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Artificial intelligence has been receiving tremendous progress in the past recent years 

thanks to the advancement of technology. Nowadays it is the most active field of RnD 

with huge resources and efforts to further it fast forwards. Uncountable varieties of appli-

cations are leveraging its capabilities to solve problems that were impossible to tackle 

before. However, most of the artificial intelligence application systems developed at the 

moment require desktop or server class of computing power to run on and hence, being 

able to scale these systems to more resource restricted devices is highly desirable and 

would pave the path to many intelligent solutions. As the technology community is very 

sensitive and is sharing the same vision, major organisations are quickly coming in with 

supports of their products to provide solutions for the development of relating ideas. 

Among many of those solutions, one is the popular hardware series offered by Intel, the 

Movidius Neural Compute Stick for computation acceleration of deep learning at infer-

ence. 

 

Since new technology are always based on other advancements, the Movidius is not an 

exception. It supports most of the famous open source machine learning frameworks and 

among which, the TensorFlow libraries, developed by Google is increasing adopted by 

the machine learning community and is also the developers’ and scientists’ favourite. You 

Only Look Once (YOLO) is a state-of-the-art object detecting system capable of real-

time processing at extremely high accuracy. It is created in the DarkNet framework with 

limited scalability across different platforms but rather for just researching. 

 

This work is attempting to enable a Raspberry Pi, aided by the Movidius Neural Compute 

Stick hardware to run the latest YOLO application. In the results, the TensorFlow of 

YOLOv3 were created and reetained the original accuracy while maintaining real-time 

performance on a laptop setup. On the Raspberry Pi, it was able to preserve the original 

accuracy with trade-off to some real-time performance. 
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1 INTRODUCTION 

1.1 Objectives 

Deep learning (DL) powered systems at this point in time are mostly using the conven-

tional cloud-based setup with servers powered by capable parallel computing hardware 

to process client inference requests from user applications. This enforces data collection 

and data constraint within centralised data centres being under control by the service pro-

viders. But as data is becoming the new oil, this has brought up many serious concerns in 

the society about privacy, security, data exploitation and misuse. At the same time, recent 

development of computer vision has taken advantages of DL integration and were able to 

achieve significant results. Complementing to this, object detections systems are increas-

ingly gaining huge attentions for accomplishing real-time performance. Despite that, 

these applications still have to trade off with very intensive processing power. Thankfully, 

several solutions have become available in terms of both hardware and software to speed 

up DL based applications onto low computing power devices. With this being said, the 

ultimate goal of this work is to build a decentralised embedded system for effective object 

detection that can run in real-time and powered by the state-of-the-art DL techniques. The 

result of this work will be significantly advantageous to future advancement of human 

vision augmentation, humanoid technology as well as other similarly related fields where 

instant perception to the real world is crucial. 

1.2 Human intelligence vs. artificial intelligence 

Human intelligence (HI) is a combination of extraordinarily complex cognitive processes 

that are both objective and subjective. Most of the objective processes include, oral and 

verbal communication and comprehension, reasoning, concept formation, decision mak-

ing, and problem solving. Yet any of these also incorporates subjective factors such as 

emotions and motivation. Other subjective processes are kinaesthetic awareness, percep-

tion, and prejudice. Furthermore, education plays a crucial role to improve this type of 

intelligence and the higher quality the education, the better the intelligence. However, 

human education is still bound to dictatorially imposing the truths without providing con-

vincing information (data) to allow for self – internalising the essence of the concepts. As 

a result, learners only memorise the knowledge without a thorough understanding which 
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leads to failing to generalise it into solving novel problems as they are likely to require 

very skilful manipulation of ideas and concepts. In addition, the level of HI is evaluated 

through standardised IQ and IE tests. On the other hand, artificial intelligence (AI) is a 

mathematical construct designed and created by human intelligence to do a specific task 

at superhuman level of performance. It is a conglomeration of many fields of sciences 

including philosophy, psychology, neuroscience, computer science, statistics, linguistic 

and more. this kind of intelligence is typically approached in two ways. The first one has 

been traditionally utilised for years in the pass where a rule-based system of algorithms 

is hard coded, although this can be still  considered the case in today’s smart applications. 

The other modern approach is self – learning, i.e. machine learning, where algorithms are 

designed to look at data and learn the underlying patterns, relationships, and transfor-

mations all by itself without being explicitly told about anything beforehand at all. In 

order to improve AI, the prior way requires a lot of design and engineering efforts to 

implement detailed rules. While in the latter, these efforts are spent on sophisticated sys-

tem structures along with advanced optimising algorithms to enable for capturing com-

plex information hidden in the nature of data. The intelligence level of a system can be 

evaluated using crafted performance metrics that define several components related to the 

fields for which the system is built. [1] 

1.3 Machine learning and deep learning 

The latter approach has become extremely effective in recent years and ubiquitously out-

performs all traditionally prior approaches. The elementary factor behinds this success 

come down to the concept of machine learning (ML). while this is actually been around 

for a long time, it was not until today could it only become effective. This is thanks to the 

evolution of new computing technologies that are now capable of processing faster and 

also significantly bigger amount of data than ever before. Therefore, ML is being increas-

ingly researched and large numbers of state-of-the-art research papers are actively being 

published which are immediately being adopted to every aspect of life, some of them 

include finance, healthcare, computer vision, speech recognition robotics, and recently 

adversarial. There are two popular definitions to ML given by two famous people in the 

field. The first one was offered by Arthur Samuel, an Artificial Intelligence research pio-

neer, he described machine learning as “the field of study that gives computers the ability 
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to learn without being explicitly programmed.”. Later on, Tom Mitchell, a computer sci-

entist, provided a more modern definition which is: “a computer programme is said to 

learn from experience E with respect to some class of tasks T and performance measure 

P, if its performance in tasks T, as measured by P, improves with experience E.”. In gen-

eral, any machine learning problem can be divided into two classifications: Supervised 

Learning and Unsupervised Learning. Giving explicitly the input data and its output, the 

idea of supervised learning is to find a relationship in the form of a mathematical equation 

that maps between them. There are two categories in supervised learning which are re-

gression and classification. A problem is categorised as regression if the predicted outputs 

are continuous. Instead, the problem is categorised as classification if the predicted out-

puts are discrete values (categories). In terms of unsupervised learning, the predicting 

goal is to derive the structure of the data by clustering them based on the relationships 

among the variables rather than considering the effect of each variable. Therefore, there 

is no feedback on the prediction results. Most of the technology applications are signifi-

cantly benefitted from supervised learning, specifically the methods of deep learning. 

They generally comprise a diligently designed neural inspired network architecture being 

optimised by an advanced algorithm that allow the network to learn (find the best set of 

rules) and predict on structured (i.e. labelled) data. The network improves by being iter-

atively trained on an enormous amount of data with a large extent of diversity in the 

targeting field to become expert in it. Therefore, not only does deep learning systems 

thirst for data, they also requires tremendous amount of training time and rely heavily on 

large computational resources. For that reason, they tend to be developed on very capable 

machine with powerful hardware and deployed to a cloud-based system for use. However, 

this setup introduced a lot of drawbacks such as a required network connection and low 

latency, it started to become more and more desirable to distribute deep learning systems 

to individual devices. 

1.4 Computer vision with deep learning 

DL has shot up a tremendous progress in various areas in the field of computer vision, 

many of them include image classification, object detection, semantic segmentation, im-

age generation, and pose estimation. Generally, tasks in any of these areas utilise either 

the convolutional neural network (CNN) or the recurrent neural network (RNN) in deep 
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learning and train on a large dataset of images at the pixel level, hence the larger the 

image size, the better the accuracy but the more expensive the computational cost be-

comes. Although they have achieved impressive results, most of the systems run very 

slowly and have to require the empowerment of parallel computing capable hardware 

such as the GPU to process. This has become a great driving force for the technology 

industry to push forwards the hardware capability and further optimise the software algo-

rithms. As a result, many of the state-of-the-art computer vision systems were designed 

to effectively leverage the computing hardware and able to achieve real-time perfor-

mance. At the same time, many hardware manufacturers have acknowledged the trend of 

needs and have been making great improvements in terms of the processing power to 

support the advancement of deep learning. For Intel, the company introduced the Neural 

Compute Stick (NCS) series, a highly efficient deep learning compute accelerator features 

its own Vision Processing Unit (VPU), to enable developments of applications for edge 

devices along with its powerful framework to heterogeneously share computations across 

other intel’s hardware [2]. Nvidia, besides releasing ever more powerful (GPUs) packing 

more CUDA cores that increase parallel computation capability, also provides the Jetson 

System-on-module (SOM) computers that package those GPU performance to power all 

kind computer vision and graphics application for embedded systems. The Jetson devices 

are programmed by the Jetpack SDK [3]. Similarly, Google offers paid services for use 

of its cloud Tensor Processing Unit (TPU) infrastructure and Google Coral, featuring 

dedicated Edge TPU cores. The Coral contains the development board similar to the 

Raspberry Pi (RPI) micro-computer but with a removable SOM, and an USB accelerator 

similar to the NCS, and with other extension components. The Coral runs on its official 

operating system Google’s Mendel Linux but can also run on any Debian based Linux 

distributions (distros) and is programmed in Google’s TensorFlow framework [4]. 

1.5 Computer vision at the edge. 

Conventionally, ML systems are deployed in centralised cloud computing paradigm 

where services at the user-end send requests of inference over to the server and wait to 

receive the result. This helps taking advantages of the computational resources of the 

server-end and allows for scalability of software that utilise the system to a wider range 

of devices, from PCs to mobile devices and especially embedded. However, this setup is 
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dependent on a stable internet connection and communication protocols badly penalise 

the latency. This is the case for applications operating on a constant stream of video input, 

which would over-load the network medium during data transfer processes and slow 

down runtime performance. To overcome this challenge, great efforts need to be put in to 

extending the power of edge computing and decentralising ML processes to the edge of 

the network. This will significantly benefit delay-sensitive and critical mission applica-

tions such as autonomous driving. In self-driving cars, immediate decision making is ex-

tremely crucial as they need to be fully aware of the surrounding and the state of all the 

other cars nearby to execute the right decisions, if the traffic light turns red or pedestrians 

are crossing in the front, the reaction to stop and notification to the vehicle behind must 

be executed immediately. Having gained a lot of attentions in ML decentralisation at the 

edge, there are currently several edge solutions available from leading technology organ-

isations, which when being merged with state-of-the-art real-time computer vision mod-

els would become a very powerful module that paves the way to many innovations of 

technology, in which robotics would have significant impact in developing artificial vis-

ual perception. 

1.6 Real-time object detection on embedded system 

With the current trend of AI application, the development is shifting to the edge and DL 

powered applications for computer vision are getting more efficient and are breaking each 

other’s achievement in real-time performance, this thesis introduces an attempt to deploy 

the state-of-the-art real-time object detection system You Only Look Once version 3 

(YOLOv3) onto the RPI 3 B+ with computing boosts from multiple Intel’s Movidius 

NCS2 accelerators. The implementation includes first re-building YOLOv3 model in 

TensorFlow (TF), then freezing it to a saved model and converting to the intermediate 

representation (IR) model graph which was compatible with the OpenVINO toolkit. De-

veloped object detection programmes used this toolkit to utilise the NCS to process pre-

dictions on input images captured by a camera module. In case of the RPI, a Pi camera 

module was used. 
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2 BACKGROUND KNOWLEDGE 

2.1 Artificial Neural Networks 

 

Figure 1. Biological neuron and artificial neuron comparison [5] 

Artificial Neural networks (ANN), also often referred to as neural networks, are infor-

mation processing paradigms inspired by the human brain system with the motivation of 

replicating its remarkable capabilities of human cognition to solve computer tasks. The 

very first neural network was called perceptron and was invented by psychologist Frank 

Rosenblatt in 1958 [6]. Neural networks then were able to address many problems that 

were too complex or impossible to solve by standard computational and statistical meth-

ods, it started to gain popularity among researchers. By the late 1980s, many institutions 

adopted this algorithm into a variety of applications [7]. The structure of neural networks 

stimulates the network of neurons in the brain. Biologically, a neuron contains a cell body 

and is connected by dendrites (i.e. input wires) to receive electric signals (i.e. spikes) from 

other neurons. This neuron has an output wire called axon to connect to other neurons 

and send signals away. The axon has many terminals and those other neurons are con-

nected to these axon terminals via synapses.  
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2.1.1 Architecture Overview 

  

Figure 2. A 3-layer neural network with 2 hidden layers with 4 neurons each and 1 

output layer with 1 neuron [8] 

 In neural networks, each neuron corresponds to a computational node which receives 

information from a certain number of input nodes (features) multiplied by a set of 

weights (i.e. weights simulate the role of synapses that allows for signal transfer be-

tween neurons) and perform some non-linearity computations, then sends outputs away 

to other nodes. Neural networks are usually composed of a set of neurons (i.e. nodes) 

for many layers. The more nodes the layers have, the wider the layers are. Similarly, the 

more layers there are, the deeper the networks will be. The last layer is usually the out-

put layer and depends on the problems the neural networks are trying to solve, this out-

put layer can either has one output node, if the problem is classification, or more than 

one output nodes if the problem is regression. 

2.1.2 Algorithm Overview 

The mathematical representation of one or more nodes is expressed in the following set 

of functions. 

Hypothesis function: 𝑧 = ℎ𝑤,𝑏(𝑥) = 𝑤𝑇𝑥 + 𝑏 (0) 
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Where: 

𝑤 – the 2-dimensional weight matrix belongs to the node 

𝑏  – the bias constant belongs to the node 

𝑥  – the 2-dimensional input matrix coming to the node 

𝑧  – the 2-dimensional output matrix of the hypothesis function 

If the current layer that is under consideration is layer 𝑖, then what the hypothesis func-

tion (0) computes simulates the flow of information coming from nodes in layer 𝑖 − 1 to 

the nodes in layer 𝑖, similar to when electrical signals travel from a set of neurons to an-

other set through synapses. The existence of the bias 𝑏 is to allow the nodes to learn 

some preference over certain kind of information, yet if the neural networks would im-

plement a batch normalisation (BN) algorithm [9] to normalises the output 𝑧 then 𝑏 

would become unnecessary as this constant would be cancelled out. 

 

Activation function: 𝑎 = 𝑔(𝑧) (1) 

Where: 

𝑔 – the activation function of choice (e.g. ReLU) 

𝑎 – the 2-dimensional output matrix of the activation function 

 

the output 𝑧 of function (0) would then be applied by an activation function to perform a 

non-linearity transformation which results in probabilistic values. Many common acti-

vation functions include Sigmoid [10], Tanh [11], ReLU and leaky-ReLU [12], and 

Softmax [13]. 
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Loss function: 
𝐽(𝑤, 𝑏) =

1

𝑚
∑ℒ(�̂�𝑖,

𝑚

𝑖=0

𝑦𝑖) 
(2) 

Where: 

𝑚 – the number of training examples. 

ℒ - the loss function applied, dependent on the of solving problem (i.e. regres-

sion or classification). 

�̂�𝑖 – the prediction of the neural network corresponding to example 𝑖. 

𝑦𝑖 – the ground truth value corresponding to example 𝑖. 

 

The loss function is used to training neural networks. When performing inference on the 

neural network model on a set of inputs, every layer performs computations on the out-

put of the previous layer except the first layer which does it on the input, this takes place 

from left to right. This activity is called forwards propagation. The prediction of the 

neural network (denoted as �̂�) is the output of the activation function of all the nodes in 

the last layer. When training neural networks, forward propagation occurs for many 

times over m training examples, this number of times is called epoch.  

As neural networks computation take place over a set of identical-shaped matrices and 

constants, it is very often that the programming implementation will be done in the vec-

torisation manner to take advantage of the hardware architecture more efficiently and 

accelerate computing speed. Therefore, if function (0) is vectorised with respect to the 

number of nodes in layer 𝑖, 𝑤 will be become a 3 – dimensional weight matrix and 𝑏 

will become a bias vector. In addition, most of the machine learning libraries like TF 

have already integrated vectorisation very effectively to the core of their APIs and dedi-

cated processing units has also been created to push machine learning computation even 

faster. 
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2.2 Convolutional Neural Networks. 

 

Figure 3. Convolutional Neural Network architecture  

CNN often referred to as ConvNet, is a special artificial neural network that was created 

specifically to process high dimensional data, such as a digital image. A CNN contains a 

number of convolutional layers to filter the high dimensional input for useful information. 

At every convolution layer, the operation involves convolving the input data (feature 

maps) with many convolution kernels (filters) to output new transformed feature maps. 

The filters in the convolutional layers are modified and learned from the training process 

to extract the most useful feature information for a specific task. CNN is capable of fil-

tering out information about both the shape and the texture of an object when confronted 

with a general object recognition task, in which different classes of objects tend to have 

different shapes, but sometimes some different objects hold the same shape and they are 

characterised by their appearances and CNN is powerful enough to generalise these well. 

CNN has proved their effectiveness in a variety of applications in both computer vision 

and language problems. For image processing systems, they include image classification, 

face recognition, object detection, object segmentation, art and style transfer. For speech 

processing systems, they include speech recognition, natural language processing, text 

classification, text analysis, image captioning and language translation. Besides, many of 

these applications are integrated in state-of-the-art AI systems such as robots, virtual as-

sistants, and self-driving cars. [14] 
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2.2.1 Architecture Overview 

 

Figure 4. The shape of images in CIFAR-10 dataset [15] 

In general, CNN resembles ANN in a way that it is still based on the idea of layers of 

artificial neurons carrying learnable weights and biases. Each neuron performs a dot prod-

uct with some inputs and is optionally followed by a non – linearity transformation. The 

whole network is still expressed by a differentiable score function – loss function. In tra-

ditional ANN, the fully connected neuron structure does not scale well to 3-dimensional 

input data such as full images. For example, in the CIFAR-10 dataset where images are 

of size 32x32x3 (32 in width, 32 in height, and 3 colour channels), there would be 

32*32*3 = 3072 2-dimensional weight matrices. Although this amount still seems rea-

sonable, an image of more respectable size, e.g. 416x416x3 for the input shape of images 

in the YOLOv3 model [16], this number of weights would significantly escalate to 

416*416*3 = 519,168. Moreover, as there would need to be several other hidden layers 

with a huge number of nodes more than this, the total parameters would add up even 

more! Clearly, this architecture design is so computationally wasteful, and the enormous 

number of parameters would quickly lead the model to overfitting. In contrast, as the 

architecture of CNN is designed in a sensible way that encodes certain specific properties 
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that make multi-dimensional data processing more efficient. This highly enhances the 

computational efficiency and vastly reduce the number of parameters in the network. 

There are typically three main layers in a CNN architecture: the convolutional layer, the 

pooling layer and the traditional neural network layer (or fully connected layer). Specifi-

cally, convolutional layers are made up of 3 – dimensional volume nodes called kernels 

(filters), each kernel has its dimensions called width, height, and depth.  

2.2.2 Algorithm Overview 

• Convolutional layer 

 

Figure 5. A convolutional neural network architecture [17] 

The convolutional layer is the core building block of a CNN as it does most of the com-

putational computation. A convolutional layer comprises of a set of filters in which each 

one is small in width and height but extends in full depth dimension according to that of 

the input volume. For example, the first convolutional layer of YOLOv3 has 32 filters 

of shape 3x3x3 where the last dimension matches the number of colour channels in the 

input image, i.e. RGB. This is inspired from the idea of the receptive field in human vi-

sion. In addition, CNN uses the parameter sharing strategy that drastically helps reduce 

the number of parameters by adopting the assumption that if one filter is useful to com-

pute at one spatial location, then it will also be useful at some other locations as well. 

Therefore, in case of YOLOv3, the first layer contains a total of 32x3x3x3=864 unique 

weights. 
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Figure 6. the 2D demonstration of a convolutional operation [18] 

During the forwards propagation, all these filters convolve (i.e. slide) over the input vol-

ume from across the width dimension to along the height dimension and compute the dot 

product with the entries of the input volume at each particular location. The final output 

of this convolution operation is a 3-dimensional volume consisting of a collection of 2-

dimensional feature slices stacked along the depth dimension, where each of which con-

tains the responses of a filter in each spatial location of the input volume. Similar to ANN, 

all the value of the output volume will be optionally normalised and then transformed by 

a non-linearity function, which is typically a ReLU function. During the backwards prop-

agation, each of the nodes in the 3 – dimensional output volume will compute the gradient 

for the weights in its filters. The gradients are added up across each feature slice and are 

used to update the weights in the filter which generated that feature slice. Trained CNN 

has its convolutional layers as a set of learned filters that can extract certain kinds of 

information such as edges in various orientations or blobs of colours in the shallow layers, 

and eventually the general shape and texture of the training objects in the deep layers. It 

is worth mentioning that a convolutional layer is specified by the following hyperparam-

eters, meaning they need to be carefully selected: the filter size, the number of filters, the 
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stride and the type of zero-padding. The stride, as its name suggests, specifies the stride 

the filters make each time they convolve. A stride of 1 means that the filters will slide 

around by 1 pixel, and the larger the stride the smaller the output size will be. Zero-pad-

ding is a technique of padding the input volume with a border of additional zero values. 

This is effective since it allows the filters to convolve more frequently at the edges of the 

input and capture information better at these areas. In addition, it is also convenient as it 

gives you control over the output size. The two typical types of zero-padding are valid, 

meaning no padding at all, and same, meaning pad so that the output size is similar to that 

of the input. 

As the arrangement of hyper-parameters are mutually constrained, a dimension of the 

output size, except for the depth dimension, can be formulated as follow: 

Output dimension: 𝑛 + 2𝑝 − 𝑓

𝑠
+ 1 

(3) 

Where: 

𝑛 – a dimension of the input. 

p – the number of zero-padding to use. 

f – the corresponding dimension of the filter. 

s – the stride of the filter. 

• Pooling layer (subsampling layer) 
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Figure 7. the demonstration of the max pooling operation. [8] 

The function of the pooling layer is to progressively shrink the spatial size of the input 

using its convolutional pooling filter to reduce divisions in the input to a single value 

(down-sampling). This allows for the reduction of the number of parameters in the net-

work, which ease out the amount of memory consumption and computation and addition-

ally be able to control overfitting. The pooling procedure also provides simple immuta-

bility to tilt, translations and shearing and hence improves the image object detection ca-

pability of CNN. For example, the face in an image patch that is slightly translated from 

the centre when going through a pooling layer will be detected by its pooling filter and 

be funnelled into the right place. The larger the filter size, the more information is con-

centrated, which leads to slimmer networks that more easily fit into the GPU memory or 

mobile processor. However, there is a catch as setting this filter size to be too large, too 

much information is suppressed and leads to poor predictive performance. A typical prac-

tice in building a convolutional neural network architecture is to periodically insert a 

pooling layer in-between some convolutional layers. The pooling layer independently 

subsamples each feature slice of the input volume and downsizes it spatially using either 

the Max operation of the average operation. Since the pooling layer carries no weights at 

all, during the backwards propagation, it only routes the gradient and distributed it to the 

input that contributed to the operation in the forwards propagation. 
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• Inception Layer 

 

Figure 8. An inception layer, containing 1x1, 5x5 and 3x3 convolutions, and an 3x3 

average pooling. The outputs of all these layers are stacked together for the final 

output. [19] 

Inception layers in the CNN allow for using multiple convolutions with multiple filters 

and pooling layers simultaneously in parallel within the same layer. For example, Figure 

8. demonstrates the architecture of an inception layer with usage of 3 different convolu-

tional operations and an average pooling operation. The first convolution operation uses 

1x1 filters then feed the output to 2 convolutional operations with 5x5 and 3x3 filters, and 

an average pooling operation. the output of all these layers are concatenated together 

along the depth dimension and are fed to the next layer. The intention of this implemen-

tation is to let the network learns the best weights for these filters at training and automat-

ically extracts more useful information. This also enables deeper and larger conv layers 

which leads to better performance while maintaining reasonable computational cost. 

• Residual network  
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Figure 9. A demonstration of a residual connection [20] 

A lot of work done by AI researchers have shown convincing theoretical analysis of the 

effectiveness of deep architecture of neural networks. By simply by stacking up more 

layers, they can effectively increase its accuracy [21]. This brought up the depth problem 

of vanishing gradient where the deeper the layers go, the gradients become smaller and 

eventually fall to zero. This adversely diminish the accuracy over layers and lead to worse 

performance. Kaiming et al. [22] was first to introduce this problem and proposed the 

ultimate solution of residual network which allowed for training of over 2000 layers. The 

residual network basically contains residual connections which is meant to route the out-

put of some previous layers to the output of a later layer and perform the addition to them. 

This principle has been expanded into many other domains of deep learning such as 

speech processing systems. 

2.3 Batch normalisation 

BN is one of the main reasons that has made DL successful and it has become a standard 

feature of many machine learning libraries. The intuition behinds it concerns the problem 

of covariance shift. It refers to the change in the distribution of the input data used for the 

training algorithm which in turns affects the behaviour of machine learning algorithm. It 

is obvious when the train and test datasets come from different sources and they have 

different distributions. What BN does is to try to limit the covariance shift by normalising 

the activations of each layer (the output of the previous layer that is input to the next 
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layer) to mean 0 and unit variance. This allows each layer to learn on a more stable dis-

tribution of inputs and to use larger learning rate and thus accelerate the training of the 

network. [23] 

 

Figure 10. The equation behind batch normalisation 

2.4 You Only Look Once version 3 (YOLOv3) 

YOLOv3 is a state-of-the-art, real-time object detection system developed based around 

the CNN algorithm with the adoption of many of the modern techniques proven to be 

effective in other state-of-the-art deep learning models for computer vision such as the 

residual network, inception network and multi-scale outputs. It inputs the full image, then 

divides it into regions and predicts bounding boxes, which are weighted by their own 

predicted probabilities, and object probabilities for each region at three different scales. 

Different from other prior systems in the same category which repurpose and combined 

trained classifiers and localisers and suggest detections at high scoring regions of the im-

age. In addition, YOLOv3 and its predecessors were built in the DarkNet framework, the 

authors’ open-source neural network framework written in C and CUDA. Despite the fact 

that this framework is low-level and fast, it was made to only serve researching purposes 

and of the author himself, documentations and third-party supports as well as scalability 

in this framework are very limited to none. [24] 
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• Darknet-53 

 

Figure 11. Darknet-53 architecture [16] 

Darknet-53 is the latest of its kind, deep neural network model for image classification. 

It is the feature extractor that YOLOv3 was built on top off. It was inspired by the custom 

network based on GoogLeNet architecture, VGG models, and residual network. Darknet-

53 has 53 convolutional layers, hence the name, and a total of 18.7 billion operations 

compared to the state-of-the-art ResNet-152 model with 29.4 billion operations, it is more 

efficient in terms of speed and on par with the other classifier in terms of performance. 

The architecture of Darknet-53 has each layer followed by a BN layer and then the Leaky-

ReLU activation function. In addition, the convolution layers are fixed padded to the input 

size and down-sample directly with a stride (factor) of 2. 

• Bounding boxes 
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Figure 12. An example of bounding boxes displayed over objects [25] 

In the object detection task, there are multiple targets in an input image that not only do 

they need to be identified but also to obtain their specific locations.in the image and we 

use bounding boxes to describe those target locations. A bounding box is an imaginary 

rectangular box around a predicted object and can be determined by either an x and y 

coordinate of the centre of the box and the factor of the width and height of the box with 

respect to the image size, or a pair of x and y coordinates of the top left corner and the 

bottom right corner. Therefore, a bounding box is presented by a set of four real numbers. 

In addition, collision checking of bounding boxes are sometimes used for some applica-

tions. For YOLO, as demonstrated in figure 12, each predicted bounding box has its co-

ordinates include the centre coordinates relative to the grid using a sigmoid function, as 

well as the width and height. Thus, they need to be transformed using a set of non-linearity 

transformation functions in order to be visually interpreted. 
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Figure 13. The demonstration of YOLO bounding box 

and the transformation functions 
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Figure 14. YOLOv3 Architecture [26] 

YOLOv3 was built directly on top of the Darknet-53 model, giving it a total of 106 fully 

convolutional layers with another 53 layers in addition to DarkNet-53. At the outputs, the 
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detection is done by applying 255 1x1 convolutional filters on the feature volumes of 

three different scales at three different places in the network.  

 

Figure 15. YOLOv3 output vector structure [26] 

YOLOv3 down-samples the image to three different scales by a factor of 32, 16, and 8 to 

make detections. The first 81 layers of the network down-sample the image by a factor of 

32 and the first detection is made at the 82nd layer. the network then continues at layer 79 

and the output is later upsampled by factor of 2 before going through an inception module 

where it is concatenated with the output of layer 61, the second detection is made at the 
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94th layer. In the similar manner, the network continues again at layer 91, upsampled by 

a factor of 2 and then concatenated inceptionally with output of layer 36 and make the 

third detection at the 106th layer. If the input image has size 416x416 is taken as an ex-

ample, the first detections would yield an output volume of shape 13x13x255, the second 

detection would have shape 26x26x255 and the third detection would be 52x52x255. 

Each cell of the output matrix a vector of 255 values denoting predictions with respect to 

three bounding boxes. Each prediction has 85 real numbers in which the first four are the 

bounding box coordinates, the next one is the probability of whether this bounding box 

contain any objects – the objectness score, and the last 80 values are the probabilities of 

the 80 objects that the networks learned to detect. In the end, there is a total of 10647 

predictions that this network infers for an image all in one go. This technique effectively 

improves the detecting capability of the system compared to earlier versions, especially 

for small objects. Using inception modules for up-sampled layers with earlier layers in 

the network thoughtfully help preserving detailed information of the image and signifi-

cantly improve detection capability for smaller objects. By allowing for detections to be 

performed at three different scales, each output entry is trained only to be responsible for 

being good at detecting objects at certain sizes. examining the case of the earlier example 

again, the first output layer of size 13x13 would be considered to detect large object, the 

second output layer of size 26x26 would be considered to detect medium objects, and the 

last output layer of size 52x52 would be considered to detect small objects. 

2.5 Python 

 

Python is an interpreted, object-oriented, high-level programming language with dynamic 

semantics. It allows for rapid application development by enforcing high-level built in 

data structures, dynamic typing and dynamic binding syntax, it can also be used as a 

scripting or glue language to connect existing components together. Python syntax is sim-

ple, easy to learn and emphasizes readability and therefore reduces the cost of programme 

maintenance. Python supports modules and packages, which encourages program modu-
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larity and code reuse. The Python interpreter and the extensive standard library are avail-

able in source or binary form without charge for all major platforms and can be freely 

distributed. Python provides increased productivity as no compilation step is required 

which makes the edit-test-debug cycle incredibly fast. Furthermore, debugging Python 

programmes is easy: a bug or bad input will never cause a segmentation fault. Instead, 

when the interpreter discovers an error, it raises an exception. When the programme 

doesn't catch the exception, the interpreter prints a stack trace. A source level debugger 

allows inspection of local and global variables, evaluation of arbitrary expressions, setting 

breakpoints, stepping through the code a line at a time, and so on. The debugger is written 

in Python itself, testifying to Python's introspective power. On the other hand, often the 

quickest way to debug a programme is to add a few print statements to the source: the fast 

edit-test-debug cycle makes this simple approach very effective. [27] 

2.6 TensorFlow 

 

TF is a multi-platform open source platform for machine learning. It is an end-to-end, 

comprehensive and flexible ecosystem of tools, libraries and community resources that 

allows for fast experimentation of new ideas, turning concept to code of state-of-the-art 

models and to publication, and it allows developers easily build and deploy machine 

learning powered applications. From version 2.0 onwards, TensorFlow enables easy 

building, training machine learning models at multiple levels of abstraction to choose 

from without giving up on speed and performance. For getting started, TensorFlow pro-

vides the high-level Sequential API Keras which has these advantages: user-friendly, 

modular, composable, and extendable. It is opted for fast prototyping, advanced research-

ing, and production. For training very large systems and optionally in a production con-

text, the Estimator API provides distribution capability across multiple machines (multi-

servers) at the same level of simplicity to Keras. For research and development where 

having full control is a necessity, the TensorFlow Core API now have Eager Execution 
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mode enabled by default to provide a define-by-run interface for its operations. Tensor-

Flow is built to provide a direct path to production no matter what language and platform 

they are and TensorFlow Extended provides a full production ML pipeline, whether it’s 

in the cloud or in the browser where it runs in JavaScript environments, use Tensor-

Flow.js; if it is on mobile and edge devices use TensorFlow Lite; if it is on-prem, simply 

use any API that is suitable. TensorFlow also supports ecosystems of extension libraries 

and models including Ragged Tensors – a TensorFlow implementation of nested variable-

length lists for easy storing and processing non-uniform shape data, TensorFlow Proba-

bility – a Python library for easy combining probabilistic models and deep learning on 

TPU and GPU hardware, Tensor2Tensor –  a library of designed deep learning models 

and datasets, and BERT – Bidirectional Encoder Representations from Transformers, 

a new method language representations which achieved state-of-the-art results on many 

recent Natural Language Processing (NLP) tasks. [28] 

2.7 NumPy 

 

NumPy is the mathematical library for scientific computing for the Python program-

ming language. it supports multi-dimensional array objects (matrices) with a large col-

lection of sophisticated (broadcasting) operation functions. It also includes tools for in-

tegrating C/C++ and Fortran code along with many useful linear algebra, Fourier trans-

form, and random number computations. NumPy can conveniently be used as an effi-

cient multi-dimensional container of generic data and define new arbitrary datatypes. 

This allows for seamless and fast integration with a wide variety of popular frameworks 

and databases. Since images with multiple channels (colour images) are typically repre-

sented as three – dimensional arrays, operations such as indexing, slicing and masking 

with other arrays at the pixel level are very efficient. In addition, the NumPy array is 

adopted by the computer vision library OpenCV as a universal data structure in for stor-

ing images and it significantly simplifies the workflow and debugging. On the other 
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hand, the limitations of this library are that algorithms that are unvectorisable will per-

form slowly as they must be implemented in pure Python. Furthermore, vectorisation 

may increase memory requirement complexity from constant to linear as the size of 

temporary arrays need to be as large as the inputs. [29] 

2.8 OpenCV 

 

OpenCV is an Open source software library built to provide a standard infrastructure and 

accelerate the use of machine learning for computer vision applications. It is widely 

adopted with an estimated number of exceeding 14 million downloads. It contains more 

than 2500 of both classic and state-of-the-art optimised algorithms with their applications 

range from face detection and recognition, object identification, human action classifica-

tion, movements tracking, 3D model of object extraction, 3D cloud point production from 

stereo cameras, high resolution image reproduction by stitching images, image similarity 

search in database, red eye removal in images, eye tracking, scenery recognition, and 

overlay marker establishment for augmented reality and so on. It is developed by Intel 

and is free for both academic and commercial use. The library is cross-platform and sup-

ports various deep learning frameworks such as TensorFlow, Torch, PyTorch, and Caffe. 

It has C++, Python, Java and MATLAB interfaces and has supports for Windows, Linux, 

Mac OS, iOS and Android operating systems. Focusing mainly at real-time performance, 

the library was implemented in optimized C/C++ and was designed for computational 

efficiency and can make use of multi-core processing capabilities. Enabled with the 

OpenCL and CUDA framework, it can also take advantage of the hardware acceleration 

of the underlying heterogeneous compute platform. [30] 
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2.9 Intel’s Movidius Neural Compute Stick. 

 

Figure 16. Intel's Neural Compute Stick [2] 

The Intel® Movidius NCS is a series of small, fan-less, deep learning accelerating hard-

ware that enables learning AI programming for edge devices. The core of this hardware 

is powered by the first always-on high-performance vision processor in the industry, the 

Intel® Movidius™ VPU. It is the same the one used in a majority of intelligent integrated 

devices such as security cameras, gesture-controlled drones, industrial machine vision 

equipment, etc. The NCS series is made to enable rapid prototyping, validation, and de-

ployment of deep learning inference applications at the edge. All these are made possible 

thanks to the low-power consumption VPU architecture that allows an entirely new seg-

ment of AI applications to no longer need to be reliant on a connection to the cloud. This 

helps lower latency and increase security since all the work stays on your machine rather 

than being sent to operate at somewhere else. Latest in the line, the NCS2 is based on the 

next generation of the VPU architecture, the Intel® Movidius™ Myriad™ X VPU which 

contains two Neural Compute Engines (NCE). The NCE is an on-chip hardware block 

which is optimised for a high compute-per-watt consumption for visual intelligence pro-

cessing. This new VPU achieves 1 trillion operations per second (TOPS) of performance, 

and in machine vision and visual awareness applications, it is 8 times faster over its pre-

decessor in extremely power-constrained environments without any accuracy compro-

mises. [31] 
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Figure 17. The development workflow diagram for 

 the Intel’s Neural Compute Stick [32] 

The development process of the NCS is presented in the workflow diagram of figure 16. 

A model is designed and trained on a capable host machine (a development computer). 

Then use one of the supported APIs to profile, tune, and compile to convert the model to 

the format supported by the VPU hardware. With the newly formatted model, users can 

validate the model and prototype its applications on the same host machine or on edge 

devices. The hardware is physically connected to the machine and is accessed using avail-

able methods in the API. 

2.10 Intel® Movidius™ Neural Compute Software Development Kit (NCSDK) 

  

Figure 18. The workflow diagram of the NCSDK [33] 

Solutions that use the NCS can be programmed using the NCSDK. It contains a set of 

functions to help compile, profile, and tune, which enable rapid prototyping and deploy-

ment for CNN based applications that require real-time inferencing at ultra-low power. 

The workflow is summarised in figure 17, DL models after being developed in libraries 

such as Caffe and TensorFlow can be used with the NCSDK. Functions in this framework 

can be used to profile, validate and compile the model to the model graph file that can be 

loaded by the NCS hardware. However, the NCSDK is restricted to a list of supported 
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CNN models and the capability of deploying custom models is still limited. To make up 

for that incompatible difficulty, Intel suggests transitioning to the Intel® OpenVINO™ 

toolkit. which is also the default software toolkit for the NCS2. 

2.11 Intel® Distribution of OpenVINO™ toolkit 

  

Figure 19. The workflow diagram of the OpenVINO toolkit [34] 

OpenVINO is a primary development software toolkit for the NCS2 and other Intel hard-

ware. It allows for developing and deploying machine vision solutions that delivers high 

inferencing speed and accuracy. OpenVINO integrates camera processing, optimized DL 

computation, and CV acceleration tools for heterogeneous execution environments. This 

means that, CNN-based solutions using this toolkit can maximise performance by extend-

ing their workloads across the Intel hardware (including CPUs, GPUs, FPGAs, VPUs, 

and IPUs) using a just a common API. Compared to NCSDK, OpenVINO also enables 

CNN-based inference at the edge but with better preoptimized kernels and calls for 

OpenCV API. The development workflow in OpenVINO is depicted in figure 18. It first 

includes training a CNN model in one of the machine learning libraries. Second, use 

model optimizer to produce the Intermediate Representation (IR) model graph. The IR 

contains two files, the topology description in XML format and the binary data of the 

weights the model. The IR can be used to read, load, and infer using the Inference Engine. 

The inference engine API contains unified functions to work across multiple Intel plat-

forms. User applications can integrate this API to use the model IR to perform deep learn-

ing inference. [34] 
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2.12 Raspberry Pi 

 

Figure 20. The Raspberry Pi 3 Model B+ 

The RPI is the third most popular micro-computer worldwide. This compact system 

comes in various models with different shape and sizes as well as the computing power. 

In terms of the latest most powerful model 3 B+, It has a size of a normal credit card 

which is 85.60mm x 56mm x 21mm and weights 45g. In terms of hardware specification, 

this system uses a 1.4GHz 64-bit quad-core ARM Cortex-A53 CPU, the BCM2837B0 

SoC from Broadcom. In addition, it has 1 GHz of RAM, 4 USB ports, a micro USB port 

for power source, a microSD card slot, an HDMI port, an 1000Base-T(gigabit) Ethernet 

port, an integrated 802.11ac/n wireless LAN chip, Bluetooth 4.2, and 26 GPIO pins. The 

Raspberry Pi 3 B+ packed a GPU capable of 24 GFLOPs of general-purpose compute, 

features texture filtering and DMA infrastructure. In addition, it provides OpenGL ES 

2.0, hardware accelerated OpenVG, H.264 high-profile encode and decode at 1080p 

30fps. To compare, this micro-computer roughly matches a 300MHz Pentium 2 but has 

better graphics and unexpandable RAM as it is built as a Package on Package (POP) on 

top of the SoC. The officially recommended operating system for the Raspberry Pi is the 
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Raspbian OS Linux distro. It is specifically designed and optimised for the hardware 

across all Raspberry Pi micro-computers. Additionally, later versions of RPI computers 

are getting more powerful and the community has made a significant amount of efforts to 

compatibilise many other popular Linux distros, Android OS versions, and even Win-

dows to many of the Raspberry Pi models. The RPI devices are powered by 5V power 

source and the recommended SPU current capacity is specific to each model and for the 

use case. For the latest model B+, the recommended SPU is 2.5A. The more interfaces 

there is in the device, the more power is required. To connect high-power USB devices, 

it is recommended to connect them to a powered USB hub then connect it to the Pi. In 

addition, very high-current devices or devices which draws a surge current such as net-

work modems and USB hard disks will require an external power supply. In terms of 

storage, the Raspberry Pi uses a microSD card of 8GB at minimum and up to 128GB at 

maximum. The storage contains the operating system, additional packages and programs, 

and files. The Raspberry Pi 3 B+ can be extended with a number of modules. There in-

cludes HD camera, touchscreen display, TV signal controller, as well as standard com-

puter peripherals such as mouse and keyboard. [35] 
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3 IMPLEMENTATION 

 

Figure 21. The code hierarchy diagram of YOLOw 

Figure 20. describes the general structure of code. It can be simplistically divided into 2 

main class objects. The first one is, based on TF, called Yolow and the other one is, based 

on OpenVINO, called YolowNCS. Primarily, Yolow contains many modules responsible 

to do the following things. Firstly, it instantiates the TF operational graph of either 

YOLOv3 or YOLOv3-tiny network architecture. Secondly, it loads the target model of 

either of these networks trained in the Darknet framework to the TF graph. Thirdly, it 

freezes the graph into a model file in protobuf format, it can be easily and quickly loaded 

back to run or integrate to other projects. Additionally, this frozen model file is required 

to create the IR model graph for YolowNCS. Finally, Yolow takes as input pre-processed 

visual data and performs detection inferencing. Being designed to opt for a similar using 

experience, YolowNCS first handles the connection with the NCS device hardware, then 
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initialises the network from the IR graph and load it to the NCS, finally it handles detec-

tion inferencing in either synchronous or asynchronous manner. 

3.1 TensorFlow  

3.1.1 Class Layers 

In detail, all of the network building blocks of the YOLO architectures are sub-classes of 

the elementary class Layers. It has two rudimentary methods that actually builds YOLOv3 

architectures.  

class Layers(object): 

     

    def __init__(self, is_training=False): 

        self.is_training = is_training 

Snippet 1. The constructor of Layers class 

In the constructor, class Layers requires the argument is_training whose value is default 

to False. It is for the batch_normalisation() function to determine the appropriate opera-

tions based on whether the computations are meant for training or inferencing. If it is the 

prior, is_training should be set to True and the returned output is normalised with statistics 

of the currently computing batch of input. Otherwise, the returned output is normalised 

using moving statistics for a single input.  

    def conv2d(self, input, num_kernels, kernel_size=1, strides=1, 

with_bias=False): 

        with tf.variable_scope(name_or_scope=None,default_name='conv2d'): 

            if kernel_size > 1: 

                paddings = tf.constant([[0,0], [1,1], [1,1], [0,0]]) 

                input = tf.pad(input, paddings) 

            W = tf.get_variable(name='weights', shape=[kernel_size, ker-

nel_size, input.shape[-1], num_kernels], dtype=tf.float32) 

            z = tf.nn.conv2d(input=input, 

                            filter=W, 

                            strides=[1, strides, strides, 1], 

                            padding='VALID') 

            if with_bias: 

                bias = tf.get_variable(name='biases', 

                                    shape=num_kernels, 

                                    dtype=tf.float32, 

                                    initializer=tf.zeros_initializer) 
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                z += bias 

            return z 

Snippet 2. The implementation of the conv2d() method 

The conv2d() method represents a convolutional layer of YOLOv3, in which the input 

tensor is custom padded by a border of thickness 1 and the kernel tensor w is created using 

the passed in arguments. They are then passed to the tf.nn.conv2d() function to perform 

the convolutional operations, its output is then added by the bias term according to for-

mula (0).  

    def conv2d_bn(self, input, num_kernels, kernel_size=3, strides=1): 

        z = self.conv2d(input=input, 

                    num_kernels=num_kernels, 

                    kernel_size=kernel_size, 

                    strides=strides) 

        z_tilder = tf.layers.batch_normalization(inputs=z, 

                                               momentum=.9, 

                                               epsilon=1e-05, 

                                               training=self.is_training)     

        return tf.nn.leaky_relu(z_tilder, alpha=.1) 

Snippet 3. The implementation of the conv2d_bn() method 

The conv2d_bn() method represents another convolutional layer in the architectures that 

is similar to the other one but is extended with a BN and a activation operations. The BN 

operation is computed by Function tf.layers.batch_normalization() which takes its hy-

perparameters momentum and epsilon set according to the Darknet configuration of the 

architecture and the provided argument is_training. The activation operation is computed 

by function tf.nn.leaky_relu() with the hyperparameter alpha followed the Darknet con-

figuration, it applies the Leaky ReLU non-linearity transformation function to the input. 

3.1.2 Class Darknet53 

class Darknet53(Layers): 

    def __init__(self, input, is_training=False): 

        super().__init__(is_training=is_training) 

        self.input = input 
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Snippet 4 the constructor of the Darknet53 class 

The Darknet53 class sub-classes Layers to effectively inherit its methods and construct 

the DarkNet-53 model part of the YOLOv3 architecture. The class has its constructor 

requires two arguments: input of the visual data and is_training for the superclass.  

    def _residual_block(self, input, num_kernels): 

        shortcut = input 

        input = self.conv2d_bn(input=input, 

                                num_kernels=num_kernels, 

                                kernel_size=1) 

        input = self.conv2d_bn(input=input, 

                                num_kernels=num_kernels * 2) 

        input += shortcut 

        return input 

Snippet 5. The implementation of the _residual_block() method 

Darknet-53 has a helper method _residual_block() which allows easily building the re-

petitive residual module of the architecture. This module comprises two conv2d_bn() lay-

ers with a shortcut (skipped) connection, it is an addition operation of the output of at the 

second  conv2d_bn() layer and the input to  the first conv2d_bn() layer.  

    def dark_graph(self): 

        input = self.conv2d_bn(input=self.input, 

                        num_kernels=32) 

        input = self.conv2d_bn(input=input, 

                        num_kernels=64, 

                        strides=2) 

        input = self._residual_block(input=input, 

                                num_kernels=32) 

        input = self.conv2d_bn(input=input, 

                        num_kernels=128, 

                        strides=2) 

        for _ in range(2): 

            input = self._residual_block(input=input, 

                                    num_kernels=64) 

        input = self.conv2d_bn(input=input, 

                        num_kernels=256, 

                        strides=2) 

        for _ in range(8): 

            input = self._residual_block(input=input, 

                                    num_kernels=128) 

        route_3 = input 
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        input = self.conv2d_bn(input=input, 

                        num_kernels=512, 

                        strides=2) 

        for _ in range(8): 

            input = self._residual_block(input=input, 

                                    num_kernels=256) 

        route_2 = input 

        input =self.conv2d_bn(input=input, 

                        num_kernels=1024, 

                        strides=2) 

        for _ in range(4): 

            input = self._residual_block(input=input, 

                                    num_kernels=512) 

        return input, route_2, route_3 

Snippet 6. The implementation of the dark_graph() method 

The other method is dark_graph() which actually builds the TF graph of the model with-

out the final layer for classification (52 layers). The graph is an consecutive arrangement 

of conv2d_bn() layers and _residual_block() that effectively down-sample the data. The 

end output is three nodes at three difference scales of the process. 

3.1.3 Class Yolov3 

class Yolov3(Darknet53): 

    num_anchors = 3 

    objectness = 1 

    coordinates = 4 

    def __init__(self, input, num_classes, input_size, anchor_file, 

is_training): 

        super().__init__(input=input, is_training=is_training) 

        self._ANCHORS = load_anchors(anchor_file) 

        self.num_classes = num_classes 

        self.num_predictions = self.objectness + self.coordinates + 

self.num_classes 

        self.input_size = self.input.get_shape().as_list()[1:3] 

Snippet 7. The constructor of the Yolov3 class 

The same design philosophy is applied to the Yolov3 class to inherit from Darknet-53. In 

the constructor, Yolov3 requires 5 arguments: input of visual data, is_training for its super 

class, num_classes for the number of classes, input_size for the size of the visual input, 

anchor_file for the path to the anchor file. In addition, the Yolov3 class also defines three 
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constant values: num_anchors for the number of anchors in use, objectness for the confi-

dence of the detection existence, and coordinates for the number of coordinates defining 

bounding boxes. The anchor_file argument is used to load the list of anchors using 

load_anchors() function imported from utils module. The class includes the graph build-

ing method graph(), the block module method _detection_block(), the two layer methods 

_upsample() and _region(). 

    def graph(self): 

        with tf.variable_scope('darknet53'): 

            route_1, route_2, route_3 = self.dark_graph() 

        with tf.variable_scope('yolov3'): 

            predictions_1, route = self._detection_block(route_1, 512, 

self._ANCHORS[6:]) 

            route = self.conv2d_bn(input=route, 

                                   num_kernels=256, 

                                   kernel_size=1) 

            route = self._upsample(route) 

            route_2 = tf.concat([route, route_2], axis=-1) 

            predictions_2, route = self._detection_block(route_2, 256, 

self._ANCHORS[3:6]) 

            route = self.conv2d_bn(input=route, 

                                   num_kernels=128, 

                                   kernel_size=1) 

            route = self._upsample(route) 

            route_3 = tf.concat([route, route_3], axis=-1) 

            predictions_3, route = self._detection_block(route_3, 128, 

self._ANCHORS[:3])      

        return tf.concat([predictions_1, predictions_2, predictions_3], 

axis=1, name='output') 

Snippet 8. The implementation of the graph() method 

    def _region(self, input, anchor_list): 

        output_shape = input.get_shape().as_list() # if output_shape=(m, 

13, 13, 255) 

        grid_sz = output_shape[1:3] # grid_sz = 13, 13 

        grid_dim = np.prod(grid_sz) # grid_dim = 169 

        strides = np.array(self.input_size) / np.array(grid_sz) 

         

        input = tf.reshape(input, [-1, grid_dim*self.num_anchors, 

self.num_predictions]) # predictions = (m, 507, 85) 

         

        bb_xy, bb_hw, confidence, classes = tf.split(input, [2, 2, 1, 

self.num_classes], axis=-1) # split along the last dimension 
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        bb_xy = tf.sigmoid(bb_xy) 

        confidence = tf.sigmoid(confidence) 

        classes = tf.sigmoid(classes) 

         

        grid_x_range = tf.range(grid_sz[0], dtype=tf.float32) 

        grid_y_range = tf.range(grid_sz[1], dtype=tf.float32) 

        grid_x, grid_y = tf.meshgrid(grid_x_range, grid_y_range) 

        grid_x = tf.reshape(grid_x, [-1, 1]) 

        grid_y = tf.reshape(grid_y, [-1, 1]) 

        grid_offset = tf.concat([grid_x, grid_y], axis=-1) 

        grid_offset = tf.tile(grid_offset, [1, self.num_anchors]) 

        grid_offset = tf.reshape(grid_offset, [1, -1, 2]) 

        bb_xy = bb_xy + grid_offset 

        bb_xy = bb_xy * strides 

        anchors = [tuple(a/strides) for a in anchor_list] 

        anchors = tf.tile(anchors, [grid_dim, 1]) 

         

        bb_hw = anchors * tf.exp(bb_hw) * strides 

        return tf.concat([bb_xy, bb_hw, confidence, classes], axis=-1) 

Snippet 9. The implementation of the _region() method 

Under graph(), method dark_graph() is called within the variable scope ‘darknet53’ which 

returns the three route output. Within the variable scope ‘yolov3’, every route is in turn 

combined with the shortcut output of the last route, except for the first one, and is fed to 

a scheme of layers with each one uses a different kernel for a certain scale. A route goes 

into a _detection_block() and outputs the detections at that scale along with the shortcut 

route. The shortcut is then subject to a conv2d_bn() layer before being upscaled by the 

_upsample() and is concatenated with the next _dark_graph() route. At the end of the 

method, predictions from all three branches are concatenated and returned. 

    def _detection_block(self, input, num_kernels, anchor_list): 

        output_depth = self.num_anchors * self.num_predictions 

        for i in range(3): 

            input = self.conv2d_bn(input=input, 

                                   num_kernels=num_kernels, 

                                   kernel_size=1) 

            if i == 2: 

                route = input 

            input = self.conv2d_bn(input=input, 

                                   num_kernels=num_kernels*2) 

        input = self.conv2d(input=input, 

                            num_kernels=output_depth, 

                            with_bias=True) 
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        input = self._region(input, anchor_list)         

        return input, route 

Snippet 10. The implementation of the _detection_block() method 

In terms of the _detection_block() method, it implements six conv2d_bn() layers and one 

conv2d() layer, which is meant to transform the feature maps to the proprietary shape to 

be processed by _region(). In addition, output of the fifth conv2d_bn() layer is returned 

as a shortcut to be concatenated with other feature maps in the later layer in the network 

whilst the main output goes to the _region() method. This method splits the input into 

volumes of detection attributes: anchors_xy – centres of bounding boxes, anchor_hw – 

size of bounding boxes, confidence – the detection confidence score for bounding boxes, 

and classes – the confidence scores of every class with respect to every bounding box. 

Based on figure 12, the bounding box attributes are transformed into standardised values 

and re-concatenated to be returned. This way of doing saves some computing as each 

attribute volume does not have to be concatenated separately in method graph(). 

    def _upsample(self, input, stride=2): 

        grid_shape = input.get_shape().as_list() 

        grid_sz = grid_shape[1:-1] 

        output_dims = grid_sz*stride 

        return tf.image.resize_nearest_neighbor(images=input, 

                                                size=output_dims, 

                                                name='upsampled_' + 

str(output_dims)) 

Snippet 11. The implementation of the _upsample() method 

Layer method _upsample() returns the up-sampled feature maps of input, up-sampling 

uses a factor (stride) of 2 and the k-nearest neighbour algorithm for interpolation. 

3.1.4 Class Yolov3Tiny 

The next class to inherit Yolov3 is the tiny version of the Yolov3 architecture, 

Yolov3Tiny. This compact architecture carries the same terminology but with fewer lay-

ers and has only two output branches. This version strives for light computing power and 

commits to sacrifice some accuracy and detection capability for small objects compared 

to the full version. This architecture will be more friendly for small devices to run more 

efficiently. The implementation details are as follow. 
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class Yolov3Tiny(Yolov3): 

    def graph(self): 

        with tf.variable_scope('yolov3_tiny'): 

            input = self.conv2d_bn(input=self.input, 

                                   num_kernels=16) 

            for i in range(6): 

                input = tf.layers.max_pooling2d(inputs=input, 

                                                pool_size=2, 

                                                strides=(1 if i == 5 else 

2), 

                                                padding='same' if i == 5 

else 'valid') 

                input = self.conv2d_bn(input=input, 

                                       num_kernels=pow(2, 5+i))   

                if i == 3: 

                    route_1 = input 

 

            input = self.conv2d_bn(input=input, 

                                   num_kernels=256, 

                                   kernel_size=1) 

            route_2 = input 

            predictions_1 = self._detection_block(input=input, 

                                                 num_kernels=512, 

                                                 anchor_list=self._AN-

CHORS[3:6])        

            input = self.conv2d_bn(input=route_2, 

                                   num_kernels=128, 

                                   kernel_size=1) 

            input = self._upsample(input) 

            input = tf.concat(values=[input, route_1], 

                              axis=-1) 

            predictions_2 = self._detection_block(input=input, 

                                                 num_kernels=256, 

                                                 anchor_list=self._AN-

CHORS[:3]) 

        return tf.concat(values=[predictions_1, predictions_2], 

                         axis=1, 

                         name='output') 

Snippet 12. Implementation of the graph() method of class Yolov3Tiny 

Since the class has the same structure as its superclass, it overwrites the graph() method 

and the _detection_block() method to load its smaller network. For the first method, the 

feature maps are down-sampled by the factor of 2 by the max-pooling layer instead of the 
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convolution layers. This helps reduce the computing resources and, in the end, only two 

prediction volumes are concatenated and returned.  

    def _detection_block(self, input, num_kernels, anchor_list): 

        output_depth = len(anchor_list)*self.num_predictions 

        input = self.conv2d_bn(input=input, 

                               num_kernels=num_kernels) 

        input = self.conv2d(input=input, 

                            num_kernels=output_depth, 

                            with_bias=True) 

        input = self.region(input, anchor_list)    

        return input 

Snippet 13. The implementation of _detection_block() method for Yolov3Tiny class 

For method _detection_block()  ̧ it only implements two conv2d_bn() layers before the 

_region() layer. 

3.1.5 Class WeightLoader 

When the network graph of YOLO is initialised, it needs to be loaded with the Darknet 

weights file before being used for making predictions. In order to do that, class Weight-

Loader was implemented to read the binaries in the weights file to floating point numbers 

of bytes and assign the right numbers to the corresponding operations in the model graph 

of TensorFlow.  

class WeightLoader(object): 

    default_models = load_default_models() 

    def __init__(self, var_list, weight_file): 

        self.file = Path(weight_file) 

        self.filename = os.path.basename(weight_file) 

        self.var_list = var_list 

        self.major = 0 

        self.minor = 0 

        self.revision = 0 

        self.seen = 0 

        self.offset = 0 

        self.weights = [] 

        self.weights_size = 0 

        print('\n\nChecking weights from {}\n'.format(self.file))         

        if not self.file.is_file(): 

            print('\n{} was not available! Start to download from the in-

ternet.'.format(self.file)) 
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            self.url = 'https://pjreddie.com/media/files/' + self.file-

name 

            self.download_weights() 

        

        print('\n\nLoading weights from {}\n'.format(self.file)) 

Snippet 14. The constructor of the WeightLoader class 

An instance of class WeightLoader requires the list of TF graph operations and the path 

to the Darknet weights file. In the constructor, it tries to load the weights file and in case 

of failure, it will automatically try to download that file from the internet on the based on 

the file name. The class has three methods load(), load_now(), and download_weights(), 

in which the first two methods is used to perform the assignment operation and the third 

one is used to download the weights file. 

    def load(self, var): 

        var_shape = var.shape.as_list() 

        var_size = np.prod(var_shape) 

        read_from = self.offset 

        read_to = read_from + var_size 

        val = self.weights[read_from:read_to] 

        if 'weights' in var.name: 

            val = val.reshape(var_shape[3], var_shape[2], var_shape[0], 

var_shape[1]) 

            val = np.transpose(val, (2, 3, 1, 0)) 

 

        else: 

            val = val.reshape(var_shape) 

 

        self.offset = read_to 

        return tf.assign(var, val, validate_shape=True) 

Snippet 15. The implementation of the load() method 

Method load() is intendedly for load_now() to use as what it does it actually sign the bytes 

of values in the weights file to the passing operation variable argument. 

    def load_now(self): 

        with open(self.file, 'rb') as f: 

            self.major, self.minor, self.revision = np.fromfile(f, 

dtype=np.int32, count=3) 

            self.seen = np.fromfile(f, dtype=np.float64, count=1) 

            self.weights = np.fromfile(f, dtype=np.float32) 

            self.weights_size = self.weights.shape[0] 
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        load_ops = [] 

        now = 0 

        while now < len(self.var_list): 

            var_now = self.var_list[now] 

            if 'weights' in var_now.name: 

                next = now + 1 

                var_next = self.var_list[next] 

                if 'batch_normalization' in var_next.name: 

                    num_bn_vars = 4 

                    gamma, beta, moving_mean, moving_variance = 

self.var_list[next:next+num_bn_vars] 

                    bn_vars = [beta, gamma, moving_mean, moving_variance] 

                    for var in bn_vars: 

                        load_ops.append(self.load(var)) 

                        print('{} variable loaded -- read {}/{} total 

bytes.'.format(var.name, self.offset, self.weights_size)) 

                    now += num_bn_vars 

                elif 'biases' in var_next.name: 

                    load_ops.append(self.load(var_next)) 

                    print('{} variable loaded -- read {}/{} total 

bytes.'.format(var_next.name, self.offset, self.weights_size)) 

                    now = next 

                else: 

                    mess = 'Encountered unexpected next variable 

{}.'.format(var_next.name) 

                    assert Exception(mess) 

                load_ops.append(self.load(var_now)) 

                print('{} variable loaded -- read {}/{} total 

bytes.'.format(var_now.name, self.offset, self.weights_size)) 

                now += 1 

                print('total loaded variables = ' + str(now)) 

            else: 

                mess = 'Encountered unexpected variable {}'.for-

mat(var_now.name) 

                assert Exception(mess) 

        print('Done!') 

        return load_ops 

Snippet 16. The implementation of the load_now() method 

In terms of load_now(), it cycles through each of the TF graph operations, takes into 

consideration of how the order of variables in the Darknet weights file are laid out, and 

assign their values correspondingly to the variables of that operation. 
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    def download_weights(self): 

        def reporthook(blocknum, blocksize, totalsize): 

            readsofar = blocknum * blocksize 

            if totalsize > 0: 

                percent = readsofar * 1e2 / totalsize 

                s = "\r%5.1f%% %*d / %d" % ( 

                    percent, len(str(totalsize)), readsofar, totalsize) 

                sys.stderr.write(s) 

                if readsofar >= totalsize: # near the end 

                    sys.stderr.write("\n") 

 

            else: # total size is unknown 

                sys.stderr.write("\r_%% %d/Unknown\n" % (readsofar)) 

 

        print('Downloading ' + self.filename + ' from ' + self.url) 

        urlretrieve(self.url, filename=self.file, reporthook=reporthook) 

        print('Download complete!') 

Snippet 17. The implementation of the download_weights() method 

Lastly, final method download_weight() is directly call by the constructor when the pass-

ing file is not available, which makes it more convenient for the user. 

3.1.6 Class Yolow 

To serve as a high-level programming interface, the Yolow module was implemented to 

wrap the code of all the functionalities for ease of use and future upgradability under the 

hood while keeping the application code the same. The module contains an argument 

parser function and the actual Yolow class itself. 

class Yolow(object): 

    sess = tf.Session() 

    default_models = load_default_models() 

    model_types = list(default_models.keys()) 

    freeze_dir = 'data/pb/' 

    tf_models = {model_types[0]: Yolov3, 

                 model_types[1]: Yolov3Tiny} 

 

    def  __init__(self, model_type, model_file, anchor_file, num_classes, 

input_size, is_training=False): 

        if model_type not in self.model_types: 

            raise ValueError('model_type can only be either \'full\' or 

\'tiny\'.') 
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        elif not model_type: 

            model_type = self.model_types[0] 

        self.model_type = model_type 

 

        if not model_file: 

            model_file = './data/bin/{}'.format(self.default_mod-

els.get(model_type)) 

 

        elif not os.path.exists(model_file): 

            raise ValueError('model file {} does not exist.'.for-

mat(model_file)) 

        self.model_file = model_file 

 

        if '.pb' not in self.model_file: 

            self.frozen_filename = '_'.join(['frozen',                            

os.path.basename(self.model_file).split('.')[0]]) 

            self.frozen_filename = self.freeze_dir + self.frozen_filename 

+ '.pb' 

        if os.path.exists(self.frozen_filename): 

            self.defrost() 

            self.input = tf.get_default_graph().get_tensor_by_name('im-

port/input:0') 

            self.output = tf.get_default_graph().get_tensor_by_name('im-

port/detections/output:0') 

 

        else: 

            if not anchor_file: 

                anchor_file = 'data/anchors/' + self.model_type + '.txt' 

 

            elif not os.path.exists(anchor_file): 

                raise ValueError('{} anchor file does not exist.'.for-

mat(anchor_file)) 

 

 

            self.anchor_file = anchor_file 

            if not input_size: 

                input_size = 416 

 

            if type(input_size) is int: 

                input_size = input_size, input_size 

 

            self.input_size = input_size 

            self.num_classes = num_classes 

            self.is_training = is_training 

            self.input = tf.placeholder(tf.float32,  

                                        [None, self.input_size[0],  
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                                        self.input_size[1], 3],  

                                        'input') 

            self.model = self.tf_models[self.model_type](self.input,  

                                                    self.num_classes,  

                                                    self.input_size,  

                                                    self.anchor_file,  

                                                    self.is_training) 

 

            with tf.variable_scope('detections'): 

                self.output = self.model.graph() 

            self.loader = WeightLoader(tf.global_variables('detections'), 

self.model_file) 

            # self.sess.run(tf.global_variables_initializer()) 

            self.sess.run(self.loader.load_now()) 

            self.freeze() 

Snippet 18. The constructor of the Yolow class 

The Yolow class first defines some major constant variables sess – TensorFlow session, 

default_models – a dictionary of the model names and their default weight files, 

model_types – a list of YOLOv3 model architectures, freeze_dir – the path to the direc-

tory where frozen models will be stored, and tf_models – a dictionary of the YOLOv3 

models. In the constructor, it first checks the validity of the parameters and whether the 

frozen model already exists. if so, it will be defrosted to use directly which save time 

and resources. Otherwise, Yolow will initialise the model by building the network graph 

and create a WeightLoader instance to load the Darknet weights file from the passing 

information. When done it will automatically make the frozen model.  

    def predict(self, input_list, confidence_theshold=.6, iou_thresh-

old=.5): 

        feed_dict = {self.input: input_list} 

        batch_detections = self.sess.run(self.output, feed_dict) 

        return predict(batch_detections, confidence_theshold, iou_thresh-

old)         

Snippet 19. The implementation of the predict() method 
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    def freeze(self): 

        graph_def = tf.graph_util.convert_variables_to_con-

stants(sess=self.sess,                                                              

input_graph_def=tf.get_default_graph().as_graph_def(),                                                                 

output_node_names=['detections/output']) 

        if not os.path.exists(self.freeze_dir): 

            os.makedirs(self.freeze_dir) 

        with tf.gfile.GFile(self.frozen_filename, 'wb') as f: 

             f.write(graph_def.SerializeToString()) 

Snippet 20. The implementation of the freeze() method 

   def defrost(self): 

        print('Found frozen model {}, defrost and use!'.format(self.fro-

zen_filename))         

        with tf.gfile.GFile(self.frozen_filename, 'rb') as f: 

            graph_def = tf.GraphDef() 

            graph_def.ParseFromString(f.read()) 

        tf.import_graph_def(graph_def) 

Snippet 21. The implementation of the defrost() method 

The class also implements three methods, those are predict() – performs predictions and 

transforms them into valid detections on a batch of input , freeze() – write the graph def-

inition of the model to a file, defrost() – loads the graph definition of the model and im-

port it to the default graph for use. 

To provide a mean of supports to help Yolow handle image related operations, there is 

Imager class. This is a convenient object wrapper of all functions in the images module. 

The implementation details are as follow: 

class Imager(object): 

     

    def __init__(self, transform_sizes, labels): 

        if type(transform_sizes) is int: 

            self.transform_sizes = (transform_sizes, transform_sizes) 

 

        else: 

            self.transform_sizes = transform_sizes 

 

        self.labels = labels 
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        self.palette = np.random.randint(0, 256, (len(self.labels), 

3)).tolist() 

Snippet 22. The constructor of the Imager class 

This class requires two auguments transform_sizes – the YOLOw input size to pre-pro-

cess and visualise detections for images, and labels – a list of labels for visualisation. It 

has seven methods, those are:  

imset_from_path() – loads all the images from the provided path and set it to the class 

instance, it is handled by the imread_from_path() function. 

def imread_from_path(im_path): 

    p = Path(os.path.abspath(im_path)) 

    if os.path.isdir(p): 

        ims = [p.joinpath(imname) for imname in os.listdir(p)] 

    else: 

        ims = [p] 

    return [cv2.imread(str(im), cv2.IMREAD_COLOR) for im in ims] 

Snippet 23. Implementation of function imread_from_path() 

This function conveniently opens a directory of images and stores them in a Python list. 

imset() – set image input to class instance; preprocess() – calls function improcess() to 

prepare input batch for feeding to YOLOv3 models, it includes resizing and padding the 

image; ncs_preprocess() – also calls improcess() but sets the function not to perform 

BGR2RGB operation as well as normalisation. 

def imresize(im, to_sizes): 

    if type(to_sizes) is int: 

        to_sizes = (to_sizes, to_sizes) 

         

    im_h, im_w, _ = im.shape 

    to_w, to_h = to_sizes 

    scale_ratio = min(to_w/im_w, to_h/im_h) 

    new_im = cv2.resize(im,(0, 0), fx=scale_ratio, fy=scale_ratio, inter-

polation=cv2.INTER_CUBIC) 

    new_h, new_w, _ = new_im.shape 

 

    padded_im = np.full((to_h, to_w, 3), 128) 

    x1 = (to_w-new_w)//2 

    x2 = x1 + new_w 

    y1 = (to_h-new_h)//2 

    y2 = y1 + new_h 
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    padded_im[y1:y2, x1:x2, :] = new_im  

     

    return padded_im 

Snippet 24. The implementation of the imresize() function 

def improcess(ims, to_sizes, to_rgb=True, normalise=True): 

    imlist = [] 

    for im in ims: 

        if to_rgb: 

            im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB) 

        im = imresize(im, to_sizes) 

        imlist.append(im) 

    imlist = np.array(imlist) 

    if normalise: imlist = imlist / 255 

    return imlist 

Snippet 25. Implementation of the impreprocess() function 

visualise_preds() – takes predicted detections pred_list and call function visualise() on 

them to displays on the input set of images; this function in turn makes calls to function 

rescale_vertex() to scale the predicted bounding box coordinates according to the scale 

of the input images, and function add_overlays() to draw those bounding boxes from the 

coordinates. 

def rescale_vertex(vtx, from_wh, to_wh): 

    if from_wh is int: 

        from_wh = (from_wh, from_wh) 

    if to_wh is int: 

        to_wh = (to_wh, to_wh) 

    from_wh = np.array(from_wh) 

    to_wh = np.array(to_wh) 

    scale_ratio = min(from_wh[0]/to_wh[0], from_wh[1]/to_wh[1]) 

    pad = (from_wh - scale_ratio*to_wh) // 2 

    vtx = (vtx - pad) / scale_ratio 

    return vtx.astype(np.int32) 

Snippet 26. The implementation of the rescale_vertex() function 

def add_overlays(frame, preds, pred_wh, labels, palette): 

    tops, bots, scores, classes = preds 

    if not tops: 

        return frame 

    frame_wh = frame.shape[:-1][::-1] 

    vtcs = np.concatenate([tops, bots], axis=0) 

    vtcs = rescale_vertex(vtcs, pred_wh, frame_wh) 
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    tops, bots = np.split(vtcs, 2) 

    b_thick = np.int(np.sum(frame_wh) // 1000) 

    t_thick = (b_thick//3)+1 

    t_scale = 8e-4*np.min(frame_wh) 

    font_face = cv2.FONT_HERSHEY_SIMPLEX 

    for top, bot, cls in zip(tops, bots, classes): 

        colour = palette[cls] 

        top = tuple(top) 

        bot = tuple(bot) 

        frame = cv2.rectangle(frame, top, bot, colour, b_thick) 

        txt = '{}'.format(labels[cls]) 

        t_size = cv2.getTextSize(txt, font_face, t_scale, t_thick)[0] 

        t_box_bot = top 

        t_box_top = (t_box_bot[0] + t_size[0] + b_thick*4, t_box_bot[1] - 

t_size[1] - b_thick*6) 

        t_orig = top[0]+b_thick*2, top[1]-b_thick*4 

        if t_box_top[1] < 0: 

            t_box_top = top 

            t_box_bot = (t_box_top[0] + t_size[0] + b_thick*4, 

t_box_top[1] + t_size[1] + b_thick*6) 

            t_orig = top[0] + b_thick*2, top[1] + t_size[1] + b_thick*2 

        frame = cv2.rectangle(frame, t_box_top, t_box_bot, colour, -1) 

        frame = cv2.putText(frame, txt, t_orig, font_face, t_scale, (255, 

255, 255), t_thick) 

    return frame 

Snippet 27. The implementation of the add_overlays() function 

def visualise(orig_imlist, pred_list, pred_ranges, labels, palette): 

    ''' 

    Visualise predictions on original images. 

    ''' 

    imlist = [] 

    for im, preds in zip(orig_imlist, pred_list): 

        imlist.append(add_overlays(im, preds, pred_ranges, labels, pal-

ette)) 

    return imlist 

Snippet 28. The implementation of the visualise() function 

Lastly, imwrite() – calls function imsave() to write all the output images to directory 

output/; and display_mess() – display a text message on the top left corner of set im-

ages.  

def imwrite(ims): 

    p = Path('.').absolute() 

    save_dir = p.joinpath('outputs').as_posix() 
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    if not os.path.exists(save_dir): 

        os.makedirs(save_dir) 

    [cv2.imwrite(save_dir + '/{}.jpg'.format(i), im) for i, im in 

zip(range(len(ims)), ims)] 

    print('Images have been saved to {}'.format(save_dir)) 

def display_mess(frame, mess): 

    cv2.putText(frame, mess, (2, 20), cv2.FONT_HERSHEY_SIMPLEX, .65, 

(255, 255, 255), 2, 2) 

    return frame 

Snippet 29. Implementation of functions imwrite() and, display_mess() 

3.1.7 Example programmes 

With all these components built up, it can be used as in this example detect_images.py 

which performs detections on all images in directory images/. An Imager instance imer 

takes care of opening images and pre-processing them. Then a Yolow instance gets fed 

that input for predicting. The returned detections get passed back to imer to visualise on 

the original images and write to output/. 

yl = Yolow(model_args['type'], 

            model_args['model'], 

            model_args['anchors'], 

            model_args['num_classes'], 

            input_sz) 

input_list = imer.preproces() 

start = time.time() 

pred_list = yl.predict(input_list) 

print('prediction takes {}s'.format(time.time() - start)) 

ims = imer.visualise_preds(pred_list) 

imer.imsave(ims) 

Snippet 30. The sample programme detect_images.py 

Another example programme is live.py in which visual frames from camera input is used 

for prediction and get displayed directly. The frame rate is also calculated and get printed 

every 3 seconds as well for performance evaluation. 

def main(args): 

    imer = Imager(transform_sizes=(args['width'], args['height']), 

                  labels=args['labels']) 

    yl = Yolow(args['type'], 

              args['model'], 

              args['anchors'], 
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              args['num_classes'], 

              (args['width'], args['height'])) 

    cam = cv2.VideoCapture(0) 

    fps_display_interval = 3 

    frame_rate = 0 

    frame_count = 0 

    start_time = time() 

    while True: 

        _, frame = cam.read() 

        imer.imset(frame) 

        input_list = imer.preproces() 

        pred_list = yl.predict(input_list) 

        imer.visualise_preds(pred_list) 

        duration = time() - start_time 

        if duration >= fps_display_interval: 

            frame_rate = round(frame_count/duration) 

            start_time = time() 

            frame_count = 0 

        fps_txt = '{} fps'.format(frame_rate) 

        frame = imer.display_mess(fps_txt) 

        cv2.imshow('YOLOv3 Live', frame) 

        frame_count += 1 

        if cv2.waitKey(1) & 0xFF==ord('q'): 

            break 

    cam.release() 

    cv2.destroyAllWindows() 

Snippet 31. The sample programme live.py 

3.2 OpenVINO 

3.2.1 Convert frozen model with Model Optimiser for TensorFlow 

In order to run with the NCS, the frozen .pb model has to be converted to OpenVINO IR 

using the TF Model Optimiser module. The conversion is done by running the following 

command: 

…/openvino/deployment_tools/model_optimizer/mo_tf.py --input_model 

data/pb/frozen_model.pb --tensorflow_use_custom_operations_config 

data/config/frozen_model_ir_config.json –input_shape=[1,416,416,3] –scale 

255 –data_type FP16 –output_dir data/ir 

Snippet 32. Model optimiser run command to convert .pb model to OpenVINO IR 

The TF model optimiser is a Python programme that takes as input a .pb TF model along 

with a variety of information to tell about how the model should be converted. In the 
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command of snippet 12, besides the path to the input model, a config file also needs to be 

provided as YOLOv3 is not yet an officially supported architecture. This config file is in 

json format and it specifies the output graph nodes as well as other model parameters to 

build into the IR output and the path for the output, which is data/ir. The content of the 

yolov3_config.json for the full YOLOv3 is as follow: 

[ 

  { 

    “id”: “TFYOLOV3”, 

    “match_kind”: “general”, 

    “custom_attributes”: { 

      “classes”: 80, 

      “54ords”: 4, 

      “num”: 9, 

      “mask”: [0, 1, 2], 

      “entry_points”: [“detections/yolov3/Reshape”, “detec-

tions/yolov3/Reshape_4”, “detections/yolov3/Reshape_8”] 

    } 

  } 

] 

Snippet 33. Content of Yolov3_config.json for the TF model optimiser 

3.2.2 Class YolowNCS 

The YolowNCS class is a programming interface for writing programmes that uses the 

YOLOw models on the NCS using OpenVINO. It only requires creating the object in-

stance and call for the predictions on the passing input, the class abstracts away all the 

handlings of initializing, loading and predicting under the hood. The details are as follow: 

class YolowNCS(object): 

 

    def __init__(self, model_name_path, anchor_file, num_classes, in-

put_size, num_requests=2): 

        self.model = model_name_path + '.xml' 

        self.weights = model_name_path + '.bin' 

        if not os.path.exists(self.model) or not os.path.ex-

ists(self.weights): 

            raise ValueError('model files {} does not exist.'.for-

mat(model_name_path)) 

        if not os.path.exists(anchor_file): 

            raise ValueError('anchor file {} does not exist.'.format(an-

chor_file)) 
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        self._ANCHORS = load_anchors(anchor_file) 

        self.num_classes = num_classes 

        if not input_size: 

            input_size = 416 

        if type(input_size) is int: 

            input_size = input_size, input_size 

        self.input_size = input_size 

        self.plugin=IEPlugin(device='MYRIAD') 

        log.info('Loading network files:\n\t{}\n\t{}'.format(self.model, 

self.weights)) 

        self.net=IENetwork(model=self.model, weights=self.weights) 

        log.info('Preparing inputs') 

        self.input_blob=next(iter(self.net.inputs)) 

        self.net.batch_size=1 

        log.info('Loading model to the plugin') 

        self.current_request_id = 0 

        self.next_request_id = 1 

        self.num_requests = num_requests 

        self.exec_net=self.plugin.load(network=self.net, num_re-

quests=self.num_requests) 

Snippet 34. The constructor of the YolowNCS class 

An instance of YolowNCS takes in the path to the IR model, path to the anchor file, the 

number of classes, the input size, and the number of requests to process asynchronously. 

Basically, the Inference Engine (IE) handles loading the model and perform inference 

using the NCS. In the initialisation of an YolowNCS object instance, it first creates an IE 

plugin of type Myriad as this is the name of the chip in the NCS, second it creates an IE 

network which represents the IR model from the provided path, third it retrieves the input 

node in the model graph, and finally it load the IE network on the IE plugin and gets hold 

of the network object to call inference on. 

    def predict(self, input_list, confidence_theshold=.6, iou_thes-

hould=.5, async_mode=False): 

        batch_predictions = [] 

        get_from = 0 

        input_dict = {self.input_blob: input_list} 

        request_handle = self.exec_net.requests[self.current_request_id] 

        if async_mode: 

            next_request_id = self.current_request_id + 1 

            if next_request_id == self.num_requests: 

                next_request_id = 0 

        else: 

            next_request_id = self.current_request_id 
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        self.exec_net.start_async(request_id=next_request_id, 

                                  inputs=input_dict) 

        if async_mode: 

            self.current_request_id = next_request_id 

        request_handle.wait() 

        pred_dict = request_handle.outputs 

        for preds in pred_dict.values(): 

            preds = np.transpose(preds, [0, 2, 3, 1]) 

            get_to = get_from + 3 

            batch_predictions.append(region_np(preds, self._AN-

CHORS[get_from:get_to], self.input_size, self.num_classes + 5)) 

            get_from = get_to 

        batch_predictions = np.concatenate(batch_predictions, axis=1) 

        return predict(batch_predictions, confidence_theshold, iou_thes-

hould) 

Snippet 35. The implementation of the predict() method 

The class has only one method predict() which takes in the input image and requests the 

accelerator to predict it in order of an assigned request ID. It can be run in two modes: 

synchronous and asynchronous. In the prior mode, the whole programme waits for the 

hardware to return the output. Whilst in the latter mode, it still allows the system to have 

control during the wait-for-processing time to run other jobs i.e. read in new input and 

pushes it on queue. In this way, the hardware will immediately predict the next input right 

after the other is finished, which increases throughput and results in better overall perfor-

mance in most cases. Due to the limited support of OpenVINO on TF operations, the 

output is returned from the last convolution layer of _detection_block() and therefore, it 

has to be process by a Numpy implementation of _region(), the _region_np(). To maintain 

the consistency, the predictions are still in the same structure and can be process by the 

same function predict.predict() for detections. 

3.2.3 Example programmes 

YolowNCS can be used in a similar way to Yolow with minimal difference of a few 

specific parameters which have already been default to optimal values.  

    yl = YolowNCS(model_args['model_name_path'], 

                      model_args['anchors'], 

                      model_args['num_classes'], 

                      input_sz, 

                      num_requests=2) 
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    input_ims = imread_from_path(args.image_path) 

    ims = [] 

    start = time.time() 

    for im in input_ims: 

        imer.imset(im) 

        input_list = imer.ncs_preprocess() 

        pred_list = yl.predict(input_list) 

        im = imer.visualise_preds(pred_list)[0] 

 

        ims.append(im) 

         

    print('prediction takes {}s'.format(time.time() - start)) 

Snippet 36. Usage example of YolowNCS in demo programme detect_images.py 

As an aside, since the IR model does not take the same input as the TF .pb model, pre-

processing is done slightly differently, and Imager has specified method for it as detailed 

below. 

    def ncs_preprocess(self): 

        ims = improcess(self.ims, self.transform_sizes, to_rgb=False, 

normalise=False) # ims are normalised by the ncs. 

        return np.transpose(ims, [0, 3, 1, 2]) 

Snippet 37. implementation of ncs_preprocess() 

Method ncs_preprocess() actually still make call to the same function improcess() but 

with argument to_rgb set to False to keep the values of the channel dimension in the in-

put in BGR format instead of RGB. the input dimension is also permuted to [num-

ber_of_input, channels, width, height]. 

Furthermore, it is also possible to run object detection on the NCS using input stream 

from camera. The following example programme uses multi-processing for inde-

pendently running the camera process and NCS inferencing process, in which multi-

threading is used to control multi NCS devices at the same time. Additionally, the pro-

gramme takes as arguments a configuration file specifying requiring information of the 

model to be loaded, the number of NCS devices to use, and the request capacity for each 

of those devices.  

def live_job(model_args, input_buffer, output_buffer, async_mode, 

quit_event): 
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    imer = Imager(transform_sizes=(model_args['width'], 

model_args['height']), labels=model_args['labels']) 

    camera = PiCamera() 

    camera.resolution = (720, 480) 

    camera.framerate = 30 

    rawCapture = PiRGBArray(camera) 

    fps_display_interval = 1 

    frame_rate = 0 

    frame_count = 0 

    processing_frame_rate = 0 

    processing_frame_count = 0 

    start_time = time() 

    pred_list = None 

    for frame in camera.capture_continuous(rawCapture, format="bgr", 

use_video_port=True): 

        frame = frame.array 

        imer.imset(frame) 

        if input_buffer.full(): 

            input_buffer.get() 

        input_list = imer.ncs_preprocess() 

        input_buffer.put(input_list) 

        if not output_buffer.empty(): 

            pred_list = output_buffer.get() 

            processing_frame_count += 1 

        if pred_list is not None: 

            imer.visualise_preds(pred_list)  

        duration = time() - start_time 

        if duration > fps_display_interval: 

            frame_rate = round(frame_count/duration) 

            frame_count = 0 

            processing_frame_rate = round(processing_frame_count/dura-

tion) 

            processing_frame_count = 0 

            start_time = time() 

        mode = "async" if async_mode.value else "sync" 

        status = '{} fps (detection: {} fps) - mode: {}'.for-

mat(frame_rate, processing_frame_rate, mode) 

        frame = imer.display_mess(status) 

        cv2.imshow('NCS YOLOv3 Live', frame) 

        frame_count += 1 

        rawCapture.truncate(0) 

        key = cv2.waitKey(1) 

        if key & 0xFF==ord('q'): 

            quit_event.set() 

            break 

        if key & 0xFF==ord('m'): 
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            async_mode.value = not async_mode.value 

    cv2.destroyAllWindows() 

Snippet 38. The details of live_job() function run by a separate process 

def ncs_worker_thread(yl_ncs, input_buffer, output_buffer, async_mode, 

quit_event): 

    while not quit_event.is_set(): 

        if not input_buffer.empty(): 

            input_list = input_buffer.get() 

            pred_list = yl_ncs.predict(input_list, 

async_mode=async_mode.value) 

            output_buffer.put(pred_list) 

Snippet 39. The details of ncs_worker_thread() function run by multi-threading 

def infer_job(model_args, sticks, requests, input_buffer, output_buffer, 

async_mode, quit_event): 

    threads = [] 

    for _ in range(sticks): 

        th = Thread(target=ncs_worker_thread, 

                    args=(YolowNCS(model_args['model_name_path'],  

                                    model_args['anchors'], 

                                    model_args['num_classes'],  

                                    (model_args['width'], 

model_args['height']),  requests),  

                    input_buffer,  

                    output_buffer,  

                    async_mode,  

                    quit_event)) 

        th.start() 

        threads.append(th) 

    for th in threads: 

        th.join() 

Snippet 40. The details of  infer_job() function run by a separate process 
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4 TESTING RESULTS 

Figure 22. YOLOw workflow 

As in figure 21, YOLOw workflow can be divided into two following sections:  

a) For using on a PC 

1. Instantiate an Imager object to preprocess the input image. 

2. Feed the input data to a Yolow object that load the target YOLOv3 model for 

inference. 

3. Forward output detections to Imager for visualisation on the original image. 

At this end, the Yolow object will have conveniently helped you create the frozen Proto-

buf model of the used Yolov3 model.  

b) For use with the NCS2, the frozen model is required to generate the IR model 

graph. The workflow is as follows: 

4. Use the OpenVINO Model Optimizer with the frozen model to generate the 

IR model graph. 

5. Instantiate an Imager object to preprocess the input image. 

6. Feed data to a YolowNCS object that loads the target IR model graph for in-

ference. 

7. Forward output to Imager to display. 

YOLOw supports both the YOLOv3 and tiny YOLOv3 architectures of not only the de-

fault models trained on the COCO dataset for 80 object classes, but any models trained 
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on any custom datasets, on either architecture, that might output any number of classes. 

This is thanks to the WeightLoader module that was correctly implemented the pattern of 

the Darknet weights and can read its binaries with empirically minimal loss. YOLOw and 

YOLOw-NCS both have demo programmes to run detection for an input folder/directory 

of images and live detection on camera. In addition to those, YOLOw-NCS has a demo 

implemented with multi-processing and multi-threading to make use of running multiple 

NCS2 for performance reinforcement by effectively make use of more resources on some 

capable machine. Last but not least, all the test results of YOLOw-NCS are recorded with 

the asynchronous inference mode turned on to further improve the framerate. The test 

subjects are the HP OMEN 15 model 2018 laptop PC and the latest RPI 4. The laptop PC 

is equipped with following hardware: Intel Core i7 8750H CPU, 16GB of DDR4 RAM, 

NVIDIA GTX 1070Max-Q GPU. The RPI 4 hardware has the specifications of Broadcom 

BCM2711, Quad core Cortex-A72 (ARM v8) 64-bit SoC @ 1.5GHz, 4GB of LPDDR4-

2400 SDRAM. 

Hardware Frame Rate (FPS) 

Laptop PC 16 - 20 

Laptop PC + 1 NCS2 2 - 3 

Laptop PC + 2 NCS2 3 - 5 

RPI4 + 1 NCS2 2 - 3 

RPI4 + 2 NCS2 2 - 3 

Table 1.  The performance result summary of YOLOv3 

Hardware Frame Rate (FPS) 

Laptop PC 30 

Laptop PC + 1 NCS2 16 
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Laptop PC + 2 NCS2 27 

RPI4 + 1 NCS2 10 - 13 

RPI4 + 1 NCS2 6 

Table 2 . The performance result summary of YOLOv3-tiny 

On the laptop PC, running YOLOw with the COCO YOLOv3 model achieved about 16 

to 20 FPS depending on the scenes. For COCO YOLOv3-tiny, it achieved a consistency 

performance of 30 FPS with some trade-off to detection capability and accuracy. With 

the NCS2, YOLOw-NCS was put into use. When pairing just one NCS2, the performance 

was 2 FPS on COCO YOLOv3 and 15 FPS on COCO YOLOv3-tiny. When paring two 

NCS2 devices with PC, it achieved around 3-5 FPS on average on COCO YOLOv3 and 

was still able to reach roughly 28 FPS on YOLOv3-tiny, which is comparable with the 

PC-class hardware. Although the NCS2 processes only values of 16-bit floating-point 

precision while the other is 32-bit floating-point values. It can be understood that the 

performance loss due to the quantisation is optimally small. These statistics in table 1 

show that each NCS2 device is capable of pushing out about 2 FPS on average when there 

is redundant CPU resource power. 

When pairing the NCS2 devices with RPI 4, the performance is acceptedly applicable 

depending on which the application it is applied to. With one NCS2 and COCO YOLOv3 

model, the performance reached 2 to 3 FPS, and for YOLOv3-tiny, it was about 10 to 13 

FPS. However, with two NCS2 devices paired the RPI 4, a considerable amount of bot-

tleneck is introduced to the processing due to its limited CPU, although the accuracy re-

mained. For COCO YOLOv3, the framerate was at 2 FPS. And for COCO YOLOv3-tiny, 

it throttled at 6 FPS. 

Simply glancing at the the system monitor, the problem seems to be due to either the 

CPU of the RPI 4, or the current firmware of the Raspbian OS has not yet been opti-

mised for the hardware of the new machine, or the programme code needs to be refac-

tored. It is also possible that more than one causes could contribute to this problem as 

well. In general, the causing problems prevents to push out performance any further 

with multiprocessing and multithreading method over running just one NCS2. It can be 
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observed in figure 35 where YOLOv3-tiny was run with 2 NCS2, and figure 36 where 

that same model was run with 1 NCS2. Almost all four cores of the CPU were busy at 

runtime when multiple NCS2 were running while there was still a lot of CPU perfor-

mance available when just one NCS was running. 
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Figure 23. RPI 4 CPU bottlenecked from running two NCS2 

 

Figure 24. RPI 4 did not bottleneck from running one NCS2 

Snips of the output results are below: 
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Figure 25. YOLOw runs COCO YOLOv3 on PC hardware 

 

Figure 26. YOLOw run COCO YOLOv3-tiny on PC hardware 
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Figure 27. YOLOw-NCS runs COCO YOLOv3 on PC with one NCS 

 

Figure 28. YOLOw-NCS runs COCO YOLOv3-tiny on PC with one NCS2 
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Figure 29. YOLOw-NCS runs COCO YOLOv3 on PC with two NCS2 (1) 

 

Figure 30. YOLOw-NCS runs COCO YOLOv3 on PC with two NCS2 (2) 
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Figure 31. YOLOw-NCS runs COCO YOLOv3-tiny on PC with two NCS2 

 

Figure 32. YOLOw-NCS runs COCO YOLOv3 on RPI 4 with one NCS2 
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Figure 33. YOLOw-NCS runs COCO YOLOv3-tiny on RPI 4 with one NCS2 (1) 

 

Figure 34. YOLOw-NCS runs COCO YOLOv3-tiny on RPI 4 with one NCS2 (2) 
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Figure 35. YOLOw-NCS runs COCO YOLOv3 on RPI 4 with two NCS2 

 

Figure 36. YOLOw-NCS runs COCO YOLOv3-tiny on RPI 4 with two NCS2 
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5 FURTHER IMPROVEMENTS 

For the future versions of YOLOw, it is desirable to expand the feature set with a training 

module, which will allow training YOLOv3(-tiny) models, including the custom ones, to 

no longer need to rely on the Darknet framework prior to converting to TensorFlow. Fur-

thermore, it could be more valuable to improve the kernel code of YOLOw so that it could 

achieve polymorphism in model graph building from just a config file, as it is the case for 

Darknet. This will allow easy constructing and loading any of the passed architectures of 

YOLO and make use of the capability of YOLOw as well as the TensorFlow library. 

Additionally, it will also help achieving custom network design in a no coding approach. 

Last but not least, extension modules in TensorFlow Lite can be integrated to enable the 

ability of YOLOw to deploy to other embedded systems such as the Nvidia Jetsons and 

other mobile devices, this will empower this project even further for many applications. 

YOLOw also has large potentials to be adopted into solving numerous industrial problems 

as well as in creating profitable commercial products. To mention a few possible appli-

cations that this project can be applied to are sentiment analysis and for the healthcare 

area, object tracking for security, self-driving systems for autonomous vehicles, human 

proposer for pose estimator, and so on. In summary, the current version of YOLOw fea-

tures model conversion from Darknet framework to TensorFlow as a ProtoBuf frozen file, 

model loading from Darknet weights files as well as frozen model files and performing 

detection in TensorFlow and on the Intel Neural Compute Stick using OpenVINO Infer-

ence Engine. The project also includes detection programmes running on a folder of im-

ages input and live camera. 
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6 CONCLUSION 

This project builds the YOLOw modules that allows any YOLOv3(-tiny) models in Dark-

net framework to be converted to TensorFlow library and easily deploy and run with the 

NCS devices. This is achieved by reconstructing these two network architectures using 

TensorFlow and building a binary file loader that correctly read the Darknet model 

weights files and assign the corresponding values to the TensorFlow network operations. 

The module is highly integratable to many industrial applications and tools for other re-

search to make use of. However, the main module of the project was built to be deployed 

to edge devices and used with the Intel’s Neural Compute Sick accelerating devices, that 

is the YOLOw-NCS. This is based on the Intel’s OpenVINO toolkit framework that allow 

for converting and loading YOLOv3(-tiny) models on these accelerators to run. This Py-

thon module mainly aims to facilitate the use of embedded system applications, as well 

as PC applications. 
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