. A sublayer of the data link layer of OSI model,

responsible for moving data packets from one network interface card to

another.

MIC Message integrity code. Often used interchangeably with MAC.

MQTT Message Queuing Telemetry Transport. A publish-subscribe-based light-

weight messaging protocol.

NIST National Institute of Standards and Technology. An American institute op-

erating that aims to promote innovation and industrial competitiveness.

OMAC One-key MAC. A message authentication code constructed from a block

cipher.

OS Operating system. A system software that manages all the hardware and

other application programs in a computer.

OSI model Open Systems Interconnection model. A model that standardizes the com-

munication between computers.

OTAA Over-the-air activation. An activation scheme, where an end-device joins

the network by performing a join-procedure.

PostgreSQL A free, open-source relational database management system.

REST Representational State Transfer. An application programming interface

protocol that defines a set of rules to be used when creating web services.

SSH Secure Shell. A protocol that allows a secure connection to a computer

over an unsecure network.

TCP Transmission Control Protocol. A standard that defines how two hosts con-

nect to each other and exchange data.

TLS Transport Layer Security. An encryption protocol that secures communica-

tion on the internet.

TTN The Things Network. A project that aims to build a global network for the

Internet of Things.

TTI The Things Industries. An IoT company that provides solutions and assis-

tance for other companies in their LoRaWAN implementations.

UDP User Datagram Protocol. A communication protocol used mainly to estab-

lish low-latency and loss-tolerating communications between hosts. Due to

its simplicity, the protocol is prone to packet losses, errors and duplication.

VM Virtual Machine. A software that emulates the behavior of a separate com-

puter.

XOR Exclusive OR. A logical operation that outputs true if the inputs differ.

 1 (40)

1 Introduction

This thesis examines ways of setting up a private LoRaWAN network with user authen-

tication. LoRaWAN is a higher-level network architecture utilizing LoRa protocol and add-

ing on top of it a structure with which IoT devices can efficiently communicate over to

end-user interfaces. LoRa is a fairly recently emerged low power, long range wireless

communication protocol developed to meet the needs of the rapidly expanding IoT infra-

structure.

The thesis was carried out for Metropolia University of Applied Sciences with a funda-

mental purpose of enabling easier and faster development of devices utilizing LoRa tech-

nology in the Metropolia UAS premises. A secondary goal of the thesis was to enable an

authentication method on the network which uses Metropolia user credentials as a valid

way of authenticating.

This thesis is divided into six sections. The first section introduces the topic of the thesis

along with a brief explanation of the technologies utilized in it. The second section de-

scribes in detail the LoRaWAN network protocol with all its components while section

three introduces in detail the network server project which is used in the thesis to set up

a private LoRaWAN.

The fourth section gives an explanation on how the thesis was planned and which meet-

ings were held and which discussions were had. Section five focuses on describing the

steps taken in the development and testing of the network. In section six, the conclusion

of the thesis is discussed, and possible future steps are considered.

 2 (40)

2 LoRaWAN network protocol

This chapter describes the LoRaWAN network protocol in detail. LoRaWAN is consid-

ered to be equivalent to the data link and network layer (layers 2 and 3) of the OSI model

and it operates on top of LoRa modulation technology which is the equivalent of the

physical layer (layer 1) of the OSI model. If not otherwise specified, this chapter de-

scribes LoRaWAN v1.1, which has some major upgrades in security and otherwise over

the first stable version LoRaWAN v1.0.

2.1 Overview

LoRaWAN network usually uses the star-of-stars topology where each end-device is

connected to one or more gateways over a single-hop LoRa connection. The network

itself usually consists of a cluster of servers that often reside at the same location in the

network. The servers can, however, also be distributed across the LoRaWAN network.

The usual way of implementing a LoRaWAN network is shown in the following figure:

Figure 1. Example of a LoRaWan network device at home. [2, p. 8.]

The message flow of the network is bidirectional. In up-link messages, the end-device

transmits a message over the LoRa network. One or more gateways relay this message

to a Network Server over a secured standard IP connection. The Network Server then

routes it to the correct Application Server. The Application Server provides the end user

interface, such as a mobile application or a web page.

In case the Network Server receives a Join-request from an end-device initiating the

connection, it forwards the end-device information to a Join Server. The Join Server

 3 (40)

takes care of the Over-The-Air (OTA) -activation of the end-device. It associates the end-

device with its Network Server and some specific Application Server. This scheme known

as Join Procedure is described in detail in [2, p. 8.]

The communication between the end-devices and the gateways is spread out on multiple

frequency channels and data rates. Any end-device may use any desired channel or

data rate as long as they switch their channel on each transmission randomly and re-

spect the maximum transmit duty cycle and duration dictated by the local regulations.

As specified in LoRaWAN 1.1 Specification by LoRa Alliance [1, p. 8.], LoRaWAN uses

symmetric cryptography with session keys to ensure a secure radio transmission. This

is discussed in more detail in chapter 2.4.1. The session keys are derived from unique

device root keys. Both of the root keys and the session keys are stored in a Join Server.

2.2 LoRaWAN components

All LoRaWAN networks fundamentally consist of the same building blocks: the end-de-

vice sending or receiving data over LoRa radio frequencies, one or more gateways re-

laying the data between the end device and the server, and finally the back-end servers

handling the data.

The different protocols over which the LoRaWAN connects, are illustrated in the following

figure:

 4 (40)

Figure 2. LoRaWAN network protocols [7].

2.2.1 End-device

The end-devices, also known as motes, along with the gateways are the components of

the network that communicate over radio frequencies specified by the LoRa Alliance.

All end-devices have an application layer and a MAC layer. The application layer is con-

nected to an Application Server over the network, while the MAC layer is terminated at

the Network Server. The MAC layer communication is secured by a Network Session

Key, NwkSKey and the Application Layer communication by an Application Session Key,

AppSKey.

End-devices can be activated on the network in two ways. Activation-by-Personalization

(ABP) activates the end-device to a specific network with preconfigured server infor-

mation. In this method, the end-device will use the same sessions keys during its lifetime.

Over-the-Air (OTA) activation makes the end-device perform a Join Procedure with the

corresponding Join Server to get activated in the network as specified by [2, p. 12]. This

is a more flexible and usually the preferred approach to device activation as it has less

security implications and allows for re-keying when compromised according to [10, p. 9.].

LoRaWAN end-devices can be divided into three classes based on their functionality:

Class A, B and C. All the end-devices allow for bi-directional communication. The differ-

ence between the classes lie in the way they receive downlink messages.

Class A end-devices are the very basic, lowest power devices. The downlink messages

in this class are only received in two short windows right after an uplink message has

been transmitted. The following figure by The Things Network illustrates how a server

can respond in either the first window, or the second one or in neither one, but not in

both of the receive windows.

 5 (40)

Figure 3. Transmit/receive scenarios of a Class A end-device [3].

The Class B devices allow for flexibility in the receive scenarios by enabling a scheduled

receive window. These devices can open one or more extra receive windows allowing

the gateway to send time-synchronized beacons to the end-device.

The Class C devices are the most power consuming with the lowest latency. Devices of

this class always have their receive window open when they are not transmitting.

2.2.2 Gateway

Gateways function as a bridge between the end-device and the Network Server of the

LoRaWAN network. Different gateways can vary in complexity of the software running

on them, but all gateways have at least the same fundamental functions.

 6 (40)

The gateways are routers with a LoRa concentrator running on them. The concentrator

is capable of decoding LoRa modulation variants on different frequencies in parallel uti-

lizing a LoRa demodulator. The gateways use higher bandwidth networks to relay the

data over to the Network Server as described in [4] and [5].

The very basic gateway on a minimal firmware only decodes incoming data and relays

it, thus acting only as a packet forwarder. Gateways can, however, run on an operating

system, which allows them to have more sophisticated data handling software running

on them, such as authentication and authorization. Such a gateway is used in this pro-

ject.

2.2.3 Network Server

The Network Server is at the center of the star topology and is responsible for some of

the core features of LoRaWAN. Its functionality varies depending on the architecture of

the network. The following figure shows a standard non-roaming implementation of a

LoRaWAN. The gateway–end-device connection is simplified to simply being an end-

device.

 7 (40)

Figure 4. Simple LoRaWAN 1.1 architecture [6, p. 27].

The Network Server checks the end-device address. It forwards all the uplink messages

sent by end-devices to their corresponding Application Server and queues the downlink

messages originating from the Application Server to an end-device. It also forwards the

messages between an end-device and a Join Server in case of an OTA end-device ac-

tivation. [2, p. 9.]

2.2.4 Application Server

The Application Server is responsible for the interface accessed by the end-user. It han-

dles the uplink messages from end-devices and generates the downlink payloads to end-

devices as described in [2, p. 11.]. The Application Server used in this project provides

a web-interface for the end-user. It can also be interfaced over RESTful or gRPC APIs.

 8 (40)

2.2.5 Join Server

The Join Server handles all the OTA end-device activations. It holds all the necessary

information about the end-device in order to handle the activation process.

The Join Server sends the Network Session Key of the end-device to the Network Server

and the Application Session Key to the corresponding Application Server [2, p. 10]. By

doing this, it makes the corresponding servers acknowledge the presence of the end-

device, thus allowing the end-device to connect to the servers.

In addition to the end-device, the Join Server is the only place the AppKey and the

NwkKey of the end-device are stored in addition to the end-device itself [2, p. 10].

2.3 Roaming

The LoRaWAN supports roaming and there are two types of roaming schemes for the

network, Passive Roaming and Handover Roaming.

In Passive Roaming, the end-device connected to a gateway in one LoRaWAN network

can use the services of a Network Server in another network. In this scheme, the foreign

Network Server is referred to as the Serving Network Server, and it handles the LoRa

session and the MAC-layer control of the end-device. The Network Server that is in the

same network as the end-device is called the Forwarding Network Server, and as the

name suggests, its responsibility is to forward the frames between the end-device and

the Serving Network Server.

The Forwarding Network Server can be configured to be stateful or stateless. When

stateful, the Network Server creates context for end-devices and utilizes that context to

process all subsequent packets of the corresponding end-devices. If the Network Server

is configured to be stateless, it will handle each packet independent of each other. [2, p.

22.]

In the Handover Roaming scheme, the home Network Server of an end-device can trans-

fer MAC-control from one Network Server to another. In this scheme, the home Network

Server handing over the control will stay the same during the whole session. These two

 9 (40)

roaming schemes can also be combined to create a more flexible network as seen in the

figure below:

Figure 5. Example use-case of Handover and Passive Roaming together [2, p. 23].

In this thesis, no roaming functionality is implemented not only due to it being obsolete

at this time, but also due to the LoRa Server not having support for roaming at the time

of writing.

2.4 LoRaWAN Cryptography

LoRaWAN uses a cryptography based on AES encryption algorithm with several opera-

tion modes. The encryption of payloads is carried out with AES-CTR and the Message

Integrity Code (MIC) is computed utilizing AES-CMAC. These aforementioned abbrevi-

ations will be discussed in a bit more detail in this chapter.

2.4.1 AES encryption algorithm

AES (Advanced Encryption Standard) is a specification for data encryption by National

Institute of Standards and Technology (NIST). AES is a subset of a block cipher,

Rijndael, which was the winner of the AES selection process conducted by NIST to come

up with a successor for the Data Encryption Standard (DES). AES differs from Rijndael

 10 (40)

only by its number of supported block lengths and cipher key lengths as described in [19,

p. 31].

AES is a is symmetric cipher which means that it uses the same key to encrypt and

decrypt the data. This key must be known both by the sender and the receiver. The data

to be encrypted is first placed in a byte array. This array is then manipulated with a trans-

formation specific to the standard several times. The amount of transformation rotations

varies from 10 to 14 depending on the AES key size (128-, 196- or 256-bits). [18.]

Figure 6. AES Design [18].

In the Cipher-block of the illustration above, the actual algorithm is applied. A single ro-

tation of transformations consists of four steps:

• Substitution: The array of bytes is substituted with a non-linear array with as little

input-output correlation and difference propagation probability as possible.

• Shift data rows: The data rows of the array are cyclically shifted with each of the

rows having a different shift offset.

• Mix columns: The columns of the data array are mixed with efficiency.

 11 (40)

• Key addition: Lastly a XOR-operation is performed on each column of the data

with the encryption key [18]. A XOR- or exclusive or -operation is a logical oper-

ation that outputs true when the inputs are different, i.e. 1 XOR 0 = TRUE.

General design guidelines for each of these steps are defined by Daemen and Rijmen in

[19, p. 34-41].

2.4.2 AES-CTR

AES-CTR (Counter-Mode) is an AES operation mode defined by NIST. A total of 5 dif-

ferent AES operation modes are defined by NIST at the time of writing out of which AES-

CTR is considered to be the best according to [20] and numerous other sources.

Figure 7. CTR mode of operation scheme [20].

In the figure above the operation of the CTR mode is described. To define the compo-

nents in the figure: (Counter, Counter +1, …, Counter + N - 1) is the input or initialization

vector of the block cipher in AES-CTR mode. In the scheme above, the counter is a

 12 (40)

randomly generated, non-repeatable number that is on the order of 96 bits, according to

[20]. In [21, p.1] it is, however, pointed out that this is just one of many ways to implement

this encryption scheme. K is the encryption key used with the block cipher and it is the

same for all the blocks. A XOR-operation is performed on the output of the block cipher

using a plaintext message (P1, P2, …, PN). This message is the actual data to be en-

crypted.

The output of the XOR-operation (C1, C2, …, CN) and the Counter are the parts that are

typically transmitted to the decrypting end. The receiving end knows the encryption key

K and performs the same exact encryption process using the Counter it received. The

only difference is that the XOR-operation is performed on the output of the block cipher

using the output of the XOR-operation performed in the encryption process (C1, C2, …,

CN). The output of this operation is the original message in plain text.

AES-CTR provides a simple, yet powerful encryption method which at the time of writing

is still unbreakable if implemented correctly. It does not, however, provide any form of

authentication.

2.4.3 AES-CMAC

For authentication, LoRaWAN uses AES-CMAC. This is an authentication protocol fun-

damentally based on a technique called cipher block chaining message authentication

code (CBC-MAC).

CBC is a method where a block of a message is encrypted with a block cipher algorithm.

This encrypted block is then forwarded as a parameter to encrypt the next block of the

message. Hence the name cipher block chaining. Because each block relies on the

proper encryption of the previous block, this method effectively ensures the authenticity

of the message, because if one the encryption of a single block along the way is some-

how altered, the resulting message will change in an unpredictable way.

CBC-MAC is almost identical to CBC except for a couple of details. CBC-MAC uses a

static initialization vector, usually consisting of zeroes, and only outputs one result as

shown in the figure below.

 13 (40)

Figure 8. CBC-MAC algorithm [22].

CBC-MAC and CBC are, however, only secure when the message is of fixed length. For

this flaw a several fixes were introduced, one of which is CMAC, also known as OMAC

(One-key MAC). CMAC improves the CBC-MAC by adding an extra layer of security to

the last XOR-operation of the block chain [23, p.3].

AES-CMAC is thus simply CMAC which uses AES encryption as its block cipher and

performs the XOR-operation on the last block with an encryption key that is generated

utilizing AES [24].

2.4.4 LoRaWAN packet

Each LoRaWAN packet is secured utilizing all the previously mentioned encryption

schemes. The figure below illustrates the encryption scheme.

Figure 9. LoRaWAN packet structure [17].

 14 (40)

The payload within the packet is encrypted by AES-CTR. As described in [1, p. 25] , the

encryption key used in the AES-CTR encryption process is either AppSKey or NwkSKey

depending on the endpoints of the communication. The different LoRaWAN keys are

discussed in detail in chapter 2.6.

The message integrity code (MIC) is calculated over all the fields of the packet frame

using the NwkSKey. This encryption is carried out by AES-CMAC. The MIC comprises

the encrypted payload and the encrypted frame, which means that both the integrity and

the authenticity of the frame can be verified by simply checking the MIC.

2.5 LoRaWAN security

The security aspects of the initial release of the LoRaWAN specification 1.0 have been

reviewed on several papers and a lot of security faults were found. Most of these faults

were, however, addressed in the newer version 1.1 of the LoRaWAN specification. In

this chapter the security aspects of the updated LoRaWAN version 1.1 will be viewed.

2.5.1 Security challenges

LoRaWAN has several security challenges even in the updated version 1.1. Depending

on the size of the network and the number of functionalities implemented, the amount of

challenges varies.

Merely the sheer amount of different type of servers required to set up a fully functioning

network makes it compilated to manage and to ensure its security. However, according

to [10] the weakest link of LoRaWAN are its gateways. Because there are typically only

a few gateways deployed to cover a rather large area, if a gateway was captured or

tampered with, it could easily destroy a connection of quite many end-devices.

There are security implications regarding the security key distribution in LoRaWAN. As

mentioned in more detail in section 2.2, the keys can be distributed by two different

mechanisms, ABP or OTAA. While ABP is more straightforward and makes deployment

slightly easier, it has a clear disadvantage over OTAA: ABP does not allow for re-keying,

which means that if a device is compromised, there is very little to be done to fix the

 15 (40)

situation. As mentioned in [10 p. 9], the root keys, AppKey and NwkKey, need to be

securely stored. For this, it is also pointed out in [10] that a hardware-secure way of using

tamper-proof or -resistant memory elements needs to be used.

Even though the possibility for re-keying is introduced for OTAA devices, no mechanism

to perform a scheduled and organized re-keying is given which means that it is up to the

provider to implement a re-keying scheme. Neglecting this may reduce security consid-

erably.

Figure 10. Root key re-keying scheme [15, p.9].

The figure above illustrates a possible re-keying scheme for the root key. In this scheme

the update routine is carried out between the end-device and the Join Server over the

Network Server, and the Application Server is not involved at all.

The re-keying challenge appears also in a situation where the JoinEUI of a Join Server

requires modification. If the JoinEUI is modified, all the end-devices connected through

 16 (40)

that Join Server will become useless, due there being currently no scheme for re-distrib-

uting a new JoinEUI to all the end-devices.

In this project, the OTAA method is used and the keys are stored in a PostgreSQL data-

base protected by a strong password. The server in which the database is located re-

sides in Metropolia’s local network, and is only accessible over password protected SSH

connection originating from within Metropolia’s local network. Due to all these re-

strictions, the root keys can be considered safely stored. No re-keying scheme is imple-

mented in this project.

In addition to the re-keying scheme, several other security aspects are left for the network

provider to be solved. The exit procedure of end-devices is one of these. This procedure

is only vaguely described in the description as mentioned in [10, p, 10], but is strongly

suggested to be thoroughly implemented by the provider. This includes permanently de-

leting all information about the end-device from the Application Server after an end-de-

vice has exited.

2.5.2 Security threats

According to [10] LoRaWAN is more susceptible to physical attacks than higher layer

attacks as illustrated in the following figure.

 17 (40)

Figure 11. Security evaluation of LoRaWAN v1.1 [10, p. 17].

In the diagram above several different security threats are evaluated. Even though many

of the known threats were eliminated in LoRaWAN 1.1 there are still many scenarios left

where a part of the network is compromised.

Man-in-the-middle (MITM) attacks include bit-flipping and frame payload attacks. Bit-flip-

ping is a scenario where an adversary changes the content of a message between serv-

ers, namely Application Server and Network Server. Frame payload attacks are more

likely to be used in a network that supports roaming, because the FRMPayloads are

transported between Network Servers which consider each other safe by default. [10, p.

14.]

 18 (40)

Physical attacks include not only destroying or stealing a device but also cloning the

firmware or replacing it altogether. To prevent an adversary from tampering with the firm-

ware, a secure element can be implemented into the end-device, making it very difficult

if not impossible to access the protected memory.

In this project, the servers are running on a virtual machine in Metropolia’s local network,

so they are very unlikely to become physically attacked. The gateway, however, is in a

very open and easily accessible location in the public spaces of the Metropolia Myyrmäki

Campus and could very easily be captured or otherwise harmed by someone with mali-

cious intent. This flaw in security is however overlooked until the end of the testing since

the open and centered location was purposely selected to optimize the reach of the gate-

way over the campus. Once the testing of the network is over, a more secure location

will be chosen for the gateway.

2.6 Key distribution

LoRaWAN utilizes a wide variety of different authentication keys depending on the im-

plementation. In the case of OTAA devices, there are always two root keys, namely Ap-

pKey and NwkKey, from which most of the other keys are derived. The root keys are

stored in the end-device as well as in the Join-server that is responsible for enabling the

connection of an end-device to the Network Server. The key scheme as whole is de-

scribed by [15].

In LoRaWAN v1.0, the AppKey was the sole root key from which the session keys were

derived. In addition to being the only root key, it was unchangeable. These issues posed

several security threats that were pointed out by Jaehyu Kim and JooSeok Song in [16].

These threats were addressed in LoRaWAN v1.1 by introducing the dual-key scheme

and an updated OTAA join-procedure, both of which were proposed by Kim and Song.

The following figure illustrates the key distribution scheme of LoRaWAN v1.1.

 19 (40)

Figure 12. LoRaWAN 1.1 key distribution scheme [15, p. 3].

As seen in the previous figure, the session keys (FNwkSIntKey, SNwkSIntKey,

NwkSEncKey, AppSKey) are derived from the root keys in the Join Server. These ses-

sion keys are then used by the end-device and the corresponding server to ensure a

secure connection.

According to [10, p. 9] there is currently no definition on the session durations of Lo-

RaWAN, which means that it is up to the provider to define the time to live for each

session. In LoRa Server the device session TTL is defined in the configuration of the

Network Server component.

In order to enable remote multicasting in a secure way, LoRa Alliance introduced a set

of new keys in [13] at the end of 2018. The generation of these keys follow a logic similar

to the basic LoRaWAN 1.1 key distribution scheme shown in Figure 8. A new multicast

root-key is derived from the existing AppKey and from that key, all the other multicast

related keys are derived. This process is described in more detail in chapter 2.6.3.

 20 (40)

2.7 LoRaWAN FUOTA Process

LoRaWAN supports Firmware Update Over-The-Air (FUOTA). The process runs at the

application layer of the OSI model which means the whole process is version agnostic

as the different versions of LoRaWAN have differences on the MAC sublayer of the OSI

model. At the time of writing, the FUOTA update was fairly recently specified by LoRa

Alliance. LoRa Server has already support for limited functionality of FUOTA. However,

it is in experimental stage and only supports firmware updates to single devices, whereas

the specification by LoRa Alliance allows updating multiple devices at once by multi-

casting. Even though the FUOTA method is not being utilized in this project, the inner

functionality of it will be quite thoroughly discussed in the following sections due to it

being a functionality of high importance in development environment.

2.7.1 Update Process Summary

LoRa Alliance defines several new components for the FUOTA process, and the firm-

ware update happens between these components:

• Firmware Update Server: The firmware update images are generated on this

server and passed on to the Application Server. The images contain a header

and a digital signature using a private/public key scheme.

• File Distribution Server: On the Application Server resides File Distribution Server

(FDS), which is tasked to deliver the firmware update images to the end-device.

If a multicast group is used, the FDS gathers the identifiers of all the end-devices

that will be updated. The FDS sets up the fragmentation session for the end-

devices to be updated and sends the fragmented file to the Network Server. The

Network Server will then broadcast or unicast the fragmented file to the end-de-

vices as specified in [11, p. 8].

• File Distribution Client: The counterpart of the FDS resides on the end-device.

The end-device reconstructs the firmware image once it has received enough

fragments.

 21 (40)

• Firmware Update Agent: Once the File Distribution Client on the end-device has

reconstructed the image, the Firmware Update Agent verifies the digital signature

signed by the Firmware Update Server and confirms that the received image is

compatible with the end-device. Once confirmed and verified, the end-device

marks the image “ready”, which means that the bootloader will know to install it

at the next reboot. Once the end-device reboots, the bootloader will decompress

and install the new firmware and reboot again. It rejoins the network if in OTAA

mode. Once completed, the end-device may optionally send its firmware version

to the Firmware update server which can then collect the firmware versions of all

the end-devices and mark them as updated. As pointed out in [11, p. 8], this last

feature is yet to be defined by the LoRa Alliance.

The following figure illustrates how the different FUOTA components interact with each

other:

Figure 13. FUOTA architecture [11, p.7].

As seen in the figure, the File Distribution Server and the File Distribution Client comprise

three subfunctions which will be further discussed in the following sections.

 22 (40)

2.7.2 LoRaWAN Clock Synchronization

LoRa Alliance has introduced a package for end-device clock synchronization. It is useful

for devices that do not have access to an accurate time source. If an end-device is run-

ning on LoRaWAN 1.1, it should use the DeviceTimeReq MAC command instead to re-

quest the correct time from the server. [12, p.7.]

A synchronized clock is essential to FUOTA process as it enables the synchronized

transaction of fragmented packets between server and end-device. It is also needed for

multicast group synchronization. This is discussed further in the next section.

The clock synchronization message package consists of a set of unicast uplink/downlink

messages that the end-device and the server us to synchronize the clock:

Figure 14. Clock Synchronization Message package messages [12, p. 6].

The figure above describes each of the commands used to synchronize the clock of the

end-device with the clock of the server. The parameters for each of the commands are

out of the scope of this thesis.

 23 (40)

2.7.3 Remote Multicast

In [13] Lora Alliance specifies an application layer messaging package which is designed

to perform a set of operations on multiple end-devices synchronously. This method can

be used in a wide set of applications in addition to the multicast FUOTA process.

The defined operations consist of programming a multicast distribution window into the

end-devices, having the end-devices in a group switch to Class B or Class C temporarily

in order to allow for higher transmission rates, and finally closing the multicast distribution

window. These operations can be used on a set of end-devices once they have their

clocks synchronized with the server.

A new encryption key derivation scheme is introduced for the downlink multicast mes-

sage encryption. In this scheme all downlink data is encrypted using a multicast group

McAppSKey, which is derived from a multicast group key called McKey. The McKey is

decrypted from a McKey_encrypted key sent by the server. The decryption is done using

the following formula: McKey = aes128_encrypt(McKEKey, McKey_encrypted), where

the McKEKey is a lifetime end-device specific key derived from either from the end-de-

vice root key or the AppKey, depending on the LoRaWAN version of the end-device. The

McKey and the McAppSKey are the same for all the end-devices of the same group. [13,

p. 9-10.]

 24 (40)

Figure 15. Multicast key derivation scheme [13, p.10].

The figure above illustrates the multicast key derivation scheme. As seen in the figure,

in addition to the McAppSKey, a McNwkSKey is also derived from the McKey. The

McNwkSKey is used to encrypt the messages between the end-device and the Network

Server.

2.7.4 Fragmented Data Block Transport

As specified by the LoRa Alliance, the fragmented data block transportation package can

be used not just in the FUOTA process, but in all data transfer where a large (from 1kB

up) amount of data is transferred to an end-device. It is a process where, as threcee

name suggests, a large amount of data is separated (fragmented) into data blocks and

sent separately to the end-device. Data transferred this way is less likely to become

corrupted due to connection errors and such.

To ensure that the data received by the end-device is valid, the payloads are encrypted

and authenticated using the McAppSkey and McNwkSKey. However, this method alone

 25 (40)

does not guarantee data validity, because these keys are the same on all the end-de-

vices in the same group, and if one of the devices is compromised, the keys can no

longer be considered secure.

To address the shortcomings of the key authentication scheme, LoRa Alliance provides

guidelines to an additional step of authentication based on public/private cryptography

certificate in [14, p.13].

 26 (40)

3 LoRa Server

LoRa Server is an open-source LoRaWAN network server project. It was created by

Orne Brocaar, a Dutch freelance software engineer.

Lora Server introduces a secure and an easy-to-use method of implementing a private

or public LoRaWAN network. It abstracts each of the core components of the LoRaWAN

as specified by the LoRa Alliance and adds to them features such as authentication over

MQTT and PostgreSQL databases.

The reason LoRa Server was used in our implementation was precisely because of its

clear, open-source interface along with its modifiability to our needs. It also utilizes well-

known technologies, making the learning curve for using it a bit less steep.

The architecture of LoRa Server can be seen in the following figure.

Figure 16. LoRa Server architecture [8]

 27 (40)

As seen in Figure 6, LoRa Server uses MQTT and gRPC as the primary way of com-

municating between different components.

In the heart of the LoRa Server project there is the Network Server -component of the

LoRaWAN, confusingly also called LoRa Server. This LoRa Server is responsible for

implementing all the functions that the Network Server of LoRaWAN has. Inter-compo-

nent communication between the server components is communicated over gRPC. [8.]

Another important component of the LoRa Server is the LoRa Gateway Bridge. It ab-

stracts the packet-forwarder UDP protocol used by minimal firmware gateways into

JSON packets over MQTT protocol. This LoRa Gateway Bridge can be implemented

either in the backend or in the gateway itself. Both implementations are illustrated in

Figure 6. Configuring it on the gateway adds a layer of security over the communication,

by using MQTT with TLS instead of UDP in gateway-server connections.

LoRa Server project introduces LoRa Gateway OS as a way for quickly setting a gateway

up and running as well as bundling the packet forwarder and LoRa Gateway Bridge in

the same packet. Our project uses the LoRa Gateway OS for Wifx LORIX One gateway.

The Application Server in LoRa Server is abstracted to the LoRa App Server which in

addition to providing the required functions of an Application Server, also provides a web

user interface as well as a RESTful and gRPC API. It can handle end-device data over

different protocols such as MQTT or HTTP and the data can be written to InfluxDB data-

base directly. Our implementation uses MQTT over TLS.

LoRa App Server uses JSON web-tokens for authentication and authorization on its

gRPC and JSON REST interfaces, while the communication over MQTT uses its own

way of authenticating.

LoRa Server also has a component for geolocation services called LoRa Geo Server. It

is used to resolve end-device locations based on time difference of arrival (TDoA) meta-

data provided by the gateways [9]. This component is not included in our implementation

of the network but could be added to it at later development.

 28 (40)

4 Project specifications and Methods

4.1 Meetings and Discussions

The initial project meeting was held at Metropolia with the instructor of the thesis. In this

meeting the framework for the project was discussed. A decision was made that that the

project would start by studying the background of the subject. It was also discussed that

the project would possibly be carried out in cooperation with another student from Swit-

zerland.

According to the project plan the hardware part, including setting up and configuring the

gateways and doing the testing of the network with self-configured devices, would be

carried out by the author. The network related area, including the backend and the au-

thentication services, would be implemented by the collaborator from Switzerland.

The second meeting with the instructor was held at Metropolia on 11 February, 2019.

The implementation was further discussed in detail. It was decided that the author would

investigate the implementation of the whole network utilizing the TTN open-source librar-

ies in more detail. The goal was to find out if the source code offered by TTN would be

suitable for this project.

During the second meeting, it was also discussed how to test the network once it had

been set up. The instructor of the thesis handed out an expansion board and a discovery

kit to the author which could be used to test the network. It was discussed that the ex-

pansion board, USI STM32 Nucleo expansion board for LoRa, would be researched first.

The goal was to see how wide usage the AT-command interface of the board provided,

and if the board was relatively easy to connect to an evaluation board to be later easily

usable by students.

After the second meeting, the customer service of The Things Industries (TTI) was con-

tacted and asked whether the TTN could be used for the needs of this project. The re-

sponse from TTI did not mention if there would be a way of implementing the LoRaWAN

using TTN free of charge. The TTI customer service was contacted again with a follow-

up question regarding this issue, but no reply was received.

 29 (40)

Later, it was discovered that TTN also had their own separate email address for Q&A.

Thus, the same questions regarding the implementation were asked again, this time from

the email provided by TTN.

The CEO of TTI replied to the email sent and confirmed that the TTN could be used

freely, now and in the future, to implement a private network. He also confirmed that the

Identity server, a feature of TTN which enables user authentication, could be used in a

private network. Lastly, he confirmed that the whole network could be hosted and man-

aged privately independent of the global network provided by TTN.

A third meeting with the instructor was held on 13 May, 2019 at Metropolia Myyrmäki

Campus. During this meeting the porting of the LoRaWAN to the Metropolia premises

was discussed. A decision was made that the LoRaWAN would be installed in Myyrmäki

Campus during the summer. Another topic discussed with the instructor was the imple-

mentation of the user authentication of the server. The authentication could be done

utilizing LDAP (Lightweight Directory Access Protocol) and that Ilkka Kylmäniemi, a lec-

turer at Metropolia, would possibly be able to give further information regarding this mat-

ter.

Kylmäniemi was approached via email on 15 May, 2019 regarding the user authentica-

tion. He confirmed that the API to use is indeed LDAP and that Metropolia’s IT Services

could tell more about it.

A series of emails was exchanged with Metropolia Helpdesk starting from 10 May, 2019.

The topic of discussion was the implementation of the Metropolia’s user authentication.

Initially the Helpdesk was asked about the usage of user credentials in MQTT authenti-

cation. The conversation was continued over the phone on 5 June, 2019 with Juhana

Lähteenmäki from Helpdesk. All the matters to consider when moving the LoRaWAN to

Metropolia premises were discussed over the phone. Lähteenmäki provided detailed in-

formation on who to contact on which matter.

After the discussion with Lähteenmäki, the webmaster of Metropolia, Pekka Perälampi

was approached with an email requesting for general guidance on the migration of the

server to Metropolia’s local network. Perälampi forwarded the request over to Metropo-

lia’s IT Services, but no response was ever received from their end.

 30 (40)

From June to July of 2019, the thesis work was carried out at Metropolia’s Myyrmäki

Campus. During this time the Helpdesk operating on campus was aiding with the inte-

gration of the LoRaWAN to the Metropolia’s network. Janne Teräslahti from IT support

helped finding a suitable place for the LoRaWAN gateway and gave general advice about

the network infrastructure of Metropolia and details on who to contact on which matter if

needed.

4.2 Researching and Planning

The planning of the project was started after the first meeting. The first step was to find

out what the currently existing implementations for a LoRaWAN are, and which method

would best suit the needs of this project, if any.

The first option researched that could have been possibly used for the implementation

was The Things Network (TTN). TTN refers to the public LoRaWAN network currently

funded by The Things Industries.

The reason that this was researched first was that the TTN has a lot of their data open

source and if they had offered a way to create a custom-made backend that could have

been hosted by Metropolia, but still be connected to the vast TTN, it would have been an

ideal way of creating the Metropolia LoRaWAN.

Another seemingly viable existing way to implement the LoRaWAN was the LoRa Server

project, which is another open source set of applications with which one can implement

their own private LoRaWAN. The positive features of LoRa Server were its easy config-

urability and the fact that it uses MQTT, a lightweight messaging protocol, as its primary

communication protocol.

After the second meeting with the instructor, the extent of the usage possibilities of the

Things Network were researched. After some research it was concluded that the TTN

V3, which was released at the beginning of 2019, could possibly be suitable for the im-

plementation.

 31 (40)

While waiting for the response from TTN to the mail querying the usage limitations of the

TTN, the alternative option, LoRa Server, for the implementation of the LoRaWAN was

researched further.

Based on the information provided on the website of LoRa Server, it also seemed like a

very promising solution for the implementation. The LoRa Server provided the necessary

level of security over the connections between the gateways and the backend. It also

provided the possibility of setting up a custom user database, which could potentially be

used to map the Metropolia accounts to the backend.

Ultimately, after some research on both implementation options, the LoRa Server was

chosen as the platform and the development of the LoRaWAN was initiated.

 32 (40)

5 Development and Implementation

Initially the network was intended to be implemented utilizing The Things Network, and

the open source libraries related to it. However, due to the mechanics of it not being

completely transparent and the implementation being unfamiliar and abstract, it was con-

cluded that a more suitable approach for the implementation would be utilizing an open-

source project, LoRa Server. Most of the configuration was carried out by following the

guidelines provided by LoRa Server documentation.

5.1 Gateway Configuration

Once the approach was chosen, the implementation was initiated by configuring a gate-

way for the network. LORIX One, a low cost LoRa IP43/IP46 gateway by Wifx, was used

for this purpose. LoRa Server provided a bootable LoRa Gateway OS which enabled a

relatively fast configuration of the gateway.

The LoRa Gateway OS was flashed on an SD card and the LORIX One gateway module

was then booted up using this SD card. Once the gateway was up and running, it was

configured over an SSH connection. In order to make the gateway forward the messages

that it received to the Network Server; necessary parameters had to configured.

The LoRa Gateway OS includes two fundamental message relay functions, the first be-

ing the packet forwarder UDP protocol. This is the very basic protocol which handles the

forwarding of data from an end-device to a server through an UDP/IP link. Due to the

unreliability of UDP, LoRa Server adds a level of abstraction on the packets before send-

ing them to a server. This level of abstraction is called the LoRa Gateway Bridge. It

abstracts all outgoing packets into JSON over MQTT, which makes them easy to monitor

and secure.

The packet-forwarder was thus configured to forward all packets locally within the gate-

way module to the LoRa Gateway Bridge, which was then configured to send the abstract

JSON packets to the correct Network Server over TCP/IP protocol. In the first stage of

development, little to no security measures were taken.

 33 (40)

5.2 Server-side Configuration

Initially the backend was deployed on Cloud IoT Core, an IoT service by Google. How-

ever, the configuration of the connection between the gateway module and the Cloud

IoT Core took unnecessarily much time and work, and eventually resulted in a failure.

Thus, a more familiar approach for the backend was chosen. The Network Server along

with the Application Server was deployed on an Ubuntu VM running on Google Cloud

Platform.

A PostgreSQL database was set up for the Network Server to persist gateway infor-

mation. Then the actual LoRa Server was installed, using a Debian package. The Net-

work Server was configured to have the correct network parameters.

After the Network Server had been verified to be functional, the Application Server, LoRa

App Server, was configured following the same structure as the Network Server config-

uration.

5.3 Testing the Network

Along the development and initial set up of the network, there were steps of testing each

individual component of the network. Finally, when everything seemed to function as it

was intended, the functionality of the network was tested by connecting an end-device

to the gateway and sending test data in.

B-L072NZ-LRWAN1, a LoRa Discovery kit by ST was used. This device was chosen due

to its seemingly quick prototyping and the author being already familiar with STM32 mi-

crocontrollers. The test device was set up utilizing the example libraries provided by

STMicroelectronics.

After getting all the device and network configurations correct, the end-device sent data

to the Application Server successfully. The following figure shows the uplink message

sent by the end-device, displayed on the web user interface of the LoRa App Server.

 34 (40)

Figure 17. An uplink message sent by an end-node to the Application Server.

5.4 Network Integration

Before starting the integration of the LoRaWAN into the Metropolia network some secu-

rity configurations had to be carried out. The MQTT communication between the LoRa

Server and the gateway as well as the internal MQTT communication of the LoRa Server

was configured to transfer data over a TLS secured port 8883 instead of the MQTT de-

fault port 1883.

The first step in the integration was to install the gateway to Metropolia’s Myyrmäki Cam-

pus. The following figure shows how the gateway was installed.

 35 (40)

Figure 18. Gateway installed at Metropolia’s Myyrmäki Campus

The location of the gateway was discussed with the instructor of the thesis, a space

which is one floor above the cafeteria of the Myyrmäki Campus was chosen because it

is at the center of the whole campus and the space is wide and open, which will minimize

the signal loss caused by obstacles.

The server was configured on a virtual machine running on a Red Hat CFME (Cloud-

Forms Management Engine) managed by Metropolia. The platform only supported the

creation of Windows Servers or CentOS; thus, CentOS was chosen as the operating

system for the server.

 36 (40)

The migration of the backend from a Debian-based architecture to a Red Hat Enterprise

Linux (RHEL) based one was not without some complications. Whereas LoRa Server’s

website provided a lot of detail on the setup of the backend on Debian distributions, there

was very little detail about how to do the same on RHEL distributions. In addition to the

little amount of information, RHEL was also unfamiliar to the author, making the transition

quite slow and complicated.

Because there were no ready-made installation packages for the images of the backend

for RHEL-based distributions, the backend was first set up using Docker-Compose,

which is a tool that enables running of multi-container Docker applications. The backend

was successfully set up and running using Docker-compose and the process was quite

trivial. However, trying to configure the MQTT broker on the Docker-compose configura-

tion files ended up being not only non-trivial, but too complicated.

Because the Docker-compose was not familiar to the author and the project did not move

forward, another approach was taken. The backend was installed component by compo-

nent by downloading the source files as RPM packages and configuring them one by

one. This approach ended up being fruitful and the backend was once again set up suc-

cessfully and this time the MQTT broker was also configured successfully to use port

8883 and use ACLs and usernames and passwords to authenticate users.

After the backend was set up and running, the gateway was configured to connect to the

IP address of the backend now running on Metropolia’s Educloud. However, the gateway

failed to connect to the backend after all the configurations. This issue was thoroughly

investigated using different packet monitoring methods to no end. Metropolia’s IT Ser-

vices were also consulted regarding this issue, but according to their systems, there

should nott have been anything blocking the communication.

 37 (40)

6 Conclusion

The thesis aimed to implement a private LoRaWAN network on Metropolia’s premises.

The network would consist of the server-side backend functionalities as well as the phys-

ical gateway converting and relaying RF messages to the backend. In addition to the

basic operation, an authentication method was intended to be implemented to the net-

work, which would only allow Metropolia students to utilize the network.

The initial setup and testing of the LoRaWAN outside Metropolia’s premises were suc-

cessful. In this phase, only the basic operation was tested. The gateway seemed to suc-

cessfully forward packets to the backend from which they are correctly displayed to the

front-end.

However, when migrating the server to Metropolia’s local network there seemed to be

some complications. The development was hindered by the limitation of only being able

to use a RHEL-based distribution, CentOS 7, for the server whereas the initial setup was

carried out using a Debian-based distribution. The server was successfully set up. How-

ever, the connection between the server and the gateway was never established on

Myyrmäki Campus, due to an unknown blockage between the two.

The secondary goal of implementing the user authentication was set up so that the

MQTT broker would allow only specific topics to be published/subscribed to by only the

users found from the server’s PostgreSQL database.

Instead of implementing a login system that could be used with Metropolia login creden-

tials or creating a user on the server for each student, the system was set up so that only

a set of user accounts would be generated by a script located on the backend. Each of

these user accounts would be shared by different groups of students defined by the lec-

turer. This approach was an attempt to minimize the amount of manual configuration

needed, when new users start using the network.

 38 (40)

References

1 N. Sornin. 2017. LoRaWAN 1.1 Specification. <https://lora-alliance.org/sites/de-
fault/files/2018-04/lorawantm_specification_-v1.1.pdf>. 11.10.2017.

2 A. Yegin. 2017. LoRaWAN Backend Interfaces 1.0 Specification. <https://lora-
alliance.org/sites/default/files/2018-04/lorawantm-backend-interfaces-v1.0.pdf>.
11.10.2017.

3 The Things Network. 2019. LoRaWAN Overview. Web document.
<https://www.thethingsnetwork.org/docs/lorawan/>. Read 2.5.2019.

4 The Things Network. 2019. Gateways. Web document.
<https://www.thethingsnetwork.org/docs/gateways/>. Read 2.5.2019.

5 Vit Prajzler. 2015. LoRa, LoRaWAN and LORIOT.io. Web document.
<https://www.loriot.io/lorawan.html>. 1.8.2015. Read 2.5.2019.

6 Ilson You, Soonhyun Kwon, Gaurav Choudhary, Vishal Sharma, Jung Taek
Seo. 2018. An Enhanced LoRaWAN Security Protocol for Privacy Preservation
in IoT with a Case Study on a Smart Factory-Enabled Parking System.
<https://www.mdpi.com/1424-8220/18/6/1888/htm>. 8.6.2018.

7 Techplayon. 2018. LoRa- (Long Range) Network and Protocol Architecture with
Its Frame Structure. Web document. <http://www.techplayon.com/lora-long-
range-network-architecture-protocol-architecture-and-frame-formats/>.
10.8.2018. Read 2.5.2019.

8 LoRa Server. 2019. System architecture. Web document. <https://www.lo-
raserver.io/overview/architecture/>. Read 3.5.2019.

9 LoRa Server. 2019. LoRa Geo Server. Web document. <https://www.lo-
raserver.io/lora-geo-server/overview/>. Read 3.5.2019.

10 Ismail Butun, Nuno Pereira, Mikael Gidlund. 2018. Security Risk Analysis of Lo-
RaWAN and Future Directions. <https://www.researchgate.net/publica-
tion/329858421_Security_Risk_Analysis_of_LoRaWAN_and_Future_Direc-
tions>.

11 J. Catalano. 2019. FUOTA Process Summary Technical Recommendation.
<https://lora-alliance.org/sites/default/files/2019-04/tr002-fuota_process_sum-
mary-v1.0.0.pdf>. 30.1.2019.

 39 (40)

12 J. Catalano. 2019. LoRaWAN Application Layer Clock Synchronization Specifi-
cation. <https://lora-alliance.org/sites/default/files/2018-09/applica-
tion_layer_clock_synchronization_v1.0.0.pdf>. 10.9.2018.

13 J. Catalano. 2019. LoRaWAN Remote Multicast Setup Specification.
<https://lora-alliance.org/sites/default/files/2018-09/remote_mul-
ticast_setup_v1.0.0.pdf>. 10.9.2018.

14 J. Catalano. 2019. LoRaWAN Fragmented Data Block Transport Specification.
<https://lora-alliance.org/sites/default/files/2018-09/frag-
mented_data_block_transport_v1.0.0.pdf>. 10.9.2018.

15 Jialuo Han, Jidong Wang. 2018. An Enhanced Key Management Scheme for
LoRaWAN. <https://www.researchgate.net/publication/328741904_An_En-
hanced_Key_Management_Scheme_for_LoRaWAN>. 21.8.2018.

16 Jaehyu Kim, JooSeok Song. A Dual Key-Based Activation Scheme for Secure
LoRaWAN. 2017. <https://www.researchgate.net/publica-
tion/320902435_A_dual_key-based_activation_scheme_for_secure_Lo-
RaWAN>. 28.4.2017.

17 LoRa Alliance. 2017. LoRaWAN SECURITY. White paper. <https://lora-alli-
ance.org/sites/default/files/2019-05/lorawan_security_whitepaper.pdf>. Read
21.9.2019.

18 Margaret Rouse. 2017. Advanced Encryption Standard (AES). Web document.
<https://searchsecurity.techtarget.com/definition/Advanced-Encryption-Stand-
ard>. Read 21.9.2019.

19 Joan Daemen, Vincent Rijmen. 2002. The Design of Rijndael. New York:
Springer-Verlag Berlin Heidelberg.

20 Dobre Blazhevski et al. 2013. Modes of Operation of the AES Algorithm. Con-
ference publication. <https://pdfs.seman-
ticscholar.org/8822/66e916ec18ea7022bfa149954a29593f7490.pdf>. Read
21.39.2019.

21 Helger Lipmaa et al. 2000. Comments to NIST concerning AES Modes of Oper-
ations: CTR-Mode Encryption. Web document. <http://citese-
erx.ist.psu.edu/viewdoc/download?doi=10.1.1.79.1353&rep=rep1&type=pdf>.
Read 22.9.2019.

22 Wikipedia. 2019. CBC-MAC. Web document. <https://en.wikipe-
dia.org/wiki/CBC-MAC>. Read 22.9.2019.

 40 (40)

23 Tetsu Iwata, Kaoru Kurosawa. 2003. OMAC: One-Key CBC MAC. Conference
paper. <https://eprint.iacr.org/2002/180.pdf>. Read 22.9.2019.

24 JH. Song et al. 2006. The AES-CMAC Algorithm. Web document.
<https://tools.ietf.org/pdf/rfc4493.pdf>. Read 22.9.2019.

Appendix 1

 1 (1)

LoRa Server course creation script flowchart

Appendix 2

 1 (4)

LoRa Server course creation scripts

Appendix 2

 2 (4)

Appendix 2

 3 (4)

Appendix 2

 4 (4)

Appendix 3

 1 (2)

LoRa Server course deletion scripts

Appendix 3

 2 (2)

