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For ion-mobility spectrometry (IMS)-based electronic noses (eNose) samples of scents

are markedly time-dependent, with a transient phase and a highly volatile stable phase

in certain conditions. At the same time, the samples depend on various environmental

factors, such as temperature and humidity. This makes fast classification of scents

challenging. The present aim was to develop and test an algorithm for online scent

classification that mitigates these dependencies by using both baseline measurements

and sequences of samples for classification. A classifier based on the K nearest

neighbors approach was derived. The classifier is able to use measurements from

both transient and stable phase, yields a label for the analyzed scent, and information

on the trustworthiness of the returned label. In order to avoid the classifier being

fooled by irrelevant features and to reduce the dimensionality of the feature space,

principal component analysis was applied to the data. The classifier was tested with

four food scents, each presented in two different ways to the IMS. By using baseline

measurements, the misclassification rate was reduced from 20.0 to 13.3%. A second

experiment showed that the used IMS type experiences device heterogeneity.

Keywords: ion-mobility spectrometry, electronic nose, K nearest neighbors, scent classification, time-series

analysis, device heterogeneity

1. INTRODUCTION

Classifying scents is of interest in various applications. Examples include but are not limited to
quality control in the food industry (e.g., monitoring beer quality in a brewery), detection of gas
leaks and drugs, and analyzing curative and aromatic plants used in medicines, perfumes, and
cosmetics (e.g., [1] and references therein). The ultimate goal of our research is to measure an
original scent source using an electronic nose (eNose) at location A, and classify it based on the
eNose data. The measurements and the obtained scent label will then be sent to location B, where
a scent synthesizer generates a synthetic scent that is as similar as possible to the original scent at
location A (see [2] for details). For this research on scent transfer over time and space, a method
for quick and accurate scent measurement and classification needs to be developed.

To enable scent classification, a suitable method to acquire data needs to be selected. Various
approaches for scent classification based on eNose measurements have been proposed and
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tested recently. In general, the classification is based on a
single sample, which consists of measurements for various
quantities observed at the same time. The samples from scents
can be taken with various types of eNoses [1, 3, 4]. Ideally,
the chosen eNose will enable real-time monitoring, quick
analysis, show fast response time, show little to no temporal
performance degradation, be relatively affordable, commercially
available, and portable. One technology that fulfills all these
requirements is ion-mobility spectrometry (IMS) [3, 5, 6]. It is
a time of flight analytical technique [7], which enables temporal
or physical separation of ionized molecules [8]. IMS sensors
are small and light, and therefore are used in commercially
available and relatively affordable eNoses that were developed
for field applications (i.e., outside laboratories). Furthermore,
these sensors have low operating costs and power consumption
and high sensitivity [9]. Finally, most IMS-sensors do not age
significantly, as the rely on radioactive sources, with half-lives of
several hundred years, for ionizing the molecules. This means,
that changes in the IMS measurements over, for example, a
month or a year are solely due to changes in the scent measured
by the eNose, rather than due to changes in the IMS sensor.

In Müller et al. [10] 14 different food scents and three key
odor components of jasmine were measured with an IMS-based
eNose and successfully classified using a K nearest neighbor
(KNN) approach. However, the classification accuracy strongly
depended on the quality of the IMS measurements. For the
experiments, the scents were presented to the eNose on a plate
(i.e., there was surrounding room air) and in a flask (i.e., the
source of scent was sealed in a flask so that the external air could
not affect the measurement data). The time series analysis of IMS
measurements showed a clear transient phase in the beginning,
i.e., a time interval of ≈ 20–30 s in which the measured
currents are gradually increasing or decreasing. Furthermore,
strong temporal fluctuations were noticed when the scent source
was presented on a plate. Thus, a suitable scent classifier has to
account for these fluctuations. An often used approach to avoid
issues related to the transient phases and strong fluctuations of
IMS signals is to wait for the IMS readings to stabilize and to only
measure scents from closed flasks, for which only small temporal
fluctuations were recorded in the stable phase (e.g. in Mamat et
al. [11], Giordani et al. [12], and Tang et al. [13]). However, in
our project and for most practical applications (e.g., food quality
control or detection of harmful substances in room air) neither
of these approaches is an optimal solution. The scent needs to
be classified quickly and it is impractical or even impossible to
conserve the scent source in a sealed flask.

A second challenge that has to be addressed by the
classifier, especially if the scent source is not presented in
a flask, is the influence of environmental factors. These
factors (e.g., temperature, barometric pressure, and air currents)
affect the movement of molecules [7, 14] and hence the
IMS measurements. Obviously, when measuring scents in the
field the samples collected with the IMS device are noisier
than in laboratory conditions. In order to classify scents
correctly in conditions that differ from the conditions in which
measurements for the training database were collected, there is a
need for baseline correction (i.e. the measurements are corrected

for background noise). This is done, for example, for databases
on hazardous gases and drugs. However, how baseline corrected
measurements are exactly calculated is, in general, kept secret by
the manufacturers of the eNoses.

Device heterogeneity is a third challenge that, in general, has
to be considered. It describes the phenomenon that two devices,
even of the same brand and model, yield different results in
identical sensing conditions. Thus, the classifier has to correct for
these differences in the signal.

In this paper the aim was to develop and test a simple
classifier that addresses the first two challenges presented above.
To mitigate the influence of signal fluctuations the proposed
KNN-based classifier yields labels for analyzed scents online
using time series of IMS measurements rather than single
measurements. The classifier then uses distances to the K closest
neighbors for computing how trustworthy the yielded label is.
It constantly updates the label of the analyzed scent as well as
the trustworthiness level as new measurements become available.
This technique helps to reduce the influence of measurements
from the transient phase on the final label, as these measurements
are generally considered by the algorithm to be less trustworthy.
On the other hand, it enables faster classification by using the
smaller amount of information contained in measurements from
the transient phase compared with approaches that have to
wait for the signal to stabilize before starting the classification
process. In order to achieve real-time classification, the IMS data
is first transformed using principal component analysis (PCA),
which enables to reduce the dimensionality of the data, and
k-dimensional tree search is employed to find the K closest
neighbors. Besides dimension reduction, PCA also removes any
correlation from the data, which could degrade the performance
of the classifier. The reason for correlation in IMS data is
explained in section 2.1. Background noise corrections were done
measuring the ambient room air before measuring the scent
to get a baseline, which then was subtracted from the scent
measurements. This means that relative measurements instead
of absolute measurements were used to mitigate the influence of
environmental factors.

The third challenge was not addressed by the classifier,
because all measurements were taken with the same IMS sensor.
However, further tests were done with that sensor and another
IMS sensor of the same type to check whether these sensors
experience device heterogeneity.

Therefore, the contribution of this paper is 3-fold. First, it
presents and tests an online classifier that labels an analyzed scent
and provides a measure for the trustworthiness of the returned
label. Both label and trustworthiness label are constantly updated
once new measurements are available. Second, the experiments
with real data show that by using baseline measurements
(i.e., correcting for the background signal) the accuracy of
the classifier can be improved somewhat, but that additional
information will be needed to distinguish between scents that
share a large portion of odor-active compounds. Third, tests
with two IMS devices of the same type show that device
heterogeneity is an issue for IMS-based eNoses that needs to
be considered when comparing measurements from two or
more devices.
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This paper is organized as follows. Section 2 briefly explains
how IMS-based eNoses work and discusses the influence of time
and environmental conditions on the IMS measurements. It
then explains the studied machine learning problem, KNN-type
classifiers, and derives the online scent classifier. Furthermore,
this section describes how to use baseline measurements for
mitigating the effects of environmental conditions on IMS
measurements. The classification performance of the online
classifier is tested in section 3 using data from scents presented to
the eNose in different ways. In addition, data from two identical
eNoses is analyzed to study if device heterogeneity affects IMS-
based eNoses. Finally, the test results are discussed, conclusions
are drawn, and an outlook on future research is given in section 4.

Notation: In this paper a denotes a scalar, b denotes a vector,
and C denotes a matrix.

2. MATERIALS AND METHODS

2.1. Scent Analysis by Ion-mobility
Spectrometry
IMS enables detection of scents at atmospheric pressure [15] even
if their concentration is at parts per billion (ppb) level [16]. It
separates the ions of a scent based on their velocity, under the
influence of a constant electric field [8]. Due to differences in their
molecular weight, charge and geometry between compounds
the mobility of various ions differs [8], resulting, in general,
in different “fingerprints” (i.e., measurements over all IMS
channels) for different scents.

These IMS measurements were done with Environics’
ChemPro100i handheld chemical detector [17]. The
ChemPro100i uses an Americium-241 source for ionization,
which is similar to the radioactive sources used in ionization
type smoke detectors. The source of the analyzed scent is placed
in front of the device. The device then sucks in the scented
air and measures ions in the air with an aspirating system. A
rotary vane pump generates a flow that carries the ions, and
a perpendicular electric field picks them from the flow. The
ChemPro100i constantly measures the ions as currents with
7 separate electrode pairs, and the electric field is constantly
switched between positive and negative polarities. This means
that instead of measuring the flight times of different ions,
the ChemPro100i measures 14 groups of flight times. This
means that ions with same charge and flight times within in a
certain interval are measured by the same electrode. The current
measured by any of the 14 electrodes indicates the presence of
certain type of ions (more details can be found in Environics
[18]). Each electrode yields one numerical value, which is the
response of this channel (named so, because each electrode
measures ions with a band of flight times). Together these values
form a 14-dimensional IMS sample (so-called fingerprint).

It is important to note that the measurements from adjacent
electrodes are (potentially) correlated. Imagine that electrodes
A and B measure positively charged ions with flight times in
[a, b] and [b, c], respectively. The flight time of the ions could be
assumed to be somewhat noisy. Now a positively charged ionwith
flight time ≈ b might be measured by either of the electrodes

based on the noise level in its flight time. From this example,
it becomes clear that measurements from electrodes are most
likely correlated.

Figure 1A shows an example of temporal responses on the
IMS channels 1 to 4 when presenting grated peel of ripe lemon
in a flask to the eNose. Other channels show similar behavior.
The channel responses take several seconds to stabilize. For
each channel the time to stabilize, or in other words the length
of the transient phase, can vary. In Figure 1A channels 1 to
4 each increase or decrease respectively for ≈ 20–30 s before
stabilizing. All responses from these first 20–30 s are considered
to be measurements from the transient phase. In the stable phase,
i.e., after stabilizing, the channel responses in Figure 1A show
only minor temporal fluctuations, which was observed for all
scents presented to ChemPro100i in a sealed flask. If the scent
source is presented to the device on a plate then the channel
responses are, in general, different from the flask responses and
show generally strong temporal fluctuations. Figure 1B shows
responses on the IMS channels 1 to 4 of the grated lemon
peel when presented on a plate. In Müller et al. [10] it was
discovered that classifying a scent based on samples from the
transient phase and/or presented on a plate instead of a sealed
jar generally increases the risk of misclassification significantly.
However, for real-world applications it is desirable to use already
measurements from the transient phase for classification and
to simply sniff the scent source from a plate rather than first
preparing the scent source in a sealed flask. Thus, this paper
describes an algorithm that enables that.

The air flow outside the device is not necessarily stable and
affects how many molecules of the scent are sucked into the
ChemPro100i. However, also the flow inside the measurement
device varies because the flow is created with a rotary vane
pump, which tends to create pulsation to the flow. Therefore,
the IMS measurements fluctuate. Figure 2 shows an example
for the pulsating flow, measured for lemon peel presented to
ChemPro100i on a plate. The flow fluctuates around 1.3 l/min
with a small amplitude (standard deviation of 0.0018 l/min).

In order to mitigate the influence of the strong temporal
fluctuations a sliding moving average was used in Müller et al.
[10] for smoothing the channel responses. Another idea, which
has been shown to be beneficial, for example, for magnetic
location fingerprint-based localization [19], is to use temporal
sequences (i.e., time series) of fingerprints instead of single
fingerprints. In this paper both approaches are applied.

Besides the transient phase and the method for presenting the

scent source, there are other factors that influence the channel

readings. Especially humidity (i.e., moisture of the surrounding
air) and temperature, but also barometric pressure, and air

currents influence the mobility of molecules [20, pp. 250 ff.]

and hence will influence the IMS readings. Figure 3 shows the

responses on IMS channels 1 and 3 for grated lemon peel
on a plate. Data for set 1 was collected roughly 1 month

before data set 2, at the same location. Although the conditions

were quite similar [absolute humidity: 19.55
g

m3 (set 1) vs.

19.90
g

m3 (set 2); temperature: 27.82◦C vs. 28.43◦C; air pressure:
1002.68mBar vs. 990.48mBar] the responses on both channels
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FIGURE 1 | Temporal responses on IMS channels 1 to 4 for grated lemon peel. Scent source was presented to ChemPro100i in (A) a sealed flask and (B) on a plate.

Measurement frequency was 1Hz.

differ significantly. It is important to note that the IMS sensor
ages very slowly as the half-life of the radioactive source in
ChemPro100i, Americium-241, is 432.2 years. Thus, aging is
an unlikely reason for the observed differences. This needs to
be considered when classifying scents using a training database
collected under different conditions. In this paper baseline
measurements are used tomake fingerprints collected in different
conditions comparable. Details can be found in subsection 2.5.

2.2. Specification of the Machine Learning
Problem
According to Jung [21, p. 7], the formal definition of anymachine
learning (ML) problem consists of (i) data characterized by
features and labels, (ii) a hypothesis space containing feasible
maps from feature to label space, and (iii) a loss function
for measuring the quality of the predictor or classifier. For
more details the reader is referred to Jung [21], on which this
subsection is built on. In this paper, the data consists of 14-
dimensional IMS samples x = [x1 .. x14] containing the currents
measured by any of the 14 electrodes in the ChemPro100i. The 14
different channels could be used directly as the features of theML

problem. However, in this paper the data will be transformed first
by principal component analysis (PCA) and the first np principal
components explaining at least 99% of the total variance in the
training data are used as features. The feature space is then R

np ,
meaning that each feature sample consists of np real numbers.
The labels of the studied ML problem are the scent names related
to each IMS sample and each feature sample.

In this paper, an approach based on the K nearest neighbors
algorithm is used for mapping a PCA-transformed IMS sample
to a predicted scent name. Because the label space is finite in
the analyzed case, the hypothesis map is called a classifier [21,
p. 18]. The quality of the classifier is evaluated by the percentage
of correctly classified scents.

2.3. K Nearest Neighbors-Type Scent
Classifiers
InMüller et al. [10] and Salminen et al. [22] aK nearest neighbors
algorithm for classifying scents achieved high accuracy. The
KNN classifier compares the 14-dimensional IMS sample x(us) =

[x
(us)
1 .. x

(us)
14 ] of the unlabeled scent with (labeled) IMS training
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FIGURE 2 | Flow inside the ChemPro100i generated by the rotary vane pump, measured for grated lemon peel on a plate over 5 min. Measurement frequency was

1Hz.

FIGURE 3 | Temporal responses on IMS channels 1 and 3 for lemon peel. Scent source was presented to ChemPro100i from a plate. Set 1 was collected on 25

October 2017 and set 2 on 21 November 2017.

samples stored in a training database. The training database
consists of N IMS samples xi = [xi,1 .. xi,14], i = 1, ..,N, i.e.,
X = {xi}

N
i=1. For the ith sample the corresponding scent label si

is recorded and stored in s = {si}
N
i=1. The closeness between the

unlabeled sample x(us) and the ith training sample is computed as
the Euclidean distance between the two, which is defined as
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dE(x
(us), xi) =

√

√

√

√

14
∑

j=1

(

xij − x
(us)
j

)2
. (1)

The unlabeled scent is then classified as belonging to the same
scent as the majority of its K closest neighbors (i.e., the samples
for which dE(x

(us), xi) is minimal). Parameter K should be odd to
avoid ties in the majority vote [23, p. 183]. If there is nevertheless
a tie then in this paper the label of the closest training sample is
chosen as label for the scent.

Alternatives to KNN include Weighted KNN (WKNN) and
fuzzy KNN. The WKNN uses normalized inverses of distances
for weighting how much it trusts the labels of each of the
K neighbors. The smaller the distance between x(us) and a
training sample the more the WKNN trusts the label of this
training sample. Therefore, ties are almost impossible forWKNN
classifiers. Fuzzy KNN classifiers adopt the principle of WKNN.
Instead of focusing only on theK closest neighbors, they consider
all training samples and the distances between them and x(us),
and yield probabilities for the unlabeled sample belonging to any
of the scents stored in the training database.

A drawback of KNN-type classifiers is that they require a
large number of training samples from each scent source that
they should be able to classify, which will result in a large N
and high computational demand [24]. Basic KNN-type classifiers
will compare the unlabeled scent sample x(us) with all N training
samples in order to find the K closest training samples, which is
called exhaustive search. In order to reduce the computational
demand, here a pre-structuring technique called k-dimensional
trees [25] is used. Note that k has no connection to K, and that
generally k 6= K will hold. The idea of k-dimensional (k-d) tree
search is to split the training data into subsets, then use the binary
k-d tree to address x(us) to a certain subset, and choose the K
nearest neighbors only from the training samples in this subset.
The major drawback of k-d tree search is that it might miss the
true nearest neighbors, because it is an approximate method.
However, for large N it generally works well [23, p. 183], and in
Müller et al. [10] the same classification accuracies were obtained
with both exhaustive and k-d tree search.

KNN-type classifiers, like most other classifiers, can be fooled
by irrelevant features. Therefore, within this paper principal
component analysis is applied to the IMS data before the
classification. PCA generates a new set of so-called principal
components that represent the full data space (see e.g., [23,
p. 183]). The advantage of PCA-transformed data, compared
with the IMS data, is that its principal components (i.e.,
the transformed channels) are uncorrelated, which allows to
remove irrelevant features. In addition, it allows to reduce the
dimensionality of the data used for classification, which reduces
the computation demand. Based on the results of Müller et al.
[10], here the first np components explaining at least 99% of the
total variance in the training data are used.

2.4. Online Scent Classification
Classifying a scent based on a single sample is possible and has
been shown to provide reasonable classification accuracy [10].
However, in Müller et al. [10] it was also noticed that especially

samples that are taken within the first 20–30 s after the scent
is presented to the IMS-device (i.e., samples from the transient
phase) cause more often a misclassification than samples that
were taken during the stable phase. In order to enable reliable
yet quick scent classification, this paper introduces a classifier
that decides the label of the scent based on a temporal sequence
of samples. Furthermore, it adopts the idea of WKNN and
fuzzy KNN to provide a measure for the trustworthiness of the
returned label.

The idea of the classifier is to first collect n consecutive IMS
samples from the unlabeled scent, average over the n samples to
obtain the averaged sample x̄(us), and then transform the averaged
sample into its PCA-transformed equivalent

y(us) = (x̄(us) − µ)C, (2)

where µ = [µ1 ..µ14] is a vector containing the empirical means
of the 14 IMS channels and C is a 14-by-14 matrix containing
the principal component coefficients. Finally, it classifies the
scent by comparing y(us) with the training samples. If there is
still uncertainty about the label then another n consecutive IMS
samples will be collected and processed in the same way. This can
be repeated indefinitely often, but usually after 5 to 10 iterations,
depending of course on the choice of n and the length of the
transient phase, the classifier should function reliably because at
least some of the measurements will be from the stable phase and
hence more trustworthy.

In order to avoid ties the principle of the WKNN is applied
when determining the final label for the scent. Each of the m
repetitions yields one scent label, to which a weight is addressed.
For the tests in this paper the inverse of the average distance to the
K nearest neighbors of each iteration is chosen as (unnormalized)
weights. This way the classifier trusts those labels most for which
the average distance between y(us) and the K nearest neighbors is
the smallest.

The pseudo-code for classification using this approach is given
in Algorithm 1. Note that an overall classification label is returned
after each iteration, together with the measure plabel that specifies
how certain the classifier is that "it picked" the correct label for
the analyzed scent. 1

{sl
k
=sl} is one only if sl

k
= sl holds, and

otherwise zero. The normalized weights have to be recomputed
in each iteration.

2.5. Baseline Measurements for Simple
IMS Calibration
In order to mitigate the effect of varying environmental
conditions in this paper baseline measurements are used for
calibrating the samples collected from scent sources. Baseline
measurements mean here that z consecutive IMS samples are
collected from the air of the room in which samples for a scent
source are collected.

The baseline measurements are used as follow. For each of the
14 IMS channels the averaged baseline sample is computed by

x̄(air) =
1

z

z
∑

i=1

x
(air)
i . (3)
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Algorithm 1: Pseudo-code of scent classifier

Input: PCA-transformed training data Y = {yi}
N
i=1 and

corresponding scent labels s = {si}
N
i=1, number of nearest

neighbors K, number n of consecutive IMS samples taken
from unlabeled scent, number np of principal components
explaining at least pmin% of total variance in the training data,
minimum number mmin of iterations, minimum probability
psure for final scent label
Set number of iterations m ← 0 and probability of label
plabel ← 0
whilem < mmin or plabel < psure do

Setm← m+ 1
Collect n consecutive IMS sample from unlabeled scent
Average over the n samples to obtain x̄(us)

Transform x̄(us) into y(us) using (2)
Classify unlabeled scent by KNN using y(us) and
compute average distance d̄mE to K nearest neighbors

Use scent labels [sl1, .., s
l
m] to compute final scent

label sl and compute plabel using normalized weights

[w1, ..,wm] =
[1/d̄1E,..,1/d̄

m
E ] /∑m

k=1 1/d̄
l
E

Return sl and plabel =
∑m

k=1 wk1{sl
k
=sl}

end while

Then, the averaged air sample x̄(air) is subtracted from all samples
of the scent to obtain the baseline-adjusted samples, i.e., Xbl =

{x
(bl)
i }i with

x
(bl)
i = xi − x̄(air). (4)

This means that the signals are corrected for the background
"noise" caused by changing environmental conditions to make
them comparable. The baseline-adjustment is done before the
PCA-transformation.

3. RESULTS

3.1. Scent Classification With and Without
Baseline Correction
In this subsection the classification performance of the classifier
proposed in section 2 is checked. Furthermore, the effect of using
baseline measurements on the algorithm’s classification accuracy
is analyzed.

For the test, training data for grape, jasmine oil (1%
concentration), lemon peel (grated peel of ripe lemon), and
vanilla (sliced dried vanilla fruit) was collected between 25
October and 1 November 2017 in our laboratory at the University
of Tampere, Finland. Each of the four scent sources was presented
to the ChemPro100i in a sealed flask and on a plate, meaning
that the label space consisted of 8 elements [Grape (flask), Grape
(plate), Jasmine (flask), ...]. Grape, lemon peel, and vanilla were
chosen because they were used already in [10]. Jasmine was added
because in Müller et al. [10] its three key odor components were
analyzed and classified.

For each source and each presentation method five
measurement sets were collected as follow. First, 5 min baseline
from the air in the laboratory was measured. Subsequently
samples of the scent source, presented in a flask or on a plate,
were measured over 5 min. This was followed by a break of 10
min to ensure that the IMS readings returned to the levels of
measuring room air only (instead of traces of the scent source
that might have still lingered in the air or the sample gas inlet
[16]). After the break, again 5 min of laboratory air for the
baseline followed by 5 min of scent source were collected, before
another break of 10 min. This cycle was repeated five times with a
sampling rate of 1Hz. Thus, for each scent source 1,500 training
samples (five times 300 samples), which formed the training

database Xnbl = {x
(nbl)
i }i of non-baseline adjusted samples, and

1,500 baseline samples were collected. The same amount of
training samples for each scent source was used to avoid skewed
class distributions. In order to mitigate the effect of measurement
noise, all training and test data sets were smoothed with a sliding
moving average (MA) with window length 11, meaning that
instead of raw IMS sample the average of the raw sample, its
five predecessors, and its five successors is used. The smoothed
data was then standardized by centering it and dividing it by the
standard deviations of all training samples for any IMS channel
(see [10] for details). Finally, PCA was applied to the IMS data to
obtain Y, µ, and C.

The test data, that is the samples from unlabeled scents, was

collected in a similar way. Again, data for grapes, jasmine oil,

lemon peel, and vanilla was collected continuously. However,
this time each scent source was presented to the ChemPro100i

in three different ways: in a sealed flask (22 November) and

on a plate (21 November) in our laboratory, and on a plate
in a meeting room (23 November 2017) at the University of
Tampere, Finland. Due to the gap of 3 to 4 weeks between
measuring training and test data the environmental conditions
and hence the IMS readings changed significantly (compare
Figure 3), which was necessary to check the influence of baseline
measurements.

For each source and each presentation method two test
sets à 5 min were collected, and 5 min for baseline before
each measurement set. The baseline measurements were used
as explained in subsection 2.5. Different numbers of baseline
samples were tested: z = {0, 30, 300}, where z = 0 meant
that no baseline was used to adjust IMS samples from the scent
being analyzed.

The computations were done in Matlab R2016a. Table 1

summarizes the results. In the test n = 10, which means that x̄(us)

was obtained by averaging over 10 consecutive IMS samples and
that a maximum of 30 averaged samples could be used. In order
to simulate online scent classification, blocks of 10 consecutive
IMS samples were read-in and used for classification. If m ≥
mmin and plabel ≥ psure then the classification was stopped.
Otherwise, the next block of 10 consecutive IMS samples was
read-in. The first block contained samples 1 to 10, the second 11
to 20, etc. For PCA pmin = 99% was used. This resulted in using
only the first four (for z = {0, 30}) or first five (for z = 300)
principal components for classification (feature space was thus
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TABLE 1 | Classification results for tests in 3.1 with (z = 300 and z = 30) and without (z = 0) using baseline measurements.

Scent Location Set Label plabel m Label plabel m Label plabel m

(z = 300) in % (z = 30) in % m (z = 0) in % m

Grape Flask 1 Vanilla (f) 81.3 8 Grape (f) 80.6 12 Jasmine (f) 80.3 10

2 Vanilla (p) 100 5 Vanilla (p) 100 5 Jasmine (f) 80.9 19

Plate 1 Grape (p) 86.9 5 Vanilla (p) 100 5 Vanilla (p) 82.1 6

(lab) 2 Vanilla (p) 86.3 5 [Vanilla (p)] 61.5 30 Vanilla (p) 81.0 5

Plate 1 Grape (p) 100% 5 Grape (p) 86.7 5 Grape (p) 80.3 17

(meet.) 2 Grape (p) 100 5 Grape (p) 86.0 7 Grape (p) 80.1 7

Jasmine Flask 1 Jasmine (f) 100 5 Jasmine (f) 100 5 Jasmine (f) 87.8 5

2 Jasmine (f) 100 5 Jasmine (f) 100 5 Jasmine (f) 100 5

Plate 1 Jasmine (p) 100 5 Jasmine (p) 100 5 Jasmine (p) 81.5 10

(lab) 2 Jasmine (p) 100 5 Jasmine (p) 100 5 Jasmine (p) 100 5

Plate 1 Jasmine (p) 100 5 [Jasmine (p)] 43.0 30 Jasmine (p) 81.6 5

(meet.) 2 Jasmine (p) 100 5 [Jasmine (p)] 46.0 30 Jasmine (p) 80.5 5

Lemon flask 1 Lemon (f) 100 5 Lemon (f) 80.0 10 Lemon (f) 100 5

2 Lemon (f) 100 5 Lemon (f) 100 5 Lemon (f) 100 5

Plate 1 Lemon (p) 84.0 5 Lemon (p) 85.2 5 Lemon (p) 80.3 7

(lab) 2 Lemon (p) 100 5 Lemon (p) 100 5 Lemon (p) 86.1 5

Plate 1 Lemon (p) 100 5 [Grape (p)] 37.7 30 Lemon (p) 82.5 7

(meet.) 2 Lemon (p) 100 5 [Lemon (p)] 71.2 30 Lemon (p) 80.8 15

Vanilla Flask 1 Vanilla (f) 80.7 13 Vanilla (f) 80.3 22 Vanilla (f) 80.8 5

2 Vanilla (f) 100 5 Vanilla (f) 81.9 5 Vanilla (f) 81.7 10

Plate 1 [Vanilla (f)] 51.1 30 [Lemon (f)] 49.0 30 Jasmine (p) 100 5

(lab) 2 [Grape (p)] 45.7 30 Vanilla (f) 80.9 8 Jasmine (p) 80.1 12

Plate 1 Vanilla (p) 80.2 29 Grape (f) 100 5 Vanilla (p) 100 5

(meet.) 2 Grape (p) 80.8 21 Vanilla (p) 100 5 Vanilla (p) 80.2 23

For the test n = 10, which means that a maximum of 30 averaged samples could be used, pmin = 99%, mmin = 5, and psure = 80%. For the predicted labels f stands for flask and p

stands for plate. Misclassified scents are underlined and cursive. An estimate in [ ] means that the classifier is not certain about it, i.e., plabel < psure, and that all 30 samples have been

evaluated.

either R
4 or R

5, respectively). Figure 4 shows the percentages
of the total variance explained by each principal component as
well as their cumulative sum for z = 30 (for z = {0, 300}
no clear differences are visible). Components 5/6 to 14 do not
contain any new information, and can therefore be discarded.
In addition, at least mmin = 5 averaged samples were classified
for each unlabeled scent and psure = 80%. If plabel < 80% after
evaluating all 30 samples then the classifier did not decide on the
scent’s final label.

The classifier had problems to correctly classify grapes for
all z-values. However, without using baseline measurements for
calibration (i.e. z = 0) four out of six test sets were misclassified.
When using baseline measurements only two (z = 30) or three
(z = 300) sets got misclassified; all of them as vanilla. One reason
why the classifier struggled to correctly classify grapes might be
that it was impossible to ensure that grapes for both training
and test data were of the same cultivation and/or ripeness
level. However, explaining why grapes got always misclassified as
vanilla is more difficult. The most likely explanation is that both
scents contain ionized molecules with similar weights. Hence,
these molecules would end up in the same channels, resulting in

similar fingerprints. One has to keep in mind that IMS measures
volatile organic compounds (VOCs). Thus, if there is one ormore
VOCs in large quantities having similar molecular properties,
and hence similar time of flight, in both scents, then IMS readings
will be similar to each other [5]. For example, grapes contain
β-Damascenone in significant quantities, which is the most
powerful scent that is not fermentation related [26]. At the same
time β-Damascenone is one of the four most powerful odor-
active compounds (the other three being Vanillin, Guaiacol, and
Ethyl-E-cinnamate) in crushed vanilla [27]. Therefore, additional
information/ measurements will be needed for distinguishing
between grape and vanilla scent, which is left for further research.
However, the test showed that using the baseline to correct
for background “noise” at least helps to avoid unreasonable
classification as Jasmine.

For vanilla the results were ambiguous. While the two sets
measured from flask were correctly classified independent on
z, the sets measured from plate were often misclassified or no
final decision was made after evaluating all 30 samples. However,
without using baseline calibration the results were worse, as in
the case of grapes. With z = 0 the two sets measured from the
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FIGURE 4 | Importance of principal components. Portion of total variance in the training data explained by each of the 14 principal components as well as cumulative

sum (red line) for z = 30. Dashed line shows used pmin = 99%.

plate in the lab were misclassified as jasmine. Also for z = 30
two sets were misclassified and for one no decision was reached,
but one of the misclassified sets was still classified as vanilla
and the other as grape, which again can be explained by β-
Damascenone being contained in both vanilla and grape. For
z = 300 one set was misclassified as grape, which is in line with
the explanation why grape got misclassified as vanilla. However,
for the first set the most probable label after evaluating all 30
samples was vanilla and for the second set it was grape, which
supports aforementioned explanation.

Jasmine oil and lemon peel were always correctly classified.
Only for measurements from plate in the meeting room the
classifier with z = 30 failed to make a final decision based on
the 30 samples. However, for all three of the four sets it suggested
the correct label but failed to achieve plabel ≥ 80%.

Thus, it can be concluded that using baseline measurements
somewhat helps in reducing the effect of background noise on
scent classification but further research is needed to find ways to
reduce the noise even further. In addition, additional features,
besides IMS measurements, should be tested for distinguishing
between scents sharing dominant odor-active compounds.

The improvement in classification accuracy using baseline
measurements comes at the cost of larger computational demand.
The average number of samples analyzed by the classifier was 9.2
(z = 300), 12.7 (z = 30), or 8.5 (z = 0), respectively. However,
considering only the cases in which the classifier labeled the scent
correctly the differences in average used samples were smaller
when using baseline measurements, namely 6.8 (z = 300), 7.2
(z = 30), and 8.1 (z = 0). This means, that the computational
demand was on a similar level and the classification took slightly
longer when using the baseline because for the first z seconds
room air was measured.

3.2. Device Heterogeneity
Device heterogeneity (sometimes also called signal shift)
describes the phenomenon that two devices, even of the same
brand and model, yield different results in identical sensing

conditions. It can be observed, for example, for metal-oxide
semiconductor (MOS) gas sensors (see e.g., [28]).

In order to check whether device heterogeneity is an issue that
needs to be addressed for scent classification, IMS samples with
two ChemPro100i devices were collected simultaneously at our
lab and the meeting room from subsection 3.1. At each location
two sets à 10 min were collected, with a break of 2 min between
the sets.

The upper row in Figure 5 shows the responses on channel 1
in both locations as an example. Device 1 is the IMS that was used
for collecting training and test data for section 3.1, and device 2
is an identical ChemPro100i. However, the readings on channel
1 of both devices differ significantly for both sets. Comparing the
raw IMS data over the 10 min similar differences were observable
for all channels and in both locations. This means that device
heterogeneity is an issue that one needs to be aware of when
collecting samples, either for training or testing, with different
devices. The differences in the readings of sets 1 and 2 show
furthermore the time-dependence of channel responses and the
short-term fluctuations mentioned earlier.

In the lower row of Figure 5 the differences between the
IMS readings on channel 1 are depicted. For the remaining 13
channels the plots are similar. The difference in IMS readings
of both devices is not constant, which means that simply
determining a value for the offset of device 2 compared with
device 1 and then subtracting it all the time from the second
device’s channel response to obtain data comparable with the first
device’s channel response will not be the best possible solution.
One reason is the pulsating air flow in the IMS. Because each
pump is unique and the flow sensor’s accuracy is limited, it is
impossible to ensure that both devices have exactly the same
flow at any time. This explains, beside the difference, also the
fluctuations seen in the lower row of Figure 5.

It is important to note the difference between using baseline
measurements and device calibration. Baselinemeasurements are
used to make data collected with the same device but at different
time (and location) comparable. Device calibration is used to
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FIGURE 5 | Results of device heterogeneity analysis. Upper row shows temporal responses on IMS channel 1 by two identical ChemPro100i devices measured in our

lab (Left) and in a meeting room (Right). Lower row shows the corresponding differences between the responses of both eNoses for both measurement sets of

each location.

make data collected with different devices at the same time and
location comparable. However, the necessity for calibration needs
to be studied further. One hypothesis that has to be tested is, that
the difference between two devices when measuring baseline can
be also observed when both devices measure a scent. In this case
using baseline measurements could already remove or at least
mitigate the influence of device heterogeneity.

4. DISCUSSION

In this paper a KNN-based scent classifier that labels scents
based on PCA-transformed temporal sequences of ion-mobility
spectrometry samples measured by an electronic nose was
presented and tested. The results showed that the classifier
enables online classification using also samples from the transient
phase, rather than waiting first for the signals to stabilize, and
provides both a label for the scent and its confidence level. This
enables the users to decide howmuch uncertainty they are willing
to accept.

Furthermore, by measuring the air for a few seconds before
presenting the scent source to the IMS and using it as baseline,
the misclassification rate was reduced from 20.0 to 13.3% in the
test. The remaining misclassification could be explained by the
fact that for both grape and vanilla β-Damascenone is one of the
their most powerful odor-active compounds. The reduction in
the misclassification rate was independent on whether 30 or 300
s of samples were used for the baseline measurement. Thus, the
time it takes tomeasure the baseline could be chosen shorter (e.g.,
30 s) than the time it took for signal stabilization in Mamat et al.
[11], Giordani et al. [12], and Tang et al. [13]. Furthermore, using
baseline samples reduced the number of samples required by the

classifier to provide a trustworthy label for a scent. This saved, on
average,≈ 10 s compared with classification without baseline (for
correctly classified scents). Thus, classification using a baseline of
30 s effectively takes only≈20 s longer than classification without
baseline. As such, the results show great promise for developing
scent measurement and classification technologies needed to
transfer scents in real time. Next, we will test the scent transfer
paradigm by using a system architecture to communicate the
scent measurement data.

In the test a training database of four scent sources presented
in two ways was used. Therefore, the classifier had to distinguish
between 8 different scents. For future research, more scents will
be added to the training database and the classifiers performance
will be rechecked. In order to be able to differentiate also
between scents containing ionizedmolecules with similar weights
additional measurements will be added to the analysis, thus
adding more features to the training database. To handle the
larger training databases alternative approaches for classifying
single averaged samples will be studied and compared with
the KNN-based classifier presented in this paper. However,
the concept of using sequences of IMS samples and providing
uncertainty information will be kept.

Although, using baseline measurements to mitigate
background signals improved the classifier’s accuracy, there
are potential solutions for further improvements. For example,
one could try to develop a mathematical model that allows
predicting the change in IMS responses due to changes in
measurement conditions (e.g., temperature, humidity, etc.).

This paper also showed that IMS-based eNoses are affected by
device heterogeneity. However, its influence on the classification
accuracy still needs further research. If the influence is significant
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then individual eNoses have to be calibrated to enable the
use of different devices for collecting reliable training and test
samples. Calibration could be done (1) by using one eNose as
master device and transforming the readings of all other devices
to resemble the master device, (2) by updating a calibration
model developed for the master device using measurements
taken with another IMS-based eNose, or (3) by transforming the
target values used in the calibration [29]. For non-IMS eNoses
the first approach is the most commonly used (see [29] and
references therein). In addition, existing manual (e.g., [30, 31])
and automatic calibration methods (e.g., [32, 33], which have
been successfully applied for calibrating devices measuring WiFi
signal strengths, could be studied.

All in all, the present study showed significant potential for
developing online scent classification using IMS-based eNose
technology. Although device heterogeneity might be an issue to
be resolved in the future, the main interest of this study was
scent classification, which proved to be successful. At the same
time the tests showed that additional information, besides IMS
samples, should be used for scent classification. In this respect
it is likely that the classification is functional in other contexts
facing changes in the volatile compounds in air such as warning
systems for gas leaks. For the classification of a wider selection
of scents the use of information from additional sensors will
be studied.
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