

Miika Toikkanen

A Cloud-Based Analysis Tool for
Vibration Monitoring with Neural
Networks

Metropolia University of Applied Sciences

Bachelor of Engineering

Electrical and Automation Engineering

Bachelor’s Thesis

11 November 2019

 Abstract

Author
Title

Number of Pages
Date

Miika Toikkanen
A Cloud-Based Analysis Tool for Vibration Monitoring with
Neural Networks

34 pages + 5 appendices
11 November 2019

Degree Bachelor of Engineering

Degree Programme Electrical and Automation Engineering

Professional Major Electronics

Instructors

Heikki Valmu, Senior Lecturer
Kalle Ahola, Technology Manager

The aim of this thesis project was to investigate the usefulness of machine learning and the
cloud platform provided by Microsoft Azure Machine Learning service in the projects of the
Testing and Quality Assurance team of Protacon Technologies Ltd. In addition to this, it was
meant to serve as instructional material and as a pilot for upcoming projects utilizing similar
concepts.

The project was carried out by developing methods for expanding the functionality of an
existing vibration measurement system with a cloud-based analysis tool employing neural
networks. First, the effects of degradation in the vibration of rotating bearings was studied.
Then, a recurrent neural network capable of detecting the degradation was developed with
Keras on Python. Finally, a method for deploying neural networks as web-services was in-
vestigated.

As the outcome of this project, a functional tool for analysing vibration signals was imple-
mented as a web-service hosted in the Azure cloud. From the data set which the analysis
tool was developed and tested on, bearing degradation was detected and quantified millions
of rotations prior to failure.

The result of this work shows that the techniques utilized are viable for the intended purpose
and provides a baseline for developing a more sophisticated and universal analysis tool in
further works.

Keywords Azure, Neural Networks, Vibration Analysis, Keras

 Tiivistelmä

Tekijä
Otsikko

Sivumäärä
Aika

Miika Toikkanen
Pilvipohjainen analyysityökalu värähtelyn tarkkailuun
neuroverkkoja hyödyntäen

34 sivua + 5 liitettä
11 Marraskuu 2019

Tutkinto insinööri (AMK)

Tutkinto-ohjelma Sähkö- ja Automaatiotekniikka

Ammatillinen pääaine Elektroniikka

Ohjaajat

Heikki Valmu, Yliopettaja
Kalle Ahola, Technology Manager

Insinöörityö-projektin tavoitteena oli tutkia koneoppimisen ja Azure Machine Learning ser-
vice-pilvipalveluiden hyödyllisyyttä Protaconin Testing and Quality Assurance-tiimin projek-
teissa. Tämän lisäksi sen tarkoituksena oli tuottaa materiaalia, joka voisi toimia ohjeistuk-
sena ja lähtökohtana tuleviin projekteihin.

Projekti toteutettiin kehittämällä metodeja jo olemassa olevan tärinämittaus-järjestelmän
toiminnallisuuden laajentamiseksi pilvessä toteutetulla neuroverkkoihin perustuvalla ana-
lyysityökalulla. Aluksi tutkittiin laakerien toimintakunnon heikkenemisen merkkejä vä-
rinäsignaaleista. Sitten kehitettiin Keras-kirjastoa ja Python ohjelmointikieleltä käyttäen
neuroverkko, joka kykeni havaitsemaan toimintakunnon muutokset mittadatasta. Lopuksi
tutkittiin metodeja Keras-kirjastolla kehitettyjen neuroverkkojen käyttöönottamiseksi web-
palveluina.

Projektin tuloksena syntyi toimiva web-työkalu, joka kykenee analysoimaan värinädataa ja
mittaamaan laakerien kunnon heikkenemistä. Testaamiseen käytetystä datasta ongelmat
voitiin havaita ja niiden vakavuus mitata laakereilla ollessa vielä miljoonia pyörähdyksiä jäl-
jellä ennen vahingoittumista.

Työn lopputulos osoittaa että konseptit, joita testattiin ovat sopivia tähän käyttötarkoituk-
seen ja työ toimii hyvänä lähtökohtana kehittyneemmän ja yleispätevämmän analyysityö-
kalun kehittämiseen.

Avainsanat Azure, Neuroverkot, Värähtelyanalyysi, Keras

Contents

List of Abbreviations

1 Introduction 1

2 Theoretical Background 3

2.1 Vibration Monitoring 3

2.2 Neural Networks 4

2.3 Artificial Neural Networks 5

2.3.1 Learning Algorithms 8

2.3.2 Recurrent Neural Networks 9

2.3.3 Long-Short Term Memory 12

2.3.4 Autoencoder 13

3 Tools 15

3.1 Azure 15

3.1.1 Machine Learning in Azure 15

3.1.2 Azure Notebooks 16

3.2 Keras 16

3.3 ONNX 17

4 Methods 18

4.1 Analysis of Bearing Degradation 18

4.2 Developing a Solution 21

4.2.1 LSTM Autoencoder 22

4.2.2 Building and Training the Model in Keras 23

4.2.3 Measuring Bearing Degradation with the Trained Model 24

4.3 Operationalization 27

4.3.1 Deploying as a Web Service 28

4.3.2 Using the Analysis Tool 29

5 Results 30

6 Conclusions 31

References 33

Appendices

Appendix 1. Initialization script

Appendix 2. Training script

Appendix 3. Deploy script

Appendix 4. Entry script for the web service

Appendix 5. Test script

List of Abbreviations

AI Artificial intelligence. A field of science concerned with intelligent machines.

ANN Artificial neural network. A collection of artificial neurons.

API Application programming interface. A set of functions.

BPTT Backpropagation through time. The backpropagation algorithm applied

over several timesteps.

CSV Comma-separated values. A file format represented as text.

HTTP Hypertext transfer protocol. A protocol that defines how data is formatted

on the internet.

JSON JavaScript object notation. An open standard file format.

LSTM Long-short term memory. A recurrent neural network architecture capable

 of learning long-term dependencies.

ONNX Open neural network exchange. An open format for neural networks.

REST Representational state transfer. A popular web programming architecture.

RMS Root mean square. A quantity measuring the average magnitude of an al-

ternating signal.

RNN Recurrent neural network. A neural network with feedback elements.

1

1 Introduction

Recently artificial Intelligence has become an incredibly universal discipline, as it is linked

to most aspects of modern life in one way or another. The array of fascinating applica-

tions in the field outperform humans in increasingly complicated tasks. Harnessing this

power appropriately releases limited time resources from the tedious and repetitive tasks

prone to human errors all too often reserving the valuable time of professionals. In this

project, yet another attempt to employ the machine learning techniques for automating

laborious tasks is made by investigating the potential of cloud-based artificial neural net-

works for the testing and quality assurance projects of Protacon Technologies Ltd.

Artificial intelligence is already over half a century old field and especially artificial neural

networks, the specific area of interest for this work, has already been well researched

with the material for getting started in just about anything related to it readily available

online. The background knowledge provided in this paper is useful as an introduction or

reference to anyone interested in the specific application of vibration analysis and mon-

itoring with neural networks in the cloud.

The choice of topic was motivated by a few factors, the first of which are the needs of

this thesis work commissioner. Cloud-based solutions for computing and data storage

are becoming more and more important and the quantity of data collected from each

system is substantial. Performing analysis on this massive amount of data using tradi-

tional tools such as Excel is arduous and limited in effectiveness. For these reasons it is

necessary to consider automated systems with analytical capabilities extended beyond

those of humans and the access to data right where it is stored in the cloud. Furthermore,

a thorough research into neural networks is of interest to the author of this paper due to

the aspiration for strong expertise in the field of artificial intelligence for further study.

2

The project is carried out by developing the methods for extending the functionality of an

existing vibration measurement system VibLog. At its present state it gathers data, cal-

culates key performance indicators and stores them locally for later analysis. While this

is enough in many cases, it leads to a situation, where the data is separated into multiple

destinations for storage and analysis in memory sticks, databases and computer drives.

Moreover, the interval, in which the analysis is performed, depends on human judgement

and is not necessarily regular enough for sufficient reliability in some applications. In

addition to this, some slowly rotating machinery is problematic to analyse, as the condi-

tions which would indicate faults do not occur often enough to be noticeable with some

tools. As of now, there are no labelled data sets measured by the VibLog system avail-

able for this project, therefore a publicly available data set with similar type of data is

used to develop the needed functionality.

The problems discussed above will be addressed by many changes to the measurement

system. This work focuses on implementing one of them by finding the techniques for

developing an analysis tool hosted in Azure cloud, capable of detecting deterioration of

bearings in rotating machinery and predicting a possible failure prior to its occurrence

based on vibration data. From this description, the following questions are formulated:

• Can a fault likely to occur be reliably determined from the data using artificial

neural networks?

• Can the deterioration of performance leading up to failure be quantified numeri-

cally and used to predict the remaining lifetime using artificial neural networks?

• Can the artificial neural networks discover fault conditions from slowly rotating

machinery, which might be otherwise problematic to analyze?

The objective of this project is to develop a neural network capable of predicting failures

in rotating machinery based on their vibration, then implementing it as an analysis tool

into the cloud and in the process of doing so, answering the questions generated above.

3

2 Theoretical Background

This section introduces the theoretical concepts and gives a brief explanation of the

background knowledge required in the project. Although no derivation of equations is

performed and theory is explained on a general level, a basic grasp of linear algebra and

calculus is assumed from the reader to understand the notation.

2.1 Vibration Monitoring

Abrupt failures of critical machinery in manufacturing plants or other facilities can lead to

enormous expenditures in repair fees and losses from the disturbance caused to other

processes which may depend on the damaged equipment. This can be especially disas-

trous, if it is to happen during the night or a weekend when maintenance teams are less

capable of dealing with such issues, while overtime fees further add to the financial dam-

ages sustained.

Condition monitoring is the procedure for examining the state or health of machinery in

order to predict potential problems and prevent costly breakages before they are likely

to occur. The indicators of the impending failures can be observed by measuring various

quantities such as flow, temperature or pressure. Vibration, the mechanical oscillation

observed in rotating machinery, is the most common evidence relied on for predicting

incoming problems. [1.]

Often the key component for maintenance is the rolling bearing. Imbalances, misalign-

ments, wear and breakages in the bearing and other components of the system affect

the vibration observed and can reveal much about the system’s health. In the case of

bearings, physical dimensions, rotational velocity and characteristics such as the number

of rolling elements contained within affect the frequencies, at which the resonation is

detected. Consequently, the patterns are unique to the situation and the system. Imper-

fections and defects from manufacturing add to the difficulty of analyzing the oscillations,

and even identical machines cannot be guaranteed to vibrate in the same frequencies.

[1; 2.]

4

Vibration is typically measured with piezoelectric sensors or accelerometers. Every

measurement system comes with their own constraints posed by the sensor character-

istics, transformations performed on the signal and the rate, at which the samples can

be recorded [3]. If the vibration is measured with an insufficiently capable system, the

signs of degradation may not be present in the signal at all, or they may have been

unintentionally filtered out by the time the signal has reached the digital format intended

for analysis by computers.

2.2 Neural Networks

The fundamental concepts utilized in artificial neural networks (ANN) are derived from

nature and to fully comprehend them, it is important to first have a basic understanding

of some elementary neuroscience. This section provides an overview of the principles

that go with the biological paradigm. It should be noted however, that ANNs are not able

to perfectly model their natural counterparts due to the enormous complexity, nor are

they meant to. Rather, they abstract the useful ideas for practical computation and are

merely an attempt at exploiting the information processing capabilities encountered in

natural nervous systems. [4,1.] As complex as the nervous systems are, they comprise

of relatively simple building blocks, neurons, as depicted by figure 1.

Figure 1. A simple representation of a biological neuron. Redrawn from Artificial Intelligence, A
Modern Approach [11,5].

5

The soma, also known as the cell body, hosts various organelles, which produce chem-

icals and energy needed for continuous operation of the neuron. Attached to the cell

body are several dendrites, acting as transmission channels for incoming signals, while

the axon serves as an output channel through which electrical signals propagate towards

other neurons. The communication media are connected via the interfaces between neu-

rons, synapses, which facilitate the chemical transmission between cells and determine

the directionality of signals. [4,18-19;5,11.]

The cells in biological nervous systems process information by means of chemical and

electrical processes and are as a result of millions of years of evolution, “sophisticated

self-organizing systems”. In fact, the complexity exhibited by the internal mechanical pro-

cesses have resulted in research towards a control system of the neuron. The neurons

are as complicated as personal computers, and consequently, they are often more ap-

propriately referred to as computing units. [4,22.] While several orders of magnitude

slower than logic gates embedded onto silicon wafers, when arranged as complex for-

mations in massive numbers, they are capable of calculations which the traditional com-

puters cannot efficiently perform. Each of the neurons may be connected from just tens

of other neurons up to hundreds of thousands [4,4;5,11-12]. The massive neural network

structures in living creatures' brains formed by primitive computation units facilitate the

intricate responses to their perceptions of the environment [4,4].

2.3 Artificial Neural Networks

With the groundwork laid in the previous section, artificial neural networks, from now on

referred to as neural networks are much more easily understood. First, the reader is

familiarized with the basic computational unit, artificial neuron shown in figure 2. That

knowledge is then applied with network architectures comprising of those basic nodes.

Finally, the learning algorithms and some concepts utilized in the implementation of the

analysis tool are explained on a general level.

6

Figure 2. An artificial neuron.

Comparing the artificial neuron in figure 2 with the biological neuron, the following paral-

lels can be drawn. The inputs denoted with xi are analogous to axons of other neurons,

the weights wi regulate the degree of excitation similarly to the synapses and the bias b

serves as an activation threshold. In the artificial version of the cell body, the excitations

observed at the inputs are summed together and passed through the activation function,

which determines if the neuron has “fired” or not [5,728]. This can be mathematically

expressed as equation (1), where n is the number of nodes and σ is the sigmoid function.

𝑦 = 𝜎(𝑏 + ∑ 𝑤𝑖𝑥𝑖
𝑛
𝑖=0) (1)

There exists a multitude of activation functions, each useful for specific applications. The

sigmoid activation function σ in equation (2) is used here as an example because it is a

simple general-purpose activation function, which maps the real number line into the

range 0-1 in a continuous and differentiable manner [6,14].

𝜎(𝑥) =
1

1 + 𝑒−𝑥 (2)

7

Neural networks can be depicted as graphs regarding the neurons as nodes and edges

as weights. Generally, the neural network topologies can be divided into two categories,

feedforward networks and recurrent networks. First of the two, the feedforward network

is shown in figure 3. It is formed by an input layer x, output layer y and zero or more

consecutive hidden layers h in a strictly one-directional arrangement. [5,729.]

Figure 3. A simple feedforward neural network

Neural networks are seldom limited to one layer or one neuron. Therefore, it is conven-

ient to represent equation (1) as the vector equivalent equation (3), where W is a matrix

of weights, y is the vector of outputs, x is the vector of inputs, b is the vector of biases.

The activation function σ acts on every element of the resulting vector, but in figure 2,

the vectors y and b only have a single element.

𝑦 = 𝜎(𝑊𝑥 + 𝑏) (3)

8

The network in figure 3 can be mathematically expressed by (4) and (5), where the vec-

tors x, h and y represent the input, hidden and output layers respectively, and the matri-

ces Wh and Wy contain weights for the connections between those layers.

ℎ = 𝜎(𝑊ℎ𝑥 + 𝑏) (4)

𝑦 = 𝜎(𝑊𝑦ℎ + 𝑏) (5)

Much larger neural networks can be represented by replicating the equation (4) for each

consecutive hidden layer. The calculation of these values for each layer is referred to as

feed-forward or the forward pass in context of learning algorithms.

2.3.1 Learning Algorithms

A learning algorithm, sometimes referred to as the optimization algorithm automatically

finds parameters, or the weights of the neural network which lead to the desired behavior

by iteratively comparing the networks predictions to the actual expected values and tak-

ing corrective steps based on the error observed [4,77]. In contrast to the parameters

that can be learned, there are various hyperparameters that cannot be learned and must

be decided on prior to the learning process. Number of layers, nodes or the learning

algorithm itself can be considered as hyperparameters.

Inference made by the neural network is never entirely accurate. The loss function is

used to quantify the difference by comparing the predictions made with the desired out-

come, known as the label [7,9-10]. Many different loss functions for various purposes are

available. A commonly used example would be the mean squared error (6), where n is

the number of outputs, yi is the prediction and ŷi is the label.

𝐿 = ∑ (ŷ𝑖 − 𝑦𝑖)2𝑛
𝑖=0 (6)

9

Often the learning in neural networks is implemented as the backpropagation algorithm,

which uses a method, such as the gradient descent for finding the minimum error and

calculates the new values for each parameter in every layer [5,733]. The error is propa-

gated from the output layer to the hidden layers by applying chains of derivatives to

compute the contribution of each parameter to the total error at the output layer [6,40-

41;7,52].

The process of training begins with the initialization of the network's weights to random

values. The error gradient is then calculated, and corrective steps taken until conver-

gence to a minimum. Each weight wi is updated using the equation (7) where L is the

loss function and r is the learning rate, a parameter controlling the step size. [5,719.]

𝑤𝑖 = 𝑤𝑖 − 𝑟
𝜕𝐿

𝜕𝑤𝑖
 (7)

This algorithm works well for any neural network, however modern tools implement

some more advanced and efficient variants of the gradient descent, such as the sto-

chastic gradient descent (SGD), RMSProp and Adam, which utilize the concept of mo-

mentum to get past the local minima into the global minimum while converging faster

than the basic gradient descent. [6,30;7,63.]

2.3.2 Recurrent Neural Networks

Recurrent neural networks (RNN) are a class of neural networks suitable for processing

sequences of values. They can map sequences to vectors, vectors to sequences or se-

quences to sequences. Figure 4 shows two representations of an RNN which maps a

sequence x to a sequence o and produces the loss L, given the label y. On the left, all

the time steps are represented at once with a time delay denoted as a black square,

while on the right, the same RNN is unfolded across time.

10

Figure 4. Two representations of a recurrent neural network in a computational graph. Redrawn
from Deep Learning [8,378].

As figure 4 shows, the parameters of the network, U, V and W are shared through time

and the feedback provides information on past states. As the RNN can internally loop

through the information in previous states, the time sequence can be processed step by

step. Using a regular feedforward network would require transforming each time instant

into a single fixed size input, with individual parameters for each. It would be very con-

strained in terms of the sequence length and its ability to detect patterns would depend

on their location in the time sequence [7,196].

The feedforward for the RNN is calculated starting from an initial state h(0) by using the

equations (8) - (11) for each timestep from t = 1 to the final timestep t = 𝜏. The input of

the hidden layer is represented as the vector a(t) in (8), where W and U are the weight

matrices for previous state h(t-1) and the present input x(t) respectively summed with the

bias ba. The state of the hidden layer h(t) at the present time instant is obtained by apply-

ing the hyperbolic tangent activation function to a(t). [8,374.]

𝑎(𝑡) = 𝑊ℎ(𝑡−1) + 𝑈𝑥(𝑡) + 𝑏𝑎 (8)

ℎ(𝑡) = 𝑡𝑎𝑛ℎ(𝑎(𝑡)) (9)

11

The values produced by the newly calculated hidden layer h(t) are then found using

equation (10), where V is the weight matrix and bo is the bias. Finally, the output vector

can be obtained with (11) by passing the intermediate value to the SoftMax activation

function. [8,374.] The activation need not necessarily be SoftMax or the hyperbolic tan-

gent, any differentiable function suffices in these examples.

𝑐(𝑡) = 𝑉ℎ(𝑡) + 𝑏𝑜 (10)

𝑜(𝑡) = 𝑆𝑜𝑓𝑡𝑀𝑎𝑥(𝑐(𝑡)) (11)

The loss function (12) for the whole sequence x with respect to the label sequence y is

the sum of all the losses for each time step t [8,374].

𝐿𝑡𝑜𝑡𝑎𝑙 = ∑ 𝐿(𝑜(𝑡), 𝑦(𝑡)) 𝜏
𝑡=0 = ∑ 𝐿(𝑡)𝜏

𝑡=0 (12)

Backpropagation for recurrent neural networks is known as backpropagation through

time (BPTT), which simply applies the above equations (8) - (12) with the regular back-

propagation on a computation graph unfolded through time as shown in Figure 4 on the

right [8,376].

There are some challenges with the RNN, namely the vanishing or exploding gradient

problem. This is where the gradients propagated through several timesteps tend to

zero or explode beyond the representation capability of the computer. [8,396.] Consid-

ering the initial value x(0) of a single node with a weight w in equation (13) the problem

can be easily understood. As the number of time steps n tends to infinity, the value x(n)

vanishes or explodes as shown in (14) and (15) respectively.

𝑥(𝑛) = 𝑤𝑛𝑥(0) (13)

𝑙𝑖𝑚
𝑛→∞

𝑥(𝑛) = 0 , w < 1 (14)

𝑙𝑖𝑚
𝑛→∞

𝑥(𝑛) = ∞ , w > 1 (15)

12

For this reason, the elementary forms RNNs are limited in their performance on long

sequences. It is not impossible to learn patterns from the part of the parameter space

with vanishing gradients, but the amount of computation required makes it a difficult

and long process [8,398].

2.3.3 Long-Short Term Memory

A solution to the vanishing or exploding gradient problem is a variant of the RNN known

as the long-short term memory (LSTM) neural network. The principle is very similar, but

instead of one parameter to learn, there are four, and in addition to the hidden state for

the layer, there is a hidden state for each cell. The additional nodes contained within the

cell can perform alterations to the hidden state through gating mechanisms depending

on the kind of patterns that are captured by the parameters. Since the network can re-

member the hidden state for arbitrarily long time, patterns of any length may be learned.

[6,187;8,404.] Figure 5 shows a single LSTM cell that could replace a single node in a

traditional RNN [6,189].

Figure 5. A LSTM cell. Redrawn from Deep Learning with Keras [6,197].

13

The feedforward and backpropagation are done through each timestep in a similar man-

ner as it is for the RNN, but more parameters need to be computed due to the gating

mechanisms shown in Figure 5 [8,412;8,188]. The input gate i(t) controls how much of

the new state g(t) is remembered in the cell state c(t). Conversely, the forget gate f(t) con-

trols how much of the previous cell state c(t-1) is forgotten by adjusting its magnitude.

Finally, the output gate o(t) controls the magnitude of the hidden state h(t). Considering

the gates as vectors, the values can be calculated with (16) - (19). Since they are gating

other values, the sigmoid activation is used to obtain a scalar value in range 0-1. [6,188.]

𝑖(𝑡) = 𝜎(𝑊𝑖ℎ(𝑡−1) + 𝑈𝑖𝑥(𝑡)) (16)

𝑓(𝑡) = 𝜎(𝑊𝑓ℎ(𝑡−1) + 𝑈𝑓𝑥(𝑡)) (17)

𝑜(𝑡) = 𝜎(𝑊𝑜ℎ(𝑡−1) + 𝑈𝑜𝑥(𝑡)) (18)

𝑔(𝑡) = 𝑡𝑎𝑛ℎ(𝑊𝑔ℎ(𝑡−1) + 𝑈𝑔𝑥(𝑡)) (19)

The new cell state c(t) is calculated with (20) and the new hidden state h(t) with (21).

𝑐(𝑡) = 𝑐(𝑡−1)𝑓(𝑡) + 𝑔(𝑡) 𝑖(𝑡) (20)

ℎ(𝑡) = 𝑡𝑎𝑛ℎ(𝑐(𝑡))𝑜(𝑡) (21)

As the LSTM cell directly replaces the nodes in the RNN, the BPTT algorithm is imple-

mented by replacing the equations (8) - (11) with the equations (16) - (21) for LSTM

networks.

2.3.4 Autoencoder

Autoencoders are neural networks with equally sized input and output layers and one

or more hidden layers. They can be implemented using either feedforward or recurrent

network topologies [6,225]. The hidden layers are, describing a code which represents

some fundamental relationships of the input data. Structurally, the autoencoder shown

in figure 6 is like a regular feedforward neural network, the major difference being that

its purpose is to output a reconstructed version of the input rather than some new infor-

mation based on it. As such, they can be considered a special case of the basic feed-

forward neural networks with all the same training techniques applying to them [8,499].

14

Figure 6. A simple autoencoder.

The architecture of the autoencoder can be divided into two components, an encoder

and a decoder. The former is used to compress the information from the input vector x

into a lower dimension for the hidden layer h, also known as latent- or the code layer.

Conversely the latter section recreates the input x from the compacted data by applying

the inverse operation on the hidden layer h to create the reconstruction x̂. [8,499-500.]

In some applications, the output of the trained autoencoder is employed as it is, but often

the decoder section is discarded, and the encoder is used to encode information from

input data or to compress it into a more convenient form [6,224].

Some structural limitations are imposed in order to force the model to learn useful fea-

tures from the data rather than just the identity function. For instance, a hidden layer

with smaller dimension than that of the input layer may be chosen, this is known as an

undercomplete autoencoder. A more complex autoencoder network can be built by us-

ing regularized autoencoders, which are overcomplete, but capable of learning useful

information from the data. These autoencoders utilize loss functions, which penalize

too high activations in the hidden layer to constrain the information flow. Another tech-

nique is the denoising autoencoder, which is trained on a corrupted version of the input

data. Both methods give rise to desirable properties such as robustness to noise or

missing data points. [8;505-509.]

15

3 Tools

This section gives a brief explanation of the tools used. It is intended to serve only as an

introduction to them and the relevant terminology. Any greater technical detail will be

given as necessary in the later sections.

3.1 Azure

Microsoft Azure, initially released under the name Windows Azure in 2010, is a cloud

computing platform developed by Microsoft. It offers its users an option of provisioning

computing resources as needed, thus eliminating the time-consuming burden of hosting

and managing servers on premises. Their infrastructure with data centres all around the

world has established availability everywhere. The services range from complete soft-

ware managed for the customer known as Software-as-a-Service (SaaS), to Platform-

as-a-Service (PaaS) for running custom software on ready-made environments and fi-

nally Infrastructure-as-a-Service (IaaS) for utilizing hardware managed by Microsoft in

their data centres. For developers the platform offers storage and database services,

tools for developing and deploying applications as well as AI and machine learning tools,

in which Microsoft has recently invested substantially. [9.]

3.1.1 Machine Learning in Azure

Azure includes a variety of options for utilising machine learning, which may be chosen

depending on the level of control and the type of deployment target that the user wants.

One of those options, the Azure Cognitive Services offers pre-trained, but tailorable mod-

els for specific tasks in vision, speech, language, searching and decision making. They

are easily accessible through APIs and allow quick implementation without extensive

knowledge about machine learning. [10.] However, in complex applications, with detailed

requirements, the limitations of the Cognitive Services emerge quickly, as they are de-

signed for generalized solutions and do not allow selection of algorithms or training on

specific data. [11.]

16

For more control, Azure offers two approaches. First of them is using the Machine Learn-

ing Studio, a graphical, “zero code” tool for creation of ML models with minimal effort and

the aid of its visual drag and drop-interface. An option with more flexibility is creating the

machine learning model with industry standard open source Python packages like Keras,

Tensorflow and Scikit-learn and then deploying to the cloud using Azure Machine Learn-

ing Service. [12.]

3.1.2 Azure Notebooks

Azure Notebooks provides a convenient way to run Jupyter Notebooks, a web-based

programming environment for Python, R and various other languages. It comes with the

basic dependencies such as numpy for mathematics and matplotlib for plotting, as well

as the most commonly used machine learning packages such as Keras and Scikit-learn.

In most cases no installations are needed at all. It runs on the free computation resource

provided by Microsoft Azure, with the option of increasing the performance with Azure

subscription. They are ideal for quick prototyping but can be used for more extensive

development as they provide all the necessary functionality for most tasks. [13.] All the

code in this project is written in an Azure Notebook using Python 3.6 with Anaconda3-

5.3.0.

3.2 Keras

Keras is a high-level programming library developed for building and training neural net-

works. It is the official frontend for TensorFlow, and directly after TensorFlow is also the

second most used deep learning framework for industry and research. It abstracts the

complex task of building neural nets into simple API calls and minimizes the amount of

code required for the most common neural network development tasks. It is designed to

be as human-readable as possible and provides a quick way to start prototyping without

needing much prior programming experience. Regardless of the simplicity, it provides

great flexibility as it supports multiple backend engines such as TensorFlow and Mi-

crosoft Cognitive Toolkit. Furthermore, it allows directly calling the lower-level languages

and consequently provides the same level of control. [14.]

17

3.3 ONNX

Open Neural Network Exchange (ONNX) is an open format for representing deep learn-

ing models. It is intended to provide interoperability between the increasing number of

platforms and tools that exist. Training and tuning machine learning models is very time

consuming, computationally expensive and often requires high-end hardware. On the

other hand, once deployed, the model should be able to run on a variety of computation

environments and would be better if optimized for the lower performance of most de-

vices. Moreover, every development tool has their own benefits, and some are better

suited for building neural networks for certain applications than others. Therefore, it can

be advantageous to implement and train the solution in the preferred environment with

the preferred tools before transferring it to cloud or the physical device as needed. Each

of the tools comes with their own mutually incompatible representations of neural net-

works, which may be interfaced using the common format that ONNX provides. [15;16.]

Figure 7 shows some of the supported platforms and tools, including the Azure Machine

Learning services and Keras used in this project.

Figure 7. Some of the platforms and tools with ONNX support. Reprinted from Azure documen-
tation [16].

18

ONNX runtime is a powerful inference engine based on the ONNX-format. It is designed

to perform well in the cloud as well as on the local hardware. With the support Azure

provides for it, deployment as a web-service to the cloud is straightforward. Additional

benefit of using ONNX Runtime for inference is better performance, which Microsoft has

reported doubling on average in some of their applications. [16.]

4 Methods

This section describes the specifics on the implementation of the analysis tool. The

source code for relevant functionality is provided as appendices, which are separated

into training, deployment and testing scripts, as well as dependencies for them. Many of

the Illustrations are generated with matplotlib in python, but the source code for that is

omitted due to its length and irrelevance to the objective. To avoid repetition, some of

the functions used in multiple places are defined separately in appendix 1 along with

parameters used and a full list of the imported packages.

4.1 Analysis of Bearing Degradation

A bearing vibration experiment published by the Centre for Intelligent Maintenance Sys-

tems (IMS) was selected, as the data it contains is very similar to that produced by the

VibLog measurement system. The data set is collected from a test jig with four bearings

being rotated at constant speed of 2000 RPM under 6000 lbs load. It consists of three

smaller datasets of individual runs until failure. [17.]

Each dataset contains several CSV-files of 20478 samples measured over one second

every 10 minutes. Units of measurement are not given in the documentation but are

assumed to be meters per second squared (m/s2). The unit is not relevant as the data

will be normalized in the pre-processing for the neural network. The datasets are very

similar to each other, apart from the number of measurement channels. In the first da-

taset both x- and y-axes are recorded, whereas only a single axis measurement is used

for the other two. [17.]

19

Observing the contents of the data sets plotted with python reveals that the first and third

measurement runs contain many short anomalous bursts and irregularities, while the

second run gives a smooth and stable graph until the degradation begins. All the runs

exhibit similar exponential increase in RMS amplitude towards the failure, in which the

amplitude rises to approximately 0.5 m/s2 over a period of 3-4 days. The second dataset,

plotted in Figure 8, was chosen for further analysis and experimentation while the other

two were discarded.

Figure 8. A measurement run until failure from the dataset.

Figure 9 compares the raw vibration of a single bearing soon after beginning the exper-

iment and 40 hours prior to failure. The peak amplitudes undergo a significant threefold

increase as the bearing degrades. This seems to be the result of the high frequency

components increasing in their amplitude. The same lower frequency vibration is notice-

able from both signals in the time domain representation.

20

Figure 9. Raw vibration measurement from a single bearing. The worn bearing has approxi-
mately 40 hours of lifetime left. Bias is added for clarity.

Figure 10. Frequency spectrum of a raw measurement. The worn bearing has approximately 40
hours of lifetime left.

21

Observing the frequency spectrum in figure 10 confirms that the high frequency compo-

nents are increasing in amplitude and quantity as the breakage is nearing. In the healthy

state of the bearing, there is clearly one main frequency component around 1 kHz, which

stays approximately constant in amplitude over the degradation process. As previously

noted, the higher frequency components have a much stronger presence in the signal

measured from a worn bearing. Using Parseval’s theorem for energy signals (22), it is

also clear from the frequency domain representation that the total energy in the system

increases as more high frequency components appear.

 𝐸 = ∫ |𝑋(𝑓)|2

𝑑𝑓 (22)

From these observations it can be concluded that the high frequency vibrations in the

bearing increase as its condition degrades and the total energy in the system grows

accordingly. Developing a method to successfully detect these trends from the measured

data makes it possible to determine if the bearings are vibrating in a normal manner as

well as to quantify the degree in which they are worn out for approximating the remaining

lifetime.

4.2 Developing a Solution

Based on the previous section, the problem is to detect the changes over time in the

signal. This can be achieved if a function is capable of reproducing the vibration signal

of healthy bearings, while being incapable of doing the same for the worn-out bearings.

A method proposed to solve this problem is applying the sequence to sequence LSTM

autoencoder for quantifying the degradation. It has been shown that a basic autoencoder

alone can be sufficient to detect degradation in bearing vibration data [18]. However,

since the data being analysed is in time-series, leveraging the ability of recurrent neural

networks to capture temporal structures may give a better prediction and therefore warn

about potential problems earlier and in greater accuracy. In this solution, no averaging

or other transformations leading to information loss are applied on the data.

22

4.2.1 LSTM Autoencoder

The operation of a sequence to sequence LSTM autoencoder is illustrated in Figure 11.

First, the continuous input sequence is broken into finite length batches x(i) and pre-pro-

cessed. For each batch, the neural network attempts to reconstruct the observed signal

X(i) as X̂(i) but is unable to do so perfectly when encountering unseen patterns resulting

in some error E(i). This reconstruction error serves as a metric of how different the data

being inferred from at present is in comparison to the data on which the neural network

has been trained on previously.

Figure 11. The concept of the sequence to sequence LSTM Autoencoder.

The neural network structure and the hyperparameters were chosen somewhat arbitrar-

ily based on experimentation with different configurations. In general, there are no formal

rules for finding the suitable architecture and the solution is often based on educated

guesses and optimization techniques, such as exhaustively searching through the space

of possible parameters [7,263].

23

The structure consists of three LSTM layers and does not incorporate any compression

in the temporal dimension. This is because such reductions in time dimension led to the

neural network being unable to learn anything useful from the data and furthermore, the

basic LSTM structures with any compression at all yielded similar performance as those

without it.

4.2.2 Building and Training the Model in Keras

The appendix 2 contains the code used for building and training the neural network and

shows the specific parameters and architecture used. The training script can be run after

appendix 1.

The first step is loading and pre-processing the data set. The training data directory con-

tains a selection of csv-files depicting the vibration signals produced by healthy bearings

from the data set [17]. The function load_data combines the contents of the directory into

a single array for training. Very large inputs or significant differences in the ranges of the

individual data channels may prevent the network from converging, so the values are

normalized using the MinMaxScaler from sklearn preprocessing-library [7,101]. The

scaler is then saved so that the data used for predictions later can be normalized with

respect to the training data.

The first layer of the network provides information about the dimensions of the data and

the number of samples used for each parameter update by the learning algorithm. This

is followed by three LSTM layers with 16, 4 and 16 nodes respectively, each using hy-

perbolic tangent activation function. A densely connected output layer is added at the

end to return the original shape of the data. To make the predictions of the network more

general, some dropout is added to each layer. This means that random elements from

the output vector are set to zero or “dropped out” [7,109-110]. In addition to this, the

LSTM layers must be set as stateful. Normally the hidden internal states would be reset

after every batch of data. However, this is not what is wanted when trying to reconstruct

a sequence from small batches. The internal values of the LSTM cells should be main-

tained to keep the information about previous states.

24

LSTM-layers require three dimensional arrays as inputs; therefore the data is reshaped

into a suitable form with the reshape_input-function prior to feeding it to the neural net-

work. The model is then trained 50 times with the training data set, after which no more

noticeable improvement occurs.

4.2.3 Measuring Bearing Degradation with the Trained Model

The trained neural network was tested with previously unseen data pre-processed in the

same manner as the training data. Figure 12 shows the vibration signal from healthy

bearing being compared to the reconstruction made by the neural network and the re-

sulting error. Clearly the reconstruction can approximate the vibration quite well. A few

anomalous spikes are present, but they show up as increased error as expected and on

average, the reconstruction error is low.

Figure 12. Vibration of a healthy bearing and the reconstructed signal.

Comparing the worn bearing approximately 40 hours prior to failure shown in figure 13

to the healthy bearing in figure 12, much more error is present. The neural network

struggles to reconstruct the high amplitudes and rapid changes that were absent from

the healthy vibration signal it was trained on. Overall, the reconstruction error is much

higher as a result of these anomalies and interestingly, their locations can even be

found accurately from the error vector.

25

Figure 13. Vibration of a worn bearing and the reconstructed signal approximately 40 hours prior
to failure.

The probability distribution of the reconstruction error for a healthy bearing is shown in

Figure 14. To classify a point as an anomaly or an outlier, a threshold had to be chosen.

Most of the data points are contained within three standard deviations, so that was cho-

sen as a rudimentary boundary. The mean reconstruction error of healthy bearing data

on this dataset with the trained model is 0.042 and the standard deviation is 0.036 re-

sulting in threshold of 0.149.

Figure 14. Approximated probability distribution function of the vibration signal from a healthy
bearing with the anomaly threshold at three times the standard deviation.

26

Results above give a good indication of the anomalies. However, averaging these values

and observing their change over time is a better way of evaluating the condition of the

bearings. The reconstruction error Ebatch for single batch measurements is then calcu-

lated as the mean of all features and samples with (23), where Ei,j is the reconstruction

error for sample i on feature j, Nsamples is the number of samples and Nfeatures is the number

of features in the sequence.

𝐸𝑏𝑎𝑡𝑐ℎ =
1

𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠
∑ (

1

𝑁𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠
∑ (𝐸𝑖,𝑗)

𝑁𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠

𝑗=0
)

𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑖=0
 (23)

Calculating (23) for a batch of 20000 samples recorded at 20478 Hz every 2 hours over

the whole data set yields a relatively smooth curve depicting the degradation over time

as shown in Figure 15. The anomaly threshold here is calculated for the new vector of

Ebatch separately using the corresponding standard deviation.

Figure 15. Reconstruction error averaged from validation data batches.

The problems can be seen more than three days prior to the failure, at the rate of 2000

RPM this corresponds to around 10 million rotations. Furthermore, the same exponential

growth over 3-4 days is observed as in the RMS vibration data. Based on this, clearly

the degradation of the bearings can be detected quite reliably and quantified for predict-

ing their lifetime.

27

4.3 Operationalization

This section describes the process of deploying the neural network model as a web-

service in the Azure cloud. Figure 16 outlines the steps that were taken for a successful

operationalization and lists the dependencies that must be provided. [19;20.] In addition

to the trained model, an Azure subscription with sufficient rights to create workspaces is

required.

Figure 16. Operationalizing a Keras-trained neural network model as a web-service.

After a successful deployment, the web-service is accessible through a REST API and

new predictions can be made from virtually any device on any programming language.

The client application in figure 16 must be provided with the uniform resource identifier

(URI) pointing to the REST API address and the authentication key if authentication is

configured for the web service. [21.]

28

4.3.1 Deploying as a Web Service

Appendix 3 contains the code for deploying the neural network model and shows the

parameters used in the process. The deployment script can be run after appendices 1

and 2.

Before the neural network can be deployed, it must be converted into a form compatible

with the Azure Machine Learning service. The model can be serialized into ONNX-format

by using the functions provided in the onnxmltools-library. [20.] In some cases, the weight

mappings of the models might not get converted correctly and other functionality sup-

ported by Keras might not work identically in ONNX, leading to inconsistent inference

results between the two runtimes. The predictions of the Keras model should be com-

pared with those made by the ONNX-model to confirm expected behavior.

A workspace object is required for managing the resources created to Azure. It provides

methods for manipulating the workspace such as deleting it to prevent charges when it

is no longer needed. The workspace itself is created automatically along with the object,

but this may also be done via the Azure Portal web-interface. The workspace is created

in a resource group, which is a container for grouping multiple related workspaces. After

registration to the machine learning workspace, the model is available on Azure cloud

and can be accessed for deployment or download. This provides a convenient way of

version control as registering another model with the same name will increment the ver-

sion number and additional metadata such as a python dictionary of tags and properties

can be given when registering [22].

Azure container Instances can be used for deploying the trained model into the cloud.

This requires a few configurations to be made as shown in figure 16 under dependencies.

The entry script, given in appendix 4 is run automatically as the web service starts. It

initializes the model and acts as a common interface between the web service and the

incoming requests. Two functions must be provided for it, an init function for loading the

model and performing any other required initialization, as well as a run function for re-

formatting the data from received requests, performing inference and returning the result

in a suitable format. The web service uses the JSON-format for passing requests and

responses. This requires some additional transformations as numpy arrays used by the

model are not serializable to JSON. [19;20.]

29

The environment configuration describes the external packages utilized by the entry

script. By default, it includes some common dependencies and any additional packages

can be included here. The container image configuration provides information on how to

run the model for the web service, here it associates the entry script and the environment

configuration file with the container instance. [19;20.]

With all the dependencies provided, the image can be deployed. The deploy_configura-

tion-function defines the computational resources and other parameters related to the

virtual machine given to this web-service. The hardware requirements depend on the

specific application, here a simple configuration with 1 GB of memory and one CPU core

is defined before the web-service is deployed with the deploy_from_image-function.

[19;20.]

4.3.2 Using the Analysis Tool

The test script in appendix 5 demonstrates the functionality of the deployed web-service.

It can be run after successfully executing the scripts in appendices 1-3.

The web_service_predict-function breaks the input array into the correct batch size for

the deployed neural network model and calls the send_request-function to obtain recon-

structed arrays for each batch. The send_request-function transforms the data into the

JSON-format and makes a HTTP-request to the web-service. The predictions are com-

bined back into the original shape and returned to be evaluated by the score_output-

function, which calculates the mean reconstruction error for the whole input to quantify

the degradation of the bearing.

time: 2004.02.12.10.32.39, reconstruction error: 0.0539

time: 2004.02.13.06.32.39, reconstruction error: 0.0556

time: 2004.02.14.02.32.39, reconstruction error: 0.0554

time: 2004.02.14.22.32.39, reconstruction error: 0.0552

time: 2004.02.15.18.32.39, reconstruction error: 0.0549

time: 2004.02.16.14.32.39, reconstruction error: 0.0579

time: 2004.02.17.10.32.39, reconstruction error: 0.0694

time: 2004.02.18.06.32.39, reconstruction error: 0.0705

time: 2004.02.19.02.32.39, reconstruction error: 0.1016

Listing 1. Responses from the web service for validation data.

30

The testing script functions as follows. First, the program loads an array of validation

data from the dataset [17]. The data is pre-processed into the correct shape in the same

manner as the training data using the previously saved scaler. The saved web-service

address is read and used to make requests to the deployed analysis tool. Listing 1 shows

the terminal output with reconstruction errors calculated for the validation data. The val-

ues match the locally calculated numbers in figure 15 as expected.

5 Results

The goal set at the beginning of this project was reached. The analysis tool developed

is very simple and crude but works well within the confines of the type of data it was

experimented with. The tight schedule that this project was constrained to, severely lim-

ited the standards at which the work could be carried out, leaving a great deal of room

for improvement on the result. However, the methods for implementing a neural network

model for analysing bearing vibration data and deploying it as a web service were suc-

cessfully found and can be easily extended into a more sophisticated solution.

The questions formulated at the beginning of the work can be now answered. Clearly,

artificial neural networks can be used to reliably predict impending faults in rolling bear-

ings given that there are noticeable anomalies in the vibration data. Furthermore, the

degradation observed from the signals can be quantified and used for estimating the

remaining lifetime of the bearings. The data available for this work did not contain exam-

ples of different rotational velocities. Therefore, it could not be confirmed, if the data from

slowly rotating machinery would be more challenging to analyse. However, since LSTM

autoencoder networks can learn patterns of arbitrary length and even a single spike in

amplitude can be detected, this should not be a problem. The detected anomalies could

be, for instance, compared to known failure patterns to classify them as different faults

regardless of their frequency or length.

31

The degradation pattern seen in the RMS vibration is very similar in shape to the recon-

struction error made by the analysis tool. This raises the question if such a complex

solution is necessary to solve this problem. However, the neural network learnt to identify

this relationship between the degradation in bearings and the increase in energy, without

it being explicitly told to do so. Therefore, failures can be foreseen without having to

destroy any equipment to generate examples of such events.

6 Conclusions

The goal was to implement a cloud-based analysis tool for extending the functionality of

the VibLog measurement system. A suitable method to do this was found and a func-

tional solution developed for the available data set. This work serves as a proof of con-

cept and a starting point to the subsequent projects. The result is far from finished and

in order to successfully adapt this functionality to VibLog, much more development and

testing is required.

The analysis tool could be for instance improved by a more thorough research into the

different neural network architectures available. In this application, very generic solution

suitable for multiple different systems would be preferable. Only seldom do machines

rotate at a constant speed until failure, therefore the analysis tool would have to take

different configurations and rotational velocities into account.

Figure 17. The system diagram of a possible extension to the VibLog Analysis Tool web-applica-
tion.

32

Figure 17 shows a possible extension to this work. The measurements being streamed

to a database could be sent for analysis based on a timer or some other trigger, such as

a certain amount of data accumulating. The result of the analysis could be used to create

alerts and status information to be shown on a dashboard or emails sent to personnel

responsible for the equipment.

33

References

1 Lace. The Role of Vibration Monitoring in Predictive Maintenance [online].
URL:https://www.schaeffler.com/remotemedien/media/_shared_media/08_me-
dia_library/01_publications/schaeffler_2/technicalpaper_1/down-
load_1/the_role_of_vibration_monitoring.pdf. Accessed 27 October 2019.

2 Yung. Vibration analysis: what does it mean? [online]. URL:https://www.plantser-
vices.com/articles/2006/154. Accessed 27 October 2019.

3 National Instruments. Measuring Vibration with Accelerometers [online].
URL:https://www.ni.com/en-tr/innovations/white-papers/06/measuring-vibration-
with-accelerometers.html. Accessed 27 October 2019.

4 Rojas. Neural Networks: A Systematic Introduction. Springer-Verlag; 1996

5 Russel, Norvig. Artificial Intelligence, A Modern Approach. Third Edition. Prentice
Hall; 2010

6 Chollet. Deep Learning with Python. Manning: 2018

7 Gulli, Pal. Deep Learning with Keras. Packt: 2017

8 Goodfellow, Bengio, Courville. Deep Learning. MIT Press: 2016

9 Bott. Microsoft Azure: Everything you need to know about Redmond's cloud ser-
vice [online]. URL: https://www.zdnet.com/article/microsoft-azure-everything-you-
need-to-know. Accessed 27 October 2019.

10 Microsoft. Cognitive Services and machine learning [online]. URL:
https://docs.microsoft.com/fi-fi/azure/cognitive-services/cognitive-services-and-
machine-learning. Accessed 27 October 2019.

11 Basak, Shah, Lehman, Abraham, Stirrup. Hands-On Machine Learning with Az-
ure. Cognitive Services/bots. Packt: 2018

12 Microsoft. What is Azure Machine Learning? [online]. URL:https://docs.mi-

crosoft.com/fi-fi/azure/machine-learning/service/overview-what-is-azure-ml. Ac-
cessed 27 October 2019.

13 Microsoft. Azure Notebooks Documentation [online]. URL:https://docs.mi-

crosoft.com/en-us/azure/notebooks. Accessed 27 October 2019.

14 Keras. Keras Documentation [online]. URL:https://keras.io. Accessed 27 October
2019.

15 ONNX. ONNX Homepage [online]. URL:https://onnx.ai. Accessed 27 October
2019.

https://www.schaeffler.com/remotemedien/media/_shared_media/08_media_library/01_publications/schaeffler_2/technicalpaper_1/download_1/the_role_of_vibration_monitoring.pdf
https://www.schaeffler.com/remotemedien/media/_shared_media/08_media_library/01_publications/schaeffler_2/technicalpaper_1/download_1/the_role_of_vibration_monitoring.pdf
https://www.schaeffler.com/remotemedien/media/_shared_media/08_media_library/01_publications/schaeffler_2/technicalpaper_1/download_1/the_role_of_vibration_monitoring.pdf
https://www.plantservices.com/articles/2006/154/
https://www.plantservices.com/articles/2006/154/
https://www.ni.com/en-tr/innovations/white-papers/06/measuring-vibration-with-accelerometers.html
https://www.ni.com/en-tr/innovations/white-papers/06/measuring-vibration-with-accelerometers.html
https://www.zdnet.com/article/microsoft-azure-everything-you-need-to-know/
https://www.zdnet.com/article/microsoft-azure-everything-you-need-to-know/
https://docs.microsoft.com/fi-fi/azure/cognitive-services/cognitive-services-and-machine-learning
https://docs.microsoft.com/fi-fi/azure/cognitive-services/cognitive-services-and-machine-learning
https://docs.microsoft.com/fi-fi/azure/machine-learning/service/overview-what-is-azure-ml
https://docs.microsoft.com/fi-fi/azure/machine-learning/service/overview-what-is-azure-ml
https://docs.microsoft.com/en-us/azure/notebooks/
https://docs.microsoft.com/en-us/azure/notebooks/
https://keras.io/
https://onnx.ai/

34

16 Microsoft.ONNX and Azure Machine Learning: Create and accelerate ML models
[online]. URL:https://docs.microsoft.com/en-us/azure/machine-learning/service/con-

cept-onnx. Accessed 27 October 2019.

17 Lee, Qiu, Yu, Lin, Rexnord Technical Services. Bearing Data Set [online].
URL:https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository. Ac-
cessed 27 October 2019.

18 Flovik. How to use machine learning for anomaly detection and condition monitor-
ing [online]. URL:https://towardsdatascience.com/how-to-use-machine-learning-for-

anomaly-detection-and-condition-monitoring-6742f82900d7. Accessed 27 October
2019.

19 Microsoft. Deploy models with Azure Machine Learning [online].
URL:https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-de-

ploy-and-where. Accessed 27 October 2019.

20 Keen. Deploying Neural Network models to Azure ML Service with Keras and
ONNX [online]. URL:http://benalexkeen.com/deploying-neural-network-models-to-

azure-ml-service-with-keras-and-onnx. Accessed 27 October 2019.

21 Microsoft. Consume an Azure Machine Learning model deployed as a web ser-
vice [online]. URL:https://docs.microsoft.com/en-us/azure/machine-learning/ser-

vice/how-to-consume-web-service. Accessed 27 October 2019.

22 Microsoft. MLOps: Manage, deploy, and monitor models with Azure Machine
Learning [online]. URL:https://docs.microsoft.com/bs-latn-ba/azure/machine-learn-

ing/service/concept-model-management-and-deployment. Accessed 27 October
2019.

https://docs.microsoft.com/en-us/azure/machine-learning/service/concept-onnx
https://docs.microsoft.com/en-us/azure/machine-learning/service/concept-onnx
https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/
https://towardsdatascience.com/how-to-use-machine-learning-for-anomaly-detection-and-condition-monitoring-6742f82900d7
https://towardsdatascience.com/how-to-use-machine-learning-for-anomaly-detection-and-condition-monitoring-6742f82900d7
https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-deploy-and-where
https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-deploy-and-where
http://benalexkeen.com/deploying-neural-network-models-to-azure-ml-service-with-keras-and-onnx/
http://benalexkeen.com/deploying-neural-network-models-to-azure-ml-service-with-keras-and-onnx/
https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-consume-web-service
https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-consume-web-service
https://docs.microsoft.com/bs-latn-ba/azure/machine-learning/service/concept-model-management-and-deployment
https://docs.microsoft.com/bs-latn-ba/azure/machine-learning/service/concept-model-management-and-deployment

Appendix 1

 1 (2)

Initialization script

’’’

Import all the necessary libraries and define parameters, as well as

utility functions used in the other scripts.

’’’

#imports

import pandas as pd

import numpy as np

import os

import json

import requests

import onnxmltools

import onnxruntime as onnxrt

from azureml.core import Workspace

from azureml.core.model import Model as AzureModel

from azureml.core.conda_dependencies import CondaDependencies

from azureml.core.image import ContainerImage

from azureml.core.webservice import AciWebservice, Webservice

from keras.models import load_model, Model

from keras.optimizers import RMSprop

from keras.layers import LSTM, Dense, Input

from sklearn.preprocessing import MinMaxScaler

from sklearn.externals import joblib

Parameters

n_features = 4

data_length = 20000

n_timesteps = 50

batch_size = 100

np.random.seed(1234) # Fix random seed for reproducibility

Utility function definitions

'''

Read a folder full of CSV-files into a numpyarray.

'''

def load_data(directory):

 container = []

 files = os.listdir(directory)

 files.sort()

 for i, file in enumerate(files):

 print(file, i+1, '/', len(files))

 data = pd.read_csv(os.path.join(directory, file),

 sep='\t',header=None)

 data = np.array(data, dtype=np.float32)[:data_length, 1:]

 container.append(data)

 container = np.array(container).reshape(len(con-

tainer)*data_length, n_features)

 return container, files

Appendix 1

 2 (2)

'''

Reshape the input to 3D. X is the 2D array (samples, channels).

'''

def reshape_input(input_data):

 X = input_data

 len_req = batch_size * n_timesteps

 if len(X) < len_req:

 raise Exception('Input array too small, size {}, need at least

{}'.format(len(X), len_req))

 if not len(X) % n_timesteps:

 X = X[:int(np.floor(len(X)/n_timesteps))*n_timesteps]

 if not len(X) % batch_size:

 X = X[:int(np.floor(len(X)/batch_size))*batch_size]

 input_reshaped = X.reshape(int(len(X)/n_timesteps), n_timesteps,

n_features).astype(np.float32)

 return input_reshaped

Appendix 2

 1 (1)

Training script

’’’

Define and train the neural network model.

’’’

Load data

training_data = load_data('Data/training_data')

Scale data to [0,1] with respect to training data

scaler = MinMaxScaler(feature_range=(0, 1))

training_data = scaler.fit_transform(training_data)

joblib.dump(scaler, 'Outputs/scaler.save') # Save scaler

Define the NN model

input_layer = Input(batch_shape=(batch_size, n_timesteps, n_features))

lstm = LSTM(16, activation="tanh", dropout=0.2, recurrent_dropout=0.2,

return_sequences=True, stateful=True)(input_layer)

lstm = LSTM(4, activation="tanh", dropout=0.2, recurrent_dropout=0.2,

return_sequences=True, stateful=True)(lstm)

lstm = LSTM(16, activation="tanh", dropout=0.2, recurrent_dropout=0.2,

return_sequences=True, stateful=True)(lstm)

output_layer = Dense(4)(lstm)

model = Model(input_layer, output_layer)

optimizer = RMSprop(lr=0.001, rho=0.9)

model.compile(optimizer=optimizer, loss='mse')

model.summary()

Train the NN model

X_train = reshape_input(training_data)

history = model.fit(X_train, X_train, batch_size=batch_size,

epochs=50, verbose=1, shuffle=False, validation_split=0.25)

Save the NN model

model.save('Outputs/LSTMAE.h5')

Appendix 3

 1 (1)

Deploy script

’’’

Deploy the neural network to the Azure cloud.

The entry script must be provided.

’’’

Convert keras model to ONNX

model = load_model('Outputs/LSTMAE.h5')

onnx_model = onnxmltools.convert_keras(model)

onnxmltools.utils.save_model(onnx_model, 'Outputs/LSTMAE.onnx')

Create a workspace

ws = Workspace.create(name='vibrationanalysis',

 subscription_id=subscription_id,

 resource_group=resource_group,

 create_resource_group=True,

 location=location

)

Register the model

azureml_model = AzureModel.register(model_path = 'Out-

puts/LSTMAE.onnx', model_name = 'LSTMAE', workspace = ws)

Create enviroment file with the required dependencies

dependencies = CondaDependencies()

dependencies.add_pip_package("numpy")

dependencies.add_pip_package("azureml-core")

dependencies.add_pip_package("onnxruntime")

with open("environment_config.yml","w") as f:

 f.write(dependencies.serialize_to_string())

Create image configuration

image_config = ContainerImage.image_configuration(execution_script =

"entryscript.py", runtime = "python", conda_file = "environment_con-

fig.yml")

Create container image

image = ContainerImage.create(name = "lstmaemodelimage", models = [az-

ureml_model], image_config = image_config, workspace = ws)

image.wait_for_creation(show_output = True)

Deploy as web service

aciconfig = AciWebservice.deploy_configuration(cpu_cores = 1,

memory_gb = 1)

service = Webservice.deploy_from_image(deployment_config = aciconfig,

image = image, name = 'vibration-analysis', workspace = ws)

service.wait_for_deployment(show_output = True)

with open('Outputs/URI.txt', "w") as f:

 f.write(service.scoring_uri) # Save scoring uri

Appendix 4

 1 (1)

Entry script for the web-service

import json

import sys

import onnxruntime

import numpy as np

from azureml.core.model import Model

def init():

 global model_path

 model_path = Model.get_model_path(model_name = 'LSTMAE')

def run(raw_data):

 try:

 data = np.array(json.loads(raw_data)['data'],

dtype=np.float32)

 session = onnxruntime.InferenceSession(model_path)

 first_input_name = session.get_inputs()[0].name

 first_output_name = session.get_outputs()[0].name

 result = session.run([first_output_name], {first_input_name:

data})[0].tolist() # numpy arrays cannot be serialized.

 return {"result": result}

 except Exception as e:

 result = str(e)

 return {"error": result}

Appendix 5

 1 (2)

Test script

’’’

Test the functionality of the deployed web-service.

’’’

Load and preprocess data

validation_data, timestamps = load_data('Data/validation_data')

validation_data = validation_data.reshape(int(len(valida-

tion_data)/data_length), data_length, n_features)

scaler = joblib.load('Outputs/scaler.save')

Preprocess data

validation_data = [scaler.transform(data) for data in validation_data]

Load previously saved uri

web_service_uri = ''

with open('Outputs/URI.txt') as f:

 web_service_uri = f.readline()

'''

Break array into batches and perform inference.

'''

def web_service_predict(data, web_service_uri):

 data_reshaped = reshape_input(data)

 samples = data_reshaped.shape[0]

 data_arr = data_reshaped.reshape(int(samples/batch_size),

batch_size, n_timesteps, n_features)

 response_arr = np.array([send_request(data, web_service_uri) for

data in data_arr])

 reconstructed_data = response_arr.reshape(data.shape)

 return reconstructed_data

'''

Send a request to infer on one batch of data.

'''

def send_request(data, web_service_uri):

 data_json = json.dumps({"data": data.tolist()})

 headers = {'Content-Type':'application/json'}

 response_json = requests.post(web_service_uri, data_json, head-

ers=headers)

 return json.loads(response_json.text)['result']

'''

Calculate the reconstruction error

'''

def score_output(reconstructed_data, input_data):

 y = np.array(reconstructed_data)

 X = np.array(input_data)

 rec_err = np.abs(X - y)

 mean_err = np.mean(rec_err)

 return mean_err

Appendix 5

 2 (2)

predictions = []

for index in np.arange(0, len(validation_data), 10):

 data = validation_data[index]

 time = timestamps[index]

 reconstruction_error = score_output(web_service_predict(data,

web_service_uri), data)

 predictions.append(reconstruction_error)

 print("time: {}, reconstruction error: {:.4f}".format(time, recon-

struction_error))

