
Teemu Makkonen

Implementing Encryption for Qt-based
Matrix Client

Metropolia University of Applied Sciences

Bachelor of Engineering

Information Technology

Bachelor’s Thesis

30 November 2019

Abstract

Author
Title

Number of Pages
Date

Teemu Makkonen
Implementing Encryption for Qt-based Matrix Client

52 pages
30 November 2019

Degree Bachelor of Engineering

Degree Programme Information Technology

Professional Major Software Engineering

Instructors Juha-Pekka Kämäri, Lecturer

The objective of this thesis was to design and implement encryption for a messaging
application that uses Matrix Open Standard to deliver the messages. The study was
purposed to be used as a solid base that can be expanded upon by creating the
implementation in such a way that it is easy to change if another encryption scheme would
be used.

For the purpose of the thesis it was necessary to look in to the history of encryption and
modern cryptography in order to gain more knowledge and to choose and design the
proper encryption scheme that would fill out the necessary criteria set by the company.
The bit by bit operations of the mostly used encryption schemes were studied as well as
modern larger scale algorithms that provide more security around the strong encryption.

Matrix Open Standard needed to be studied as well for the understanding of how the
messages are delivered. The Qt cross-platform framework was used for the development
and the messaging application was running on a QEMU virtual emulator, running the
company’s own secure mobile operating system.

The implementation was successful and the goals of encrypting and decrypting messages
sent with the application was achieved. The company was happy with the results although
some parts were left without much attention. Overall the design and implementation gives
good base to build upon or use it as is for future developments.

The cryptography knowledge gathered during this thesis gave the company a lot of
confidence as to the cryptographic schemes explored in this study. It also gave them more
understanding on their future evaluations on different encryption schemes implemented in
the present study.

Keywords Cryptography, encryption, messaging, communications,
security

Abstract

Contents

List of Abbreviations

1 Introduction...1

2 Encryption...2

2 Modern Cryptography...4

2.2 Symmetric-key Cryptography...4

2.2.1 Data Encryption Standard..7
2.2.2 Advanced Encryption Standard...11

2.3 Asymmetric-key Cryptography...12

2.3.1 RSA...13
2.3.2 Diffie-Helmann Key Exchange...14

3 Matrix Open Standard...15

3.2 History...15

3.3 Architecture of Matrix...16

3.4 Encryption in Matrix...20

3.4.1 Double Ratchet Algorithm..21
3.4.2 Olm..25
3.4.3 Megolm..25

4 Qt Development Framework...26

5 Implementing Encryption for Matrix Client..27

5.2 Goals...28

5.3 Deciding on Encryption...28

5.4 Application Architecture...31

5.5 Implementation of Encryption...34

5.5.1 Decryption...35
5.5.2 Encryption..38

5.6 Verification of Results...46

6 Results...48

Abstract

List of Abbreviations

Qt Cross-platform framework maintained by the Finnish Qt Company.

Created for building applications for any architecture or operating system.

Key In cryptography means a shared secret that contains information on how

to decrypt ciphertext into readable format.

Plaintext Message in readable form.

Ciphertext Message in encrypted form.

OTP One-time-pad. An old encryption scheme that provides unbreakable

encryption. It is limited by its key size.

Public-key The public part of a key pair that is used to encrypt messages for the

person holding the other part of the key pair. Can be publicly shared

without compromising the encryption.

Private-key The secret part of a key pair. Used to decrypt and sign messages. Has

the be kept as a secret and not shared with anyone.

Perfect secrecy Term used in modern cryptography to indicate the encryption cannot

be broken even if given unlimited resources to the adversary.

Forward secrecy Is a feature in modern cryptography key agreement protocols that

gives assurances that future messages will not be decipherable even if

one session key is compromised.

Computational security Is a definition used in modern cryptography to describe that an

encryption cannot be broken in a reasonable timeframe given the current

state of computation.

Abstract

Symmetric-key A key that is needed for both encryption and decryption. Meaning the

recipient of a message needs the same key as the sender in order to

communicate.

Stream cipher An encryption method in symmetric-key cryptography, where the

encryption is done to one bit at a time using a random stream of bits.

Block cipher An encryption method where the plaintext is divided in to block and the

blocks are then encrypted separately from the other blocks.

XOR Exclusive or. Logical operation in cryptography and mathematics in

general, that takes two inputs, 0 or 1 for example, and outputs 1 if they

differ and 0 if they are the same.

IV Initialization vector. Used as input data to alter the outcome of some

algorithm. Shared between two communicating parties to arrive at the

same key after the IV is inputted in to an algorithm.

ECB Electronic code book. An operating mode for block ciphers, where each

block is encrypted individually.

CBC Cipher block chaining. An operating mode for block ciphers where the

encrypted result of each block is fed as an IV in to the next block, creating

a chain.

DES Data Encryption Standard. A block cipher that was the first official

standard for encryption in the US.

DES2 Double-DES. Next iteration of DES to make it more secure, where DES is

used twice.

DES3 Triple-DES. The final iteration of DES, where the DES is used three

times.

Abstract

AES Advanced Encryption Standard. After DES was deemed insecure AES

was developed to be the new standard for encryption. It is a block cipher

as well.

RSA Rivest-Shamir-Adleman. Widely used public-key cryptosystem.

Diffie-Helmann Key Exchange Is a mathematical way of exchanging cryptographic keys

over a public network.

MAC Message Authentication Code. A short piece of data usually in the header

of the actual data used to authenticate the data.

VoIP Voice-over-IP. Term used to describe calls that go over the internet

network.

SDK Software Development Kit. A collection of software used to develop and

build other software such as applications.

HTTP HyperText Transfer Protocol. The underlying protocol of the world wide

web.

API Application Programming Interface. Interface used by servers to serve

clients with data or to collect data that clients send to servers.

JSON JavaScript Object Notation. A way of handling and storing data in a

human readable form. Used widely in webservices.

REST Represantional State Transfer. Architecture many servers on the internet

use for storing data. Operates on top of HTTP.

KDF Key Derivation Function. A term used in cryptography for a function that

takes some input and generates a key.

QEMU Short for Quick EMUlator. It is a lightweight open source virtual emulator

for emulating different environments and operating systems.

Abstract

Elliptic Curve A mathematic function that defines a curve over a plane. Used often in

everything related to cryptography, authentication, key generation and

key agremeents.

NaCl An algorithm designed to be used for encrypted messaging applications.

Often called libsodium.

GUI Graphical User Interface. Term used to describe the part of an application

that is visible to the user.

CIA Central Intelligence Agency. One of the main intelligence agencies in the

US. Tasked with mostly foreign intelligence.

UML Unified Modeling Language is a modeling language used in software

engineering to show the design of a large system.

1

1 Introduction

On the internet everything one does is sent over a network where hackers, companies

and states take note and save everything. Their goals are different: they will try to steal

credit card information, extract every piece of data point in order to serve better ads or

they try and identify political standings and thoughts in the name of national security.

What ever their end goal is, its invading privacy.

Today encryption is added to everything from browsers and web traffic to local hard

drives and communications. But what is encryption? How does it work? Why is it good

for privacy? How can anyone be sure their personal messages aren’t analyzed by large

tech companies or evil adversaries? How is encryption actually created? These are the

questions this thesis tries to answer.

This thesis starts with the history of encryption and take a deep dive into modern

cryptography to understand the underlying mathematics of encryption. It does shine a

light into the bit by bit operations encryption does to data and create understanding of

how mathematics can create security. Then it takes a look at modern algorithms that

secure todays messaging applications and delve into the architecture of one upcoming,

open source and decentralized messaging protocol called Matrix Open Standard.

Finally the goal is to showcase a concrete implementation of modern encryption on a

messaging application that uses Matrix for transportation of messages. In the process

the thesis outlines what needs to be considered on the broader spectrum when

designing encryption and what are the intricate details when implementing it. The

application itself has been created with Qt cross-platform framework which requires

understanding of the C++ coding language and the Qt framework in order to develop

the implementation.

The study was done for a Finnish cybersecurity company, Necuno Solutions Ltd. The

company sells secure communications solutions for industries that require high level of

security such as investigative journalism, lawfirms, healthcare, critical infrastructure,

2

governmental agencies and defense. The groundwork laid by this engineering thesis is

intended to be used for their future products.

2 Encryption

Encryption in its most basic definition is taking some data and scrambling it in a way

that only the authorized parties are able to understand the information. This, in most

common and historic encryption schemes required both parties to know a specific key

that can be used to encrypt and decrypt the information. A more concrete explanation

would be taking a some message often referred to as plaintext like “Hello world”,

making it unreadable, referred to as ciphertext, like “SGVsbG8gd29ybGQK” and giving

it to another person who knows the secret key and can use it to decrypt it back to its

original meaning.

Encryption has been prevalent through history and it starts all the way from 500 BC

with simple substition ciphers [1, p. 2], to mathematically complex modern encryption

schemes and even modern quantum resistant encryption. This chapter does go over

the brief history of encryption..

People have throughout history tried to keep some sensitive information hidden from

unintendent persons often using some form of encryption. One of the earliest forms of

encryption was substitution ciphers, where a word is taken and the letters are

substituted by shifting the alphabet by a predefined amount. This required the recipient

of the encrypted information to know the number or “key” for example to shift by 3 to

decrypt the message. The most well known cipher of this kind is called Caesar’s Cipher

and was made famous by Julius Caesar, who used it to communicated with his

generals. However Caesar used always a fixed key of 3 which was not very secure

once the key was known [1, p. 2]. These substitution ciphers quickly became obsolete

as they can be easily cracked using frequency analysis or a brute force attack. Brute

force attack or exhaustive search is a way of trying every single possible key for the

decryption until the decrypted plaintext makes sense. In the substitution cipher the key

can only be 0-28 when using the Finnish alphabet, because there are 29 letters,

resulting in 29 different variations and in turn is very vulnerable to brute force attack.

Frequency analysis is a form of cryptanalysis and it is used to aid in decrypting of the

3

ciphertexts by analyzing the frequency of certain letters and letter pairs. In every

language some letters are more frequent than others and this can reduce the

bruteforcing significantly.

During medieval times cryptography and encryption methods were not improved

greatly. Most notably “polyalphabetic” ciphers were invented to fight the frequency

analysis developed to crack simple substitution ciphers. In the 1917 the one-time-pad

(OTP) was invented by Gilbert Vernam and Joseph Mauborgne and it is the only truly

unbreakable cipher [2]. OTP works by having a encryption key the same size or larger

than the actual message or plaintext consisting of truly random numbers. Then each

letter is added to each number of the encryption key by using modular addition. The

resulting ciphertext then has no relation to the original plaintext if the OTP is unknown.

The recipient has to have the exact same key that was used to encrypt the original text

in order to decrypt the ciphertext. The encryption key is to be destroyed after usage

and never used again, hence the name “one-time-pad”.

Right before World War II the Germans invented the Enigma machine, it was an

electromechanical encryption machine that used a rotor mechanism that scrambles the

26 letters of alphabet. It was extensively used to encrypt messages used by the Nazis

in the World War II and great effort was used to decrypt those messages by the

opposing forces. Enigma machine went through many iterations but the basic concept

was that when a key is pressed a light above the keyboard would light up indicating a

letter of the alphabet. One person would then type a message on the machine and

another would write down the illuminated letters which would give out the ciphertext.

The rotor inside the machine would rotate on every keypress changing the electrical

connections between the keys and the lights. Entering the ciphertext on the receiving

end would give out the original message. The security of the system was based on

predefined settings which would change daily and distributed to each station

beforehand. Enigma machines encryption was not perfect and could be decrypted with

intensive mathematical cryptanalysis. Later on in the war The United Kingdom started

the Ultra program to decrypt these messages and the infamous Turing machines was

built during that time. The decryption of the Nazi information played a crucial part in the

end of the war.

4

2 Modern Cryptography

Modern cryptography started after the World War II and it is defined by using

computers to do encryption instead of mechanical machines. It is based on

mathematical functions that the computers can calculate. Before modern cryptography,

classical cryptography could be thought of as an art form where construction of good

encryption was based on creativity and personal skill instead of rigorous mathematical

theory. In the computer era however a rich theory and science emerged around

cryptography allowing it to become more than just encryption of communications and

secret messages. It opened up the possibilities for studying authentication, digital

signatures, protocols for exchanging secret keys, electronic auctions and elections as

well as digital currency. With modern cryptography it is often more appropriate to talk

about the individual bits instead of the letters of the alphabet, like in the previous

chapter of historic cryptography. So, in the following chapters, plaintext and ciphertext

refer to 1’s and 0’s that the computer uses instead of the letters of the alphabet. The

following chapters go over the two main approaches for modern cryptography, the

Symmetric-key cryptography and the Asymmetric-key cryptography and some

examples for these schemes are looked at in more detail.

2.2 Symmetric-key Cryptography

Symmetric-key cryptography is also known as private key cryptography, as it uses a

predefined key that both parties have to know. Most historical ciphers could be thought

of as being private key cryptography as they often used a key, known by both parties,

for example the substitution cipher referred in Chapter 2. It used a key, a number, that

was used to determine how much was the alphabet shifted for the encryption and

decryption of the plaintext. Symmetric-key cryptography brings up some key concepts

of cryptography in general. Those concepts are perfectly secret, often called perfect

secrecy, and computational security.

In modern cryptography a perfect secrecy is achieved when given unlimited computing

power the ciphertext cannot be decrypted by an adversary, due to the fact that the

adversary trying to decrypt the ciphertext lacks enough information to succeed,

5

regardless of the adversary’s computational power. Such schemes are called perfectly

secret or information-theoretically secret. [3, 29-35.]

Perfectly secret schemes are different from computationally secure schemes, which is

the aim for most of the modern cryptography. Most modern encryption schemes can be

theoretically broken given enough time or computational power, because they are not

perfectly secret. However, the time and effort of breaking these schemes is

astronomical and would require life times or even larger than universes age to

succeed. The reason for most currently used encryption schemes to not be perfectly

secret, is the practicality of it. The mathematical proof for perfect secrecy goes beyond

the scope of this thesis. In the interest of this thesis it is sufficient to say that perfect

secrecy can be mathematically achieved, but it lacks practicality as it is proven to only

be achievable if the key length is the same or larger than the plaintext length and the

key is then never used again. The one-time-pad is one such encryption scheme that is

perfectly secret. [3, p. 58]

Computational security is often defined as an adversary having a very small probability

to decrypt the message given a certain timeframe. That probability should be thought of

to be small enough that it can safely be assumed it will never really happen. Modern

encryption schemes are computationally secure to find a compromise between

practicality and perfect secrecy. [3, p. 59]

Symmetric-key cryptography has two main ways of encrypting the plaintext, stream

ciphers and block ciphers. Stream cipher is where a random stream of bits is taken,

which will be the key, and then encrypting the plaintext by using a logical operation

called “exclusive or” (XOR) on it. XORing means taking the plaintext and the random

key, comparing each individual bit and if they are the same write down 1 and if they are

different write down 0. Essentially this is how modern OTP works, as opposed to the

historical OTP which used modulo arithmetic on alphabet letters. There are some

issues of practicality that arise with stream ciphers. For example both parties have to

have the same stream and keep up the state of the stream so both know which part of

the stream to use for encryption and decryption without reusing old parts. This is called

the synchronized mode. [3, p. 76-81.]

6

Another way called unsynchronized mode is where the stream is generated using a

seed and an initial vector IV. The generation depends on a pseudorandom generator,

that is out of scope for this study, but for the purpose of this explanation it is assumed

that the pseudorandom generator is very strong at generating randomness. The seed

is always kept secret and shared with the communicating parties. With every

encryption an IV is chosen at random and sent to the recipient with the ciphertext. The

recipient can now use the seed and the IV to generate the same stream and use it to

decrypt the message. [3, p. 76-81.]

Block ciphers take the plaintext and slices it into fixed sized blocks, if a block is not

filled completely by the plaintext it can be concatenated with the appropriate amount

0’s to fill the block. Then a key is used to encrypt each block. There are many different

designs and modes of operation of block ciphers. Simplest and most insecure one is

called the Electronic Codebook (ECB) mode, where each block is encrypted and

decrypted separately. This is insecure because equal plaintext blocks result in equal

ciphertext blocks and patterns can be recognized. [3, p. 93-95.]

The most common one Cipher Block Chaining (CBC) mode works by generating an

initial vector IV and XORing it to the first plaintext block before using the key to encrypt

the block, then the resulting ciphertext is used as an IV on the next block in the same

fashion (Figure 1). [3, p. 95; 4, p. 9.]

Figure 1: Cipher Block Chaining (CBC) diagram [33].

7

The IV is sent to the recipient with the ciphertext. This mode fixes the issue of ECB

where equal plaintext blocks result in equal ciphertext blocks, as the IV is always

generated randomly before each encryption. The drawback that is often discussed is

that this mode cannot be parallelized since each block is dependant on the previous

one during the encryption resulting in slower encryption speeds. However, in

decryption each ciphertext block acts as an IV for the one ahead of it thus each block

can be decrypted in parallel since they are not sequentially dependant on each other.

Most notable block ciphers are Data Encryption Standard (DES), its big brother, Triple

DES (DES-3) and Advanced Encryption Standard (AES). DES and DES-3 are mostly

unused in modern applications these days, because of their short key size, but AES

remains in wide use and remains uncracked. [3, p. 95; 4, p. 10]

2.2.1 Data Encryption Standard

Data Encryption Standard is defined as a symmetric-key block cipher and published by

National Institute of Standards and Technology (NIST), formerly National Bureau of

Standards (NBS). It started in 1972 as a request for a new national encryption scheme

by the NBS that could be used commercially and could secure data in transit and at

rest. IBM submitted one of their cryptographic algorithms designed for financial

applications and after extensive review and further development by the National

Security Agency (NSA) and the public. It was accepted as a Federal Infomation

Processing Standard (FIPS) 46 in 1977. [5, p. 143; 6, p. 1.]

As underlying block cipher design, DES uses the Feistel network. Feistel network is a

popular design of block ciphers used in many modern encryption schemes. In Feistel

network a block of plaintext is separated into two halves and they go through rounds.

Each round, some function F takes a sub-key derived from the master-key and one half

of the block and encrypts it. This encrypted output is then XORed to the other half and

then the halves are swapped and another round is done to it as can be seen in Figure

2. [6, p. 2.]

8

The function and sub-keys are not defined in Feistel network so it is up to the actual

design of an encryption scheme to define the function and the derivation of sub-keys

from the master-key. The derivation of the sub-key is called the key schedule. The

function usually consist of so called substitution boxes (S-boxes) and permutations. [3.

p. 160-162.]

DES is a 16 round Feistel network with a block size of 64 bits, key size of 56 bits and

sub-key size of 48 bits. The encryption process is made of two permutations called P-

boxes and the 16 Feistel network rounds in between. The P-boxes take 64 bit input and

permutes them according to a predefined rule. As the P-boxes are predefined and

public knowledge they have no effect on the security of the scheme and are ignored in

the scope of this thesis. It is believed that P-boxes are in DES, only to slow down

software implementations and attacks although no official explanation has been given

from the DES developers. [5, p. 144-145; 3, p. 163-165.]

Figure 2: Diagram of Feistel network [32].

9

As can be seen in Figure 3 one round of DES takes the two halves of a block (RI

and LI), puts the other one through a function ƒ called DES function and XORs the

output to the other half. Then the sides are swapped.

In Figure 4 DES function takes the input of 32 bits and puts it through an expansion D-

box to make it 48 bits. It then XORs the output with the 48 bit sub-key and puts that

output through S-boxes to make it back into 32 bits. That output is then put through

another straight D-box and finally the output is XORed with the other half of the block.

The sides are swapped and it goes through another round, in total of 16 times for each

block. [3, p. 163-164; 5, p. 147.]

Figure 3: One round of Data Encryption
Standard (DES) [5, p .146].

10

DES key size is not sufficient enough for modern times but the cryptography of the

DES function has been tested and proven to withstand immense scrutiny from

mathematicians trying to break it. The most succesful attack against DES is to

bruteforce the key. An adversary only has to check 256 keys to find a match and in

1998 a special computer was built that was able to do it in 112 hours. [3, p. 169-170.]

Since the key size is the obvious problem and slightest change to the inner DES

function, to fit a larger key, could make the whole design insecure, a double-DES

(DES-2) was introduced. DES-2 goes through the DES twice as the name suggests

and used two different 56 bit keys, increasing overall key size to 112. This did not yield

enough of a security increase because of an clever mathematical attack called meet-in-

the-middle, that could use the two rounds of the DES and the outputs to figure out the

key pair in almost the same amount of time. Then the DES-3 was introduced that fixed

the meet-in-the-middle attack and could use the 2 keys like in DES-2 or increase the

key size to three keys, 168 bits. DES-3 was raised as the new standard but doing the

already inefficient DES 3 times made it way too slow and another encryption scheme

was needed. [3, p. 170-172.]

Figure 4: Diagram of the DES function [5, p.
147].

11

2.2.2 Advanced Encryption Standard

AES was again started as a request for a new block cipher by NIST in 1997 with

security and efficiency as the most important criteria. It was decided to be a very public

competition to amass most amount of scrutiny from the public cryptographers around

the world. Up until this point most of the greatest cryptographers especially in the US

worked for the military or the government. The competition was cleverly designed and it

was split into 2 conferences, where the schemes would be evaluated thoroughly to

have the best ones make it to next round and in the end only one would be deemed the

best. This incentivized the developers of the encryption schemes to try and break each

others schemes and find the slighest weaknesses in them. In the end algorithm called

Rijndael designed by John Daemen and Vincent Rijmen from Belgium won the

competition and it was deemed as the Advanced Encryption Standard by NIST in 2000.

[3, p. 173; 6, p. 3; 7, p. 9-15.]

Rijndael differs from the standardized AES. Rijndael was designed to be a flexible

block cipher that supports multiple different block and key sizes. AES however is fixed

at block size of 128 bits and key size of 128, 192 or 256 bits. [7, p. 21.]

AES is essentially a substitution-permutation network instead of Feistel network,

although they are very similar and both consists of multiple rounds. In substitution-

permutation network in one round the input bits are sent through S-boxes where the

bits are substituted in a certain way mandated by the designer of the scheme, after

which the outputs are permutated. These two steps are to add confusion and diffusion,

which prevent cryptanalysis attacks. A sub-key is usually XORed to the inputs before

the substitution stage. [3, p. 174]

AES algorithm consists of either 10, 12 or 14 rounds, depending on the key size. Each

round has 4 stages or transformations that are done to a so called state. In AES the

state is a 4 by 4 array of bytes that is part of the plaintext. The sub-key or as called in

AES, round-key, is the same size as the state. The 4 stages are as follows:

1. AddRoundKey: A 16 byte or 128 bit round-key is derived from the master-key
and represented as 4 by 4 bytes. It is then simply XORed to the state.

2. SubBytes: Each byte of the state is transformed according to a fixed S-box.

12

3. ShiftRows: Each row is cyclically shifted by a certain amount depending on
the number of the row. First row is not shifted at all, second row is shifted
one step to the left, third is shifted two steps to the left and th fourth row is
shifted three steps to the left.

4. MixColumns: Each column is multiplied by a fixed matrix.

In the final round MixColumns is replaced with an additional AddRoundKey stage. [3, p.

174; 7, p. 20-23.]

AES has seen a immense amount of scrutiny over the years and only known attacks

against it rely on less rounds than optimal and even then the attacks are not practical

and take some time. The only practical attack against AES is to try and use exhaustive

search for the key which takes 2256 guesses, if a 256 bit key is used. This number is

so astronomically large it is hard to even imagine. [3, p. 175]

2.3 Asymmetric-key Cryptography

Asymmetric-key cryptography also known as public-key cryptography aims to solve the

key sharing problem of private-key cryptography. As described in the Chapter 2.2,

private key cryptography requires the participants to have the same key. The

distribution needed to happen in a secure way, such as meeting in person or already

established encrypted channel for example, to stop adversaries from obtaining the

secret key.

The basic concept of the public-key cryptography is to have a two keys mathematically

related to each other, public key and a private key. The private key is always kept

secret and the public key is shared. The messages are always encrypted with the

recipients public key. Once encrypted it can only be decrypted by the associated

private key only known to the recipient of the message. It is important that while

knowing the public key it is impossible for the adversary to decrypt the message. This

solves the key distribution problem as everyone can now share their public keys

without a worry as long as their private keys are kept secure. [8.]

In 1976 Whitfield Diffie and Martin Hellmann published a revolutionary cryptography

paper titled ”New Directions in Cryptography” that outlined many problems in private-

13

key cryptography and introduced many ideas in the cryptography domain. They

introduced the public-key cryptography, the Diffie-Helmann key exchange as well as

message authentication codes or MACs [9, p. 1-5]. The key exchange is a way of

generating secret keys for communicating parties over a public channel without

knowing any shared secrets and the MAC is a way of signing a message and anyone

with the corresponding public key is able to verify the authenticity of the message.

Diffie and Hellmann realized that some mathematical functions are easy to calculate

one way but doing it in reverse is extremely hard and takes a very long time [3, p. 306-

308]. Such problems that are conjectured to be hard in math are prime factoring,

discrete logarithm and elliptic curves [3, p. 231]. Some important algorithms that this

chapter does go over are: RSA, Diffie-Helmann key exchange and Elliptic Curves.

2.3.1 RSA

In 1977 three scientists in Massachusetts Institute of Technology (MIT) developed an

algorithm based on public-key cryptography work published year earlier by the

Whitfield Diffie and Martin Hellmann, and named it after their last names, Ron Rivest,

Adi Shamir and Leonard Adleman. British intelligence agency Government

Communications Headquarters (GCHQ), had developed similar public key scheme but

it was only declassified and published publicly in 1997. [8.]

RSA algorithm is based on a seemingly very simple mathematical problem that has

been studied for hundreds of years and no efficient solution has been found yet, the

factorization problem. The factorization problem is the problem of finding integers p and

q for a given non-prime integer N in such a way that pq = N. It is a computationally hard

problem to solve. One way to solve the problem is to exhaustively search whether p

divides N by checking each integer one by one until √N because the smallest prime

factor of N can only be as large as √N . Although more efficient algorithms have

been found none are very efficient. The problem gets very time consuming when p and

q are prime numbers and extremely large. [3, p. 248-249.]

RSA algorithm expands on this problem by using modulo arithmetic and the

factorization to create the reasonably efficient encryption method. The in-depth

mathematical functions for key generation are not in the scope of this thesis. In

14

principle, three very large numbers are generated. N used as a modulus is chosen by

picking two random primes p and q, where pq = N. Also integers e and d are generated

related to N. The public key is ⟨N ,e⟩ and the private key is ⟨N ,d ⟩ . The

ciphertext c is generated from a plaintext message m in a following way:

c=memodN . Similarly the decryption is done by: m=cdmodN . Even if the

adversary would be able to find every piece of information except the integer d, it is

extremely hard to computate the integer d which essentially is the private key. [3, p.

258-259.]

2.3.2 Diffie-Helmann Key Exchange

Diffie-Helmann key exchange relies on the same factorization problem utilized by the

RSA algorithm. Diffie-Helmann key exchange is a way for two parties to generate a

shared secret key over open network. Meaning that even if an eavesdropper can listen

to everything between the two parties the eavesdropper cannot derive the same shared

key. After the shared key is generated for both parties they can start communicating

using symmetric encryption of their choice.

The key exchange is done by choosing a large prime p and a generator g, such that g

is a primitive root modulo p. These two numbers are agreed upon by both parties, lets

call them Alice and Bob. Alice then chooses a secret integer a and Bob chooses a

secret integer b. Alice computes A=gamodp and Bob computes

B=gbmodp . They then exchange the computed values A and B. With the

knowledge of B Alice can compute K1=Bamodp and with the knowledge of A Bob

can compute similarly K2=Abmodp . The computed values K1 and K2 are

equal because in modulo p the following is true:

Abmodp=gabmodp=gbamodp=Bamodp . This allows two people to

calculate exact same secret key without anyone listening in on the exchange being

able to. [11, p. 10-12.]

15

3 Matrix Open Standard

Matrix is an open standard for communications over IP. It can be used for instant

messaging, VoIP (Voice over IP) calls over WebRTC protocol or for any kind of

application that needs to send and receive messages over IP and retain the

conversation history. It aspires to be a decentralized communications network that

would allow everyone to converse together without worrying about what application

they are using or without having a central set of servers that collect everything. It wants

to break the current communications silos and be universal and as easy to use as

email. Matrix itself is not an application, instead it is a standard that defines how it

works and it also provides open source reference implementations of Matrix servers,

client Software Development Kits (SDK) and some application services. The

communication to the server is done through HyperText Transfer Protocol (HTTP)

Application Programming Interfaces (API). HTTP is the protocol that all of the internet

works on and APIs are often used in servers to receive data and respond to data

queries. This allows Matrix to be easy to implement on the client level. [12.]

3.2 History

Matrix was first created in 2014 inside a company called Amdocs and was called

Amdocs Unified Communications [14]. The protocol was funded my Amdocs and

developed by a small team lead by Matthew Hodgson. In 2015 Amdocs created a new

subsidiary called ”Vector Creations Limited” where the team developing Matrix was

then moved. In 2017 Amdocs was stopping the funding for the team which lead to them

creating their own company called ”New Vector” based in the UK. This new company

was in charge of developing and maintaining the Matrix standard and hosting the public

Matrix servers. It also provided consultancy and hosting services on top of the Matrix

protocol. The company was not well funded and relied on donations to keep the public

servers running. New Vector received its first big funding round in January 2018 from

Status, an Ethereum cryptocurrency based start-up, of 5 million US dollars [15]. In April

of the same year the French goverment announced a move to start using Matrix

protocol and the Riot application developed by ”New Vector” for all their governmental

communications in order to protect them from US or Russian spying [16; 17].

16

In October 2019 Matrix.org foundation was created in order to keep Matrix as open and

independent as possible without compromising it through commercial interests. It is

founded in the UK as a private company limited by guarantee and as a community

interest company to make it a non-profit organisation with an asset lock to prevent the

selling of the intellectual property or extracting of profits [17].

Very recently in 2019 the New Vector raised a Series A funding round of 8.5 million US

dollars from Notion Capital, Dawn Capital and Firstminute Capital. The funds are ment

to go in to the development of Matrix standard in form of richer End-to-End encryption

support and loads of other features. For the New Vector the funding is used for their

messaging app Riot and their Matrix hosting platform Modular.IM. The investment is

said to be impartial on the development of the Matrix standard and the commercial gain

for the investors will come from the commercial platform New Vector is building on top

of the Matrix standard, like the hosting service of Modular.IM. [18; 19.]

3.3 Architecture of Matrix

Matrix consists mainly of homeservers and clients. There are also identity servers and

application services but first this thesis goes over the more important parts,

homeservers and clients. Homeservers are Matrix servers that clients connect to.

Clients are the applications that users use, so in practise clients are users or devices.

Anyone can host their own homeserver and only have themselves registered on it, or

anyone can use a larger homeserver such as Matrix.org homeserver that has hundreds

of thousands of users. Clients do not have to be in the same homeserver in order to

communicate Inside these homeservers are something called rooms. They are a virtual

environment where events such as messages get sent between the clients participating

in the room. Rooms can be between two clients or thousands of clients. The

decentralization of the Matrix comes from the fact that each room is stored on every

single homeserver participating in the same room. This creates a federated network of

homeservers and clients where no central server exists as can be seen in Figure 5.

17

A homeserver can be kept private by disabling the federation feature. This allows for

private homeservers and even private federations of homeservers. For example the

French government will equip every branch and office of the government to have their

own homeserver and only allow connections from whitelisted list of other homeservers

in the French government. This means is that each office of the government can have

private rooms between the people in their office or collaborate with other offices by

inviting users from different branches, thus creating decentralized rooms. As the data is

shared between homeservers every participating homeserver shares the same

conversation history, minimizing data forgeries and enabling transparency between

homeservers. [20.]

Matrix identities are usually in the form of ”username@homeserver.com”. Usually when

creating a Matrix account an username is chosen and additional information can be

provided such as email or phone number for password resets and other additional

control over the account. Identity servers job is to map these ”3rd party identifiers”

Figure 5: Architecture of Matrix ecosystem [34].

18

(3PID) to the Matrix identities for users to discover other users through their email or

phone number. Identity servers and the 3PIDs are optional and not a requirement in

the Matrix ecosystem. Matrix.org homeserver uses identinty servers by default to make

it easier for users to find their friends in the Matrix. [20.]

As stated above briefly, Matrix uses HTTP APIs for the server communications.

Essentially Matrix is just a detailed list of specifications (spec) for these open APIs that

anyone can implement on their server or on their client. Matrix.org has an open source

reference homeserver that implements these APIs, called Synapse. The APIs

themselves are common APIs that are used everywhere, JSON over REST. REST or

Representational State Transfer is a commonly used software architecture that defines

how a web service behaves. JSON is Javascript Object Notation and it is used to

transmit human-readable data objects.

Matrix has three different APIs that creates the whole standard. Theres client-server

API, server-server API and application service API. Client-server API defines endpoints

for the client to get or send data to the server such as messages. Server-server API

defines the interaction between homeservers [20]. Application Service API defines

extra functions on the server that a normal client would not be able to do. The

application service API was created to give some services more powers, and allow

bridging to other application and protocols. Bridging, as the name states, is a bridge

from another application to Matrix. Messages sent in a Matrix room are also sent to the

bridged application which could be Telegram for example. [21.]

The basic flow of sending a message from client A to client B when both are on

different homeservers can be seen in Figure 6. Client A sends HTTP PUT request to its

homeserver using the client-server API. The homeserver then signs the message and

appends it to its copy of the room events. It then sends the message to client B’s

homeserver as HTTP PUT request using the server-server API. Then client B’s

homeserver authenticates and verifies the signature and appends the message into its

copy of the rooms events. Client B can then get the message via HTTP GET request.

[20.]

19

In the most basic form messages are extremely easy to send in Matrix. The HTTP

request in Listing 1 is extremely simplistic with only two lines of JSON in it: what type of

message it is and the contents of the message. Of course often the user is

authenticated and the events can be more complex which would add more things in to

the request but it’s a good demonstration how easy it can be to create simple Matrix

client using these APIs.

Listing 1. Simple PUT request for sending a message in Matrix [22.].

As people in the modern day can and often do have multiple different devices they use

in their lives such as laptops, desktops, smartphones and tablets. The way Matrix spec

Figure 6: Message flow of between two users from two different
homeservers [20].

PUT
/_matrix/client/r0/rooms/%21636q39766251%3Aexample.com/send/m.room.messag
e/35 HTTP/1.1
Content-Type: application/json

{
 "msgtype": "m.text",
 "body": "hello"
}

20

defines these ”devices” does not always relate to only a physical device, it can also

relate to different browsers on a computer or different Matrix clients on a smartphone.

Devices are usually used for handling encryption keys as each device have their own

encryption keys but users can also revoke access on some devices in case of theft for

example. [20.]

Matrix is event oriented as briefly touched above. Meaning that everything exchanged

over Matrix is called an event. Events are usually sent in rooms between users. Events

can be simple things like basic messages or they can be more complex ones that are

not even visible to the user like iniating encryption and sending session identifiers and

encryption keys to the device as a ”to_device” event. Matrix spec has many different

events and different clients can also create their own unique events. Naming

conventions for clients own events uses Java’s package naming conventions for

example ”com.example.myapp.event”. Events detailed in the Matrix spec use the

namespace ”m.” for example ”m.room.message”. [20.]

3.4 Encryption in Matrix

Matrix uses similar cryptographic schemes as Signal, probably the most known secure

communications application on the market. The parent organisation that created

Signal, Open Whisper Systems, created an open standard for secure communications

called the Signal protocol. The Signal protocol can be used to provide end-to-end

encryption for voice calls, video calls and messages. For the Signal protocol they

designed Double Ratchet Algorithm which is an algorithm for key management. They

also designed an improvement on Diffie-Helmann Key Exchange called the extended

triple Diffie-Helmann (X3DH).

Matrix took the Double Ratchet Algorithm and altered it slightly to be more suitable for

group chats with hundreds or thousands of users. This resulted in two different

algorithms that Matrix uses for one-to-one messaging and group messaging called,

”Olm” and ”Megolm”.

21

3.4.1 Double Ratchet Algorithm

Double Ratchet Algorithm as its name states, is not a mathematical cryptographic

scheme, it is an algorithm for key management for encrypted sessions. First in Double

Ratchet Algorithm the parties need to agree on a shared secret key through Diffie-

Helmann Key Exchange or the variation of it the X3DH. After the shared secret key is

established the parties can start conversing using the algorithm. The algorithm derives

new keys for each message in a way that prevents the earlier keys being calculated

from the current or future ones. It also uses Diffie-Helmann calculations as part of each

message to prevent future keys being calculated from current or past ones. [23, p. 3.]

There are three main concepts in the algorithm that combined create the algorithm.

There is Key Derivation Function (KDF) chains, Symmetric-key ratchet and Diffie-

Helmann ratchet. [23, p. 3.]

KDF is defined to be a cryptographic function that takes a secret KDF key and input

and spits out output data. The chain comes from chaining these KDFs together using

some of the output data as the KDF key for the next KDF as can be seen in Figure 7.

Which demonstrates the three rounds of KDF chain resulting in three output keys.

Figure 7: The Key Derivation Function (KDF) chain [23, p. 4].

22

In a Double Ratchet session between two parties, both parties need to have three of

these chains, a root chain, a sending chain and a receiving chain and have KDF key for

each of the chains. The sending chain of one party matches the receiving chain of the

other party. [23, p. 4.]

The symmetric-key ratchet ensures that every message sent between the parties is

encrypted with a unique message key. These message keys are outputs from the

sending and receiving KDF chains and the KDF keys for these chains are referred to

as chain keys. In each round the KDF outputs a chain key and a message key and the

chain key is used for the next round of the ratchet while the message key is used for

the encryption. In Figure 8 it is demonstrated how the symmetric-key ratchet works by

showing two rounds of a sending or receiving chain. [23, p. 5.]

Since the inputs are constants if an attacker would get a hold of one of the parties

sending and receiving chain keys they could calculate all future message keys and

decrypt all future messages. For this reason Diffie-Helmann ratchet is added to the mix.

[23, p. 5.]

Figure 8: Symmetric-key ratchet [23, p. 5].

23

Both parties will generate Diffie-Helmann (DH) key pairs, public and private keys, and

the public key is sent as part of a message. When a new DH public key is received a

DH ratchet step is calculated which calculates new DH key pair for the party. As a

result each party is always sending new DH public keys as part of a message and

calculating a new DH key pairs for themselves. This protects future messages. If an

attacker managed to get the private DH key from one of the parties it would not matter

as new DH key pair will be calculated most likely in the next few messages. [23, p. 6.]

Figure 9 shows how the DH ratchet works when Alice and Bob send messages

between each other. The figure only shows the DH ratchet and not the message

handling. Both Bob and Alice start with a DH key pair and when Bob sends his public

key to Alice, Alice calculates a DH output with her private key and Bobs public key.

When Alice sends her public key to Bob, Bob can calculate the same DH output using

his private key and Alices public key. Bob also generates new DH key pair and uses

Alices public key and his new private key to calculate new DH output. Next time Bob

would send a message he would send Alice his new public key and Alice would do the

same steps as Bob just did. This exchanging of keys and calculating new pairs goes on

indefinitely. [23, p. 6-11.]

Figure 9: The Diffie-Helmann Ratchet [23, p. 9].

24

The Double Ratchet name comes from combining these two ratchets together. In

Figure 10 it is demonstrated how these ratchets are implemented together. The DH

output is used as an input for KDF in the root chain which generates receiving and

sending chain keys.

So when a message is sent and a new DH public key is received a DH output is

calculated using current DH key pair and fed into the root chain KDF and out comes

the next root key and a receiving chain key. Then a new DH key pair is generated and

used to calculate second DH output that is then fed into root chain KDF and out comes

the next root key and a sending chain key. This way Bobs sending chain matches

Alices receiving chain and both can calculate the same message key to decrypt the

message and vice versa. [23, p. 12-16]

Figure 10: Diffie-Helmann ratchet and Symmetric-key ratchet combined
together [23, p. 12].

25

3.4.2 Olm

Olm is a slightly different implementation of the Double Ratchet Algorithm and is used

to establish a secure session between parties in Matrix and used to share keys for

Megolm session. It can be also used for one-to-one messages but Matrix recommends

that it is only used to share Megolm keys between parties. [24]

In Matrix each device has their own identity key pair and multiple one-time key pairs

that are generated using the Curve25519 elliptic curve. Each device then publishes

their public parts of identity keys and public parts of one-time keys to the server. [24]

The initial setup for the Olm requires four Curve25519 inputs, identity keys for both

parties and, and one-time keys for both parties. Both parties generate a shared secret

using the X3DH. Then from this shared secret both parties derive a root key and a

chain key using a KDF. Here is where Olm implements Double Ratchet Algorithm a

little bit differently. Instead of having three KDF chains they only have two because the

sending and receiving chains are combined to one. However in the sending/receiving

chain the message keys are numbered in the order they are created and it is agreed

that the other party uses the even numbered ones and the other odd ones for

encryption and vice versa for decryption. After the session is initiated and both parties

have calculated the secret key they can start conversing using the Double Ratchet

Algorithm. [24]

The actual encryption used in Olm is AES-256 in Cipher Block Chaining mode as

described in Chapter 2.2.2. The AES-256 key as well as an authentication key used to

authenticate the sender are derived from the message key that was generated by the

sending/receiving KDF chain. [24]

3.4.3 Megolm

The Double Ratchet Algorithm is very resource intensive for group messaging since

each person in the group chat would have their own Double Ratchet session with each

user. This would result in huge amount of keys being generated and tracked and huge

amounts of encryption the processor has to do since each message has to be

encrypted for each participant in the group chat separately. Here comes Megolm which

26

is designed to support group messaging in group consisting of thousands or even tens

of thousands of participants. It is described as an AES-based cryptographic ratchet.

[25]

Megolm sessions consists of a counter, Ed25519 key pair and a ratchet. The Ed25519

is a digital signature algorithm based on elliptic curves and is used for authentication in

Megolm. The ratchet is just 1024 bits of randomly generated data. These three fields

form the session data. The session data is shared between each party by first

establishing a secure Olm session with each participant and sending them the session

data encrypted with the Olm session. Each participant in the conversation has to

generate their own Megolm session and share it with everyone else individually. Each

time a message is sent it is encrypted using the participants own Megolm session and

it is decrypted by receiving participants by using the same session that was shared to

them earlier. To ensure new keys are used for each message, the ratchet is forwarded

using the Megolm ratchet algorithm. [25]

In Megolms case if an attacker gains access to the session data they can decrypt any

future messages sent by the victim. This is a known limitation in Megolm and can be

fixed by forcing the creation of new Megolm sessions after a certain number of

messages or after a new participant joins a group chat. [25]

4 Qt Development Framework

Qt is a application development framework intended to use for building cross-platform

applications. Qt applications can be run on nearly every operating system and platform,

for example: Linux, OS X, Windows, VxWorks, QNX, Android, iOS and BlackBerry to

name a few. Qt is a framework written in C++. It extends C++ by adding own helpers,

widgets and functions to it and compiles them in to standard C++ after which the C++

can be compiled with any C++ compiler like GCC for example. This is what makes Qt

so powerful and why it can run on pretty much every platform. It was also used by

Nokia in their old phone operating systems like Symbian and MeeGo. [26; 27.]

One of the more powerful extensions Qt provides is the signal and slot system. If Java

and design patterns are familiar it would be closest to the observer design pattern.

27

Essentially it connects slots to signals. Slots can be functions, so when a signal that it

is connected to fires, the slot gets executed. It is most often used to signal that

something changed within a class so other classes with slots for that signal can act

accordingly. [35]

Qt is not just C++, it also offers a language called QML to build Graphical User

Interfaces (GUI) in a very intuitive and easy way. QML integrates Javascript for added

functionality. QML could be compared to HTML+CSS, the web design languages, but

has some benefits that make it more intuitive to use. Most applications built with Qt

have a frontend built with QML and all the backend functionality built with C++. Qt also

provides standardized components called Qt Quick Components to build applications

that easily scale to different screen sizes and that look universal. [26.]

Qt provides their own Integrated Development Environment (IDE) called the Qt

Creator. It has all the features most IDEs have such as: intelligent code completion,

syntax highlighting, debugger and integration to most version controls like git. Theres

also a drag-and-drop type design tool called Qt Designer. [26.]

5 Implementing Encryption for Matrix Client

Once more theoretical knowledge is acquired about encryption and the caveats one

might face, it is easier to start designing how the encryption should be implemented.

The messaging application upon which the encryption is implemented, is a messaging

app designed to run on any platform but mainly built to run on Necuno Solutions own

secure mobile operating system. Currently it is minimalistic and only has necessary

functions implemented using the Matrix open standard. In its current state it pretty

much only allows messaging for one-to-one and group chats. The application is run on

QEMU virtual emulator that emulates the customers own operating system. Figure 11

shows the QEMU window and the operating system.

28

5.2 Goals

Goals for the thesis is to get familiarized with cryptography, take a deep dive in to the

most common algorithms and schemes, understand the Matrix Open Standard and

design and implement encryption for a messaging application that communicates over

Matrix Open Standard. The encryption for the messages needs to be up to standards

and secure enough to be used in extreme cases such as in governmental

communications for example. The implementation needs to be done in a way which

allows the underlying encryption scheme or libraries to be changed with minimal effort.

In order to evaluate encryption schemes and algorithms some level of cryptography

understanding is required.

5.3 Deciding on Encryption

Careful evaluation was done on which encryption scheme would be used. There are

caveats that need to be considered when deciding encryption schemes. It is most often

Figure 11: QEMU virtual emulator window on a Linux desktop.

29

considered foolish to create one’s own encryption schemes unless they are

mathematicians and have very deep understanding of cryptography. Cryptography is

so complex that trying to invent new schemes by mixing and matching or layering

commonly used schemes does not necessarily make it more secure. So it is best to

stick with proven schemes. Good encryption algorithm should be based on proven

math and as simple as possible algorithm.

At this time there is a threat to encryption in form of quantum computing. Quantum

computing has the possibility of breaking almost all encryption by making it trivial to

calculate primes in the RSA problem by using something called Shor’s algorithm.

However for this thesis quantum computing is considered as a threat but not in the

near future. So called ”post-quantum” encryption schemes will not be considered.

What needs to be considered for end-to-end encryption?

 Messages need to be strongly encrypted.

 Messages need strong forward and backward secrecy, so no future or
past messages can be decrypted if one key is compromised.

 Sender should be able to be authenticated.

 The encryption should be efficient.

After considering all these basic requirements there aren’t many options to choose

from. The most used one that was discussed in Chapter 3.4.1 is the Double Ratchet

Algorithm. It is extremely widely used in multiple different secure chat applications and

it is hailed as the most secure communications encryption algorithm by many security

experts. Another contender that was found to have similar properties was NaCl (or

often known as libsodium). It is an encryption algorithm designed for secure

communications. Its biggest drawback is that it lacks wide spread use.

When looking at the actual encryption the scheme should be AES or stronger as AES

has not yet been cracked [36]. AES is also a standard that has been looked at for

almost 20 years by experts. There have been scares of it being cracked but usually the

vulnerabilities are only possible under specific conditions like using AES with less than

14 rounds or having keys that are related to each other in a special way.

30

Alternatives are risky because they do not have same amount of scrutiny. For example

NaCl does offer a chance to use stream cipher called Salsa20 [37] which has been

said to be extremely strong like AES, but it does not offer the same amount of safety as

20 years of mathematical scrutiny. There is also a very similar block cipher to AES

developed by the Soviet Union that is now the Russian standard for encryption called

GOST. It is almost identical to AES but it also lacks more scrutiny from the public and

does not have widespread use.

The Double Ratchet Algorithm has also had some criticism about its creator and about

the funding of Open Whisper Systems. For example Yasha Levine, an investigative

journalist, takes a deeper look into Signal, Open Whisper Systems and its creator

Moxie Marlinspike. Open Whisper System is a non-profit organisation that tries to

create privacy and security tools for the public, but as Levine describes in his book it

actually might not be that innocent. Marlinspike has been working for the CIA (Central

Intelligence Agency) before he started Open Whisper Systems and most of the funding

Open Whisper Systems receive is from the US government. [28, p. 257-258.]

Even while knowing the above and discussing it with the company it was deemed

secure enough with its wide adoption and the fact that no one has yet found any glaring

issues with the algorithm. So out of all the options the Double Ratchet Algorithm was

chosen to be used for this thesis.

As stated before Double Ratchet Algorithm does not mandate which encryption

schemes to use for the encryption, it is left for the implementations of the Double

Ratchet Algorithm to decide. The most obvious implementation candidate is the Olm

and also Megolm algorithms created by the Matrix team. Another open-source

implementation is called OMEMO, which was created for another messaging protocol

called XMPP. After careful consideration the Olm and Megolm took the cake. The main

reason being that there has been some work done on Qt side to provide easy to use

libraries for Olm and Megolm. These libraries are discussed briefly later on in the

thesis.

So in the end it was the Double Ratchet implementation by Matrix that was chosen to

be the encryption scheme. Good thing about Olm and Megolm is that they both use

31

AES-256 with CBC mode which is probably the most common and arguably most

secure AES variation.

5.4 Application Architecture

The application that the encryption was for, was fairly simple and did require quite a lot

of effort to understand the codebase. It is built on Qt and has few GUI pages done with

QML: LoginPage, RegisterPage, MainPage and ChatPage. These are essentially the

different views the application has and the UI works as a stack based architecture. For

example when the app is started, first thing that pops up is the LoginPage, once logged

in, the app replaces the LoginPage with the MainPage. MainPage lists all the rooms

that are available to the user, so essentially the ones that the user has created or has

been invited to. From there, one of the rooms can be clicked and the app will display

the ChatPage which lists all the room events in chronological order just like the Matrix

spec states. The three main pages can be seen in Figure 12.

The application handles all the backend stuff on C++ side where it has a main.cpp file

which starts the application, then it has a C++ class called Connector which

Figure 12: Three main views of the application.

32

implements an interface called IConnector. The Connector class handles all the

function calls between the user interface (UI) and the backend server. The reason why

it implements an interface is so that there could be multiple different Connector classes

without the need to change the UI. For example there could be a Connector for Matrix,

a Connector for XMPP servers and a Connector to a completely new messaging

service. All these Connectors provide the same functions for the UI so the UI doesn’t

have to be recoded everytime as long as the Connector implements the Connector

interface.

The way message and room lists are handled, is through something called

QAbstractListModel. It is an model interface provided by the Qt framework, that helps

to handle lists with complex objects in it. The data can be changed in these lists very

easily with the help of some predefined functions for handling updates and changes.

The QAbstractListModel also helps to notify the UI when changes happen inside the

lists. The application uses QAbstractListModel to handle events and rooms with

classes called: MessageEventModel and RoomListModel.

The application also utilizes an open source Qt library called libQuotient (used to be

called libQtMatrixClient) which handles all the connections to the Matrix server. It

basically does a lot of work in the background, like handling sync messages with the

server, it creates the HTTP requests and JSON payloads automatically. Only thing that

needs to be done is to call a specific function and give it a few parameters and the

library transforms it into a HTTP request and delivers it to the correct API end point.

[30.]

In Figure 13 is a simple UML diagram of the backend side of the software without

looking into libQuotient. The diagram shows how the Controller implementing the

IController and QObject (necessary for it to use Qt’s extra functions) is in charge of

everything. The UI part also needs to see the RoomListModel and the

MessageEventModels since they have to be directly linked to the UI through the Qt’s

modeling system.

33

The MessageEventModel and RoomListModel are interesting since they use Qt’s

signalling system to be up to date when data changes. In this specific code libQuotient

provides signals when something changes such as unreadMessagesChanged() which

can be basically subscribed to and when that signal is triggered all the subscribed

functions, that are called slots, will be triggered. This signalling system allows

MessageEventModel and RoomListModel to update themselves whenever there is a

change in any room.

When designing encryption to be part of this system with fairly easy way of changing it,

it was decided to be best to follow similar design approach as with Connector and UI.

This would require an interface with the necessary functions to encrypt and decrypt

messages. This results in a easy way of making new encryption classes that could

provide different types of encryption without needing to change any other part of the

application. For example a Connector that connects to Matrix could use a NaCl

encryption protocol and send the encrypted payload over to the Matrix server.

Figure 13: UML diagram of the application.

34

Figure 14 shows how the new IEncryptionManager interface and EncryptionManager

class implementing that interface fit to the UML diagram. In this case unfortunately the

EncryptionManager class needs to know some necessary classes in the libQuotient so

the final implementation is not as clean as it could be if the libQuotient library wouldn’t

be used.

5.5 Implementation of Encryption

LibQuotient had started implementing encryption for the the library in the summer of

2019 which was right around the period when this thesis was worked on. There is also

a QtOlm library created in early 2019 which provides basic error handling and easier to

use functions for using the actual Olm library provided by the Matrix team [31]. For the

libQuotient some work was already done on the library for decrypting messages but it

was still a work in progress that only two people were doing in their free time. The

Figure 14: UML diagram with EncryptionManager Class.

35

library was completely missing encryption for messages and some parts of the key

handling were improperly done. As the decryption was already partially done it was

best to start with that. For testing the decryption, Riot.im, the Matrix flagship messaging

application, was used since it already had Matrix encryption implemented.

The actual encryption and double ratcheting is done using the C/C++ Olm library that

can be installed by cloning the repo and building it or on Linux for example some

package managers have it already as a prebuilt package. The Olm library provides the

primitive functions for key generation, decryption, encryption and session handling.

QtOlm library just builds up on it with Qt based error handling and some helpers to

make using the Olm more easier.

In the end it is a kind of an odd setup where our application is calling a library which

then calls another library which then calls another library. All of these libraries are

open source and each of them needed to be studied in order to make the whole setup

work.

5.5.1 Decryption

The decryption starts with the MessageEventModel. First MessageEventModel has a

data() function that gets called through the signalling system when an Event changes

or new Event is added. This function gets the Event object and it is first checked if that

Event is already known or if it is a brand new Event. If it’s a new Event its type is

checked in order to determine how to handle it. So in this function the event can be

checked if its an EncryptedEvent, a subclass of Event that is provided by the

libQuotient. If it is EncryptedEvent the decryption should be tried by calling the

decryptMessage() function in Connector (Listing 2). To keep the code clean and keep

the MessageEventModel unaware of the EncryptionManager as designed, the

Connector will then call the EncryptionManagers decryptMessage(), which then calls

the libQuotients decryptMessage(). This might seem unnecessary but it keeps the code

clean as designed and separates the classes from each other to make the

development of new EncryptionManagers and Connectors easier.

36

Listing 2. The code that determines if the received Event is encrypted or just a regular
plaintext one.

If the decryption was succesful the decrypted Event is casted in to a

RoomMessageEvent, another subclass of Event, and it is handled normally after that. If

the Event was not EncryptedEvent the original srcEvent variable is used and the Event

is processed normally.

The EncryptionManager will then call the libQuotients decryptMessage() function which

will start the decryption process coded in to the library. Since this was still a work in

progress it obviously had some issues right off the bat.

Matrix spec states that when an encrypted message is sent the process goes like this:

First try to encrypt the message with Megolm, but if there is no active Megolm session,

create a new one, then try to share Megolm session data with the receiving device

encrypted with an Olm session, if there is no Olm session, initiate a new one, encrypt

the Megolm session keys, send them as a to_device event and finally encrypt the

message and send it as a regular encrypted event. The receiving end on the other

hand needs to catch the to_device event, try and decrypt it with the Olm session

initiated by the sending party, extract the keys from the to_device event, save the

session data. Then catch the encrypted event with the actual message and decrypt it

by using the just received session data.

auto& srcEvent = **timelineItem;
 bool isDecrypted = false;
 RoomEventPtr decrypted;
 if (auto e = eventCast<const EncryptedEvent>(&srcEvent))
 {
 decrypted = m_connector->decryptMessage(*e);
 if (decrypted) {
 decrypted->setSender(e->senderId());
 if (auto* msgEvent = eventCast<RoomMessageEvent>(decrypted)) {
 isDecrypted = true;
 }
 }
 }
const auto& event = isDecrypted ? *decrypted.get() : srcEvent;

37

Now libQuotient had most of this implemented, but very poorly. There were null

pointers, some errors from QtOlm were not properly handled and the one-time keys

were poorly handled. First the whole application crashed without an error message.

After some heavy debugging the error was found to be a null pointer returned if there

was an error creating a new Olm session initiated by the sending party. In Listing 3

d→sessionDecryptMessage() function is called and it returns a RoomEventPtr. In the

next line the decryptEvent pointer is being called as a parameter. The problem was that

sessionDecryptMessage() calls for QtOlm libraries Olm session initiation function and

returns a null pointer if there is an error. After the program returns from the function the

decryptedEvent should be checked if its a null pointer before it is used.

Listing 3. Part of the decryption process that resulted in an unexpected crash.

After the null pointer was fixed another issue was, why would the QtOlm return with an

error. The debugger said the error was ”BAD.MESSAGE.KEY.ID”. That error was

caused by bad one-time key handling. Matrix spec states that each device should have

approximately 50 one-time keys uploaded to the server so others can use them to

initiate Olm sessions. LibQuotient generates too many keys and only uploades some of

them and discards the others. This results in following: the Riot.im client downloads an

uploaded one-time key and uses it to create a new Olm session. Meanwhile the

libQuotient based client has discarded the keys that were uploaded to the server so

libQuotient cannot initiate the same session with the sending party because it thinks

the keys are invalid. Once this was fixed by adjusting the key uploading process. The

client can decrypt the messages sent encrypted from Riot.im (Figure 15).

RoomEventPtr decryptedEvent = d-
>sessionDecryptMessage(*encryptedEvent.get());
// since we are waiting for the RoomKeyEvent:
event_ptr_tt<RoomKeyEvent> roomKeyEvent =
 makeEvent<RoomKeyEvent>(decryptedEvent->fullJson());

38

All the Unknown Events in the Figure 15 are events that haven’t been and cannot be

decrypted, because the Megolm session data is not saved currently when the

application is closed.

5.5.2 Encryption

For the encryption the IEncryptionManager interface was used with the intention that

the encryption could be tested without messing with the libQuotient library and once

encryption works properly, copy the changes to the library and make a pull request to

the libQuotients git repository so their work is moved forward a little bit.

Figure 15: Screenshot of the decrypted
message sent from Riot.im.

39

Because there is nothing done for encryption on libQuotient, it is required to use QtOlm

directly. There is no documentation whatsoever for QtOlm so everything needs to be

learned by reading the code. [31]

So the work starts by studying how to concretely handle the encryption process from

Matrix spec point of view:

 First a Megolm session needs to be initiated if it doesn’t exist by calling
olm_init_outbound_group_session from the Olm library. This is done by
creating a new OutboundGroupSession object in the QtOlm library.

 The Olm library will create the session id and session key. Get them from
the OutboundGroupSession object.

 Download device list and their respective identity keys participating in the
room and share the session data with every device as a m.room_key
event using Olm session.

 Check if there already is an Olm session with a device.

 If not, start a new Olm session by claiming one of the devices one-time
keys from the server with a HTTP request to /keys/claim API endpoint

 Create a new Olm session by calling olm_create_outbound_session from
the Olm library. This is done by creating a new OutboundSession object
from the QtOlm library and passing the keys for it as constructor
parameters.

 Then build an encryption JSON payload as stated in the Matrix spec and
encrypt it by calling olm_encrypt from the Olm library or just encrypt() in
QtOlm OutboundSession object.

 Package that payload into an a m.room.encrypted event.

 Send that event to all of the devices participating in the room as a
to_device event.

 Create an encryption payload and encrypt it using olm_group_encrypt or
with QtOlm by calling the OutboundGroupSession encrypt() function.

 Finally wrap that encrypted payload into a m.room.encrypted event and
send it to the server as regular event.

There are some prerequisites here that need to be addressed before it is possible to

properly start tackling the checklist. First the application needs to keep track of users,

their devices, device’s identity and one-time keys. Users are easy as they are saved in

libQuotient. Devices and identity keys however are not. They need to be queried from

the server and libQuotient does not have ready made functions for it. They have

classes mapping all the API endpoints of Matrix spec and generic API querying class

so it is possible to use those to query the devices and identity keys. All of these need to

40

be saved in the application. Ideally they would be saved in a database where they

persist even when the application is closed but for now it is suitable to create a

datastructure that is kept in the application memory. The datastructure ended up being

a triple hash map, which is not very efficient but does the job for now. The hash map is

as follows QHash<QString, QHash<QString, QHash<QString, DeviceKeys*>>>* In

detail its a pointer to a hash map of roomIds to userIds to deviceIds to a pointer into a

custom struct DeviceKeys with the different keys that each device has.

Also, currently the application does not have any type of session handling so when the

application is closed all the sessions are lost, but the sessions can be still managed

while the app is open. Each room will have a Megolm session which can be used for a

hash map to efficiently store roomId and Megolm session pairs and check if any given

room has any sessions open. The same can be done for Olm sessions but each device

has their own Olm session so the same mapping structure can be followed as above.

In Listing 4 all the different data structures used can be seen.

Listing 4. All the necessary data structures to handle everything in application memory.

To populate these data structures the device list is needed and Matrix spec

recommends to download the device list periodically. Other decent alternative is to

download the devices list every time user enters to a room. Also, theres the option to

download it once the user presses send but it is more efficient to do in the background

when user switches rooms so the device list and keys are already downloaded before

sending a message.

So, once the user switches to a room the function downloadDevicesList() is called

(Listing 5). It first iterates over all the users in the room and gathers them to a QHash

map and calls a libQuotients callApi() function which takes a Job class as a parameter.

Jobs are special classes that map Matrix API endpoints to C++ classes so they are

QHash<QString, QHash<QString, QHash<QString, DeviceKeys*>>>*
m_roomIdToUsersToDevicesToKeys;
QHash<QString, QHash<QString, DeviceKeys*>> m_usersToDevicesToKeys;
QMap<QString, QtOlm::OutboundGroupSession*> m_megolmSessions;
QHash<QString, QHash<QString, QtOlm::OutboundSession*>> m_olmSessions;

41

easier to manage in code. They are usually automatically generated and they transform

the hash maps into JSON and they get sent as HTTP requests to the Matrix server.

Listing 5. Function that downloads the devices list and associated keys and saves them to
data structures.

Listing 5 also shows how to signalling system works in Qt. The function call connect is

a special function in Qt which tells Qt what gets called when a signal gets triggered. In

that specific call on the line 8 when Quotient::BaseJob::success signal fires it triggers

the C++ lambda function with this as a context and queryKeysJob pointer as a

parameter. It could also be done without the lambda function and instead make it call a

regular function. Once the Job succeeds and a response is received, the response

/* Download devices and associated identity keys for each user
 */
void EncryptionManager::downloadDevicesList() {
 QHash<QString, QStringList> usersToDevices;
 for(auto user: m_conn->room(m_roomid)->users()) {
 usersToDevices.insert(user->id(), QStringList());
 }
 queryKeysJob = m_conn→callApi<Quotient::QueryKeysJob>(usersToDevices, 10000);
connect(queryKeysJob, &Quotient::BaseJob::success, this, [this] {

QString deviceID;
QHashIterator<QString, QHash<QString,
Quotient::QueryKeysJob::DeviceInformation>> i(queryKeysJob->deviceKeys());

 // i.key() has the userid,
 // i.value() has another QHash with deviceId to all the info in the json of
the /keys/query endpoint
 while (i.hasNext()) {
 i.next();
 for(auto key : i.value().values()) {
 dID = key.deviceId;
 m_usersToDevices.insert(i.key(), i.value().keys());
 // Check if this device has been listed already
 DeviceKeys* deviceKeys = new DeviceKeys;
 deviceKeys->curve25519id = key.keys.value("curve25519:"+dID);
 deviceKeys->ed25519id = key.keys.value("ed25519:"+dID);
 deviceKeys->curve25519onetime = "";
 QHash<QString, DeviceKeys*> dk;
 dk.insert(deviceID, deviceKeys);
 m_usersToDevicesToKeys.insertMulti(i.key(), dk);
 }
 }
 m_roomIdToUsersToDevicesToKeys->insert(m_roomid, m_usersToDevicesToKeys);
 claimKeys();
 });
}

42

data is directly added to the queryKeysJob by the library and then the lambda function

is executed.

In the lambda function all the necessary data is gathered in to the

m_roomIdToUsersToDevicesToKeys hash map. Inside the lambda function a

claimKeys() function is called to claim the one-time keys from the server and save them

as well.

Listing 6. Function that claims one one-time key from the server for each device.

/* Claims the one-time keys from the server and saves them.
 */
void EncryptionManager::claimKeys() {
 QHash<QString, QHash<QString, QString>> usersToDevicesToAlgo;
 QHash<QString, QString> devicesToAlgo;
 QHashIterator<QString, QStringList> i(m_usersToDevices);
 // Check which devices dont have keys saved yet.
 while (i.hasNext()) {
 i.next();
 for(QString device : i.value()) {
 // Check if the keys have been claimed for the device

 devicesToAlgo.insert(device, "signed_curve25519");
 m_claimedDevices << device;
 qDebug() << "Claiming keys for: " << device;
 }
 usersToDevicesToAlgo.insert(i.key(), devicesToAlgo);
 }
 claimKeysJob = m_conn-
>callApi<Quotient::ClaimKeysJob>(usersToDevicesToAlgo, 10000);
 connect(claimKeysJob, &Quotient::BaseJob::success, this, [this] {
 QHashIterator<QString, QHash<QString, QVariant>> i(claimKeysJob-
>oneTimeKeys());
 // i.key() is the username
 // i.value() is a QHash with deviceId to one-time key and signature
 while (i.hasNext()) {
 i.next();
 QHashIterator<QString, QVariant> j(i.value());
 while(j.hasNext()) {
 j.next();
 QHash<QString, QVariant> map = j.value().toHash();
 for(auto key : map.values()) {
 m_deviceOnetimeKey.insert(j.key(),

key.toHash().value("key").toByteArray());
 }
 }
 }
 });
}

43

The claimKeys() function (Listing 6) is very similar to the downloadDevicesList()

function. It this time creates a ClaimKeysJob and again connects a lambda function to

the success signal. In the lambda function the one-time keys are gathered for creating

new Olm sessions.

Now that the data structures are done, the first bullet point can be tackled. So, start by

checking if there is a Megolm session and if none can be found create a new one. After

which the session id and key can be extracted for later encryption (Listing 7).

Listing 7. Create a new Megolm session and get the session id and key that were generated.

Then by iterating through the users and devices map the devices which have an

existing Olm session can be checked and new sessions can be created for those which

do not have an active one. Also the identity and one-time keys can be gathered from

the data structure since they are needed for creating new Olm sessions.

Once the Olm session is started, the to_device event can be crafted that first holds all

the necessary data for the recipient to initialize Olm session and then the session data

for the Megolm session used for future encryptions and decryptions of messages.

Ultimately the to_device event JSON payload will look like Listing 8 except the

 // Check if there are existing megolm sessions
 if(!m_megolmSessions.contains(m_roomid)) {
 OutboundGroupSession* newMegolmSess;
 try {
 newMegolmSess = new OutboundGroupSession();
 } catch (OlmError* e) {
 qDebug() << "Error starting new outbound group session"
 << e->what();
 return;
 }
 QString sessionId = newMegolmSess->id();
 QByteArray sessionKey = newMegolmSess→sessionKey();

44

Listing 8. The to_device event JSON structure that contains the Megolm session data in
plaintext

In Listing 8 the whole JSON structure is in plaintext but in reality the m.room_key event

is encrypted with Olm. Because the encryption functions are not built into the

libQuotient library and there is not yet a class that creates this type of event structure

automatically, it is necessary to create a the JSON payload with Qt tools and wrap it in

a generic Event and send it to the server. Listing 9 shows how the whole payload is

constructed and sent to the server.

// m.room.encrypted event
{
 "type": "m.room.encrypted",
 "content": {
 "algorithm": "m.olm.v1.curve25519-aes-sha2",
 "sender_key": "<sender_curve25519_key>",
 "ciphertext": {
 "<device_curve25519_key>": {
 "type": 0,
 "body": {

 // m.room_key event starts
 "type": "m.room_key",
 "content": {
 "algorithm": "m.megolm.v1.aes-sha2",
 "room_id": "!Cuyf34gef24t:localhost",
 "session_id": "X3lUlvLELLYxeTx4yOVu6UDpasGEVO0Jbu+QFnm0cKQ",
 "session_key": "AgAAAADxKHa9uFxcXzwYoNueL5Xqi69IkD4sni8LlfJL7…"
 },
 "sender": "<sender_user_id>",
 "recipient": "<recipient_user_id>",
 "recipient_keys": {
 "ed25519": "<our_ed25519_key>"
 },
 "keys": {
 "ed25519": "<sender_ed25519_key>"
 }
 }

 // m.room_key event ends

 }
 }
 }
}

45

Listing 9. Generation of JSON payload for the to_device event.

After the to_device event is finally succesfully sent, the actual encrypted Megolm

message can be generated, encrypted and sent. This is done by calling

doEncryptMessage() function (Listing 10) in the EncryptionManager to do the actual

/ Construct the json payload for room_key event
 QJsonObject keys;
 keys.insert("algorithm", Quotient::MegolmV1AesSha2AlgoKey);
 keys.insert("room_id", m_roomid);
 keys.insert("session_id", QString(sessionId));
 keys.insert("session_key", QString(sessionKey));
 QJsonObject recipEd25519;
 recipEd25519.insert("ed25519", QString(ed25519id));
 QJsonObject ourEd25519;
 ourEd25519.insert("ed25519", QString(m_conn->olmAccount()-
>ed25519IdentityKey()));
 QJsonObject payload;
 payload.insert("content", keys);
 payload.insert("sender", m_conn->user()->id());
 payload.insert("recipient", recipient);
 payload.insert("recipient_keys", recipEd25519);
 payload.insert("keys", ourEd25519);
 payload.insert("type", "m.room_key");
 QJsonDocument json(payload);
 // Encrypt this payload with olm
 QByteArray cipherText;
 try {
 cipherText = olmSession->encrypt(json.toJson())->cipherText();
 } catch (OlmError* e) {
 qDebug() << "Error encrypting payload"
 << e->what();
 return;
 }
 // Construct the encrypted event with encrypted room_key event inside
 QJsonObject keyJson;
 keyJson.insert("type", 0);
 keyJson.insert("body", QString(cipherText));
 QJsonObject ciphertextJson;
 ciphertextJson.insert(curve25519id, keyJson);
 QJsonObject finalPayload;
 finalPayload.insert("algorithm", "m.olm.v1.curve25519-aes-sha2");
 finalPayload.insert("sender_key", QString(m_conn->olmAccount()-
>curve25519IdentityKey()));
 finalPayload.insert("ciphertext", ciphertextJson);
 const Quotient::Event* evt = new
Quotient::Event(Quotient::typeId<void>(),"m.room_key", finalPayload);
 std::unordered_map<QString, std::unordered_map<QString, const
Quotient::Event*>> usersToDevicesToEvents;
 std::unordered_map<QString, const Quotient::Event*> deviceEvent;
 deviceEvent[recipDeviceId] = evt;
 usersToDevicesToEvents[recipient] = deviceEvent;
 m_conn->sendToDevices("m.room.encrypted", usersToDevicesToEvents);

46

encrypting of the message. Everything up to this point has been just preparation to set

up the sessions.

Listing 10. The doEncryptMessage() function that does the actual message encryption.

In this function a RoomMessageEvent class is used to do the JSON generation then

the JSON is encrypted using the established Megolm session. Then again an

EncryptedEvent class is used to create all the necessary JSON for the request and the

event is sent to the room.

Now that all the setting up is done and the sessions have been created no new

sessions are created unless the user start conversing with a new user or device.

5.6 Verification of Results

It is necessary to verify the results of the encryption to be sure that no data leaks in the

conversation. The decryption is fairly simple to verify. With browsers developer tools

the encrypted payload that Riot.im sends can be seen and in the application the

ciphertext can be seen as a readable plaintext. Figure 16 shows what the developer

tools caught.

void EncryptionManager::doEncryptMessage(QString plaintext, QString sessionId,
QtOlm::OutboundGroupSession* megolmSession) {
 using namespace QtOlm;
 QByteArray cipherText2;
 Quotient::RoomMessageEvent msgEvt(plaintext,
Quotient::MessageEventType::Text);
 msgEvt.setRoomId(m_roomid);
 try {
 cipherText2 = megolmSession->encrypt(msgEvt.originalJson());
 } catch (OlmError* e) {
 qDebug() << "Error encrypting payload"
 << e->what();
 return;
 }
 Quotient::EncryptedEvent* encEvt = new
Quotient::EncryptedEvent(cipherText2,

m_conn->olmAccount()->curve25519IdentityKey(),
m_conn->deviceId(), sessionId);

 m_conn→room(m_roomid)→postEvent(encEvt);
}

47

The ciphertext is clearly a garbled mess and the application decrypts it perfectly.

Everything seems to be as its supposed to be for the decryption.

For inspecting the encryption from the QEMU virtual emulator is a bit tougher but there

are tools to do it. One option could be to take a tcpdump on the emulator and save it

somewhere and afterwards inspect it with a packet inspection tool like WireShark.

Unfortunately the emulator used here did not come with a tcpdump. Easiest way to

inspect the payload for this specific case is to print it out in the debugging console

(Figure 17).

Figure 17 shows that the JSON payload was similarly encrypted as Riot.im did.

Ciphertext is similar garbled mess.

Figure 16: JSON payload sent from Riot.im.

Figure 17: JSON payload sent from the application.

48

6 Results

In this thesis the goal was to take a deeper look into cryptography from mathematical

point of view, understand the architecture of Matrix Open Standard and develop deeper

understanding for modern encryption algorithms used in messaging applications by

concretely implementing one. The concrete end goal was to build upon a messaging

application that had the basic messaging functions and add encryption to it in a way

that would allow for it to be changed for another encryption scheme without too much

work on the core messaging.

In the end the mathematical theory of cryptography was a very interesting to delve into,

but it was way bigger of a field than expected. The rabbit hole just never ended with

new and interesting topics emerging every time the subject was delved deeper into. For

that reason this thesis could not possibly tackle every interesting topic of cryptography.

Navigating the subject and picking out the necessary topics for the goal of the thesis

proved difficult without simplifying or flat out leaving out things. For example key

generation and key shceduling was not touched in the encryption schemes that would

require deeper knowledge of random number generation and Pseudo-Random Number

Generators (PRNG).

As always with coding projects the concrete work proved to be more difficult compared

to what was imagined before starting the work. Even though Qt was familiar before

starting the thesis, the C++ code was way more complex compared to what was

experienced before. Also the no documentation for the libraries part required building

understanding for the libraries through reading the code. This was a blessing and

curse. While it perhaps gave deeper understanding of the code and taught the value of

understanding code, it also was time consuming and difficult at times. The coding

issues in the libraries also required to delve into the library itself and search and fix

bugs inside it. However this resulted in being in contact with the author and he was

happy to know the issues currently in the library. He also encouraged to contribute by

creating pull requests for the library.

The implementation of encryption was exactly what was asked, but there are definitely

multiple improvements that weren’t able to be addressed given the time frame.

Currently the implementation is great for high security situations where everything is

49

handled in memory and nothing is saved persistently on the disk which stops certain

security risks. This however can also be an usability issue where all the encrypted

messages are lost once the application is closed. There were also bugs in the libraries

key handling which weren’t completely fixed since they were sligthly out of scope for

this project.

Overall the study was great and interesting. Most if not all the goals were met given the

timeframe. Deep understanding of cryptography was developed which will come in

handy in the future. The code design with interfaced implementation was appreciated

and the company was happy with the result and it will be used as a great base for

future developments. The study of Matrix Open Standard and the modern encryption

algorithms were greatly appreciated and gave excellent insight for the company to

develop their products further.

50

References

1 Pandya, Dwiti; Khushboo Ram Narayan; Sneha Thakkar; Tanvi Madhekar, B.S
Thakare. 2015. Brief History of Encryption. Online.
<https://www.researchgate.net/publication/289124401_Brief_History_of_Encryp
tion> Accessed 11.09.2019

2 Crypto Museum. One-Time Pad, The unbreakable code. Online.
<https://www.cryptomuseum.com/crypto/otp/index.htm> Accessed 16.09.2019

3 Katz, Jonathan & Lindell, Yehuda. 2007. Introduction to Modern Cryptography.

4 Dworkin, Morris. 2001. Recommendations for Block Cipher Modes of Operation.
NIST National Institute of Standards and Technology. Online
<https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-
38a.pdf> Accessed 18.09.2019

5 Data Encryption Standard (DES). Online.
<https://academic.csuohio.edu/yuc/security/Chapter_06_Data_Encription_Stan
dard.pdf> Accessed 19.09.2019

6 Burr, William. NIST National Institure of Standards and Technology. Online.
<https://nvlpubs.nist.gov/nistpubs/sp958-lide/250-253.pdf> Accessed
19.09.2019

7 Chu, Edward; Kim, Paul; Kim, Phillip; Liu, Frank; Sharma, Jason; Yu Jeffrey.
2000. The Selection of the Encryption Standard. MIT. Online
<http://web.mit.edu/6.933/www/Fall2000/aes/AES_final_6933.pdf> Accessed
20.09.2019

8 Pathan, Al-Sakib Khan & Azad, Saiful. 2014. Practical Cryptography. E-book.
O'REILLY.

9 Diffie, Whitfield; Hellman, Martin E. 1976. New Directions in Cryptography.
Insitute of Electricar and Electronics Engineering. Online.
<https://ee.stanford.edu/~hellman/publications/24.pdf> Accessed 09.10.2019

10 Schneier, Bruce & Ferguson Niels. 2003. Practical Cryptography.

11 Kallam, Sivanagaswathi. 2015. Diffie-Helmann: Key Exchange and Public Key
Cryptosystems. Indiana State University. Online.
<http://cs.indstate.edu/~skallam/doc.pdf> Accessed 09.10.2019

12 Matrix. Frequently Asked Question. Online. <https://matrix.org/faq/> Accessed
14.10.2019

13 Matrix. Who is Matrix.org. Archived. Online.
<https://web.archive.org/web/20190329152401/https://matrix.org/blog/who-is-
matrix-org/> Accessed 14.10.2019

51

14 Amdocs. Amdocs Unified Communications Solution. Archived. Online. <https://
web.archive.org/web/20141003202858/http://www.amdocs.com:80/Products/
digital-lifestyle-services/Pages/unified-communications.aspx> Accessed
14.10.2019

15 Rogers, Steward. 2018. Status invests $5 million in Matrix to create a
blockchain messaging superpower. VentureBeat. Online.
<https://venturebeat.com/2018/01/29/status-invests-5-million-in-matrix-to-
create-a-blockchain-messaging-superpower/> Accessed 14.10.2019

16 Hodgson, Matthew. 2018. Matrix and Riot confirmed as the basis for France's
Secure Instant Messenger app. Online.
<https://matrix.org/blog/2018/04/26/matrix-and-riot-confirmed-as-the-basis-for-
frances-secure-instant-messenger-app> Accessed 14.10.2019

17 Rosemain, Mathieu. 2018. France builds WhatsApp rival due to surveillance
risk. Reuters. Online. <https://www.reuters.com/article/us-france-privacy/france-
builds-whatsapp-rival-due-to-surveillance-risk-idUSKBN1HN258> Accessed
14.10.2019

18 Lomas, Natasha. 2019. New Vector scores $8.5M to plug more users into its
open, decentralized messaging Matrix. Techcrunch.
<https://techcrunch.com/2019/10/10/new-vector-scores-8-5m-to-plug-more-
users-into-its-open-decentralized-messaging-matrix/> Accessed 14.10.2019

19 Hodgson, Matthew. 2019. New Vector raises $8.5M to accelerate
Matrix/Riot/Modular. Online. <https://matrix.org/blog/2019/10/10/new-vector-
raises-8-5-m-to-accelerate-matrix-riot-modular> Accessed 14.10.2019

20 Matrix. Matrix Specification. Online. <https://matrix.org/docs/spec/> Accessed
14.10.2019

21 W3. Relationship to the World Wide Web and REST Architectures. Online.
<https://www.w3.org/TR/2004/NOTE-ws-arch-20040211/#relwwwrest>
Accessed 15.10.2019

22 Matrix Guide. Application Services. <https://matrix.org/docs/guides/application-
services> Accessed 15.10.2019

23 Marlinspike, Moxie; Perrin Trevor (editor). 2016. The Double Ratchet Algorithm.
Revision 1. Online.
<https://signal.org/docs/specifications/doubleratchet/doubleratchet.pdf>
Accessed 13.11.2019

24 Matrix. Olm: A Cryptographic Ratchet. Online. <https://gitlab.matrix.org/matrix-
org/olm/blob/master/docs/olm.md> Accessed 13.11.2019

25 Matrix. Megolm group ratchet. Online.
<https://gitlab.matrix.org/matrix-org/olm/blob/master/docs/megolm.md>
Accessed 13.11.2019

26 Qt. About Qt. Online. <https://wiki.qt.io/About_Qt> Accessed 13.11.2019

52

27 Qt. Nokia-and-Qt. Online. <https://wiki.qt.io/Nokia-and-Qt> Accessed
13.11.2019

28 Levine, Yasha. 2018. The Surveillance Valley.

29 Matrix. End-to-End Encryption implementation guide.
<https://matrix.org/docs/guides/end-to-end-encryption-implementation-guide/>
Accessed 14.11.2019

30 Quotient-IM. libQuotient library. Online.
<https://github.com/quotient-im/libQuotient> Accessed 14.11.2019

31 QtOlm. libQtOlm library. Online. <https://gitlab.com/b0/libqtolm> Accessed
14.11.2019

32 Wikimedia. Cipher Block Chaining mode.

<https://upload.wikimedia.org/wikipedia/commons/8/80/CBC_encryption.svg?

download> Accessed 15.11.2019

33 Wikimedia. Feistel Cipher Diagram.

<https://upload.wikimedia.org/wikipedia/commons/f/fa/Feistel_cipher_diagram_

en.svg?download> Accessed 15.11.2019

34 Hodgson, Matthew. 2015. Matrix - One-year in. Slides. Online.

<https://www.slideshare.net/jaquayle/matrix-oneyear-in-matthew-hodgson-

matrixorg> Accessed 15.11.2019

35 Qt. Signals & Slots. Online <https://doc.qt.io/qt-5/signalsandslots.html>

Accessed 20.11.2019

36 Schneier, Bruce. 2009. Blog. Online. <https://www.schneier.com/blog/archives/

2009/07/another_new_aes.html> Accessed 20.11.2019

37 Bernstein, Daniel J. 2007. The Salsa20 family of stream ciphers. Online. <http://

cr.yp.to/snuffle/salsafamily-20071225.pdf> Accessed 20.11.2019

	1 Introduction
	2 Encryption
	2 Modern Cryptography
	2.2 Symmetric-key Cryptography
	2.2.1 Data Encryption Standard
	2.2.2 Advanced Encryption Standard

	2.3 Asymmetric-key Cryptography
	2.3.1 RSA
	2.3.2 Diffie-Helmann Key Exchange

	3 Matrix Open Standard
	3.2 History
	3.3 Architecture of Matrix
	3.4 Encryption in Matrix
	3.4.1 Double Ratchet Algorithm
	3.4.2 Olm
	3.4.3 Megolm

	4 Qt Development Framework
	5 Implementing Encryption for Matrix Client
	5.2 Goals
	5.3 Deciding on Encryption
	5.4 Application Architecture
	5.5 Implementation of Encryption
	5.5.1 Decryption
	5.5.2 Encryption

	5.6 Verification of Results

	6 Results

