

Bijaya Rakhal

Environmental Monitoring with Nordic
Thingy:52

Metropolia University of Applied Sciences

Bachelor of Engineering

Degree Programme in Information Technology

Bachelor’s Thesis

13 November 2019

 Abstract

Author
Title

Number of Pages
Date

Bijaya Rakhal
Environmental Monitoring with Nordic Thingy:52

28 pages + 0 appendices
13 November 2019

Degree Bachelor of Engineering

Degree Programme Information Technology

Professional Major Networking

Instructor

Marko Uusitalo, Senior Lecturer

This paper reviews the developments in NB-IoT and BLE technologies to develop a live
environmental monitoring application. Furthermore, the guidelines for developing such sys-
tems as well as the impact of environmental monitoring on policymaking are discussed.
Likewise, the potential application areas of NB-IoT and BLE environmental monitoring with
Nordic Thingy:52 are detailed. Finally, the development of a remote home environment
monitoring application capable of serving live readings from Nordic Thingy:52 is described.
This paper also provides insights into ongoing and potential development areas of the ap-
plication.

Keywords IoT, BLE, Nordic Thingy:52, environmental monitoring, IEEE
801.15.4

Contents

List of Abbreviations

1 Introduction 1

2 Literature Review 5

2.1 NB-IoT Design Principles 5

2.2 BLE Specifications and Applications 6

2.3 Environmental Monitoring 8

3 Device Specifications 11

4 Application Objective and Target Audience 16

5 Core Technologies 17

5.1 Programming Languages 17

5.2 Libraries and Frameworks 17

5.2.1 Node.js 17

5.2.2 Meteor.js 18

5.2.3 thingy52 18

5.2.4 noble/noble-device 19

5.2.5 React 19

5.2.6 Material UI 19

5.2.7 Recharts 19

5.3 Database 20

5.4 Tools and Version Control 20

6 Design and Implementation 21

6.1 Connecting to Thingy52 21

6.2 Data Collection 22

6.3 Visualization 24

7 Testing and Results 27

8 Ongoing and Proposed Developments 28

9 Discussion and Conclusion 29

Reference 31

List of Abbreviations

3GPP Third Generation Partnership Project

AES Advance Encryption Standard.

AFH Adaptive Frequency-Hopping.

BLE Bluetooth Low Energy.

CBC Cipher Block Chaining.

CCM Counter with CBC-MAC.

eSIM embedded Subscriber Identity Module

HAL Hardware Access Layer

ICT Information and Communication Technology.

IFFT If This Then That

IoT Internet of Things.

KPI Key Performance Indicators

LPWAN Low Power Wide-Area Networks.

LTE-M Long Term Evolution category M1

MAC Message Authentication Code.

MCL Maximum Coupling Loss

mMTC massive Machine-Type Communication.

NB-IoT Narrowband IoT.

OFDMA Orthogonal Frequency-Division Multiple-Access.

PRBs Physical Resource Blocks.

PSD Power Spectral Density.

SCENTS Sensing Collaboratively in Everyday Networks

SC-FDMA Single-Carrier Frequency-Division Multiple-Access.

SDK Standard Development Kit

UE User Equipment

UMTS Universal Mobile Telecommunication System.

1

1 Introduction

As Internet of Things (IOT) is no longer fictional, experts believe that by 2020 billions of

devices and services are predicted to be attached to the Internet of Things. Introduction

of IOT has modified the purpose of internet from human controlled computers toward the

development of self-running autonomous devices. Smart homes, smart cities, weara-

bles, health care, agriculture, transportation, smart metering, industrial machines and

industrial automation are just a few illustrations of the different areas for utilization that

are driving the growth of new business models. [1]

The concept of IOT is to incarnate the idea of everything connected. This vision is em-

braced by a different market such as industrial machinery, healthcare, autonomous ve-

hicles, smart meters, among many others. No single technology is capable of addressing

all the IoT use cases [2]. Inside this versatility, Low Power Wide-Area Networks (LPWAN)

gained the central focus for IoT. LPWAN is composed of a set of various technologies

that can use licensed or unlicensed spectrum and include proprietary or open standard

options. Because of low-power, low-speed and low-cost connectivity with wide-range

coverage to IoT applications it is progressively gaining popularity in industrial and re-

search communities. It is made up of different technologies using licensed or unlicensed

spectrum including proprietary or open standard options. For example, SigFox, Lo-

RaWAN, and Ingenu operate on the unlicensed spectrum whereas Long Term Evolution

category M1(LTE-M) and Narrowband IoT (NB-IoT) use the licensed LTE spectrum.[3]

The standardization of IoT and the relevant support structure has been rolled out fairly

recently. Earlier in IoT the standardization of LTE-M and NB IoT were not used widely

mainly due to cost issues. Emerging IoT market quickly needed a response and thus,

Third Generation Partnership Project(3GPP) started a feasibility survey on cellular IoT

connectivity. As a result, both LTE-M and NB-IoT are the latest additions to the cellular

technology family brought out in the 3GPP Release 13 to deliver wide-area coverage for

IoT. Especially NB-IoT supports the LTE specification and reuses the various technical

components. It was officially introduced in mid-2016 [2]. The main goal of this advance-

ment is to be able to handle many connected devices and to widen the battery-operated

devices’ lifetime by using very aggressive sleep algorithms. The features offered by NB-

2

IoT will allow mobile operators to deliver new network services, adapted to a new User

Equipment (UE) profile [4]. It acquires basic functionalities from the LTE system, while it

operates in a narrow band. It embraces a recent LTE specification, along with numerol-

ogies, downlink orthogonal frequency-division multiple-access (OFDMA), uplink single-

carrier frequency-division multiple-access (SC-FDMA), channel coding, rate matching

interleaving, etc. [5].

NB-IoT can be spread in three different operation models that is in band, guard-band,

and stand-alone. In the in-band operation mode, one or more LTE Physical Resource

Blocks (PRBs) are reserved for NB-IoT. The total eNB (i.e. base-station in 3GPP termi-

nology) power is shared among LTE and NB-IoT with the possibility to use power spectral

density (PSD) enhancing for NB-IoT. The sharing of PRBs between NB-IoT and LTE

allows for more efficient use of the spectrum. In addition, although they are two separate

systems, they can be supported using the same eNB hardware. In the guard-band oper-

ation, NB-IoT will be deployed within the guard-band of an LTE carrier. In the standalone

operation, NB-IoT can be used as a replacement of one or more GSM carriers [6]. The

three different NB-IoT deployment options are described in Figure 1.

3

Figure 1. NB-IOT deployment options [7].

Figure 1 describes various options for the deployment of NB-IOT over LTE network. NB-

IOT uses similar techniques to LTE. However, the operating frequencies and bandwidth

are different.

As NB-IoT adapted the LTE based design it supports most LTE functionalities either with

simplification or optimization to provide low-cost, low-power, and low data-rate IoT ser-

vices. The general characteristics associated with NB-IoT are described in Figure 2.

4

Figure 2. Characteristics of NB-IoT [7].

 Figure 2 describes the general characteristics of NB-IoT. NB-IoT deployments must pro-

vide low-cost, low power IoT solutions that can support billions of connections and offer

deep penetration for a reasonably long period of time.

5

2 Literature Review

This section contains the review of relevant literature on NB-IoT, BLE and research ma-

terial on environmental monitoring.

2.1 NB-IoT Design Principles

The rising star, Internet of Thing commonly known as IoT plays a vital role in the infor-

mation and communication technology (ICT) industry. Cisco predicted that by 2020 there

would be 12 billion devices connected [8] whereas Ericson went even further and stated

that 18 billion devices would be connected to the internet [9]. Regardless of which of

these two made the right estimate such high numbers can hardly be ignored.

Currently there are 7.3 billion mobile cellular subscriptions [9] and the number of con-

nected devices is growing exponentially. Third Generation Partnership Project is the

global standardization forum behind the development and maintenance of GSM, Univer-

sal Mobile Telecommunication System (UMTS), and Long-Term Evolution (LTE). By

2018 3GPP has a scheme for Release 15 to assure the first delivery of a fifth generation

(5G).

Early 2015, the commercialization of Low-Power Wide Area Networks (LPWAN) was

taking place rapidly. In France, Spain, Netherland, and the United Kingdom Sigfox was

growing out their Ultra Narrowband Modulation networks. The LoRa Alliance was estab-

lished with a certain intent to accommodate IoT connectivity with wide-area coverage

[10]. Abruptly the Alliance collected a notable amount of interest from industry. Until then,

Global System for Mobile Communication/ General Packet Radio Service (GSM/GPRS)

was the leading cellular technology for providing wide-area IoT. The study on reframing

their GSM spectrum to Long-Term-Evolution prompt to non-GMS backward compatible

technologies was called a clean-state solution. Neither of the clean-state solutions were

specific but the study provided a very reliable ground for the NB-IoT technology which

was standardized in 3GPP Release 13. Just after a year of developing the core specifi-

cation cellular operator vendors started to launch NB-IoT commercially. Now LPWAN

technologies provide alternative choices to IoT devices served by GSM/GPRS.

6

NB-IoT is expected to handle a huge number of devices in the cell with its ultra-low-cost

massive Machine-Type Communication design. In order to achieve mMTC demand NB-

IoT has to endorse four Key Performance Indicators (KPI) [11]:

• Latency of at most 10 seconds.

• Target coverage of 164 dB maximum coupling loss (MCL).

• UE battery lifetime beyond 10 years, assuming a stored energy capacity of
5 Wh

• Massive connection density of 1,000,000 devices per square km in an ur-
ban environment.

2.2 BLE Specifications and Applications

Bluetooth was developed in 1994 by Ericsson, a Swedish telecommunications company

to create short range, ad-hoc networks. In 1998, Ericsson formed Bluetooth SIG with

IBM, Intel, Nokia and Toshiba to develop and standardize Bluetooth networks and con-

nectivity standards. Bluetooth was designed as a wireless alternative to bulky RS-232

data cables but has grown to be the de-facto standard for short-range communication

between mobile and fixed devices. Most smartphones and computers come with Blue-

tooth support. It is used in day-to-day life to perform data transfer among devices, listen-

ing to audio wireless and collecting fitness data from various sensors in wearable de-

vices. [12]

Bluetooth specifications were officially ratified by IEEE as 802.15.1 standard. Bluetooth

operates in the 2.4GHz spectrum but it uses adaptive frequency-hopping spread spec-

trum (AFH) to improve resistance to radio frequencies in the crowded 2.4GHz band and

reduce potential interference. The early versions of Bluetooth offered limited range and

data transfer speeds. However, with each revision in the Bluetooth standard, data trans-

fer speeds, reliability and security were improved. Transfer speeds increased from

1Mbps in Bluetooth 1.1 and 1.2 to 24Mbps in Bluetooth 3.0 standards. In addition to that,

Bluetooth Low Energy (BLE) was added to Bluetooth 4 standards to facilitate low energy

data communication with IoT devices that send small packets of data in regular periods.

Likewise, Bluetooth 5 comes with improvement frequency hopping and range of connec-

tion. Bluetooth 5 also improves on the BLE services with higher bandwidth and greater

7

range. Likewise, the data security and integrity have also improved with each new spec-

ification. BLE specification uses the security mode 4 which enforces service level secu-

rity with encrypted key exchange. Security mode 4 uses SHA-256 hash and AES CCM

cipher for encryption. Security mode 4 was made mandatory from Bluetooth 2.1. In ad-

dition to encryption, AFH reduces jamming and interference to preserve the integrity of

data and maintain the speed of transfer. Likewise, public key-based pairing and trusted

connections further reduce the security risks. The Bluetooth 5 protocol stack is defined

in Figure 3 below.[12]

Figure 3. The BLE protocol stack [13]

As described in Figure 3 above, the Bluetooth 4 protocol stack has three distinct layers

incorporating various protocols. Each layer is described briefly below:

• Controller Layer: The controller layer is responsible for controlling the radio
interface. It is implemented in the hardware containing a Bluetooth radio
and a microprocessor. This layer is responsible for controlling the radio in-

8

terface between two devices and provides functions such as scanning de-
vices and connecting to them. The LE layer is implemented here and is
responsible for advertising to and connecting to LE devices and maintain-
ing secure connection with the LE device. The host controller interface
standardizes the connection between the host OS and Bluetooth controller

governed by the Controller stack.[13]

• Host Layer: Host layer is governed by the device OS. This layer is respon-
sible for data transfer operations. This layer handles the segmentation and
reassembly of transfer packets and manages the Quality of Service for
higher protocols. In addition to that, the protocols in this layer allow the
host OS to determine what services and profile are supported by the con-
nected device. Likewise, host layer ensures the security and integrity of
transferred data and pairing of devices.[13]

• Application layer: The application layer provides the applications to interact
with the lower layers and provides the interface to the user.[13]

2.3 Environmental Monitoring

Environmental monitoring has become a primary concern for individuals and businesses

because of its impact on personal lifestyle and industrial production. In the first decade

of the twenty first century, environmental monitoring was considered costly and unnec-

essary. However, environmental monitoring can provide valuable data that has the po-

tential to contribute in various aspects of individual and communal lives. The environ-

mental data may be used to perform simple tasks such as automated thermostat control

and industrial tasks such as production optimization to complicated governmental oper-

ations, namely formulation of newer environment protection policies.

Lovett GM. et al. [14] discuss the characteristics of efficient environmental monitoring

systems and recommend environmental monitoring as fundamental consideration for en-

vironmental science and policymaking. They describe environmental monitoring as

measurements of environmental data against time taken at one or multiple locations. In

their paper, Lovett et al cite long term measurements of atmospheric CO2 levels at

Mauna Loa, Hawaii by Keeling C.D [15] in the 1950s. This measurement led to the proof

concept that anthropogenic CO2 emissions are responsible for the rise in global temper-

ature and contribute directly to climate change. This research by Keeling helped to bring

forward climate change as one of the most important issues affecting humanity and trig-

gered further research into climate change and data-driven definitions of environmental

policies.

9

Lovett GM et al [14] analyze a set of previous research regarding environmental moni-

toring and suggest seven-point guideline to create effective and efficient environmental

monitoring systems. The guidelines suggest researchers and policymakers to design the

monitoring programs around clear and practical questions. Likewise, they recommend

the measurements to consider possible changes to data and its impact in the future and

include tools for data review and develop adaptable and extendable systems that pre-

serve the integrity of data.[14]

Liu C. et al [16] defined a generic collaborative environmental sensing framework called

SCENTS (Sensing Collaboratively in Everyday Networks) to leverage interconnectivity

between devices in a given area to collect environmental data with locally significant

context. This framework aims to allow nearby devices to collect environmental data effi-

ciently and make data-driven applications less reliant on high-level connection infrastruc-

ture. The devices connected to the SCENTS framework periodically scan for nearby de-

vices and sense the capabilities of those devices. The connected devices can communi-

cate with each other to fetch environmental data and create schedules to collect, monitor

and send collected data. With this framework, the devices lacking a certain measurement

ability can collect the data related to that measurement from other connected devices. In

addition to that, nearby devices collecting similar data can pause data collection for a

certain amount of time to save energy. Queries made to the SCENTS framework are

satisfied by the most relevant observation by a local sensor reading or by context pro-

vided by neighboring devices, whichever is the most efficient. They programmed 55 sets

of Nordic Thingy 52 sensor kit and placed those in an indoor environment to get relevant

measurements to test the viability of the SCENTS framework. They were able to create

a flexible and efficient data collection method by encapsulating local and remote sensors

to remove the dependence of a sensor on a single application. Liu C. et al were able to

pair nearby devices and constantly get data by switching between devices based on

charge levels so that one device could keep collecting data when the other needed

charging and vice versa.[16]

Bharati PD et al [17] proposed a fog computing platform consisting of Raspberry pi nodes

connected to Nordic Thingy 52 to stream environmental data. The fog layer processes

environmental data at the nodes themselves and processes the data. They propose us-

10

ing fog computing to remotely monitor the environment and make context aware deci-

sions by analyzing the collected data and forecast generated ?? with predictive model-

ing. Their proposal reduces the data sent to the cloud by performing processing at the

node themselves. This helps the data collection apparatus to support low latency, real-

time decision making and reliability. The proposal by Bharati PD makes it easier for con-

cerned authorities to get required data real-time and make informed decisions on further

steps required to solve the problem that could be detected.[17]

11

3 Device Specifications

The initial objective of this project was to use the newer Nordic Thingy:91 instead of the

Nordic Thingy:52. However, the Thingy:91 was not available in the market when this

project began. In addition to the sensors and connectivity options present in the Nordic

Thingy:52, Nordic Thingy:91 comes with LTE-M, NB-IoT and GPS antenna. In addition

to that, it comes bundled with eSIM from iBasis with 10MB data preloaded to provide

cloud connectivity out of the box. The presence of eSIM and cellular connectivity elimi-

nates the requirement for fog computing platforms or edge terminals to send acquired

data to the cloud [18]. However, Nordic Thingy:91 and the Nordic Thingy:52 are similar

to program, support the same platforms and programming languages and provide similar

environmental data. In addition to that, since Nordic Thingy:91 is a new product, the

volume of documentation is low. Therefore, Nordic Thingy:52 was used instead of the

Nordic Thingy:91.

The Nordic Thingy:52 is a very useful development tool for IoT which is marketed for

people who want to dive into IoT product prototypes and demos without building hard-

ware or writing firmware from scratch. The Nordic Thingy:52 is built around the

nRF52832 Bluetooth 5 from Nordic Semiconductor and is connected to several sensors

on the board. All Bluetooth enabled devices such as mobile phones, laptops, tablets,

Raspberry Pi can be easily connected to this. The operation of the sensors, e.g. On/Off,

sampling rate, etc. can be modified over-the-air via a Bluetooth API which means that it

is possible to create demos and prototypes without programming the device. Further-

more, Thingy can be used as a development kit by building own firmware and uploading

it onto the board.[19]

The Nordic Thingy:52 also has additional features such as built-in microphone and

speaker to support audio which makes it possible to send audio from the device to the

app and vice versa. The pre-programed Nordic Thingy:52 can run on any smart phone

just by downloading its app which is available for both android and iOS. It also supports

IF This Then That (IFTTT) e.g. Philips Hue, Facebook, Gmail, etc. [19]

The key features of Nordic Thingy:52 are listed below.

12

• Affordable, rapid prototyping and development solution

• No need to develop custom firmware

• Over-the-air configurable

• Bluetooth low energy

• NFC for pairing

• Accelerometer, gyro scope, compass, color, temperature, and air quality
sensor

• Microphone

• Speaker

• Built-in Li-ion battery

The software and hardware requirements for each major operating system are listed

below.

• Android

Android OS 6.0 or later with functioning BLE hardware.

• iOS

Thingy:52 is compatible with iPhone 4+ with iOS 9.0 or above. Likewise,
Thingy:52 supports iPad 3rd generation and above. All versions of iPad
mini, iPad Air and iPad Pro are supported. The devices also need to have
a functional BLE hardware.

• MacOS/OS X

Thingy:52 requires Bluez 5.41+ is MacOS devices. MacOS support begins
with OS X Yosemite. In addition to that, a web-BLE supported browser is
required.

• Linux

Similar to MacOS, Linux devices with functioning BLE hardware require
Linux kernel 3.19+ and Bluez 5.41+. In addition to that, a web-BLE sup-
ported browser is required.

• Windows

Windows systems require Windows 10 version 1706 or newer. However,
support can be added to systems as old as Windows 7 with Nordic dongle
and pc-ble-driver. Windows systems also require web-BLE supported
browser to pair to access Nordic Thingy52.

13

Presently, Google Chrome and Opera are the Bluetooth supported browsers available

across all major OS platforms.

The board layout of Nordic Thingy:52 consists of a 6cmX6cm plastic and rubber case

with following sensors. The board layout of Nordic Thingy:52 is exhibited in Figure 4

below.

Figure 4. Nordic Thingy:52 board [19]

The sensors present in Nordic Thingy:52 as shown in Figure 4 are listed below.

• 1440mAh battery for a long battery life with micro USB charging

• LPS22HB pressure sensor to measure atmospheric pressure

• LIS2DH12 Accelerometer for orientation data

• HTS221 humidity and temperature sensor

• CCS811 Digital Air Quality Sensor to measure C02 and TVOC levels

• BH1745 Digital Color Sensor

• 9-axis motion sensing (accelerometer, gyroscope and compass)
(MPU9250)

• Speaker for playing pre-stored samples or tones

• Microphone to record audio

14

• Configurable RGB LED and programmable button

• Power switch

• 64MHz Cortex-M4F microprocessor

• BLE 2Mbps radio transceiver

This is an ultra-low-power high performance three-axis linear accelerometer with a digital

12C/SPI serial interface. It provides three different operating modes: high-resolution

mode, normal mode and low-power mode.[19]

The Nordic Thingy:52 firmware is built on top of nRF5 SDK v13.1.0 and makes use of its

SDKs for peripheral devices, SoftDevice and HAL. The architecture of Thingy:52 firm-

ware is described in Figure 5.

Figure 5. Thingy 52 firmware architecture [20]

Figure 5 describes the firmware architecture of Nordic Thingy:52. Thingy adds following

features on top of nRF5 SDK.

• Sensor drivers to perform sensor operations such as enabling and disa-
bling sensors, changing configuration and reading data

• BLE handler to handle Bluetooth connection and dispatch events

15

• Flash storage to store configuration parameters

• BLE services to handle custom BLE services of the Nordic Thingy:52

• Thingy Modules to control sensor drivers and corresponding BLE services
responsible for storing and handling configuration

• Thingy applications [20].

The Nordic Thingy:52 comes with a companion application for web, Android and iOS

which provides environmental data. These applications include various uses of bundled

sensors such as step counter and magnetic compass. In addition to that, the application

can be used to program the Thingy:52 to schedule tasks or trigger operations using IFFT.

Finally, the application can be used to update the Thingy:52 firmware when a new ver-

sion is released.

Nordic Thingy:52 connects to all major operating systems using Bluetooth 5. It can be

used to develop native applications for Android and iOS using Java and Swift respec-

tively. Likewise, JavaScript can be used to develop cross-platform applications and Py-

thon for web applications or data analysis operations. JavaScript application with React

was chosen for this project because it was the easiest and fastest way to show proof of

concept. In addition to that, the potential of extending the application and exporting it to

support mobile platforms in addition to web application and possible cloud analytics

played a part in choice of technology.

16

4 Application Objective and Target Audience

It is evident from the review of relevant literature that there are numerous applications

for environmental monitoring has. The monitoring of environmental data has helped in

scientific discoveries and brought about an awareness about global warming and climate

change. In addition to aiding in scientific discovery, monitoring of environmental data can

also be used for day-to-day activities such as monitoring and optimizing a production

environment for higher production. Likewise, environmental data can also be used for

formulating new policies. From those observations, a conclusion can be drawn that en-

vironmental monitoring is a growing industry and has implications across a variety of

areas. Therefore, based on the observations and the review of relevant literature, an

environmental monitoring system was developed using the Nordic Thingy:52.

The primary objective of the application is to gather real time environmental data from

Nordic Thingy 52 to provide remote monitoring. The data collected by the sensor kit is

processes locally and presented to the user as a live graph. This allows the end users to

remotely monitor an area and make relevant decisions based on the environmental read-

ings.

The target audience for this application is wide and varied. The application can be used

at homes to monitor indoor environment remotely and get real time information about

potential accidents such as fire. In addition to that, the application can be used by indus-

tries to monitor production environments and optimize the environment variables for

maximum production. Likewise, it can be used by cities to start the drive towards smart

cities. Furthermore, cities and local bodies can use the real time data to warn city dwell-

ers of hazardous areas, thus contributing to better public health.

17

5 Core Technologies

This chapter provides a brief insight into the tools and techniques used during the devel-

opment of the application.

5.1 Programming Languages

The environmental monitoring system described in this paper was developed primarily

as a web application serving real time data. The application was developed in end-to-

end JavaScript. JSX was used to define react components. JavaScript was standardized

in 1996. It is a weakly-typed, multi-paradigm scripting language. The application code is

written in ES6 standard. JSX is an extension of JavaScript to incorporate XML like ele-

ments and provide an integrated markup syntax.

5.2 Libraries and Frameworks

This section lists and describes the JavaScript libraries and frameworks used in the pro-

ject in its present state.

5.2.1 Node.js

Node.js is the de-facto industry standard for writing server-side JavaScript code. It is a

single-threaded, asynchronous and event-driven JavaScript runtime environment built

on Chrome V8 engine. It provides a set of modules that can be used to create webserv-

ers and networking tools. Node.js is extendable and the required functionality can be

extended by adding third party packages to the project by using npm. Node.js is open-

source and supports all major OS distributions. Node.js adapts non-blocking I/O i.e. the

commands in Node.js can run concurrently. Node.js puts a request thread to sleep until

the desired response is received, waking it up only to deliver the response so that other

requests can be received and served in the meantime. This makes Node.js fast, efficient

and easily scalable.

18

Likewise, since Node.js natively supports JavaScript, using it allows developers to de-

liver end-to-end JavaScript applications. Using a single programming language across

the application code makes it easier to debug and maintain. Furthermore, it allows for

simpler workflow and tighter integration of server-side and client-side scripts. Finally,

Node.js is relatively easy to set up and the availability of various modules and third-party

packages reduces the complexity and volume of required code.

In this application, Node.js was used as the web server because of its ease of installation

and development. In addition to that, the use of Node.js was a must because the essen-

tial libraries for this application, noble-device and thingy52 are available via npm.

5.2.2 Meteor.js

Meteor is a free and open-source isomorphic rapid prototyping platform for developing

full-stack JavaScript applications for mobile and web. It is built on Node.js includes a set

of Node.js packages and a build tool to provide a thorough platform to develop and de-

ploy JavaScript applications. Meteor integrates MongoDB as a native database system

and uses Distributed Data Protocol (DDP) and publish-subscribe pattern to automatically

propagate data across the client side without the requirement of state management li-

braries or additional code from developer. This allows the UI to seamlessly integrate with

the API to provide full-stack reactivity with minimal coding effort. Meteor comes bundled

with its own templating engine called Blaze, but React templates used in this application

are written in JSX.

5.2.3 thingy52

thingy52 is the official Node.js library for Nordic Thingy 52 developed by Nordic Semi-

conductors. This library provides the set of tools to connect to and access data from

Nordic Thingy 52 over Bluetooth connection. This library uses noble-device and noble

libraries to handle BLE connection and data transfer.

19

5.2.4 noble/noble-device

noble is a central BLE module for Node.js available on multiple operating systems. noble-

device is built on noble and is used to abstract BLE devices. noble-device is used in this

application to discover and connect to Nordic thingy 52.

5.2.5 React

React is a declarative, component-based library used to build user interface. React com-

ponents are self-contained and reusable. The components are defined in JSX, which is

an extension of the JavaScript syntax to allow HTML-like structuring of UI components.

React components can accept data in form of ‘props’ and render the required data. Like-

wise, react efficiently keeps up with state changes to update the UI when the underlying

data is changed. When the state of a component is changed, only the related component

is re-rendered instead of the whole page, thus making it faster and more efficient. In

addition to that, since react components are able to manage their own state and update

accordingly, React separates the state from the DOM. Furthermore, react is extendable

and allows the use of multiple other libraries to accentuate the user experience and func-

tionality of the application.

5.2.6 Material UI

Material UI is a collection of react components designed using the Material Design lan-

guage developed by Google. Material UI provides isolated and self-supporting react

components capable of injecting only the required styles. Styles applied to Material UI

components are generated at runtime. This application uses Material UI components to

render the live data collected from Nordic thingy 52.

5.2.7 Recharts

Recharts is a data visualization library built on React and D3.js. It is a lightweight library

that provides simple and adaptable react components to build charts. It provides native

SVG support to render scalable visualizations. Recharts is used in this application to

render the live charts.

20

5.3 Database

This application uses MongoDB to store live readings from Nordic Thingy52. MongoDB

is a document-based database that stores data as BSON objects. MongoDB stores data

as a JSON like object consisting of key value pairs as opposed to rows in SQL. Likewise,

MongoDB supports dynamic and flexible schema, as the documents themselves do not

need to have a predefined schema. This makes MongoDB flexible, fast and efficient.

This also allows for database fields to hold arrays and more complex data structures,

which is not possible when using SQL databases. MongoDB was designed for highly

available, scalable and high-volume data storage.

MongoDB was chosen for this application because of its flexibility, high volume capability

and support for array storage. In addition to that, MongoDB supports native JSON-like

queries in JavaScript, thus making it easier to integrate into the application. Furthermore,

its scalable and database queries are simpler, more intuitive and faster.

5.4 Tools and Version Control

This application was built and tested in a Linux environment. WebStorm IDE was used

during the development as it has native JavaScript support and provides syntax high-

lighting and code completion for multiple JavaScript libraries. In addition to that, it can be

extended by using plugins to add various features such as linting. Furthermore, it pro-

vides an in-built terminal to deploy, debug and monitor the application.

This application is hosted in a private GitHub repository. Git was used as a version con-

trol system because of its ease to use, integrity and speed, In addition to that, git also

checks packages for vulnerability and lets the developer know if project dependencies

need to be updated, therefore making it easier to update the applications when required.

21

6 Design and Implementation

This chapter provides details of different steps of the development and implementation

of the application and the design choices made during the process.

6.1 Connecting to Thingy52

The application connects to Thingy52 by using the thingy52 Nodejs package provided

by Nordic Semiconductor. When the application starts, it scans for Bluetooth devices and

tries to discover the thingy. Then, when a compatible thingy is discovered, it is connected

via BLE and the functions provided by the thingy52 library for activating sensors and

reading environmental data are activated. The snippet for discovery and connection is

provided below in Listing 1.

function onDiscover(thingy) {

 console.log('Discovered: ' + thingy);

 thingy.on('disconnect', function() {

 console.log('Disconnected!');

 });

 thingy.connectAndSetUp(function(error) {

 console.log('Connected! ' + error ? error : '');

 thingy.on('temperatureNotif', onTemperatureData);

 thingy.on('pressureNotif', onPressureData);

 thingy.on('humidityNotif', onHumidityData);

 thingy.on('gasNotif', onGasData);

 thingy.on('colorNotif', onColorData);

 thingy.on('buttonNotif', onButtonChange);

 thingy.temperature_interval_set(5000, function(error) {

 if (error) {

 console.log('Temperature sensor configure! ' + error);

 }

 });

 thingy.pressure_interval_set(5000, function(error) {

 if (error) {

 console.log('Pressure sensor configure! ' + error);

 }

 });

 thingy.humidity_interval_set(5000, function(error) {

 if (error) {

 console.log('Humidity sensor configure! ' + error);

 }

 });

 thingy.color_interval_set(5000, function(error) {

 if (error) {

 console.log('Color sensor configure! ' + error);

 }

22

 });

 thingy.gas_mode_set(1, function(error) {

 if (error) {

 console.log('Gas sensor configure! ' + error);

 }

 });

 enabled = true;

 thingy.temperature_enable(function(error) {

 console.log('Temperature sensor started! ' + ((error) ? error : ''));

 });

 thingy.pressure_enable(function(error) {

 console.log('Pressure sensor started! ' + ((error) ? error : ''));

 });

 thingy.humidity_enable(function(error) {

 console.log('Humidity sensor started! ' + ((error) ? error : ''));

 });

 thingy.color_enable(function(error) {

 console.log('Color sensor started! ' + ((error) ? error : ''));

 });

 thingy.gas_enable(function(error) {

 console.log('Gas sensor started! ' + ((error) ? error : ''));

 });

 thingy.button_enable(function(error) {

 console.log('Button started! ' + ((error) ? error : ''));

 });

 });

}

Thingy.discover(onDiscover);

Listing 1. Thingy52 connection code

The snippet defined in Listing 1 above describes the discovery of and connection to

thingy52. Once the thingy is found and connected, the sensors are turned on and the

interval to collect data is set. The button in the thingy is programmed to pause the data

collection from the sensors.

6.2 Data Collection

The environmental data received from Nordic Thingy 52 is sent to individual MongoDB

collections for each sensor reading. The time of the reading and the reading itself are

the only aspects of the data sent to the server. The example data is presented in the

snippet below in Listing 2.

23

data = {

 time: “MMMM DD, h:mm:ss”

 readings:{

 reading1: value,

 ….

 readingn:value

 }

 }

Listing 2. General data model for collected sensor readings

The snippet detailed in Listing 2 above shows the general schema used to store the data.

The data is stored in individual snippets as opposed to single collection for the ease of

access and isolation in potential predictive modeling and automation applications. The

data collection utilizes the functions provided in the thingy52 library. The snippet of the

function is provided below in Listing 3.

function onTemperatureData(temperature) {

 let data={

 'time':moment().format('MMMM DD, HH:MM:SS'),

 'temperature':temperature

 }

 insertToCollection('temperature', data)

}

Listing 3. Storing collected data to the database

The snippet described in Listing 3 describes how the temperature data is collected. When

the temperature sensor provides a reading and the thingy library receives it, the data is

parsed into the model defined in Listing 3 above and inserted into the relevant MongoDB

collection. The insertToCollection function used to insert data to the MongoDB collection

is described in Listing 4.

//Definitions for Mongo connection parameters are not presented here

function insertToCollection(col, data){

 client.connect(err => {

 if (err) console.log(err)

 else {

 const collection = client.db("meteor").collection(col);

 collection.insertOne(data)

 client.close();

 }

 });

}

Listing 4. insertToCollection function

24

The insertToCollection function defined in Listing 4 is used to store all the readings. The

function takes two parameters, col is a string that describes the collection to insert data

into whereas data is the actual JSON data to be stored. MongoDB automatically gener-

ates the keys for all the data entries. The data is collected at pre-defined intervals and

updated to the server.

6.3 Visualization

The data is visualized in a React and Material UI frontend by using recharts. This appli-

cation is developed on Meteor.js, hence, it uses the publish-subscribe model to establish

a live connection between the database and the frontend. The received data is then

passed as props to the react component which contains the recharts component to ren-

der the actual graph. The visualizations are live as they subscribe to the changes in the

database that is immediately passed to the react component to alter its state and even-

tually the graph. The snippet listed below in Listing 5 explains a visualization component.

const Temperature=(props) =>{

 const [data,setData]=useState(props)

 useEffect(()=>{

 setData(props.temperature.filter((el,ind)=>{

 return ind>=props.temperature.length-60

 }))

 },[props])

 return (

 <ResponsiveContainer width='100%' aspect={16.0/9.0}>

 <AreaChart

 data={data}

 margin={{

 top: 10, right: 30, left: 0, bottom: 0,

 }}

 >

 <XAxis dataKey="time" />

 <YAxis label={{value:'Temperature', angle:-90, posi-

tion:'insideLeft', offset:10}}/>

 <Tooltip />

 <Legend />

 <Area type="monotone" dataKey="temperature"

stroke="#ac0f16" fill="#ac0f16" />

 </AreaChart>

 </ResponsiveContainer>

);

 }

export default withTracker(() => {

 return {

 temperature: Temperatures.find({}).fetch(),

 };

 })(Temperature);

25

Listing 5. Visualization component for temperature data

The code snippet listed in Listing 5 describes the temperature live graph. React useEf-

fect() hook is used to look for any changes in the received temperature data, once a

change is received, the state of the react component is changed. The changed state is

then used to update the chart rendered by the component. Finally, all the visualization

components are aggregated into a Material UI TabPanel template as shown in Listing 6

below.

<div className={classes.root}>

 <AppBar position="static" color="default">

 <Tabs

 className={classes.tab}

 value={value}

 onChange={(event, newValue) => {

 setValue(newValue);

 }}

 indicatorColor="primary"

 textColor="primary"

 variant="fullWidth"

 aria-label="selection tabs">

 <Tab label="Temperature" value={1} key={1}/>

 <Tab label="Gas" value={2} key={2}/>

 <Tab label="Pressure" value={3} key={3}/>

 <Tab label="Humidity" value={4} key={4}/>

 </Tabs>

 <TabPanel value={value} index={1} dir={theme.direction}

key={1}>

 <Temperature />

 </TabPanel>

 <TabPanel value={value} index={2} dir={theme.direction}

key={2}>

 <GasChart/>

 </TabPanel>

 <TabPanel value={value} index={3}dir={theme.direction}

key={3}>

 <Pressure/>

 </TabPanel>

 <TabPanel value={value} index={4} dir={theme.direction}

key={4}>

 <Humidity/>

 </TabPanel>

 </AppBar>

 </div>

Listing 6. The aggregated TabPanel component

The snippet presented above in Listing 6 is the JSX component definition for the aggre-

gated live readings received from the sensors. The final user interface is presented in

Figure 6 below:

26

Figure 6. The main UI of the application showing live sensor readings

Figure 6 above shows the final user interface of the application. The end user can access

the application via a web browser and monitor the live readings from the thingy sensors.

The user can then make informed decisions regarding production environment or home

control by reading information from the provided data. The user can switch between tabs

to view supported readings.

27

7 Testing and Results

Environmental monitoring using Nordic Thingy:52 is currently under development. Cur-

rently, the application can read the data from Nordic Thingy over Bluetooth and supports

remote live monitoring. The data received is successfully stored in MongoDB database.

The application was tested in cloud and by using port forwarding to test remote monitor-

ing. The remote testing was successful. However, there is a delay of a few seconds

between the thingy reading data and plotting the graph.

28

8 Ongoing and Proposed Developments

Currently, the only working feature of the application is remote monitoring of the given

environment. In the next phase of development, the application will be integrated to the

cloud and use multiple sensors to aggregate data. The aggregated data will be used to

perform various analytics tasks such as predictive modeling. These modeling tools could

be used to perform long-term monitoring of a selected area to calculate the effects of

climate change. When the aggregation of data is achieved, the application could be

used to perform failsafe monitoring with multiple parallel sensors. Finally, the live read-

ings could be accumulated and connected with other internet enabled devices to facili-

tate automation in home and production environments.

29

9 Discussion and Conclusion

In conclusion, Internet of Things (IoT) is a fast-growing area of the technology market.

Tens of billions of devices are projected to be connected to the internet in the next few

years. IoT enabled devices have a range of application areas ranging from remote con-

trol and monitoring to home and industry automation. However, it is important that these

IoT enabled devices to be small in size and consume less power. Therefore, to counter

the problem of energy usage noble solutions such as BLE, LPWAN and NB-IOT were

developed. These implementations provide low bandwidth, highly available and cost-

effective connectivity solutions to connect small IoT devices and sensors to the internet

and various other services. Environmental monitoring is one of the potential application

areas of NB-IoT.

Environmental monitoring has significant challenges and important consequences in a

variety of scenarios. In this paper, the author describes the development and usage of a

live monitoring application using Nordic Thingy 52 and the potential application areas of

said application. From this study, it is evident that environmental monitoring can lead to

significant improvements in areas such as climate science and home and industry auto-

mation. The research is in this field is limited, however, some of the research has been

used in defining climate policies. Furthermore, the use of isolated fog computing edges

connected to IoT enabled, low power sensors has been used to collect and process

contextual environmental data for remote monitoring and predictive modeling. The usage

of fog edges reduces the volume of data and processing at the cloud, thus resulting in

more efficient systems.

Therefore, based on observations from the review of relevant literature, a remote envi-

ronmental monitoring system was developed. The environmental data was collected by

Nordic Thingy 52 sensor kit and stored in local and cloud MongoDB databases. The data

was presented to the users in a meteor app with React and Material UI frontend. The

application provides live readings of selected Thingy 52 sensors.

30

This document provides the insight into Nordic Thingy 52 kit, NB-IoT with BLE enabled

devices and environmental monitoring. In addition to that, it explains the potential appli-

cations and enhancement to create environmentally aware home and industry automa-

tion.

31

Reference

1 Keysight Technologies. Narrowband IoT (NB-IoT): Cellular Technology for the
Hyperconnected IoT [Internet]. 2017. Available from: http://litera-
ture.cdn.keysight.com/litweb/pdf/5992-2360EN.pdf

2 Shin E, Jo G. Structure of NB-IoT NodeB system. International Conference on In-
formation and Communication Technology Convergence. IEEE; 2017. p. 1269-

1271.

3 Nair K, Abu-Mahfouz A, Lefophane S. Analysis of the Narrow Band Internet of
Things (NB-IoT) Technology. Conference on Information Communications Tech-
nology and Society (ICTAS) [Internet]. IEEE; 2019 [cited 4 October 2019]. Availa-
ble from: http://doi:10.1109/ICTAS.2019.8703630

4 Foni S.et al. Evaluation methodologies for the NB-IOT system: issues and ongo-
ing efforts. AEIT International Annual Conference [Internet]. IEEE; 2017 [cited 4
October 2019]. Available from: http://DOI: 10.23919/AEIT.2017.8240557

5 Dai G, Yu J. Research on NB-IoT background standard development characteris-
tics and the service. Mobile Communications. 2016;40(7):31-36.

6 Ratasuk R. et.al. Overview of narrowband IoT in LTE Rel-13. IEEE Conference
on Standards for Communications and Networking (CSCN) [Internet]. IEEE; 2016
[cited 8 October 2019]. p. 1-7. Available from: http://DOI:

10.1109/CSCN.2016.7785170

7 Wu JH. NB-IoT Technical Fundamentals [Internet]. Keysight; 2016. Available
from: https://www.keysight.com/up-load/cmc_upload/All/20170612-A4-

JianHuaWu-updated.pdf

8 Cisco. The Zettabyte Era: Trends and Analysis [White Paper]. Cisco; 2016

9 Ericsson. Ericsson Mobility Report. Ericsson; November 2016.

10 LoRa Alliance, LoRaWAN R1.0 Open Standard Released for the IoT, 2015. Avail-
able from: https://www.lora-alliance.org/kbdetail/Contenttype/ArticleDet/modu-
leId/583/Aid/23/PR/PR.

11 J. Krause,“Study on scenarios and requirements for next generation access tech-
nology,”3GPP TR38.913, Sept.2016.

32

12 Fafoutis X, Tsimbalo E, Zhao W, Chen H, Mellios E, Harwin W et al. BLE or IEEE
802.15.4: Which Home IoT Communication Solution is more Energy-Efficient?
EAI Endorsed Transactions on Internet of Things. 2016;2(5):151713.

13 Lonzetta A, Cope P, Campbell J, Mohd B, Hayajneh T. Security Vulnerabilities in
Bluetooth Technology as Used in IoT. Journal of Sensor and Actuator Networks.

2018;7(3):28.

14 Lovett G, Burns D, Driscoll C, Jenkins J, Mitchell M, Rustad L et al. Who needs
environmental monitoring? Frontiers in Ecology and the Environment.
2007;5(5):253-260.

15 Keeling C, Bacastow R, Bainbridge A, Ekdahl Jr. C, Guenther P, Waterman L et
al. Atmospheric carbon dioxide variations at Mauna Loa Observatory, Hawaii.
Tellus. 1976;28(6):538-551.

16 Liu C. SCENTS: Collaborative Sensing in Proximity IoT Networks. IEEE Interna-
tional Conference on Pervasive Computing and Communications Workshops
(PerCom Workshops) [Internet]. IEEE; 2019 [cited 8 November 2019]. Available
from: http://DOI: 10.1109/PERCOMW.2019.8730863

17 Bharathi P, Ananthanarayanan V, Bagavathi Sivakumar P. Fog Computing-
Based Environmental Monitoring Using Nordic Thingy: 52 and Raspberry Pi.

Smart Systems and IoT: Innovations in Computing. 2019;:269-279.

18 Nordic Semiconductor. Nordic Thingy:91 Product Brief. [online] Nordicsemi.com.
Available at: https://www.nordicsemi.com/-/media/Software-and-other-down-
loads/Product-Briefs/Nordic-Thingy-91-
PB.pdf?la=en&hash=3A6283D3E6A55836687B3F00251A5C979408EFC5 [Ac-
cessed 25 Nov. 2019].

19 Nordic Thingy:52 Product Brief [Internet]. Nordicsemi.com. 2019 [cited 2 August
2019]. Available from: https://www.nordicsemi.com/-/media/Software-and-other-
downloads/Product-Briefs/Nordic-Thingy52-product-

brief.pdf?la=en&hash=4976338D3BEF6549B2C9470834A2EF0094F785D4

20 Nordic Semiconductor. Nordic Thingy:52 v2.2.0 : Firmware architecture. [online]
Nordicsemiconductor.github.io. Available at: https://nordicsemiconduc-
tor.github.io/Nordic-Thingy52-FW/documentation/firmware_architecture.html [Ac-

cessed 25 Nov. 2019].

https://www.nordicsemi.com/-/media/Software-and-other-downloads/Product-Briefs/Nordic-Thingy52-product-brief.pdf?la=en&hash=4976338D3BEF6549B2C9470834A2EF0094F785D4
https://www.nordicsemi.com/-/media/Software-and-other-downloads/Product-Briefs/Nordic-Thingy52-product-brief.pdf?la=en&hash=4976338D3BEF6549B2C9470834A2EF0094F785D4
https://www.nordicsemi.com/-/media/Software-and-other-downloads/Product-Briefs/Nordic-Thingy52-product-brief.pdf?la=en&hash=4976338D3BEF6549B2C9470834A2EF0094F785D4

33

Appendix 2

 1 (1)

