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The objective  of  this  thesis  was to design and implement  encryption for  a messaging
application  that  uses  Matrix  Open  Standard  to  deliver  the  messages.  The  study  was
purposed  to  be  used  as  a  solid  base  that  can  be  expanded  upon  by  creating  the
implementation in such a way that it is easy to change if another encryption scheme would
be used.

For the purpose of the thesis it was necessary to look in to the history of encryption and
modern cryptography in  order  to  gain  more knowledge and to choose and design the
proper encryption scheme that would fill out the necessary criteria set by the company.
The bit by bit operations of the mostly used encryption schemes were studied as well as
modern larger scale algorithms that provide more security around the strong encryption.

Matrix Open Standard needed to be studied as well  for  the understanding of  how the
messages are delivered. The Qt cross-platform framework was used for the development
and the messaging  application  was  running  on a  QEMU virtual  emulator,  running  the
company’s own secure mobile operating system. 

The implementation was successful and the goals of encrypting and decrypting messages
sent with the application was achieved. The company was happy with the results although
some parts were left without much attention. Overall the design and implementation gives
good base to build upon or use it as is for future developments.

The  cryptography  knowledge  gathered  during  this  thesis  gave  the  company  a  lot  of
confidence as to the cryptographic schemes explored in this study. It also gave them more
understanding on their future evaluations on different encryption schemes implemented in
the present study.
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Abstract

List of Abbreviations

Qt Cross-platform  framework  maintained  by  the  Finnish  Qt  Company.

Created for building applications for any architecture or operating system.

Key In cryptography means a shared secret that contains information on how

to decrypt ciphertext into readable format.

Plaintext Message in readable form.

Ciphertext Message in encrypted form.

OTP One-time-pad.  An  old  encryption  scheme  that  provides  unbreakable

encryption. It is limited by its key size.

Public-key The public part of a key pair that is used to encrypt messages for the

person holding the other  part  of  the key pair.  Can be publicly  shared

without compromising the encryption.

Private-key The secret part of a key pair. Used to decrypt and sign messages. Has

the be kept as a secret and not shared with anyone.

Perfect secrecy Term used in modern cryptography to indicate the encryption cannot

be broken even if given unlimited resources to the adversary.

Forward secrecy Is a feature in modern cryptography key agreement protocols that

gives assurances that future messages will not be decipherable even if

one session key is compromised.

Computational security Is a definition used in modern cryptography to describe that an

encryption cannot be broken in a reasonable timeframe given the current

state of computation.
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Symmetric-key A key that is needed for both encryption and decryption. Meaning the

recipient of a message needs the same key as the sender in order to

communicate.

Stream  cipher  An  encryption  method  in  symmetric-key  cryptography,  where  the

encryption is done to one bit at a time using a random stream of bits.

Block cipher An encryption method where the plaintext is divided in to block and the

blocks are then encrypted separately from the other blocks.

XOR Exclusive  or.  Logical  operation  in  cryptography  and  mathematics  in

general, that takes two inputs, 0 or 1 for example, and outputs 1 if they

differ and 0 if they are the same.

IV Initialization  vector.  Used  as  input  data  to  alter  the  outcome of  some

algorithm.  Shared between two communicating  parties to arrive at  the

same key after the IV is inputted in to an algorithm.

ECB Electronic code book. An operating mode for block ciphers, where each

block is encrypted individually.

CBC Cipher block chaining.  An operating mode for  block ciphers where the

encrypted result of each block is fed as an IV in to the next block, creating

a chain.

DES Data  Encryption  Standard.  A  block  cipher  that  was  the  first  official

standard for encryption in the US.

DES2 Double-DES. Next iteration of DES to make it more secure, where DES is

used twice.

DES3 Triple-DES.  The  final  iteration  of  DES,  where  the  DES  is  used  three

times.
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AES Advanced Encryption Standard.  After  DES was deemed insecure AES

was developed to be the new standard for encryption. It is a block cipher

as well.

RSA Rivest-Shamir-Adleman. Widely used public-key cryptosystem.

Diffie-Helmann Key Exchange Is a mathematical way of exchanging cryptographic keys

over a public network.

MAC Message Authentication Code. A short piece of data usually in the header

of the actual data used to authenticate the data.

VoIP Voice-over-IP.  Term  used  to  describe  calls  that  go  over  the  internet

network.

SDK Software Development Kit. A collection of software used to develop and

build other software such as applications.

HTTP HyperText Transfer Protocol. The underlying protocol of the world wide

web.

API Application  Programming Interface.  Interface used by servers to serve

clients with data or to collect data that clients send to servers.

JSON JavaScript  Object  Notation.  A  way  of  handling  and  storing  data  in  a

human readable form. Used widely in webservices.

REST Represantional State Transfer. Architecture many servers on the internet

use for storing data. Operates on top of HTTP.

KDF Key Derivation Function. A term used in cryptography for a function that

takes some input and generates a key.

QEMU Short for Quick EMUlator. It is a lightweight open source virtual emulator

for emulating different environments and operating systems.



Abstract

Elliptic Curve A mathematic function that defines a curve over a plane. Used often in

everything  related  to  cryptography,  authentication,  key  generation  and

key agremeents.

NaCl An algorithm designed to be used for encrypted messaging applications.

Often called libsodium.

GUI Graphical User Interface. Term used to describe the part of an application

that is visible to the user.

CIA Central Intelligence Agency. One of the main intelligence agencies in the

US. Tasked with mostly foreign intelligence.

UML Unified  Modeling  Language  is  a  modeling  language  used  in  software

engineering to show the design of a large system.
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1 Introduction

On the internet everything one does is sent over a network where hackers, companies

and states take note and save everything. Their goals are different: they will try to steal

credit card information, extract every piece of data point in order to serve better ads or

they try and identify political standings and thoughts in the name of national security.

What ever their end goal is, its invading privacy.

Today encryption is added to everything from browsers and web traffic to local hard

drives and communications. But what is encryption? How does it work? Why is it good

for privacy? How can anyone be sure their personal messages aren’t analyzed by large

tech companies or evil adversaries? How is encryption actually created? These are the

questions this thesis tries to answer.

This  thesis  starts  with the history of  encryption  and take a deep dive  into  modern

cryptography to understand the underlying mathematics of encryption. It does shine a

light into the bit by bit operations encryption does to data and create understanding of

how mathematics can create security. Then it takes a look at modern algorithms that

secure todays messaging applications and delve into the architecture of one upcoming,

open source and decentralized messaging protocol called Matrix Open Standard.

Finally the goal is to showcase a concrete implementation of modern encryption on a

messaging application that uses Matrix for transportation of messages. In the process

the  thesis  outlines  what  needs  to  be  considered  on  the  broader  spectrum  when

designing  encryption  and  what  are  the  intricate  details  when  implementing  it.  The

application itself  has been created with Qt cross-platform framework which requires

understanding of the C++ coding language and the Qt framework in order to develop

the implementation.

The study was done for a Finnish cybersecurity company, Necuno Solutions Ltd. The

company sells secure communications solutions for industries that require high level of

security such as investigative journalism,  lawfirms, healthcare,  critical  infrastructure,
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governmental agencies and defense. The groundwork laid by this engineering thesis is

intended to be used for their future products.

2 Encryption

Encryption in its most basic definition is taking some data and scrambling it in a way

that only the authorized parties are able to understand the information. This, in most

common and historic encryption schemes required both parties to know a specific key

that can be used to encrypt and decrypt the information. A more concrete explanation

would  be  taking  a  some message  often  referred to  as  plaintext  like  “Hello  world”,

making it unreadable, referred to as ciphertext, like “SGVsbG8gd29ybGQK” and giving

it to another person who knows the secret key and can use it to decrypt it back to its

original meaning. 

Encryption has been prevalent through history and it starts all the way from 500 BC

with simple substition ciphers [1, p. 2],  to mathematically complex modern encryption

schemes and even modern quantum resistant encryption.  This chapter does go over

the brief history of encryption..

People have throughout history tried to keep some sensitive information hidden from

unintendent persons often using some form of encryption. One of the earliest forms of

encryption  was  substitution  ciphers,  where  a  word  is  taken  and  the  letters  are

substituted by shifting the alphabet by a predefined amount. This required the recipient

of the encrypted information to know the number or “key” for example to shift by 3 to

decrypt the message. The most well known cipher of this kind is called Caesar’s Cipher

and  was  made  famous  by  Julius  Caesar,  who  used  it  to  communicated  with  his

generals. However Caesar used always a fixed key of 3 which was not very secure

once the key was known [1, p. 2]. These substitution ciphers quickly became obsolete

as they can be easily cracked using frequency analysis or a brute force attack. Brute

force attack  or exhaustive search is a way of trying every single possible key for the

decryption until the decrypted plaintext makes sense. In the substitution cipher the key

can  only  be  0-28  when  using  the  Finnish  alphabet,  because  there  are  29  letters,

resulting in 29 different variations and in turn is very vulnerable to brute force attack.

Frequency analysis is a form of cryptanalysis and it is used to aid in decrypting of the
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ciphertexts  by  analyzing  the  frequency  of  certain  letters  and  letter  pairs.  In  every

language  some  letters  are  more  frequent  than  others  and  this  can  reduce  the

bruteforcing significantly.

During  medieval  times  cryptography  and  encryption  methods  were  not  improved

greatly.  Most  notably  “polyalphabetic”  ciphers  were  invented  to  fight  the  frequency

analysis developed to crack simple substitution ciphers. In the 1917 the one-time-pad

(OTP) was invented by Gilbert Vernam and Joseph Mauborgne and it is the only truly

unbreakable cipher [2]. OTP works by having a encryption key the same size or larger

than the actual message or plaintext consisting of truly random numbers. Then each

letter is added to each number of the encryption key by using modular addition. The

resulting ciphertext then has no relation to the original plaintext if the OTP is unknown.

The recipient has to have the exact same key that was used to encrypt the original text

in order to decrypt the ciphertext. The encryption key is to be destroyed after usage

and never used again, hence the name “one-time-pad”.

Right  before  World  War  II  the  Germans  invented  the  Enigma  machine,  it  was  an

electromechanical encryption machine that used a rotor mechanism that scrambles the

26 letters of alphabet. It was extensively used to encrypt messages used by the Nazis

in  the World  War  II  and  great  effort  was  used  to  decrypt  those messages  by  the

opposing forces. Enigma machine went through many iterations but the basic concept

was that when a key is pressed a light above the keyboard would light up indicating a

letter of the alphabet. One person would then type a message on the machine and

another would write down the illuminated letters which would give out the ciphertext.

The rotor inside the machine would rotate on every keypress changing the electrical

connections between the keys and the lights. Entering the ciphertext on the receiving

end would give out the original message. The security of the system was based on

predefined  settings  which  would  change  daily  and  distributed  to  each  station

beforehand. Enigma machines encryption was not perfect and could be decrypted with

intensive mathematical cryptanalysis. Later on in the war The United Kingdom started

the Ultra program to decrypt these messages and the infamous Turing machines was

built during that time. The decryption of the Nazi information played a crucial part in the

end of the war.



4

2 Modern Cryptography

Modern  cryptography  started  after  the  World  War  II  and  it  is  defined  by  using

computers  to  do  encryption  instead  of  mechanical  machines.  It  is  based  on

mathematical functions that the computers can calculate. Before modern cryptography,

classical cryptography could be thought of as an art form where construction of good

encryption was based on creativity and personal skill instead of rigorous mathematical

theory.  In  the  computer  era  however  a  rich  theory  and  science  emerged  around

cryptography allowing it to become more than just encryption of communications and

secret  messages.  It  opened  up  the  possibilities  for  studying  authentication,  digital

signatures, protocols for exchanging secret keys, electronic auctions and elections as

well as digital currency. With modern cryptography it is often more appropriate to talk

about  the  individual  bits  instead of  the  letters of  the  alphabet,  like  in  the previous

chapter of historic cryptography. So, in the following chapters, plaintext and ciphertext

refer to 1’s and 0’s that the computer uses instead of the letters of the alphabet. The

following  chapters go over  the two main  approaches for  modern cryptography,  the

Symmetric-key  cryptography  and  the  Asymmetric-key  cryptography  and  some

examples for these schemes are looked at in more detail.

2.2 Symmetric-key Cryptography

Symmetric-key cryptography is also known as private key cryptography, as it uses a

predefined key that both parties have to know. Most historical ciphers could be thought

of as being private key cryptography as they often used a key, known by both parties,

for example the substitution cipher referred in Chapter 2. It used a key, a number, that

was used to determine how much was the alphabet  shifted for  the encryption and

decryption of the plaintext. Symmetric-key cryptography brings up some key concepts

of cryptography in general. Those concepts are perfectly secret, often called perfect

secrecy, and computational security.

In modern cryptography a perfect secrecy is achieved when given unlimited computing

power the ciphertext cannot be decrypted by an adversary, due to the fact that the

adversary  trying  to  decrypt  the  ciphertext  lacks  enough  information  to  succeed,
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regardless of the adversary’s computational power. Such schemes are called perfectly

secret or information-theoretically secret. [3, 29-35.]

Perfectly secret schemes are different from computationally secure schemes, which is

the aim for most of the modern cryptography. Most modern encryption schemes can be

theoretically broken given enough time or computational power, because they are not

perfectly  secret.  However,  the  time  and  effort  of  breaking  these  schemes  is

astronomical  and  would  require  life  times  or  even  larger  than  universes  age  to

succeed. The reason for most currently used encryption schemes to not be perfectly

secret, is the practicality of it. The mathematical proof for perfect secrecy goes beyond

the scope of this thesis. In the interest of this thesis it is sufficient to say that perfect

secrecy can be mathematically achieved, but it lacks practicality as it is proven to only

be achievable if the key length is the same or larger than the plaintext length and the

key is then never used again. The one-time-pad is one such encryption scheme that is

perfectly secret. [3, p. 58]

Computational security is often defined as an adversary having a very small probability

to decrypt the message given a certain timeframe. That probability should be thought of

to be small enough that it can safely be assumed it will never really happen. Modern

encryption  schemes  are  computationally  secure  to  find  a  compromise  between

practicality and perfect secrecy. [3, p. 59]

Symmetric-key cryptography has two main ways of encrypting the plaintext,  stream

ciphers and block ciphers. Stream cipher is where a random stream of bits is taken,

which will  be the key, and then encrypting the plaintext by using a logical operation

called “exclusive or” (XOR) on it. XORing means taking the plaintext and the random

key, comparing each individual bit and if they are the same write down 1 and if they are

different write down 0. Essentially this is how modern OTP works, as opposed to the

historical  OTP which  used  modulo  arithmetic  on  alphabet  letters.  There  are  some

issues of practicality that arise with stream ciphers. For example both parties have to

have the same stream and keep up the state of the stream so both know which part of

the stream to use for encryption and decryption without reusing old parts. This is called

the synchronized  mode. [3, p. 76-81.]



6

Another way called unsynchronized mode is where the stream is generated using a

seed and an initial vector IV. The generation depends on a pseudorandom generator,

that is out of scope for this study, but for the purpose of this explanation it is assumed

that the pseudorandom generator is very strong at generating randomness. The seed

is  always  kept  secret  and  shared  with  the  communicating  parties.  With  every

encryption an IV is chosen at random and sent to the recipient with the ciphertext. The

recipient can now use the seed and the IV to generate the same stream and use it to

decrypt the message. [3, p. 76-81.]

Block ciphers take the plaintext and slices it into fixed sized blocks, if a block is not

filled completely by the plaintext it can be concatenated with the appropriate amount

0’s to fill the block. Then a key is used to encrypt each block. There are many different

designs and modes of operation of block ciphers. Simplest and most insecure one is

called  the  Electronic  Codebook  (ECB)  mode,  where  each  block  is  encrypted  and

decrypted separately. This is insecure because equal plaintext blocks result in equal

ciphertext blocks and patterns can be recognized. [3, p. 93-95.]

The most common one Cipher Block Chaining (CBC) mode works by generating an

initial vector IV and XORing it to the first plaintext block before using the key to encrypt

the block, then the resulting ciphertext is used as an IV on the next block in the same

fashion (Figure 1). [3, p. 95; 4, p. 9.]

Figure 1: Cipher Block Chaining (CBC) diagram [33].
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The IV  is sent to the recipient with the ciphertext. This mode fixes the issue of ECB

where equal  plaintext  blocks result  in equal  ciphertext  blocks,  as the  IV   is  always

generated randomly before each encryption. The drawback that is often discussed is

that this mode cannot be parallelized since each block is dependant on the previous

one  during  the  encryption  resulting  in  slower  encryption  speeds.  However,  in

decryption each ciphertext block acts as an IV for the one ahead of it thus each block

can be decrypted in parallel since they are not sequentially dependant on each other.

Most notable block ciphers are Data Encryption Standard (DES), its big brother, Triple

DES (DES-3) and Advanced Encryption Standard (AES). DES and DES-3 are mostly

unused in modern applications these days, because of their short key size, but AES

remains in wide use and remains uncracked. [3, p. 95; 4, p. 10]

2.2.1 Data Encryption Standard

Data Encryption Standard is defined as a symmetric-key block cipher and published by

National  Institute of  Standards and Technology (NIST), formerly National  Bureau of

Standards (NBS). It started in 1972 as a request for a new national encryption scheme

by the NBS that could be used commercially and could secure data in transit and at

rest.  IBM  submitted  one  of  their  cryptographic  algorithms  designed  for  financial

applications  and  after  extensive  review  and  further  development  by  the  National

Security  Agency  (NSA)  and  the  public.  It  was  accepted  as  a  Federal  Infomation

Processing Standard (FIPS) 46 in 1977. [5, p. 143; 6, p. 1.]

As underlying block cipher design, DES uses the Feistel network. Feistel network is a

popular design of block ciphers used in many modern encryption schemes. In Feistel

network a block of plaintext is separated into two halves and they go through rounds.

Each round, some function F takes a sub-key derived from the master-key and one half

of the block and encrypts it. This encrypted output is then XORed to the other half and

then the halves are swapped and another round is done to it as can be seen in Figure

2. [6, p. 2.] 
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The function and sub-keys are not defined in Feistel network so it is up to the actual

design of an encryption scheme to define the function and the derivation of sub-keys

from the master-key. The derivation of the sub-key is called the key schedule. The

function usually consist of so called substitution boxes (S-boxes) and permutations. [3.

p. 160-162.]

DES is a 16 round Feistel network with a block size of 64 bits, key size of 56 bits and

sub-key size of 48 bits. The encryption process is made of two permutations called P-

boxes and the 16 Feistel network rounds in between. The P-boxes take 64 bit input and

permutes them according to a predefined rule.  As the P-boxes are predefined and

public knowledge they have no effect on the security of the scheme and are ignored in

the scope of this thesis. It  is believed that P-boxes are in DES, only to slow down

software implementations and attacks although no official explanation has been given

from the DES developers. [5, p. 144-145; 3, p. 163-165.]

Figure 2: Diagram of Feistel network [32].
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As can be seen in Figure 3 one round of DES takes the two halves of a block ( RI

and LI ), puts the other one through a function ƒ called DES function and XORs the

output to the other half.  Then the sides are swapped.

In Figure 4 DES function takes the input of 32 bits and puts it through an expansion D-

box to make it 48 bits. It then XORs the output with the 48 bit sub-key and puts that

output through S-boxes to make it back into 32 bits. That output is then put through

another straight D-box and finally the output is XORed with the other half of the block.

The sides are swapped and it goes through another round, in total of 16 times for each

block. [3, p. 163-164; 5, p. 147.]

Figure  3:  One  round  of  Data  Encryption
Standard (DES) [5, p .146].
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DES key size is not sufficient enough for modern times but the cryptography of the

DES  function  has  been  tested  and  proven  to  withstand  immense  scrutiny  from

mathematicians  trying  to  break  it.  The  most  succesful  attack  against  DES  is  to

bruteforce the key. An adversary only has to check 256 keys to find a match and in

1998 a special computer was built that was able to do it in 112 hours. [3, p. 169-170.]

Since the key  size  is  the  obvious  problem and slightest  change  to the inner  DES

function,  to  fit  a larger  key,  could  make the whole  design insecure,  a double-DES

(DES-2) was introduced. DES-2 goes through the DES twice as the name suggests

and used two different 56 bit keys, increasing overall key size to 112. This did not yield

enough of a security increase because of an clever mathematical attack called meet-in-

the-middle, that could use the two rounds of the DES and the outputs to figure out the

key pair in almost the same amount of time. Then the DES-3 was introduced that fixed

the meet-in-the-middle attack and could use the 2 keys like in DES-2 or increase the

key size to three keys, 168 bits. DES-3 was raised as the new standard but doing the

already inefficient DES 3 times made it way too slow and another encryption scheme

was needed. [3, p. 170-172.]

Figure 4: Diagram of the DES function [5, p.
147].
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2.2.2 Advanced Encryption Standard

AES was again started as a request  for  a new block cipher by NIST in 1997 with

security and efficiency as the most important criteria. It was decided to be a very public

competition to amass most amount of scrutiny from the public cryptographers around

the world. Up until this point most of the greatest cryptographers especially in the US

worked for the military or the government. The competition was cleverly designed and it

was split  into 2 conferences, where the schemes would be evaluated thoroughly to

have the best ones make it to next round and in the end only one would be deemed the

best. This incentivized the developers of the encryption schemes to try and break each

others schemes and find the slighest weaknesses in them. In the end algorithm called

Rijndael  designed  by  John  Daemen  and  Vincent  Rijmen  from  Belgium  won  the

competition and it was deemed as the Advanced Encryption Standard by NIST in 2000.

[3, p. 173; 6, p. 3; 7, p. 9-15.]

Rijndael  differs from the standardized AES.  Rijndael  was designed to be a flexible

block cipher that supports multiple different block and key sizes. AES however is fixed

at block size of 128 bits and key size of 128, 192 or 256 bits. [7, p. 21.]

AES  is  essentially  a  substitution-permutation  network  instead  of  Feistel  network,

although they are very similar  and both consists of multiple rounds. In substitution-

permutation network in one round the input bits are sent through S-boxes where the

bits are substituted in a certain way mandated by the designer of the scheme, after

which the outputs are permutated. These two steps are to add confusion and diffusion,

which prevent cryptanalysis attacks. A sub-key is usually XORed to the inputs before

the substitution stage. [3, p. 174]

AES algorithm consists of either 10, 12 or 14 rounds, depending on the key size. Each

round has 4 stages or transformations that are done to a so called state. In AES the

state is a 4 by 4 array of bytes that is part of the plaintext. The sub-key or as called in

AES, round-key, is the same size as the state. The 4 stages are as follows:

1. AddRoundKey: A 16 byte or 128 bit round-key is derived from the master-key
and represented as 4 by 4 bytes. It is then simply XORed to the state.

2. SubBytes: Each byte of the state is transformed according to a fixed S-box.
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3. ShiftRows: Each row is cyclically shifted by a certain amount depending on
the number of the row. First row is not shifted at all, second row is shifted
one step to the left, third is shifted two steps to the left and th fourth row is
shifted three steps to the left.

4. MixColumns: Each column is multiplied by a fixed matrix.

In the final round MixColumns is replaced with an additional AddRoundKey stage. [3, p.

174; 7, p. 20-23.]

AES has seen a immense amount of scrutiny over the years and only known attacks

against it rely on less rounds than optimal and even then the attacks are not practical

and take some time. The only practical attack against AES is to try and use exhaustive

search for the key which takes 2256 guesses, if a 256 bit key is used. This number is

so astronomically large it is hard to even imagine. [3, p. 175]

2.3 Asymmetric-key Cryptography

Asymmetric-key cryptography also known as public-key cryptography aims to solve the

key sharing problem of  private-key cryptography.  As described in  the Chapter  2.2,

private  key  cryptography  requires  the  participants  to  have  the  same  key.  The

distribution needed to happen in a secure way, such as meeting in person or already

established  encrypted channel  for  example,  to  stop adversaries  from obtaining  the

secret key. 

The basic concept of the public-key cryptography is to have a two keys mathematically

related to each other, public key and a private key. The private key is always kept

secret  and the public  key is shared.  The messages are always encrypted with the

recipients  public  key.  Once  encrypted  it  can  only  be  decrypted  by  the  associated

private  key  only  known  to  the recipient  of  the  message.  It  is  important  that  while

knowing the public key it is impossible for the adversary to decrypt the message. This

solves  the  key  distribution  problem  as  everyone  can  now share  their  public  keys

without a worry as long as their private keys are kept secure. [8.]

In 1976 Whitfield Diffie and Martin Hellmann published a revolutionary cryptography

paper titled ”New Directions in Cryptography” that outlined many problems in private-
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key  cryptography  and  introduced  many  ideas  in  the  cryptography  domain.  They

introduced the public-key cryptography, the Diffie-Helmann key exchange as well as

message authentication codes or MACs [9, p.  1-5].  The key exchange is a way of

generating  secret  keys  for  communicating  parties  over  a  public  channel  without

knowing any shared secrets and the MAC is a way of signing a message and anyone

with the corresponding public  key is able to verify the authenticity of  the message.

Diffie and Hellmann realized  that some mathematical functions are easy to calculate

one way but doing it in reverse is extremely hard and takes a very long time [3, p. 306-

308].  Such problems that  are  conjectured  to  be hard  in  math  are  prime factoring,

discrete logarithm and elliptic curves [3, p. 231]. Some important algorithms that this

chapter does go over are: RSA, Diffie-Helmann key exchange and Elliptic Curves.

2.3.1 RSA

In 1977 three scientists in Massachusetts Institute of Technology (MIT) developed an

algorithm  based  on  public-key  cryptography  work  published  year  earlier  by  the

Whitfield Diffie and Martin Hellmann, and named it after their last names, Ron Rivest,

Adi  Shamir  and  Leonard  Adleman.  British  intelligence  agency  Government

Communications Headquarters (GCHQ), had developed similar public key scheme but

it was only declassified and published publicly in 1997. [8.]

RSA algorithm is based on a seemingly very simple mathematical problem that has

been studied for hundreds of years and no efficient solution has been found yet, the

factorization problem. The factorization problem is the problem of finding integers p and

q for a given non-prime integer N in such a way that pq = N. It is a computationally hard

problem to solve.  One way to solve the problem is to exhaustively search whether p

divides N by checking each integer one by one until √N because the smallest prime

factor of  N can only be as large as  √N . Although more efficient algorithms have

been found none are very efficient. The problem gets very time consuming when p and

q  are prime numbers and extremely large. [3, p. 248-249.]

RSA  algorithm  expands  on  this  problem  by  using  modulo  arithmetic  and  the

factorization  to  create  the  reasonably  efficient  encryption  method.  The  in-depth

mathematical  functions  for  key  generation  are  not  in  the  scope  of  this  thesis.  In
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principle, three very large numbers are generated. N used as a modulus is chosen by

picking two random primes p and q, where pq = N. Also integers e and d are generated

related to  N.  The public  key  is  ⟨N ,e⟩  and the private  key is  ⟨N ,d ⟩ .  The

ciphertext c is  generated  from  a  plaintext  message  m  in  a  following  way:

c=memodN . Similarly the decryption is done by: m=cdmodN . Even if the

adversary would be able to find every piece of information except the integer  d, it is

extremely hard to computate the integer  d which essentially is the private key. [3, p.

258-259.]

2.3.2 Diffie-Helmann Key Exchange

Diffie-Helmann key exchange relies on the same factorization problem utilized by the

RSA algorithm. Diffie-Helmann key exchange is a way for two parties to generate a

shared secret key over open network. Meaning that even if an eavesdropper can listen

to everything between the two parties the eavesdropper cannot derive the same shared

key. After the shared key is generated for both parties they can start communicating

using symmetric encryption of their choice.

The key exchange is done by choosing a large prime p and a generator g, such that g

is a primitive root modulo p. These two numbers are agreed upon by both parties, lets

call them Alice and Bob. Alice then chooses a secret integer  a  and Bob chooses a

secret  integer  b.  Alice  computes  A=gamodp and  Bob  computes

B=gbmodp .  They  then  exchange  the  computed  values  A  and  B.  With  the

knowledge of B Alice can compute K1=Bamodp and with the knowledge of A Bob

can compute similarly  K2=Abmodp . The computed values K1 and K2 are

equal  because  in  modulo  p the  following  is  true:

Abmodp=gabmodp=gbamodp=Bamodp .  This  allows  two  people  to

calculate exact same secret key without anyone listening in on the exchange being

able to. [11, p. 10-12.] 
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3 Matrix Open Standard

Matrix  is  an open standard for  communications  over  IP.  It  can be used for  instant

messaging,  VoIP  (Voice  over  IP)  calls  over  WebRTC  protocol  or  for  any  kind  of

application  that  needs  to  send  and  receive  messages  over  IP  and  retain  the

conversation  history.  It  aspires  to be a  decentralized communications  network that

would allow everyone to converse together without  worrying about what application

they are using or without having a central set of servers that collect everything. It wants

to break the current communications silos and be universal and as easy to use as

email.  Matrix itself  is not an application,  instead it  is a standard that defines how it

works and it also provides open source reference implementations of Matrix servers,

client  Software  Development  Kits  (SDK)  and  some  application  services.  The

communication  to  the  server  is  done  through  HyperText  Transfer  Protocol  (HTTP)

Application Programming Interfaces (API). HTTP is the protocol that all of the internet

works on and APIs are often used in servers to receive data and respond to data

queries. This allows Matrix to be easy to implement on the client level. [12.]

3.2 History

Matrix  was first  created  in  2014 inside  a  company  called  Amdocs  and  was  called

Amdocs  Unified  Communications  [14].  The  protocol  was  funded  my  Amdocs  and

developed by a small team lead by Matthew Hodgson. In 2015 Amdocs created a new

subsidiary called ”Vector Creations Limited” where the team developing Matrix  was

then moved. In 2017 Amdocs was stopping the funding for the team which lead to them

creating their own company called ”New Vector” based in the UK. This new company

was in charge of developing and maintaining the Matrix standard and hosting the public

Matrix servers. It also provided consultancy and hosting services on top of the Matrix

protocol. The company was not well funded and relied on donations to keep the public

servers running. New Vector received its first big funding round in January 2018 from

Status, an Ethereum cryptocurrency based start-up, of 5 million US dollars [15]. In April

of  the  same  year  the  French  goverment  announced  a  move  to  start  using  Matrix

protocol and the Riot application developed by ”New Vector” for all their governmental

communications in order to protect them from US or Russian spying [16; 17].
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In October 2019 Matrix.org foundation was created in order to keep Matrix as open and

independent  as possible without  compromising it  through commercial  interests. It  is

founded in the UK as a private company limited by guarantee and as a community

interest company to make it a non-profit organisation with an asset lock to prevent the

selling of the intellectual property or extracting of profits [17].

Very recently in 2019 the New Vector raised a Series A funding round of  8.5 million US

dollars from Notion Capital, Dawn Capital and Firstminute Capital. The funds are ment

to go in to the development of Matrix standard in form of richer End-to-End encryption

support and loads of other features. For the New Vector the funding is used for their

messaging app Riot and their Matrix hosting platform Modular.IM. The investment is

said to be impartial on the development of the Matrix standard and the commercial gain

for the investors will come from the commercial platform New Vector is building on top

of the Matrix standard, like the hosting service of Modular.IM. [18; 19.]

3.3 Architecture of Matrix

Matrix consists mainly of homeservers and clients. There are also identity servers and

application  services  but  first  this  thesis  goes  over  the  more  important  parts,

homeservers  and  clients.  Homeservers  are  Matrix  servers  that  clients  connect  to.

Clients are the applications that users use, so in practise clients are users or devices.

Anyone can host their own homeserver and only have themselves registered on it, or

anyone can use a larger homeserver such as Matrix.org homeserver that has hundreds

of thousands of users. Clients do not have to be in the same homeserver in order to

communicate Inside these homeservers are something called rooms. They are a virtual

environment where events such as messages get sent between the clients participating

in  the  room.  Rooms  can  be  between  two  clients  or  thousands  of  clients.  The

decentralization of the Matrix comes from the fact that each room is stored on every

single homeserver participating in the same room. This creates a federated network of

homeservers and clients where no central server exists as can be seen in Figure 5.
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A homeserver can be kept private by disabling the federation feature. This allows for

private homeservers and even private federations of homeservers. For example the

French government will equip every branch and office of the government to have their

own homeserver and only allow connections from whitelisted list of other homeservers

in the French government. This means is that each office of the government can have

private rooms between the people in their office or collaborate with other offices by

inviting users from different branches, thus creating decentralized rooms. As the data is

shared  between  homeservers  every  participating  homeserver  shares  the  same

conversation  history,  minimizing  data  forgeries  and  enabling  transparency  between

homeservers. [20.]

Matrix identities are usually in the form of ”username@homeserver.com”. Usually when

creating a Matrix account an username is chosen and additional information can be

provided such as email  or  phone number for  password resets and other additional

control  over the account.  Identity servers job is to map these ”3rd party identifiers”

Figure 5: Architecture of Matrix ecosystem [34].
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(3PID) to the Matrix identities for users to discover other users through their email or

phone number. Identity servers and the 3PIDs are optional and not a requirement in

the Matrix ecosystem. Matrix.org homeserver uses identinty servers by default to make

it easier for users to find their friends in the Matrix. [20.]

As  stated  above  briefly,  Matrix  uses  HTTP  APIs  for  the  server  communications.

Essentially Matrix is just a detailed list of specifications (spec) for these open APIs that

anyone can implement on their server or on their client. Matrix.org has an open source

reference  homeserver  that  implements  these  APIs,  called  Synapse.  The  APIs

themselves are common APIs that are used everywhere, JSON over REST. REST or

Representational State Transfer is a commonly used software architecture that defines

how a web service behaves.  JSON is  Javascript  Object  Notation and it  is  used to

transmit human-readable data objects.

Matrix has three different APIs that creates the whole standard. Theres client-server

API, server-server API and application service API. Client-server API defines endpoints

for the client to get or send data to the server such as messages. Server-server API

defines  the  interaction  between  homeservers  [20].  Application  Service  API  defines

extra  functions  on  the  server  that  a  normal  client  would  not  be  able  to  do.  The

application service API was created to give some services more powers, and allow

bridging to other application and protocols. Bridging, as the name states, is a bridge

from another application to Matrix. Messages sent in a Matrix room are also sent to the

bridged application which could be Telegram for example. [21.]

The basic  flow of  sending  a message from client  A to client  B when both  are on

different homeservers can be seen in Figure 6. Client A sends HTTP PUT request to its

homeserver using the client-server API. The homeserver then signs the message and

appends it  to its copy of the room events. It  then sends the message to client  B’s

homeserver  as  HTTP  PUT  request  using  the  server-server  API.  Then  client  B’s

homeserver authenticates and verifies the signature and appends the message into its

copy of the rooms events. Client B can then get the message via HTTP GET request.

[20.]
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In the most basic form messages are extremely easy to send in Matrix.  The HTTP

request in Listing 1 is extremely simplistic with only two lines of JSON in it: what type of

message  it  is  and  the  contents  of  the  message.  Of  course  often  the  user  is

authenticated and the events can be more complex which would add more things in to

the request but it’s a good demonstration how easy it can be to create simple Matrix

client using these APIs.

Listing 1. Simple PUT request for sending a message in Matrix [22.].

As people in the modern day can and often do have multiple different devices they use

in their lives such as laptops, desktops, smartphones and tablets. The way Matrix spec

Figure  6: Message flow of between two users from two different
homeservers [20].

PUT 
/_matrix/client/r0/rooms/%21636q39766251%3Aexample.com/send/m.room.messag
e/35 HTTP/1.1
Content-Type: application/json

{
  "msgtype": "m.text",
  "body": "hello"
}
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defines these ”devices” does not always relate to only a physical device, it can also

relate to different browsers on a computer or different Matrix clients on a smartphone.

Devices are usually used for handling encryption keys as each device have their own

encryption keys but users can also revoke access on some devices in case of theft for

example. [20.]

Matrix is event oriented as briefly touched above. Meaning that everything exchanged

over Matrix is called an event. Events are usually sent in rooms between users. Events

can be simple things like basic messages or they can be more complex ones that are

not even visible to the user like iniating encryption and sending session identifiers and

encryption keys to the device as a ”to_device” event. Matrix spec has many different

events  and  different  clients  can  also  create  their  own  unique  events.  Naming

conventions  for  clients  own  events  uses  Java’s  package  naming  conventions  for

example  ”com.example.myapp.event”.  Events  detailed  in  the  Matrix  spec  use  the

namespace ”m.” for example ”m.room.message”. [20.]

3.4 Encryption in Matrix

Matrix uses similar cryptographic schemes as Signal, probably the most known secure

communications  application  on  the  market.  The  parent  organisation  that  created

Signal, Open Whisper Systems, created an open standard for secure communications

called  the Signal  protocol.  The Signal  protocol  can be used to provide end-to-end

encryption  for  voice  calls,  video  calls  and  messages.  For  the Signal  protocol  they

designed Double Ratchet Algorithm which is an algorithm for key management. They

also designed an improvement on Diffie-Helmann Key Exchange called the extended

triple Diffie-Helmann (X3DH).

Matrix took the Double Ratchet Algorithm and altered it slightly to be more suitable for

group  chats  with  hundreds  or  thousands  of  users.  This  resulted  in  two  different

algorithms that Matrix uses for  one-to-one messaging and group messaging called,

”Olm” and ”Megolm”. 
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3.4.1 Double Ratchet Algorithm

Double  Ratchet  Algorithm as its  name states,  is  not  a  mathematical  cryptographic

scheme, it is an algorithm for key management for encrypted sessions. First in Double

Ratchet Algorithm the parties need to agree on a shared secret key through Diffie-

Helmann Key Exchange or the variation of it the X3DH. After the shared secret key is

established the parties can start conversing using the algorithm. The algorithm derives

new keys for each message in a way that prevents the earlier keys being calculated

from the current or future ones. It also uses Diffie-Helmann calculations as part of each

message to prevent future keys being calculated from current or past ones. [23, p. 3.]

There are three main concepts in the algorithm that combined create the algorithm.

There  is  Key  Derivation  Function  (KDF)  chains,  Symmetric-key  ratchet  and  Diffie-

Helmann ratchet. [23, p. 3.]

KDF is defined to be a cryptographic function that takes a secret KDF key and input

and spits out output data. The chain comes from chaining these KDFs together using

some of the output data as the KDF key for the next KDF as can be seen in Figure 7.

Which demonstrates the three rounds of KDF chain resulting in three output keys.

Figure 7: The Key Derivation Function (KDF) chain [23, p. 4].
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In a Double Ratchet session between two parties, both parties need to have three of

these chains, a root chain, a sending chain and a receiving chain and have KDF key for

each of the chains. The sending chain of one party matches the receiving chain of the

other party. [23, p. 4.]

The symmetric-key ratchet ensures that every message sent between the parties is

encrypted with  a unique message key.  These message keys are outputs from the

sending and receiving KDF chains and the KDF keys for these chains are referred to

as chain keys. In each round the KDF outputs a chain key and a message key and the

chain key is used for the next round of the ratchet while the message key is used for

the encryption. In Figure 8 it is demonstrated how the symmetric-key ratchet works by

showing two rounds of a sending or receiving chain. [23, p. 5.]

Since the inputs are constants if an attacker would get a hold of one of the parties

sending and receiving chain keys they could calculate all  future message keys and

decrypt all future messages. For this reason Diffie-Helmann ratchet is added to the mix.

[23, p. 5.] 

Figure 8: Symmetric-key ratchet [23, p. 5].
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Both parties will generate Diffie-Helmann (DH) key pairs, public and private keys, and

the public key is sent as part of a message. When a new DH public key is received a

DH ratchet step is calculated which calculates new DH key pair for the party. As a

result each party is always sending new DH public keys as part of a message and

calculating a new DH key pairs for themselves. This protects future messages. If an

attacker managed to get the private DH key from one of the parties it would not matter

as new DH key pair will be calculated most likely in the next few messages. [23, p. 6.]

Figure  9 shows  how  the  DH  ratchet  works  when  Alice  and  Bob  send  messages

between each  other.  The  figure  only  shows  the DH ratchet  and  not  the  message

handling. Both Bob and Alice start with a DH key pair and when Bob sends his public

key to Alice, Alice calculates a DH output with her private key and Bobs public key.

When Alice sends her public key to Bob, Bob can calculate the same DH output using

his private key and Alices public key. Bob also generates new DH key pair and uses

Alices public key and his new private key to calculate new DH output. Next time Bob

would send a message he would send Alice his new public key and Alice would do the

same steps as Bob just did. This exchanging of keys and calculating new pairs goes on

indefinitely. [23, p. 6-11.]

Figure 9: The Diffie-Helmann Ratchet [23, p. 9].
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The  Double  Ratchet  name comes  from  combining  these  two  ratchets  together.  In

Figure  10 it is demonstrated how these ratchets are implemented together. The DH

output is used as an input for KDF in the root chain which generates receiving and

sending chain keys. 

So when a message is sent  and a new DH public  key is received a DH output  is

calculated using current DH key pair and fed into the root chain KDF and out comes

the next root key and a receiving chain key. Then a new DH key pair is generated and

used to calculate second DH output that is then fed into root chain KDF and out comes

the next root key and a sending chain key. This way Bobs sending chain matches

Alices receiving chain and both can calculate the same message key to decrypt the

message and vice versa. [23, p. 12-16]

Figure 10: Diffie-Helmann ratchet and Symmetric-key ratchet combined
together [23, p. 12].
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3.4.2 Olm

Olm is a slightly different implementation of the Double Ratchet Algorithm and is used

to establish a secure session between parties in Matrix and used to share keys for

Megolm session. It can be also used for one-to-one messages but Matrix recommends

that it is only used to share Megolm keys between parties. [24]

In Matrix each device has their own identity key pair and multiple one-time key pairs

that are generated using the Curve25519 elliptic curve. Each device then publishes

their public parts of identity keys and public parts of one-time keys to the server. [24]

The initial  setup for the Olm requires four Curve25519 inputs, identity keys for both

parties and, and one-time keys for both parties. Both parties generate a shared secret

using the X3DH. Then from this shared secret both parties derive a root key and a

chain key using a KDF. Here is where Olm implements Double Ratchet Algorithm a

little bit differently. Instead of having three KDF chains they only have two because the

sending and receiving chains are combined to one. However in the sending/receiving

chain the message keys are numbered in the order they are created and it is agreed

that  the  other  party  uses  the  even  numbered  ones  and  the  other  odd  ones  for

encryption and vice versa for decryption. After the session is initiated and both parties

have calculated the secret key they can start  conversing using the Double Ratchet

Algorithm. [24]

The actual  encryption  used in  Olm is  AES-256 in  Cipher  Block  Chaining  mode as

described in Chapter 2.2.2. The AES-256 key as well as an authentication key used to

authenticate the sender are derived from the message key that was generated by the

sending/receiving KDF chain. [24]

3.4.3 Megolm

The Double Ratchet Algorithm is very resource intensive for group messaging since

each person in the group chat would have their own Double Ratchet session with each

user. This would result in huge amount of keys being generated and tracked and huge

amounts  of  encryption  the  processor  has  to  do  since  each  message  has  to  be

encrypted for each participant in the group chat separately. Here comes Megolm which
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is designed to support group messaging in group consisting of thousands or even tens

of thousands of participants. It is described as an AES-based cryptographic ratchet.

[25]

Megolm sessions consists of a counter, Ed25519 key pair and a ratchet. The Ed25519

is a digital signature algorithm based on elliptic curves and is used for authentication in

Megolm. The ratchet is just 1024 bits of randomly generated data. These three fields

form  the  session  data.  The  session  data  is  shared  between  each  party  by  first

establishing a secure Olm session with each participant and sending them the session

data encrypted with  the Olm session.   Each participant  in  the conversation has to

generate their own Megolm session and share it with everyone else individually. Each

time a message is sent it is encrypted using the participants own Megolm session and

it is decrypted by receiving participants by using the same session that was shared to

them earlier. To ensure new keys are used for each message, the ratchet is forwarded

using the Megolm ratchet algorithm. [25]

In Megolms case if an attacker gains access to the session data they can decrypt any

future messages sent by the victim. This is a known limitation in Megolm and can be

fixed  by  forcing  the  creation  of  new  Megolm  sessions  after  a  certain  number  of

messages or after a new participant joins a group chat. [25]

4 Qt Development Framework

Qt is a application development framework intended to use for building cross-platform

applications. Qt applications can be run on nearly every operating system and platform,

for example: Linux, OS X, Windows, VxWorks, QNX, Android, iOS and BlackBerry to

name a few. Qt is a framework written in C++. It extends C++ by adding own helpers,

widgets and functions to it and compiles them in to standard C++ after which the C++

can be compiled with any C++ compiler like GCC for example. This is what makes Qt

so powerful and why it can run on pretty much every platform. It was also used by

Nokia in their old phone operating systems like Symbian and MeeGo. [26; 27.]

One of the more powerful extensions Qt provides is the signal and slot system. If Java

and design patterns are familiar it  would be closest to the observer design pattern.
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Essentially it connects slots to signals. Slots can be functions, so when a signal that it

is  connected  to  fires,  the  slot  gets  executed.  It  is  most  often  used  to  signal  that

something changed within a class so other classes with slots for that signal can act

accordingly. [35]

Qt  is  not  just  C++,  it  also  offers  a  language  called  QML to  build  Graphical  User

Interfaces (GUI) in a very intuitive and easy way. QML integrates Javascript for added

functionality. QML could be compared to HTML+CSS, the web design languages, but

has some benefits that make it more intuitive to use. Most applications built  with Qt

have a frontend built with QML and all the backend functionality built with C++. Qt also

provides standardized components called Qt Quick Components to build applications

that easily scale to different screen sizes and that look universal. [26.]

Qt  provides  their  own  Integrated  Development  Environment  (IDE)  called  the  Qt

Creator. It has all the features most IDEs have such as: intelligent code completion,

syntax highlighting, debugger and integration to most version controls like git. Theres

also a drag-and-drop type design tool called Qt Designer. [26.]

5 Implementing Encryption for Matrix Client

Once more theoretical knowledge is acquired about encryption and the caveats one

might face, it is easier to start designing how the encryption should be implemented.

The messaging application upon which the encryption is implemented, is a messaging

app designed to run on any platform but mainly built to run on Necuno Solutions own

secure mobile operating system. Currently it  is minimalistic and only has necessary

functions  implemented using the Matrix  open standard.  In its current  state it  pretty

much only allows messaging for one-to-one and group chats. The application is run on

QEMU virtual emulator that emulates the customers own operating system. Figure 11

shows the QEMU window and the operating system.
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5.2 Goals

Goals for the thesis is to get familiarized with cryptography, take a deep dive in to the

most common algorithms and schemes, understand the Matrix  Open Standard and

design and implement encryption for a messaging application that communicates over

Matrix Open Standard. The encryption for the messages needs to be up to standards

and  secure  enough  to  be  used  in  extreme  cases  such  as  in  governmental

communications for example. The implementation needs to be done in a way which

allows the underlying encryption scheme or libraries to be changed with minimal effort.

In order to evaluate encryption schemes and algorithms some level of cryptography

understanding is required.

5.3 Deciding on Encryption

Careful evaluation was done on which encryption scheme would be used. There are

caveats that need to be considered when deciding encryption schemes. It is most often

Figure 11: QEMU virtual emulator window on a Linux desktop.
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considered  foolish  to  create  one’s  own  encryption  schemes  unless  they  are

mathematicians and have very deep understanding of cryptography. Cryptography is

so complex  that  trying to invent  new schemes by mixing and matching or layering

commonly used schemes does not necessarily make it more secure. So it is best to

stick with proven schemes. Good encryption algorithm should  be based on proven

math and as simple as possible algorithm.

At this time there is a threat to encryption in form of quantum computing. Quantum

computing has the possibility of breaking almost all encryption by making it trivial to

calculate  primes  in  the  RSA problem  by  using  something  called  Shor’s  algorithm.

However for this thesis quantum computing is considered as a threat but not in the

near future. So called ”post-quantum” encryption schemes will not be considered.

What needs to be considered for end-to-end encryption?

 Messages need to be strongly encrypted.

 Messages need strong forward and backward secrecy, so no future or
past messages can be decrypted if one key is compromised.

 Sender should be able to be authenticated.

 The encryption should be efficient.

After  considering all  these basic  requirements there aren’t  many options to choose

from. The most used one that was discussed in Chapter  3.4.1 is the Double Ratchet

Algorithm. It is extremely widely used in multiple different secure chat applications and

it is hailed as the most secure communications encryption algorithm by many security

experts.  Another contender that was found to have similar  properties was NaCl (or

often  known  as  libsodium).  It  is  an  encryption  algorithm  designed  for  secure

communications. Its biggest drawback is that it lacks wide spread use.

When looking at the actual encryption the scheme should be AES or stronger as AES

has not yet been cracked [36]. AES is also a standard that has been looked at for

almost 20 years by experts. There have been scares of it being cracked but usually the

vulnerabilities are only possible under specific conditions like using AES with less than

14 rounds or having keys that are related to each other in a special way. 
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Alternatives are risky because they do not have same amount of scrutiny. For example

NaCl does offer a chance to use stream cipher called Salsa20 [37] which has been

said to be extremely strong like AES, but it does not offer the same amount of safety as

20 years of mathematical scrutiny. There is also a very similar block cipher to AES

developed by the Soviet Union that is now the Russian standard for encryption called

GOST. It is almost identical to AES but it also lacks more scrutiny from the public and

does not have widespread use. 

The Double Ratchet Algorithm has also had some criticism about its creator and about

the funding of Open Whisper Systems. For example Yasha Levine, an investigative

journalist,  takes a deeper  look  into  Signal,  Open Whisper  Systems and its  creator

Moxie  Marlinspike.  Open Whisper  System is  a  non-profit  organisation  that  tries  to

create privacy and security tools for the public, but as Levine describes in his book it

actually might not be that innocent. Marlinspike has been working for the CIA (Central

Intelligence Agency) before he started Open Whisper Systems and most of the funding

Open Whisper Systems receive is from the US government. [28, p. 257-258.]

Even while  knowing the above and discussing it  with the company it  was deemed

secure enough with its wide adoption and the fact that no one has yet found any glaring

issues with the algorithm. So out of all the options the Double Ratchet Algorithm was

chosen to be used for this thesis. 

As  stated  before  Double  Ratchet  Algorithm  does  not  mandate  which  encryption

schemes to use for  the encryption,  it  is  left  for  the implementations  of  the Double

Ratchet Algorithm to decide. The most obvious implementation candidate is the Olm

and  also  Megolm  algorithms  created  by  the  Matrix  team.  Another  open-source

implementation is called OMEMO, which was created for another messaging protocol

called XMPP. After careful consideration the Olm and Megolm took the cake. The main

reason being that there has been some work done on Qt side to provide easy to use

libraries  for  Olm and Megolm.  These libraries  are  discussed briefly  later  on in  the

thesis.

So in the end it was the Double Ratchet implementation by Matrix that was chosen to

be the encryption scheme. Good thing about Olm and Megolm is that they both use
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AES-256 with  CBC mode which  is  probably  the most  common and arguably  most

secure AES variation.

5.4 Application Architecture

The application that the encryption was for, was fairly simple and did require quite a lot

of effort to understand the codebase. It is built on Qt and has few GUI pages done with

QML: LoginPage, RegisterPage, MainPage and ChatPage. These are essentially the

different views the application has and the UI works as a stack based architecture. For

example when the app is started, first thing that pops up is the LoginPage, once logged

in, the app replaces the LoginPage with the MainPage. MainPage lists all the rooms

that are available to the user, so essentially the ones that the user has created or has

been invited to. From there, one of the rooms can be clicked and the app will display

the ChatPage which lists all the room events in chronological order just like the Matrix

spec states. The three main pages can be seen in Figure 12.

The application handles all the backend stuff on C++ side where it has a main.cpp file

which  starts  the  application,  then  it  has  a  C++  class  called  Connector  which

Figure 12: Three main views of the application.
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implements  an  interface  called  IConnector.  The  Connector  class  handles  all  the

function calls between the user interface (UI) and the backend server. The reason why

it implements an interface is so that there could be multiple different Connector classes

without the need to change the UI. For example there could be a Connector for Matrix,

a  Connector  for  XMPP servers  and  a  Connector  to  a  completely  new  messaging

service. All these Connectors provide the same functions for the UI so the UI doesn’t

have to be recoded everytime as long as the Connector implements the Connector

interface.

The  way  message  and  room  lists  are  handled,  is  through  something  called

QAbstractListModel. It is an model interface provided by the Qt framework, that helps

to handle lists with complex objects in it. The data can be changed in these lists very

easily with the help of some predefined functions for handling updates and changes.

The QAbstractListModel also helps to notify the UI when changes happen inside the

lists.  The  application  uses  QAbstractListModel  to  handle  events  and  rooms  with

classes called: MessageEventModel and RoomListModel.

The application also utilizes an open source Qt library called libQuotient (used to be

called  libQtMatrixClient)  which  handles  all  the  connections  to  the  Matrix  server.  It

basically does a lot of work in the background, like handling sync messages with the

server, it creates the HTTP requests and JSON payloads automatically. Only thing that

needs to be done is to call a specific function and give it a few parameters and the

library transforms it into a HTTP request and delivers it to the correct API end point.

[30.]

In Figure  13 is a simple UML diagram of the backend side of the software without

looking  into  libQuotient.  The  diagram  shows  how  the  Controller  implementing  the

IController and QObject (necessary for it to use Qt’s extra functions) is in charge of

everything.  The  UI  part  also  needs  to  see  the  RoomListModel  and  the

MessageEventModels since they have to be directly linked to the UI through the Qt’s

modeling system.
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The  MessageEventModel  and  RoomListModel  are  interesting  since  they  use  Qt’s

signalling system to be up to date when data changes. In this specific code libQuotient

provides signals when something changes such as unreadMessagesChanged() which

can be basically  subscribed to and when that  signal  is triggered all  the subscribed

functions,  that  are  called  slots,  will  be  triggered.  This  signalling  system  allows

MessageEventModel and RoomListModel to update themselves whenever there is a

change in any room.

When designing encryption to be part of this system with fairly easy way of changing it,

it was decided to be best to follow similar design approach as with Connector and UI.

This would require an interface with the necessary functions to encrypt and decrypt

messages. This results in a easy way of making new encryption classes that could

provide different types of encryption without needing to change any other part of the

application.  For  example  a  Connector  that  connects  to  Matrix  could  use  a  NaCl

encryption protocol and send the encrypted payload over to the Matrix server.

Figure 13: UML diagram of the application.
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Figure  14 shows how the new IEncryptionManager interface and EncryptionManager

class implementing that interface fit to the UML diagram. In this case unfortunately the

EncryptionManager class needs to know some necessary classes in the libQuotient so

the final implementation is not as clean as it could be if the libQuotient library wouldn’t

be used.

5.5 Implementation of Encryption

LibQuotient had started implementing encryption for the the library in the summer of

2019 which was right around the period when this thesis was worked on. There is also

a QtOlm library created in early 2019 which provides basic error handling and easier to

use functions for using the actual Olm library provided by the Matrix team [31]. For the

libQuotient some work was already done on the library for decrypting messages but it

was still  a work in progress that only two people were doing in their free time. The

Figure 14: UML diagram with EncryptionManager Class.
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library was completely missing encryption for messages and some parts of the key

handling were improperly done. As the decryption was already partially done it was

best to start with that. For testing the decryption, Riot.im, the Matrix flagship messaging

application, was used since it already had Matrix encryption implemented.

The actual encryption and double ratcheting is done using the C/C++ Olm  library that

can be installed by cloning the repo and building it  or  on Linux for  example some

package managers have it already as a prebuilt package. The Olm library provides the

primitive  functions  for  key generation,  decryption,  encryption  and session  handling.

QtOlm library just builds up on it with Qt based error handling and some helpers to

make using the Olm more easier.

In the end it is a kind of an odd setup where our application is calling a library which

then calls  another  library which then calls  another library.  All  of  these libraries are

open source and each of them needed to be studied in order to make the whole setup

work.

5.5.1 Decryption

The decryption starts with the MessageEventModel. First MessageEventModel has a

data() function that gets called through the signalling system when an Event changes

or new Event is added. This function gets the Event object and it is first checked if that

Event is already known or if  it  is a brand new Event. If  it’s a new Event its type is

checked in order to determine how to handle it. So in this function the event can be

checked  if  its  an  EncryptedEvent,  a  subclass  of  Event  that  is  provided  by  the

libQuotient.  If  it  is  EncryptedEvent  the  decryption  should  be  tried  by  calling  the

decryptMessage() function in Connector (Listing 2). To keep the code clean and keep

the  MessageEventModel  unaware  of  the  EncryptionManager  as  designed,  the

Connector will then call the EncryptionManagers  decryptMessage(), which then calls

the libQuotients decryptMessage(). This might seem unnecessary but it keeps the code

clean  as  designed  and  separates  the  classes  from  each  other  to  make  the

development of new EncryptionManagers and Connectors easier.
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Listing 2. The  code  that  determines  if  the  received  Event  is  encrypted  or  just  a  regular
plaintext one.

If  the  decryption  was  succesful  the  decrypted  Event  is  casted  in  to  a

RoomMessageEvent, another subclass of Event, and it is handled normally after that. If

the Event was not EncryptedEvent the original srcEvent  variable is used and the Event

is processed normally.

The EncryptionManager will then call the libQuotients decryptMessage() function which

will start the decryption process coded in to the library. Since this was still a work in

progress it obviously had some issues right off the bat.

Matrix spec states that when an encrypted message is sent the process goes like this:

First try to encrypt the message with Megolm, but if there is no active Megolm session,

create a new one, then try to share Megolm session data with the receiving device

encrypted with an Olm session, if there is no Olm session, initiate a new one, encrypt

the Megolm session keys,  send them as a to_device event  and finally  encrypt  the

message and send it as a regular encrypted event. The receiving end on the other

hand needs to  catch the to_device event,  try  and decrypt  it  with  the Olm session

initiated by the sending party,  extract  the keys from the to_device event,  save the

session data. Then catch the encrypted event with the actual message and decrypt it

by using the just received session data. 

auto& srcEvent = **timelineItem;
    bool isDecrypted = false;
    RoomEventPtr decrypted;
    if (auto e = eventCast<const EncryptedEvent>(&srcEvent))
    {
        decrypted = m_connector->decryptMessage(*e);
        if (decrypted) {
            decrypted->setSender(e->senderId());
            if (auto* msgEvent = eventCast<RoomMessageEvent>(decrypted)) {
                isDecrypted = true;
            }
        }
    }
const auto& event = isDecrypted ? *decrypted.get() : srcEvent;
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Now  libQuotient  had  most  of  this  implemented,  but  very  poorly.  There  were  null

pointers, some errors from QtOlm were not properly handled and the one-time keys

were poorly handled. First the whole application crashed without an error message.

After some heavy debugging the error was found to be a null pointer returned if there

was an error creating a new Olm session initiated by the sending party. In Listing 3

d→sessionDecryptMessage() function is called and it returns a RoomEventPtr. In the

next line the decryptEvent pointer is being called as a parameter. The problem was that

sessionDecryptMessage() calls for QtOlm libraries Olm session initiation function and

returns a null pointer if there is an error. After the program returns from the function the

decryptedEvent should be checked if its a null pointer before it is used.

Listing 3. Part of the decryption process that resulted in an unexpected crash.

After the null pointer was fixed another issue was, why would the QtOlm return with an

error.  The  debugger  said  the  error  was  ”BAD.MESSAGE.KEY.ID”.  That  error  was

caused by bad one-time key handling. Matrix spec states that each device should have

approximately 50 one-time keys uploaded to the server so others can use them to

initiate Olm sessions. LibQuotient generates too many keys and only uploades some of

them and discards the others. This results in following: the Riot.im client downloads an

uploaded  one-time  key  and  uses  it  to  create  a  new Olm  session.  Meanwhile  the

libQuotient based client has discarded the keys that were uploaded to the server so

libQuotient cannot initiate the same session with the sending party because it thinks

the keys are invalid. Once this was fixed by adjusting the key uploading process. The

client can decrypt the messages sent encrypted from Riot.im (Figure 15).

RoomEventPtr decryptedEvent = d-
>sessionDecryptMessage(*encryptedEvent.get());
// since we are waiting for the RoomKeyEvent:
event_ptr_tt<RoomKeyEvent> roomKeyEvent =
    makeEvent<RoomKeyEvent>(decryptedEvent->fullJson());
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All the Unknown Events in the Figure 15 are events that haven’t been and cannot be

decrypted,  because  the  Megolm  session  data  is  not  saved  currently  when  the

application is closed.

5.5.2 Encryption

For the encryption the IEncryptionManager interface was used with the intention that

the encryption could be tested without messing with the libQuotient library and once

encryption works properly, copy the changes to the library and make a pull request to

the libQuotients git repository so their work is moved forward a little bit. 

Figure  15: Screenshot of the decrypted
message sent from Riot.im.
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Because there is nothing done for encryption on libQuotient, it is required to use QtOlm

directly. There is no documentation whatsoever for QtOlm so everything needs to be

learned by reading the code. [31]

So the work starts by studying how to concretely handle the encryption process from

Matrix spec point of view:

 First a Megolm session needs to be initiated if it doesn’t exist by calling
olm_init_outbound_group_session from the Olm library. This is done by
creating a new OutboundGroupSession object in the QtOlm library.

 The Olm library will create the session id and session key. Get them from
the OutboundGroupSession object.

 Download device list and their respective identity keys participating in the
room and share the session data with every device as a  m.room_key
event using Olm session.

 Check if there already is an Olm session with a device.

 If not, start a new Olm session by claiming one of the devices one-time
keys from the server with a HTTP request to /keys/claim API endpoint

 Create a new Olm session by calling olm_create_outbound_session from
the Olm library. This is done by creating a new OutboundSession object
from  the  QtOlm  library  and  passing  the  keys  for  it  as  constructor
parameters.

 Then build an encryption JSON payload as stated in the Matrix spec and
encrypt it by calling olm_encrypt from the Olm library or just encrypt() in
QtOlm OutboundSession object.

 Package that payload into an a m.room.encrypted event.

 Send  that  event  to  all  of  the  devices  participating  in  the  room as  a
to_device event.

 Create an encryption payload and encrypt it using olm_group_encrypt or
with QtOlm by calling the OutboundGroupSession encrypt() function.

 Finally wrap that encrypted payload into a  m.room.encrypted event and
send it to the server as regular event.

There are some prerequisites here that need to be addressed before it is possible to

properly start tackling the checklist. First the application needs to keep track of users,

their devices, device’s identity and one-time keys. Users are easy as they are saved in

libQuotient. Devices and identity keys however are not. They need to be queried from

the  server  and  libQuotient  does  not  have  ready  made  functions  for  it.  They  have

classes mapping all the API endpoints of Matrix spec and generic API querying class

so it is possible to use those to query the devices and identity keys. All of these need to
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be saved in the application. Ideally they would be saved in a database where they

persist  even  when  the  application  is  closed  but  for  now it  is  suitable  to  create  a

datastructure that is kept in the application memory. The datastructure ended up being

a triple hash map, which is not very efficient but does the job for now. The hash map is

as  follows  QHash<QString, QHash<QString, QHash<QString, DeviceKeys*>>>* In

detail its a pointer to a hash map of roomIds to userIds to deviceIds to a pointer into a

custom struct DeviceKeys with the different keys that each device has.

Also, currently the application does not have any type of session handling so when the

application is closed all the sessions are lost, but the sessions can be still managed

while the app is open. Each room will have a Megolm session which can be used for a

hash map to efficiently store roomId and Megolm session pairs and check if any given

room has any sessions open. The same can be done for Olm sessions but each device

has their own Olm session so the same mapping structure can be followed as above.

In Listing 4 all the different data structures used can be seen.

Listing 4. All the necessary data structures to handle everything in application memory.

To  populate  these  data  structures  the  device  list  is  needed  and  Matrix  spec

recommends to download the device list  periodically.  Other decent alternative is to

download the devices list every time user enters to a room. Also, theres the option to

download it once the user presses send but it is more efficient to do in the background

when user switches rooms so the device list and keys are already downloaded before

sending a message. 

So,  once the user  switches to a room the function  downloadDevicesList() is  called

(Listing 5). It first iterates over all the users in the room and gathers them to a QHash

map and calls a libQuotients callApi() function which takes a Job class as a parameter.

Jobs are special classes that map Matrix API endpoints to C++ classes so they are

QHash<QString, QHash<QString, QHash<QString, DeviceKeys*>>>* 
m_roomIdToUsersToDevicesToKeys;
QHash<QString, QHash<QString, DeviceKeys*>> m_usersToDevicesToKeys;
QMap<QString, QtOlm::OutboundGroupSession*> m_megolmSessions;
QHash<QString, QHash<QString, QtOlm::OutboundSession*>> m_olmSessions;
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easier to manage in code. They are usually automatically generated and they transform

the hash maps into JSON and they get sent as HTTP requests to the Matrix server.

Listing 5. Function that downloads the devices list and associated keys and saves them to
data structures.

Listing 5 also shows how to signalling system works in Qt. The function call connect is

a special function in Qt which tells Qt what gets called when a signal gets triggered. In

that specific call on the line 8 when Quotient::BaseJob::success signal fires it triggers

the  C++  lambda  function  with  this as  a  context  and  queryKeysJob pointer  as  a

parameter. It could also be done without the lambda function and instead make it call a

regular function.  Once the Job succeeds and a response is received,  the response

/* Download devices and associated identity keys for each user
 */
void EncryptionManager::downloadDevicesList() {
    QHash<QString, QStringList> usersToDevices;
    for(auto user: m_conn->room(m_roomid)->users()) {
        usersToDevices.insert(user->id(), QStringList());
    }
    queryKeysJob = m_conn→callApi<Quotient::QueryKeysJob>(usersToDevices, 10000);
connect(queryKeysJob, &Quotient::BaseJob::success, this, [this] {

QString deviceID;
QHashIterator<QString, QHash<QString, 
Quotient::QueryKeysJob::DeviceInformation>> i(queryKeysJob->deviceKeys());

      // i.key() has the userid,
      // i.value() has another QHash with deviceId to all the info in the json of 
the /keys/query endpoint
      while (i.hasNext()) {
      i.next();
           for(auto key : i.value().values()) {
           dID = key.deviceId;
                m_usersToDevices.insert(i.key(), i.value().keys());
                // Check if this device has been listed already
                DeviceKeys* deviceKeys = new DeviceKeys;
                deviceKeys->curve25519id = key.keys.value("curve25519:"+dID);
                deviceKeys->ed25519id = key.keys.value("ed25519:"+dID);
                deviceKeys->curve25519onetime = "";
                QHash<QString, DeviceKeys*> dk;
                dk.insert(deviceID, deviceKeys);
                m_usersToDevicesToKeys.insertMulti(i.key(), dk);
            }
        }
        m_roomIdToUsersToDevicesToKeys->insert(m_roomid, m_usersToDevicesToKeys);
        claimKeys();
    });
}
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data is directly added to the queryKeysJob by the library and then the lambda function

is executed.

In  the  lambda  function  all  the  necessary  data  is  gathered  in  to  the

m_roomIdToUsersToDevicesToKeys hash  map.  Inside  the  lambda  function  a

claimKeys() function is called to claim the one-time keys from the server and save them

as well.

Listing 6. Function that claims one one-time key from the server for each device.

/* Claims the one-time keys from the server and saves them.
 */
void EncryptionManager::claimKeys() {
    QHash<QString, QHash<QString, QString>> usersToDevicesToAlgo;
    QHash<QString, QString> devicesToAlgo;
    QHashIterator<QString, QStringList> i(m_usersToDevices);
    // Check which devices dont have keys saved yet.
    while (i.hasNext()) {
        i.next();
        for(QString device : i.value()) {
            // Check if the keys have been claimed for the device
            
            devicesToAlgo.insert(device, "signed_curve25519");
            m_claimedDevices << device;
            qDebug() << "Claiming keys for: " << device;
        }
        usersToDevicesToAlgo.insert(i.key(), devicesToAlgo);
    }
    claimKeysJob = m_conn-
>callApi<Quotient::ClaimKeysJob>(usersToDevicesToAlgo, 10000);
    connect(claimKeysJob, &Quotient::BaseJob::success, this, [this] {
        QHashIterator<QString, QHash<QString, QVariant>> i(claimKeysJob-
>oneTimeKeys());
        // i.key() is the username
        // i.value() is a QHash with deviceId to one-time key and signature
        while (i.hasNext()) {
            i.next();
            QHashIterator<QString, QVariant> j(i.value());
            while(j.hasNext()) {
                j.next();
                QHash<QString, QVariant> map = j.value().toHash();
                for(auto key : map.values()) {
                    m_deviceOnetimeKey.insert(j.key(), 

key.toHash().value("key").toByteArray());
                }
            }
        }
    });
}
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The  claimKeys() function  (Listing  6)  is  very  similar  to  the  downloadDevicesList()

function. It this time creates a ClaimKeysJob and again connects a lambda function to

the success signal. In the lambda function the one-time keys are gathered for creating

new Olm sessions.

Now that the data structures are done, the first bullet point can be tackled. So, start by

checking if there is a Megolm session and if none can be found create a new one. After

which the session id and key can be extracted for later encryption (Listing 7).

Listing 7. Create a new Megolm session and get the session id and key that were generated.

Then by  iterating  through  the  users  and  devices  map the  devices  which  have  an

existing Olm session can be checked and new sessions can be created for those which

do not have an active one. Also the identity and one-time keys can be gathered from

the data structure since they are needed for creating new Olm sessions.

Once the Olm session is started, the to_device event can be crafted that first holds all

the necessary data for the recipient to initialize Olm session and then the session data

for  the  Megolm session  used for  future  encryptions  and decryptions  of  messages.

Ultimately the to_device event JSON payload will look like Listing 8 except the 

 // Check if there are existing megolm sessions
    if(!m_megolmSessions.contains(m_roomid)) {
        OutboundGroupSession* newMegolmSess;
        try {
            newMegolmSess = new OutboundGroupSession();
        } catch (OlmError* e) {
            qDebug() << "Error starting new outbound group session"
                     << e->what();
            return;
        }
        QString sessionId = newMegolmSess->id();
        QByteArray sessionKey = newMegolmSess→sessionKey();
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Listing 8. The  to_device event  JSON structure  that  contains  the  Megolm  session  data  in
plaintext

In Listing 8 the whole JSON structure is in plaintext but in reality the m.room_key event

is  encrypted  with  Olm.  Because  the  encryption  functions  are  not  built  into  the

libQuotient library and there is not yet a class that creates this type of event structure

automatically, it is necessary to create a the JSON payload with Qt tools and wrap it in

a generic Event and send it to the server. Listing 9 shows how the whole payload is

constructed and sent to the server.

// m.room.encrypted event
{
  "type": "m.room.encrypted",
  "content": {
    "algorithm": "m.olm.v1.curve25519-aes-sha2",
    "sender_key": "<sender_curve25519_key>",
    "ciphertext": {
      "<device_curve25519_key>": {
        "type": 0,
        "body": {

          // m.room_key event starts
          "type": "m.room_key",
          "content": {
            "algorithm": "m.megolm.v1.aes-sha2",
            "room_id": "!Cuyf34gef24t:localhost",
            "session_id": "X3lUlvLELLYxeTx4yOVu6UDpasGEVO0Jbu+QFnm0cKQ",
            "session_key": "AgAAAADxKHa9uFxcXzwYoNueL5Xqi69IkD4sni8LlfJL7…"
          },
          "sender": "<sender_user_id>",
          "recipient": "<recipient_user_id>",
          "recipient_keys": {
            "ed25519": "<our_ed25519_key>"
          },
          "keys": {
            "ed25519": "<sender_ed25519_key>"
            }
          }

    // m.room_key event ends

      }
    }
  }
}
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Listing 9. Generation of JSON payload for the to_device event.

After  the  to_device event  is  finally  succesfully  sent,  the  actual  encrypted  Megolm

message  can  be  generated,  encrypted  and  sent.  This  is  done  by  calling

doEncryptMessage() function (Listing 10) in the EncryptionManager to do the actual

/ Construct the json payload for room_key event
    QJsonObject keys;
    keys.insert("algorithm", Quotient::MegolmV1AesSha2AlgoKey);
    keys.insert("room_id", m_roomid);
    keys.insert("session_id", QString(sessionId));
    keys.insert("session_key", QString(sessionKey));
    QJsonObject recipEd25519;
    recipEd25519.insert("ed25519", QString(ed25519id));
    QJsonObject ourEd25519;
    ourEd25519.insert("ed25519", QString(m_conn->olmAccount()-
>ed25519IdentityKey()));
    QJsonObject payload;
    payload.insert("content", keys);
    payload.insert("sender", m_conn->user()->id());
    payload.insert("recipient", recipient);
    payload.insert("recipient_keys", recipEd25519);
    payload.insert("keys", ourEd25519);
    payload.insert("type", "m.room_key");
    QJsonDocument json(payload);
    // Encrypt this payload with olm
    QByteArray cipherText;
    try {
        cipherText = olmSession->encrypt(json.toJson())->cipherText();
    } catch (OlmError* e) {
        qDebug() << "Error encrypting payload"
                 << e->what();
        return;
    }
    // Construct the encrypted event with encrypted room_key event inside
    QJsonObject keyJson;
    keyJson.insert("type", 0);
    keyJson.insert("body", QString(cipherText));
    QJsonObject ciphertextJson;
    ciphertextJson.insert(curve25519id, keyJson);
    QJsonObject finalPayload;
    finalPayload.insert("algorithm", "m.olm.v1.curve25519-aes-sha2");
    finalPayload.insert("sender_key", QString(m_conn->olmAccount()-
>curve25519IdentityKey()));
    finalPayload.insert("ciphertext", ciphertextJson);
    const Quotient::Event* evt = new 
Quotient::Event(Quotient::typeId<void>(),"m.room_key", finalPayload);
    std::unordered_map<QString, std::unordered_map<QString, const 
Quotient::Event*>> usersToDevicesToEvents;
    std::unordered_map<QString, const Quotient::Event*> deviceEvent;
    deviceEvent[recipDeviceId] = evt;
    usersToDevicesToEvents[recipient] = deviceEvent;
    m_conn->sendToDevices("m.room.encrypted", usersToDevicesToEvents);
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encrypting of the message. Everything up to this point has been just preparation to set

up the sessions. 

Listing 10. The doEncryptMessage() function that does the actual message encryption.

In this function a RoomMessageEvent class is used to do the JSON generation then

the  JSON  is  encrypted  using  the  established  Megolm  session.  Then  again  an

EncryptedEvent class is used to create all the necessary JSON for the request and the

event is sent to the room.

Now that  all  the  setting  up  is  done  and  the sessions  have  been  created  no  new

sessions are created unless the user start conversing with a new user or device.

5.6 Verification of Results

It is necessary to verify the results of the encryption to be sure that no data leaks in the

conversation. The decryption is fairly simple to verify. With browsers developer tools

the  encrypted  payload  that  Riot.im  sends  can  be  seen  and  in  the  application  the

ciphertext can be seen as a readable plaintext. Figure  16 shows what the developer

tools caught.

void EncryptionManager::doEncryptMessage(QString plaintext, QString sessionId,
QtOlm::OutboundGroupSession* megolmSession) {
    using namespace QtOlm;
    QByteArray cipherText2;
    Quotient::RoomMessageEvent msgEvt(plaintext, 
Quotient::MessageEventType::Text);
    msgEvt.setRoomId(m_roomid);
    try {
        cipherText2 = megolmSession->encrypt(msgEvt.originalJson());
    } catch (OlmError* e) {
        qDebug() << "Error encrypting payload"
                 << e->what();
        return;
    }
    Quotient::EncryptedEvent* encEvt = new 
Quotient::EncryptedEvent(cipherText2,

m_conn->olmAccount()->curve25519IdentityKey(),
m_conn->deviceId(), sessionId);

    m_conn→room(m_roomid)→postEvent(encEvt);
}
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The  ciphertext  is  clearly  a  garbled  mess  and  the  application  decrypts  it  perfectly.

Everything seems to be as its supposed to be for the decryption.

For inspecting the encryption from the QEMU virtual emulator is a bit tougher but there

are tools to do it. One option could be to take a tcpdump on the emulator and save it

somewhere and afterwards  inspect  it  with  a  packet  inspection  tool  like  WireShark.

Unfortunately the emulator used here did not come with a  tcpdump.  Easiest way to

inspect the payload for this specific case is to print it  out in the debugging console

(Figure 17).

Figure  17 shows  that  the  JSON  payload  was  similarly  encrypted  as  Riot.im  did.

Ciphertext is similar garbled mess.

Figure 16: JSON payload sent from Riot.im.

Figure 17: JSON payload sent from the application.
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6 Results

In this thesis the goal was to take a deeper look into cryptography from mathematical

point of view, understand the architecture of Matrix Open Standard and develop deeper

understanding for  modern encryption algorithms used in messaging applications  by

concretely implementing one. The concrete end goal was to build upon a messaging

application that had the basic messaging functions and add encryption to it in a way

that would allow for it to be changed for another encryption scheme without too much

work on the core messaging.

In the end the mathematical theory of cryptography was a very interesting to delve into,

but it was way bigger of a field than expected. The rabbit hole just never ended with

new and interesting topics emerging every time the subject was delved deeper into. For

that reason this thesis could not possibly tackle every interesting topic of cryptography.

Navigating the subject and picking out the necessary topics for the goal of the thesis

proved  difficult  without  simplifying  or  flat  out  leaving  out  things.  For  example  key

generation and key shceduling was not touched in the encryption schemes that would

require deeper knowledge of random number generation and Pseudo-Random Number

Generators (PRNG).

As always with coding projects the concrete work proved to be more difficult compared

to what was imagined before starting the work. Even though Qt was familiar  before

starting  the  thesis,  the  C++ code  was  way  more  complex  compared  to  what  was

experienced before. Also the no documentation for the libraries part required building

understanding for  the  libraries  through reading the code.  This  was a blessing  and

curse. While it perhaps gave deeper understanding of the code and taught the value of

understanding code,  it  also  was time consuming and difficult  at  times.  The coding

issues in the libraries also required to delve into the library itself and search and fix

bugs inside it. However this resulted in being in contact with the author and he was

happy to know the issues currently in the library. He also encouraged to contribute by

creating pull requests for the library.

The implementation of encryption was exactly what was asked, but there are definitely

multiple  improvements  that  weren’t  able  to  be  addressed  given  the  time  frame.

Currently the implementation is great for high security situations where everything is
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handled in memory and nothing is saved persistently on the disk which stops certain

security risks. This however can also be an usability issue where all  the encrypted

messages are lost once the application is closed. There were also bugs in the libraries

key handling which weren’t completely fixed since they were sligthly out of scope for

this project.

Overall the study was great and interesting. Most if not all the goals were met given the

timeframe.  Deep understanding  of  cryptography was developed  which will  come in

handy in the future. The code design with interfaced implementation was appreciated

and the company was happy with the result and it will  be used as a great base for

future developments. The study of Matrix Open Standard and the modern encryption

algorithms were greatly  appreciated and gave excellent  insight  for  the company to

develop their products further.
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