

Jari Tervo

Development of supplementary material
for teaching game development

Bachelor’s thesis
Information Technology

2019

Tekijä/Tekijät Tutkinto

Aika

Jari Tervo Insinööri (AMK) Marraskuu 2019

Opinnäytetyön nimi

Opetusmateriaalin kehittäminen peliohjelmoinnin koulutukseen

37 sivua
5 liitesivua

Toimeksiantaja

Kaakkois-Suomen ammattikorkeakoulu Oy

Ohjaaja

Niina Mässeli

Tiivistelmä
Tämän opinnäytetyön aiheena oli kehittää opetusmateriaalia peliohjelmoinnin koulutusta
varten Kaakkois-Suomen ammattikorkeakoulun GameLabille. Opetusmateriaali kehitettiin
pelikokoelman muodossa, jossa kokoelman pelit koostuivat samoista modulaarisista osista.
Kyseisiä osia voitiin käyttää myös omien pelien luomiseen, jopa aloittelijan toimesta.

Kehityksen aikana siirryttiin kuitenkin pois modulaarisuudesta kohti yksilökeskeisyyttä siksi,
että sisältö alkoi keskittyä yhä enemmän koodaamiseen. Pelit erotettiin ja niitä lähestyttiin
yksilöinä, ja jokaiselle pelille luotiin ohjeistus pelin luomiseen sekä yleistä dokumentaatiota
pelin komponenteista. Lopullinen tuote muodostui siis kokoelmasta pelejä sekä niiden
dokumentaatiosta.

Pelikokoelman pelit tuotettiin Unity-pelimoottorilla käyttäen Visual Studiota koodin
kirjoittamiseen ja Blender-mallinnusohjelmaa grafiikkaa varten. Opinnäytetyö käy läpi
yhden pelin luomisen kokoelman peleistä. Kyseinen peli oli ensimmäisen persoonan
ammuntapeli, joka otti inspiraatiota villistä lännestä sekä ampumaradoista.
Opinnäytetyössä käydään myös läpi dokumentaatio, joka kehitettiin pelin pohjalta. Siihen
kuuluvat Doxygen-työkalulla koodista generoitu tietokanta sekä yksityiskohtainen ohje pelin
luomiseen.

Opinnäytetyön seurauksena toteutettu pelikokoelma on otettu jo käyttöön. Paria
poikkeamaa lukuun ottamatta kokoelman vastaanotto on ollut positiivista ja sitä on käytetty
peliohjelmoinnin opettamiseen uusille oppilaille. Ilman lisätestaamista ei voida kuitenkaan
sanoa, kuinka hyvin tuote on lopulta onnistunut tehtävässään.

Avainsanat

dokumentointi, pelikehitys, Unity, opetus, modulaarisuus

Author (authors) Degree

Time

Jari Tervo Bachelor of
Engineering

November 2019

Thesis title

Development of supplementary material for teaching game
development

37 pages
5 pages of appendices

Commissioned by

South-Eastern Finland University of Applied Sciences

Supervisor

Niina Mässeli

Abstract
The purpose of this thesis was to develop supplementary material for teaching game
development for the South-Eastern Finland University of Applied Sciences GameLab. The
supplementary material took the form of a game collection where the games were built
from modular pieces that could be used for creating your own games, even by a beginner.

During the development, however, the approach changed from modularity to individuality,
when coding started to become the focus, and the games of the collection were divided into
separate items. Each was accompanied by a tutorial piece on how to make the game and
some general documentation on its components. The new product in the making was a
composition of the games and their documentation.

The games of the collection were created with the Unity game engine, using Visual Studio
for writing the code and Blender for the graphics. This thesis dealt with the creation process
of one of the games, a first-person shooter game inspired a wild west aesthetic and
shooting ranges. The thesis also dealt with the documentation made for the game: a
generated database made from the code using Doxygen and the tutorial page hosted on
the project’s website.

The usage of the game collection had already started as of writing this thesis. Except for a
few issues, the reception was positive, and the collection has been used for teaching new
students. However, more testing is required for a definite conclusion of the product’s
success.

Keywords

documentation, game development, Unity, teaching, modularity

CONTENTS

TERMS AND ABBREVIATIONS .. 6

1 INTRODUCTION .. 7

2 DESIGN .. 8

2.1 Modular game collection ... 8

2.2 Pelipalapeli reformed .. 11

2.3 First-person shooter .. 12

2.4 Tools used .. 14

3 FIRST-PERSON SHOOTER .. 16

3.1 Modular components .. 17

3.2 Player and movement ... 18

3.3 Shooting mechanics ... 21

3.4 Targets and spawning .. 23

3.5 Score and HUD ... 27

3.6 Finishing touches .. 28

3.7 Graphics ... 28

4 DOCUMENTATION .. 30

4.1 Doxygen.. 31

4.2 Tutorials .. 31

5 CONCLUSIONS AND FUTURE DEVELOPMENT ... 33

REFERENCES .. 35

LIST OF FIGURES .. 37

APPENDICES

 Appendix 1. Game element table

 Appendix 2. Timer class

 Appendix 3. Resource class

 Appendix 4. Object Pooler class

 Appendix 5. Pelipalapeli: commenting guidelines

TERMS AND ABBREVIATIONS

AI Stands for Artificial Intelligence. A way of simulating human intelligence.

Algorithm A segment of code that has the purpose of doing something. For

example, calculating the speed of an object.

C#, C++ Programming languages derived from C.

Class A template for creating objects in Object-Oriented-Programming.

Command line A tool for commanding the operating system directly.

Comment A text segment in the code with the purpose of guiding the reader.

Function A block of code that can be called with a single command.

Hit point A general convention in game development for keeping track of the

player’s health. Typically, when hit points run out, the player character

dies.

HTML Stands for Hypertext Markup Language. Used for making websites and

HTML documents.

HUD Stands for head-up display. A general convention in video games for

displaying data on the player’s screen.

IDE Stands for Integrated Development Environment. Contains a text editor

for writing code and usually allows for generating software from said

code.

Method Same as a function but for classes.

Pathfinding A method of finding one’s way for AI.

Quaternion Used to represent three-dimensional rotation.

Spawning A concept of creating objects with code. Despawning is the opposite,

where something is removed.

Syntax In programming, denotes rules and principles on how code is written.

UI Stands for User Interface. Refers to interaction between humans and

machines. Encompasses controls, HUD and various other things.

7

1 INTRODUCTION

This document sets out to explore the overall development and design process of

the game collection called Pelipalapeli. The game collection was commissioned

by the South-Eastern Finland University of Applied Sciences GameLab in

preparation for the next semester. The game collection is to serve as the

foundation for teaching game development’s basics to new students and its

development was the objective of this thesis.

GameLab intends to use the collection in conjunction with traditional teaching

methods for preparing the students for the usage of Unity in their own projects

and in further studies. One of the intentions is also to lower the threshold for

attending game development events, such as game jams, by providing material

for the students to rely on.

The document also takes a deeper dive into content that makes up the game

collection. Based on the specifications of the final design, a group of games and

documentation based on those games were made. This document will deal with

the development of one of the games from the collection: a shooting range

inspired first-person shooter game.

The game collection’s development team consisted of three students nearing the

end of their studies, who were approached to work on the project due to their

previous achievements. As such, multiple theses were made regarding the

project, each approaching it from a different angle. For further information about

the subject, it is advised to seek out the theses of Sami Krouvi and Juho

Koponen, to get a better overview. Koponen made a comprehensive thesis about

the documentation of the project, which this thesis will only go over briefly

(Koponen 2019).

8

2 DESIGN

This chapter details the overall design process of the game collection and its

contents. The project itself went through major revisions during its early

development, which are explored in further detail as the design is introduced.

The focus then shifts to a game made for the collection. A first-person shooter

was made based on the previously mentioned revisions and its design is detailed

here, along with the tools used for making it.

2.1 Modular game collection

The concept of a modular game collection came from the commissioners at the

start of the project. The idea was to create approximately 10 games that shared

components between each other, allowing the end user to create their own

games from said components.

Modularization in software development is described as a process of dividing a

system into more manageable components, or modules, which is what the project

set out to do. It can greatly decrease the complexity of the system, due to it being

split up into smaller pieces, making development easier. (Otero 2012, 25.)

As the finished project was intended to be used by first-time game developers,

the simplification of the systems provided by modularization was a good start.

The components would also have to be well documented and simple to use, with

minimal coding required. The games itself would have to be simple and similar

enough for the component sharing to work but fundamentally different enough as

to not feel like the games were all the same.

To further this goal, rudimentary plans were made about what games the final

package would include and what components the different games could share.

Appendix 1 details categorization for the various pieces the games could consist

of, what games were selected and who would be responsible for piecing it

together. The selected game types, or genres, that were chosen to be

9

represented in the project were chosen for their simplicity and similarity when it

came to individual game mechanics. As an example, the first-person shooter and

the survival horror games could share control schemes for the player character,

that being the first-person camera listed under camera types and two-axis

movement listed under movement types.

Early in testing, rudimentary coding was deemed necessary as different

mechanics, such as types of movement, were decided to be categorized under

various classes. Classes like this and their methods could then be used by the

end user, with the heavy lifting being done inside the class whose methods a

user could then use with simple syntax. Complex mechanics would be accessed

with a couple of words.

Figure 1 showcases one of such classes that was used for testing the concept. It

includes straightforward methods for manipulating objects such as MoveSimple,

which moves the inserted Unity game object obj, along the directional vector dir

for the distance v which represents velocity. The class also includes more

complicated methods such as RotateToDirection which returns a quaternion

which represents the dir-vector’s directional rotation in a 3D space and as such,

does nothing on its own and requires an algorithm that makes use of the returned

quaternion. Instructions as to how it would be done, would have been included in

the documentation.

10

Figure 1. Proposed Action-class

The concept was ultimately abandoned after its problems started to become

more apparent. By increasing the amount of actual coding required to make use

of the components, the original idea of the project started to get lost. Instead of

building the game from recognizable pieces and connecting them together, the

game creation process would be abstract and require things such as writing code

that utilized the premade methods. Anything remotely complicated required its

own custom script anyway. Complex and specialized systems such as a

spawning algorithm or a state machine for game states would have to be custom

built case by case, further hurting the concept as a beginner’s first touch into

game development. Such things would have to be separately explained step-by-

step to a beginner, which is exactly where the project was heading towards.

11

2.2 Pelipalapeli reformed

The project was repurposed with a different approach and more limited

modularity. The final concept was much simpler: same list of games, as detailed

in Appendix 1, would be created, but this time they would be self-contained. No

longer sharing parts, the focus would be on the games themselves and how they

were made. However, certain already done modular components were

repurposed for the final design, such as the Timer class seen in Appendix 2, to

not waste the time it took to make them.

Instead of the parts the games consisted of being generic, they would be

specialized and only work within the context of the specific game. The parts could

then be repurposed, reverse-engineered and placed differently inside of the

game world to create something familiar but still new. The first-person shooter

game would not stop being a first-person shooter game but at the very least, it

could be customized by the user to better serve their vision.

Each game would be provided with detailed instructions as to how one could

recreate it and its parts. Essentially, a tutorial. Because the end users would

mostly consist of people who had never programmed before, it was also decided

that the code would have to feature extensive commentary. This would also allow

for increased complexity when it came to the games themselves. More complex

concepts could be taught, since the instructions would be presented in a step-by-

step format.

The tutorial based solution however, could introduce the dilemma touched upon

by Rosalind Driver. Although a student might follow set instructions and

successfully reach their goal, they might learn the wrong things or misunderstand

the conclusion. In the scope of the project, the student might successfully

complete the tutorial and finish creating the game, but they might get the wrong

idea from certain parts of it, such as why something was done. (Driver 1994, 41-

48.)

12

Responsibility for avoiding the problem ultimately falls upon the teachers who will

be using the game collection, but it is important to consider from a development

standpoint as well. Things that can be misunderstood should be explained in the

tutorials so that false information isn’t accidentally taught. Explaining why

something is done would also break the monotony of simply doing as told in the

tutorial.

2.3 First-person shooter

One of the games to be created was a first-person shooter, also known as an

FPS, a subtype of the shooter genre which itself is a subtype of the action genre.

In these games, the player typically controls a character from a first-person

perspective, with the illusion further supported by a hand holding a weapon in

front of them, simulating the player’s own involvement. Shooter games of all

kinds are often violent and can feature complex game mechanics such as

different movement options, as opposed to simply walking, and weapons but the

game to be created for the collection would be somewhat different. (Mitchell

2012, 31-33.)

The game would take place in a themed shooting range, featuring life sized

targets for the player to shoot at. Instead of using systems too complex for a

beginner, such as AI pathfinding, the targets would simply appear from a certain

point, move a preset distance in the preset direction and then disappear.

Shooting them during the time it takes for them to move, would then cause them

to disappear and reward the player with points based on the target type. Certain

targets would remove points to discourage shooting anything that moves and as

such, the different target types would have to be identifiable with a glance. To

achieve this, different targets would have a different picture on them.

Shooting mechanics would be accomplished with hitscan, which means

projecting a ray in a specified direction and testing for appropriate physics

collisions (Jung 2018). The ray in question, would be the normal of the player’s

camera, or viewport, and would test against collisions with the environment and

the targets. Hitting a target would do as specified previously but hitting the

13

environment would create a bullet hole to visually demonstrate hitting something

else.

In Figure 2, the concept is visualized in a quick mockup. Targets to shoot appear

from visually obstructed positions and continue to move to a different obstructed

position where they promptly disappear. Pictured is also the general layout of the

UI, which features the player’s ammo count along with their score value. The

player’s gun would be rendered on top of everything else, separate from the rest

of the game world. Two types of target movement options would be featured in

the game. First option would be moving from point A to point B and then

disappearing, intended to be used for targets that travel longer distance across

the game world. The second movement option would differ in that they would

return to the starting point before disappearing, with the intention being targets

that pop or peek from behind a wall or other obstruction before returning to being

hidden before disappearing completely.

Figure 2. Mockup of the FPS game

The game world would be structured like a corridor in which the player can move

freely. The player would begin from what could be considered the entrance and

then continue to move towards the exit while waves of targets would spawn at

specific points. Reaching the exit would end the game and display the player’s

final score. Figure 3 demonstrates how the game world would be structured. A

14

shooting event begins once the player walks inside of its boundaries and ends

once the last targets have been defeated or they have destroyed themselves.

Figure 3. FPS level layout

Once the game ends, the player is prompted to restart. The game cannot be lost,

as there is no lose condition such as the player dying or time running out. The

score the player gains ultimately has no meaning and won’t influence the win

condition. It simply serves as an estimation of how well the player did.

2.4 Tools used

This chapter goes through the tools selected and used for realizing the game

collection. The tools selected for the project were mainly based on the

specifications set by the commissioners. However, some tools were selected by

the development team due to having prior experience in their use and showing

preference to said tools over their alternatives.

The use of certain tools begun later. As the project continued to evolve, more

tools were deemed necessary for the continuation of its development. Especially

the revisions of the original concept required new tools for handle new

15

development environments. For example, the inclusion of the tutorials required a

platform to build those tutorials on and the tools to realize them.

Unity and C#

Unity was selected as the game engine in conjunction with the development team

and the commissioners, due to the team already being proficient in the use of

said game engine. Thus, Unity provided a safe basis to build the project’s

contents with, requiring a minimal amount of additional learning on top of

everything else that would be new.

C# is the scripting language used by the Unity game engine and its syntax

doesn’t differ much from that of C++, which is traditionally also taught to the new

students, making it even more suitable for the project. In addition, Unity is freely

available for use. Unreal Engine on the other hand, uses C++ but is mostly

known for its visual scripting which is why it wasn’t considered. The focus on

traditional coding made Unity the better choice. (Epic Games 2019; Unity

Technologies 2019.)

Doxygen

Doxygen is a tool used for generating documentation for code, from code. It was

introduced into the project’s scope to further increase the available

documentation for students who would be using the game collection. Doxygen

can create simplistic HTML pages from code that represents classes, methods

and variables of various entities. (Doxygen 2019.)

Git and GitHub

Git is a lightweight version control system and GitHub is a platform used for

accessing it. Git was included into the project to replace Unity Collaborate and

because the use of Git was going to be a part of the same education scheme as

the project’s contents, so including it was deemed useful by the project’s

commissioners. (Git 2019.)

16

Visual Studio

Visual Studio is an IDE. It was used in conjunction with Unity to write C# code.

Visual Studio was selected for its IntelliSense and because the development

team had experience in using it. IntelliSense is a system that offers context

sensitive guidance and autocompletion when writing code. IntelliSense also

works with Unity’s own libraries. (Microsoft 2019.)

Blender

Blender is an open source 3D modelling software. It was used in the project to

create simple graphics for the featured games. Blender was selected to be used

in the project due to the development team being proficient in its use. (Blender

Foundation 2019.)

Brackets and HTML

Brackets is a text editor which specializes in web design (Brackets 2019). In the

project, it was used for creating HTML documents that house the tutorials, using

HTML which is the language for making web pages (W3Schools 2019). The team

had used it briefly in a different project, so it was included into the scope at the

same time as the tutorials were.

Paint.NET

Paint.NET is an image editing software that was used for making concept art and

mockups for the project. It was selected because it was free to use, and the

development team had used it before. Paint.NET features multiple useful tools

and layer-based editing while still maintaining simplicity in its user interface,

making it perfect for quick mock-ups. (Paint.NET 2019.)

3 FIRST-PERSON SHOOTER

This chapter details the creation process of the first-person shooter game created

for the game collection. The game was not very complex because it would be

used for teaching purposes and as such, there were little to no problems during

its development.

17

In the implementation of the game, the focus was on creating clean and easily

recyclable code and modular game objects, allowing the users to create their own

FPS games using the knowledge gained from following the tutorial. As such, the

focus will be on the code but some things inherent to Unity Engine will be detailed

as well. The modular components that were repurposed for the project will also

be briefly detailed in this chapter. The chapter will not go through all of them, only

the ones used in the creation of the first-person shooter.

3.1 Modular components

Timer

Some systems rely on a Timer class object, which can be seen in full detail in

Appendix 2. The Timer class is used for keeping track of time by calculating the

time each frame took to complete. Counting time is done manually for each Timer

instance, as is checking for its completion, and it was intended to be done each

frame. As the Timer was inherently connected to frames per second, it could be

inaccurate if performance suffered severely. In the scope of the games made for

the collection, it was not a problem, however.

Resource

When the project was still intended to be fully modular, the development team

found a modular data object for storing, modifying and comparing simple number

values useful. But the most important part was having a clearly defined maximum

and minimum values as a part of the data object itself, in addition to the current

value. This was useful for handing finite things such as score, ammunition and

health with a single variable and no programming knowledge. The Resource

class is included in this document without commentary in Appendix 3.

Object Pooler

Object pooling is a programming technique that allows for more control over

memory management. Instead of generating a new instance every time

something needs to be created and then deleting it once it’s no longer needed,

an object pooler allocates a pool of objects that are recycled throughout the run

of the program. Objects are hidden and deactivated instead of deleted outright

18

and they are reactivated once needed again. Spawning and despawning are

used to describe this process. (Dickinson 2017, 294-297.)

Object pooling wasn’t used as much as originally intended in the FPS game. In

the end, it was only used for spawning and despawning bullet holes. Spawning

targets uses a different system due to a lack of expertise at the time. Appendix 4

details the Object Pooler class used in the project.

3.2 Player and movement

To begin, a player character needed to be created. In this implementation, the

player’s functionality was split into two scripts. One for the general controls, which

included movement and camera control, and another one for handling the

shooting mechanics. Figure 4 details the final player object and its child

hierarchy. The root object housed two cameras. One was for the player’s view

and the other one for rendering the player’s gun over the first camera. It also

housed the object used for detecting collisions using Unity’s own colliders. As the

camera was deeply tied to the controls, certain measures had to be taken when it

came to the code.

Figure 4. FPS player

Figure 5 details the movement logic used, a method named Move, which is called

every physics frame. A movement vector was formed from Unity’s base inputs as

seen on line 83, meaning that moving the player could be achieved with the basic

WASD controls, using the preset controls of the Unity engine. The vector in

19

question was rotated to match the y-axis rotation of the root object, ensuring that

the movement vector would be relative to the rotation of the player character

instead of the global axes of the game world; when the player turned, so would

the direction of what is considered forward. The movement vector was used as

the direction of the velocity that was applied to the player character, to simulate

walking. Finally, when no input was detected, the player’s velocity would

decrease fast but not instantly.

Figure 5. FPS player movement

In terms of the camera itself, up and down movement was accomplished by

rotating the camera on its x-axis based on the mouse’s corresponding movement

axis as seen in Figure 6 line 70. Left and right movement didn’t directly

manipulate the camera at all, instead it was achieved by rotating the root object

on line 72. The root object’s child objects, including the camera, would then

inherit the rotation and complete the synergy between HandleCamera and Move

methods. By rotating the view, one would also rotate the root object. And by

rotating the root object, the forward vector would change to match the camera’s

view.

Figure 6. FPS camera logic

Jumping and falling, as seen in Figure 7, were achieved with somewhat of a trick.

Instead of using realistic physics and Unity’s build-in physics engine’s gravity, the

player was not affected by gravity in the traditional sense. Instead, when the

player was not touching the ground, they would always have a predetermined

downwards velocity. Whether the player was grounded or not was tested by

20

projecting a short ray downwards from the center of the root object and testing for

collisions against the ground.

Figure 7. Jumping and falling

In addition, certain things were needed for rendering the player’s gun over

everything else. First, the gun object needed to be put into a separate layer.

Secondly, the depth value of the gun only camera needed to be set to depth only.

And thirdly, the culling mask needed to be set up so that the layers were

inversed, which means that the gun camera only had the layer where the gun is

located at and the player camera had everything but that layer, as seen in Figure

8. (Ivkoni 2010.)

Figure 8. FPS dual camera setup

21

3.3 Shooting mechanics

The basis for the shooting mechanics were accomplished with a simple state

machine seen in Figure 9. While in the ready state, the algorithm tested for

appropriate input for firing the gun and whether the player had ammunition left. If

the player didn’t have full ammunition and initiated a reload with the correct input,

the state shifted to reloading. Once reloading was done, the state shifted back to

ready. In addition, a failsafe was put in place if the state value was changed

incorrectly, to prevent accidental hang-ups if a user following the tutorial did a

mistake.

Figure 9. Shooting states

Figure 10 details the entire shooting algorithm. The algorithm checked for input

and Resource class instance ammo’s value, as seen on line 94. A Timer class

instance called firerate also kept shooting limited to a set number of times per

second. Following that, the logic would split either to shooting or initiating a

reload. For shooting, the algorithm would first initiate the sound and visual effects

and then continue to test for collisions with a ray cast on line 109. Hitting the

environment would create a bullet hole as shown on line 123 from an object

pooler named bulletHolePooler that kept track of bullet hole instances. Hitting a

target would increase the player’s score by an amount taken from the target

instance, which was then stored in the game manager on line 115. Finally, the

target’s destruction was begun on line 118. If the player’s ammo value was less

than the maximum and the player gave the correct input, an animation and a

sound effect would play as the state was changed to reloading.

22

Figure 10. Shooting algorithm

The reloading algorithm simply counted time with a Timer class instance

reloadDuration as seen in Figure 11 line 156. Once the Timer had reached its

maximum value, the state was set back to ready on line 148 and the player’s

ammo was set back to its maximum value, stored in the class instance itself, on

line 151. The fire rate timer was also reset, to allow for continuous shooting, even

after reloading, on line 150.

Figure 11. Reloading algorithm

23

3.4 Targets and spawning

As explained in the design portion in chapter 2.3. the targets came in two types,

simplified here as Line and Pop, linear and pop out or peeking movement

respectively. Line type would travel from point A to point B while Pop type would

go from A to B and back to A. Figure 12 details both movement types as they

were coded. Both featured the same beginning logic, where the distance between

the starting position and the current position were compared to the distance

between the starting position and the ending position, shown on lines 95 and 118.

If the distance was not the same, it meant that the end position had not been

reached yet and as such, the target would be moved towards it in proportion to its

speed value and the time difference between the current and previous frame,

Time.deltaTime, as shown on lines 98 and 121. Because the target’s movement

was completely fixed and only ever moved towards the second point, distance

could be used as an accurate measure of position on the line from A to B in this

context. If the distance between the beginning and the current point was ever

larger than the distance between the beginning and ending point, the goal could

be deemed reached.

Once the end point was reached, the logic split, as seen on lines 101 and 124 of

Figure 12. In Line type targets using linear movement, the object was simply

marked for destruction and begun its death sequence. For the Pop type targets,

once the end point was reached, the starting and ending positions were switched

around, as shown on lines 133 to 136, and the toBeDestroyed boolean set to true

on line 139, ready for when the end position was reached for the second time and

the death sequence could be initiated.

To further emphasis the logic splitting for the beginners, the code here was

formatted to look as similar as possible in both instances even though it’s

generally considered to be wasteful to repeat code as it can lead to problems

such as having to fix the same error in multiple places (Goodliffe 2006, 251-252).

It was, however, not an issue in this implementation.

24

Figure 12. Targets’ movement logic

Initializing the targets was done by the spawner. Figure 13 details the initialization

method that a spawner would use when creating a target. First, it would set the

type and both starting and ending positions based on the spawner itself as seen

on lines 75 to 77. Then it would move into a binary state machine, where the

speed of the target would be calculated based on distances, type of movement

and the delay between spawned objects. In short, the speed of a peeking target

would be two times the distance between the start and ending positions in

proportion to the spawning delay, meaning that the targets would seamlessly

continue peeking one after another. For linear targets, the speed was balanced

around moving from start to end in four seconds if the delay was one second and

then scale further based on the delay.

25

Figure 13. Setting up targets

When a target was hit, the player would start the death sequence of a target

prematurely, as seen in chapter 3.3. The death sequence itself did nothing more

than cause the target to play an animation and begin a countdown to hiding the

target object in the game world. The collider was disabled before the countdown

even begun to prevent multiple method calls during the countdown.

For the spawning, a straightforward system was devised to handle how the

targets are created and kept track by the game. A script called FPS_Spawner

held references to target instances and instantiated them after a set period called

SpawnDelay in set intervals called SpawnRate. The spawner knew the starting

and ending locations of the movement which were derived from its two child

objects marked as Start and End, which were kept track of by the script. The

spawner was set as either Pop or Line, so that the spawned targets knew which

movement scheme to use. Figure 14 showcases how the spawner looks inside of

the editor as a script component. The Spawned Objects list, along with the

starting and ending positions, would be populated by drag and dropping elements

into the list in the editor view.

26

Figure 14. FPS spawner in the editor

Finally, an object was made to keep the player from progressing, until all targets

were either defeated or they had run their course. The Encounter Blocker, as

shown in Figure 15, consisted of an invisible wall that prevented the player from

moving. The blocker was given a reference to the spawner that was timed to be

the last one in a sequence, as decided by the user. Because the spawner’s

algorithm worked by emptying a list, as targets were spawned from it, the blocker

only had to check whether it was empty or not. The blocker would also reveal a

hidden arrow for a few seconds, to show the player where to go next.

27

Figure 15. The Encounter Blocker

3.5 Score and HUD

The UI was managed by the game manager and the UI manager. Game and

player specific information such as the player’s ammo, score from destroyed

targets and such was given to the game manager. The UI manager in turn, would

update its values based on the game manager. In chapter 3.3, an example of this

was already shown. Figure 16 shows the specific lines from the shooting logic,

where the game manager was told to increase the score value, based on the

target instance’s point value, and to update the player’s ammo count.

Figure 16. Updating the values

The values stored in the game manager were then used to update the UI

components, that displayed the values. Figure 17 shows the Update method of

the FPS_UIManager script. The values were updated every frame. The text was

also formatted, more importantly the score which was limited to four character as

seen on line 28, so the value would go from 0000 to 9999.

Figure 17. Updating the HUD

28

3.6 Finishing touches

For ending the game session, not much was required. In the intended end point

of the game world, as explained in chapter 2.3, an object was created that would

tell the game manager to initiate the ending sequence of the game. Once the

player entered its radius, the game’s state would change, and the ending screen

would be displayed.

To prevent unintended behavior, the player’s controls, which included shooting

and moving, were disabled after the game ended. Figure 18 shows a short

snippet of code, which was inserted in the beginning of all player control related

logic. If the game had ended, the forced return prevented the following code from

being ran.

Figure 18. Checking the game state in player controller

3.7 Graphics

For the graphics of the game, rudimentary 3D assets were made in Blender. The

theme of the game was decided on wild west and the assets reflected that.

Saloons and frontier houses served as the backdrop for the action and cowboys

and bandits as the targets to shoot. The models were made with performance in

mind, featuring a low amount of detail.

Figure 19 shows the different characters created for the game, used to represent

the targets. During the design process, the concept for the targets’ graphics was

more literal, as discussed and previewed in chapter 2.3. But as the development

continued it was decided that each target should have its own unique model

instead of the targets simply having a different image painted on them. This

would increase readability, as each model would have its own silhouette, color

scheme and animations. In Figure 19, the upper row features the targets that give

points while the bottom row features those that remove them and are not meant

29

to be shot at. Targets that are meant to be shot are clearly armed, one with a gun

and the other one with dynamite, while the rest are civilians, with one carrying a

pickaxe and the other one a baby.

Figure 19. Collage of pictures of the target models

As for the game world itself, its appearance was inspired by various wild west

themed movies, games and images. Figure 20 is a collage of various parts of the

game world taken in Unity with the fog disabled. Static models created in Blender

populated the scene to give it some depth and the appearance of a town in the

wild west. Most models were reused throughout the level, such as the houses

and the crates.

30

Figure 20. Collage of screenshots from the FPS

4 DOCUMENTATION

This chapter briefly details the documentation made for the project from a

development perspective. As explained in chapter 2, the game collection required

heavy documentation due to its contents being used for educational purposes.

Each game created for the collection required extensive commentary of the code,

along with a tutorial piece on how to recreate the game. The first-person

shooter’s documentation will be used as an example throughout this chapter and

it will go through the creation process of the tutorial created for the FPS game.

The development team created several guidelines and conventions regarding the

documentation, both for the layout and flow of the tutorials along with the

commenting. This was deemed important to keep large amounts of text

organized and readable from a glance.

31

4.1 Doxygen

As explained in chapter 2.4, Doxygen generates documentation from code.

Introducing Doxygen to the project was simple. Once installed, Doxygen could be

used with the command line, utilizing its own commands separate from those of

the operating system. A configuration file was created either manually or

automatically in the source directory, which would control the generation process,

such as the input and output directories and what format the generated

documents would be in.

In the code itself, Doxygen’s document generation was controlled with commands

that the IDE would ignore but Doxygen could read. Appendix 5 shows the final

commentary guidelines made for the project, featuring Doxygen specific

commands in green. Figure 21 shows various parts of the final Doxygen

document. Class overview details the script used for handling the FPS player’s

shooting logic, which was described in chapter 3.3.

Figure 21. Doxygen collage

4.2 Tutorials

The tutorials were introduced into the scope of the project at a very late stage.

Initially, they were to be Word documents but to keep students from simply

copying code from the tutorial, the development team decided that all code was

32

to be presented as pictures. Word does not support pop-up images, so the usage

of large images clashed with the development platform. As such, HTML was

chosen as the platform, since it would also allow for easy hosting of the tutorials

on GameLab’s website and the database generated by Doxygen could also be

integrated to it with a link.

A template for the HTML based tutorials was made by the development team to

suit the needs of the project. Figure 22 shows an edited version of the original

template, made specifically for this document due to the original being written in

Finnish. All the pages of the tutorial website shared a header, which included

links to the front page and the Doxygen document, among other things. The front

page had links to all the different tutorials.

Figure 22. Tutorial template

As for the content of the tutorials, information was presented in logical order.

Things that were required for something else to work were done beforehand and

jumping between different scripts and game objects was avoided. Most of the

time, one thing was finished before moving on to something else. Below is a

33

translated excerpt from the first-person shooter tutorial, which goes through the

creation of the player object. Names used by objects, concepts and variables

were bolded to signify their unique nature. Before something was done which

could be misunderstood, it was explained further between the steps.

First, we navigate to Assets/Resources/Models/First Person Shooter folder
in the Project window. Drag the Revolver4 object into the Scene.

We create a new empty game object into the hierarchy and rename it to
FPS_Player. Drag the Main Camera under this object, making it its child.
Next, we drag the revolver to be the camera’s child. Rename the revolver
object to Revolver and Main Camera to Player Camera.

We create another empty game object and rename it to Player Collider.
Give it the Capsule Collider component.

We need one more camera. Create a new Camera object and rename it to
Gun Camera. Set it as the Player Camera’s child. The Gun Camera is
going to render only the gun. The gun is rendered on top of everything else,
as is customary is FPS games.

As explained previously, all code shown was presented in pictures. This was

done to prevent copy pasting code and skipping steps, which would not only ruin

the learning experience but could cause confusion due to missed steps. In the

HTML tutorials, images could be clicked on, which would expand the picture and

show its caption.

5 CONCLUSIONS AND FUTURE DEVELOPMENT

As of writing this thesis, the development is finished, and the product is in use.

When first presented to the commissioners the reception was mostly positive, but

some additional points needed to be addressed. A video preview of each game in

action was commissioned, along adding required license information to the HTML

document. The video preview was to be integrated to the tutorials themselves.

The games themselves had no issues.

For the users it was a different matter. Certain tutorials proved to be too difficult

and some detail, which felt obvious at the time of writing the tutorial, was missing

34

from some. There was also an issue with the images in the tutorials which

stemmed from foreign characters in the file names.

Overall, the success of the product is yet to be determined and more data is

required to come up with a definite conclusion but outside of these issues,

nothing else has come up. The games and the tutorials have served their

purpose as supplementary material for teaching game development. The level of

success is still unknown, but it can be considered a success nonetheless.

For future development, once the issues are fixed, the pool of games and

tutorials could be expanded easily. With the foundation of guidelines, templates

and working methods already done, expanding would be the next logical step.

The collection lacks representation from various popular genres and none of the

games feature multiplayer. These could be approached in the future with a new

collection of games and tutorials.

35

REFERENCES

Blender Foundation. 2019. WWW document. Available at:

https://www.blender.org/ [Accessed 15 July 2019]

Brackets. 2019. WWW document. Available at: http://brackets.io/ [Accessed 24

September 2019]

Dickinson, C. 2017. Unity 2017 Game Optimization - Second Edition. Ebook.

Birmingham & Mumbai: Packt Publishing. Available at:

https://ebookcentral.proquest.com/lib/xamk-ebooks/detail.action?docID=5160904

[Accessed 7 October 2019]

Doxygen. 2019. About. WWW document. Available at:

http://www.doxygen.nl/index.html [Accessed 15 July 2019]

Driver, R. 1994. The fallacy of induction in science teaching. In Levinson, R. (ed.)

Teaching Science. Ebook. 1994. London: Routledge. Available at:

https://ebookcentral.proquest.com/lib/xamk-ebooks/detail.action?docID=237263

[Accessed 19 August 2019]

Epic Games. 2019. Unreal Engine 4 Documentation. WWW document. Available

at: https://docs.unrealengine.com/en-US/index.html [Accessed 26 September

2019]

Git. 2019. WWW document. Available at: https://git-scm.com/ [Accessed 15 July

2019]

Goodliffe, P. 2006. Code craft: The practice of writing excellent code. Ebook. San

Francisco: No Starch Press. Available at:

https://ebookcentral.proquest.com/lib/xamk-ebooks/detail.action?docID=273481

[Accessed 27 August 2019]

https://www.blender.org/
http://brackets.io/
https://ebookcentral.proquest.com/lib/xamk-ebooks/detail.action?docID=5160904
http://www.doxygen.nl/index.html
https://ebookcentral.proquest.com/lib/xamk-ebooks/detail.action?docID=237263
https://docs.unrealengine.com/en-US/index.html
https://git-scm.com/
https://ebookcentral.proquest.com/lib/xamk-ebooks/detail.action?docID=273481

36

Ivkoni. 2010. Forum post on the official Unity forum. Available at:

https://forum.unity.com/threads/rendering-player-and-gun-in-front-of-other-

objects.64663/#post-413097 [Accessed 22 August 2019]

Jung, T. 2018. How Do Bullets Work in Video Games? Article. Available at:

https://medium.com/@3stan/how-do-bullets-work-in-video-games-d153f1e496a8

[Accessed 19 August 2019]

Koponen, J. 2019. Documentation of modular game collection. Bachelor’s thesis.

Available at: https://www.theseus.fi/handle/10024/169889 [Accessed 5 November

2019]

Microsoft. 2019. Visual Studio 2019. WWW document. Available at:

https://visualstudio.microsoft.com/vs/ [Accessed 24 September 2019]

Mitchell, B. L. 2012. Game Design Essentials. Ebook. 2012. Hoboken: Sybex.

Available at: https://ebookcentral.proquest.com/lib/xamk-

ebooks/detail.action?docID=818112 [Accessed 2 September 2019]

Otero, C. Software Engineering Design: Theory and Practice. Ebook. 2012.

Auerbach Publications. Available at: https://ebookcentral.proquest.com/lib/xamk-

ebooks/detail.action?docID=1580108 [Accessed 5 November 2019]

Paint.NET. 2019. WWW Document. Available at: https://www.getpaint.net/

[Accessed 24 September 2019]

Unity Technologies. 2019. Unity 2019: Performance by default, high-fidelity real-

time graphics, and artist tools. WWW document. Available at:

https://unity3d.com/unity [Accessed 26 September 2019]

W3Schools. 2019. HTML Introduction. WWW document. Available at:

https://www.w3schools.com/html/html_intro.asp [Accessed 25 September 2019]

https://forum.unity.com/threads/rendering-player-and-gun-in-front-of-other-objects.64663/#post-413097
https://forum.unity.com/threads/rendering-player-and-gun-in-front-of-other-objects.64663/#post-413097
https://medium.com/@3stan/how-do-bullets-work-in-video-games-d153f1e496a8
https://www.theseus.fi/handle/10024/169889
https://visualstudio.microsoft.com/vs/
https://ebookcentral.proquest.com/lib/xamk-ebooks/detail.action?docID=818112
https://ebookcentral.proquest.com/lib/xamk-ebooks/detail.action?docID=818112
https://ebookcentral.proquest.com/lib/xamk-ebooks/detail.action?docID=1580108
https://ebookcentral.proquest.com/lib/xamk-ebooks/detail.action?docID=1580108
https://www.getpaint.net/
https://unity3d.com/unity
https://www.w3schools.com/html/html_intro.asp

37

LIST OF FIGURES

Figure 1. Proposed Action-class .. 10

Figure 2. Mockup of the FPS game ... 13

Figure 3. FPS level layout ... 14

Figure 4. FPS player.. 18

Figure 5. FPS player movement .. 19

Figure 6. FPS camera logic ... 19

Figure 7. Jumping and falling .. 20

Figure 8. FPS dual camera setup .. 20

Figure 9. Shooting states... 21

Figure 10. Shooting algorithm ... 22

Figure 11. Reloading algorithm ... 22

Figure 12. Targets’ movement logic .. 24

Figure 13. Setting up targets ... 25

Figure 14. FPS spawner in the editor .. 26

Figure 15. The Encounter Blocker ... 27

Figure 16. Updating the values .. 27

Figure 17. Updating the HUD .. 27

Figure 18. Checking the game state in player controller 28

Figure 19. Collage of pictures of the target models ... 29

Figure 20. Collage of screenshots from the FPS ... 30

Figure 21. Doxygen collage ... 31

Figure 22. Tutorial template ... 32

Appendix 1

Made by Juho Koponen, Sami Krouvi & Jari Tervo

GAMES/ELEMENTS PLATFORMER (PFR) TOP-DOWN TWIN-STICK SHOOTER (TTS) FPS (FPS) ENDLESS RUNNER (RUN) 2D BATTLE ARENA (BAR) RACING GAME (RCG) REAL TIME STRATEGY (RTS) TOWER DEFENSE (TWD) SURVIVAL HORROR (HOR) SHOOT 'EM UP (STG)

CHARACTERS

Player Y Y Y Y Y Y Y N Y Y

NPC Y Y Y N ? Y Y Y Y Y

OBJECTS

Spawner Y Y Y Y Y Y Y Y ? Y

Projectile Y Y Y N Y Y Y Y N Y

Collectilbe Y ? Y Y Y Y N N Y N

Props (physics) N N Y N N Y N N N N

MOVEMENT TYPES

Move on 2 axes Y Y Y N N N Y Y Y Y

Move on 1 axis N N Y Y Y Y N N N N

Rotation control N Y Y N Y Y N N Y N

Waypoints Y N N N N Y Y Y N N

Follow N Y N N N N ? N Y N

CAMERA TYPES

Static N Y N Y Y N N Y N Y

Follow player Y N N N N N Y N N N

Rotation camera (3rd person)N N N N N Y N N N N

Rotation (1st person) N N Y N N N N N Y N

ACTIONS

Jump Y N N ? Y N N N ? N

Look at target N Y Y N N Y Y Y Y N

Attack Y Y Y N Y Y Y Y Y Y

SYSTEMS

Health & Damage Y Y Y Y Y Y Y Y Y Y

Hitbox/Hurtbox Y Y Y Y Y Y Y Y Y Y

Spawn/Respawn/Despawn Y Y Y Y Y Y Y Y ? Y

Resource/Currency ? Y Y Y Y Y Y Y Y Y

Timer N Y Y Y Y Y Y Y ? Y

UI (resource, button) ? Y Y Y Y Y Y Y N Y

Animations Y N Y ? Y Y Y N Y ?

Pathfinding N N N N ? Y Y N Y ?

 Appendix 2

Made by Juho Koponen, Sami Krouvi & Jari Tervo

 Appendix 3

Made by Juho Koponen, Sami Krouvi & Jari Tervo

 Appendix 4

Made by Juho Koponen, Sami Krouvi & Jari Tervo

 Appendix 5

PELIPALAPELI

Commenting Guidelines

/// @brief Description

/// @details Detailed description

class Example

{

 /// @details Description

 int integer1;

 /// @details Description

 struct Structure

 {

 int integer2; ///< @details Description

 int integer3; ///< @details Description

 }

 /// @details Description

/// @n Previous continues on a new line

 /// @param i description

/// @return Returnee’s description

/// @cond DEV

/// <summary> (is not included in Doxygen documentation)

/// <para> Short description (tooltip). </para>

/// </summary>

/// @endcond

 int Method(int i)

{

(do something)

return i;

}

} Made by Juho Koponen, Sami Krouvi & Jari Tervo

