

Open source intrusion detection

systems evaluation for small and

medium-sized enterprise

environments

Markku Hänninen

Master’s Thesis
December 2019
School of Technology
Master’s degree programme in information technology
Cyber Security

Description

Author(s)

Hänninen, Markku Mikael
Type of publication

Master’s thesis
Date

12/2019

Language of publication:
English

Number of pages

41
Permission for web:
x

Title of publication

Open source IDS evaluation for small and medium-sized enterprise environments

Degree programme

Master’s degree programme in Information Technology

Supervisor(s)

Nevala Jarmo, Saharinen Karo

Assigned by

Laurio Markus, Paytrail Oyj

Abstract

Paytrail offers internet payment services to organizations and due to these services,
Paytrail has a very public and visible presence on the Internet. Their information systems
contain sensitive information about customers and general public using the services.

One of the biggest threats to any company today is intrusion to their information systems
and networks. While preventive methods can raise the cost of intrusion, there are no 100%
secure systems and the next best thing is to notice the intrusion early on.

The selected open source intrusion detection systems for networks were compared to
provide awareness of their capabilities concerning detection, outputs, administration and
software maintenance and development.

The research method used a was collective case study. In collective case study a common
set of research goals are used to study individual cases. The cases themselves were
quantitative and qualitative evaluations of the capabilities mentioned above. These cases
and their research results then provide the basis for comparing the different intrusion
detection systems by the factors that had been set by Paytrail.

The results of the research are used by Paytrail to gain awareness what the strengths and
weaknesses of open source NIDS products are. The information gained can be then used to
provide options for future network security development at Paytrail

Keywords/tags (subjects)

IDS, intrusion detection systems, network security, Snort, Suricata, Zeek

 Miscellaneous

https://janet.finna.fi/Search/Results?lookfor=asiasanastot&prefiltered=format_Database&SearchForm_submit=Find&retainFilters=0&filter%5b%5d=format%3A%220%2FDatabase%2F%22&lng=en-gb

Kuvailulehti

Tekijä(t)

Hänninen, Markku
Julkaisun laji

Opinnäytetyö, ylempi AMK
Päivämäärä

Joulukuu 2019

Sivumäärä

41
Julkaisun kieli

Englanti
 Verkkojulkaisulupa

myönnetty: x
Työn nimi

Avoimen lähdekoodin tunkeutujan havaitsemisjärjestelmien arviointi pienien ja
keskisuurien yrityksien ympäristöille
 Tutkinto-ohjelma

Cyber security, Insinööri (YAMK)

Työn ohjaaja(t)

Jarmo Nevala, Karo Saharinen

Toimeksiantaja(t)

Paytrail Oyj, Markus Laurio

Tiivistelmä

Paytrail tarjoaa verkkomaksutapapalveluita organisaatioille, ja johtuen näistä palveluista,
Paytrailillä on erittäin julkinen ja näkyvä paikka Internetissä. Paytrailin tietojärjestelmät
sisältävät arkoja tietoja asiakkaista ja yleisöstä joka maksupalveluita käyttää.

Yksi suurimmista uhista mille tahansa yritykselle nykyään on tunkeutuminen heidän
tietojärjestelmiin. Vaikka ennalta ehkäisevät menetelmät voivat nostaa tunkeutumisen
hintaa, ei ole olemassa 100-prosenttisesti turvallisia järjestelmiä. Tärkeintä onkin huomata
tunkeutuminen mahdollisimman nopeasti.

Valittuja avoimen lähdekoodin tietoverkkojen tunkeutumisen havaitsemisjärjestelmiä
vertailtiin, jotta voitiin lisätä tietoisuutta niiden kyvykkyydestä havaitsemisen, ulostulojen,
hallinnoinnin, ohjelmistokehityksen ja ylläpidon suhteen.

Tutkimusmetodi, jota käytettiin, oli kollektiivinen tapaustutkimus. Kollektiivisessa
tapaustutkimuksessa yhteisiä tutkimustavoitteita käytetään monen yksittäistapauksen
tutkimiseen. Tutkimustavoitteet olivat kvantitatiivisia sekä kvalitatiivisia arvioita yllä
mainituista kyvykkyyksistä. Nämä tutkimustapaukset ja niiden tulokset toimivat pohjana
eri tunkeutujan havaitsemisjärjestelmien vertailuille niiden osatekijöiden perusteilla, jotka
Paytrail oli määritellyt.

Paytrail käyttää tutkimustuloksia saavuttaakseen paremman tietoisuuden eri avoimen
lähdekoodin tietoverkon tunkeutujan havaitsemisjärjestelmien vahvuuksista ja
heikkouksista. Saavutettua tietoa voidaan käyttää jatkossa tarjoamaan vaihtoehtoja
Paytrailin tulevalle verkkoturvallisuuden kehittämiselle.

Avainsanat (asiasanat)

IDS, instrusion detection systems, network security, Snort, Suricata, Zeek

Muut tiedot

http://www.finto.fi/

1

Contents

1 Introduction ... 5

2 Theoretical background .. 7

2.1 Related research .. 7

2.2 Intrusion detection systems (IDS) ... 9

2.3 Risk, threat and vulnerability .. 13

2.4 Network threats .. 13

2.4.1 Advanced Persistent Threat ... 15

2.4.2 Malware .. 17

2.5 Network attack vectors ... 18

2.6 Open source projects .. 19

3 Research... 20

3.1 Case study .. 20

3.2 Research objectives ... 21

3.3 Targets of research .. 22

3.3.1 Suricata ... 22

3.3.2 Snort ... 22

3.3.3 Zeek (formerly known as Bro) .. 23

3.4 Test environment .. 23

3.4.1 Network and the hosts ... 24

3.4.2 Snort configuration ... 25

3.4.3 Suricata configuration .. 26

3.4.4 Zeek configuration .. 26

3.5 Testing areas and scoring .. 26

3.5.1 Network attack monitoring .. 26

3.5.2 Configuration .. 27

2

3.5.3 Software maintenance and development .. 28

3.5.4 Alert outputs ... 28

3.6 Scoring ... 28

4 Results and analysis .. 29

4.1 Network attack monitoring ... 29

4.2 Configuration ... 32

4.3 Software maintenance and development ... 33

4.4 Alert outputs ... 34

5 Discussion .. 34

5.1 Solution comparison .. 34

5.2 Research .. 35

5.3 Field of study ... 38

6 Conclusions .. 38

7 Recommendation ... 41

REFERENCES ... 42

APPENDICES ... 45

Appendix 1 .. 45

Appendix 2 .. 49

Appendix 3 .. 50

Appendix 4 .. 54

Appendix 5 .. 57

Appendix 6 .. 67

Appendix 7 .. 71

Appendix 8 .. 73

3

Figures

Figure 1. Percentage of security technologies used in CSI survey 6

Figure 2. Difference between IPS and IDS in network security (Ipwi 12

Figure 3. Types of breaches suffered in 12 month period ... 14

Figure 4. Stages of APT attack .. 16

Figure 5. Contributors per month in openSUSE open source project 20

Figure 6. Test environment .. 24

Tables

Table 1. Test network environment ... 24

Table 2. Results of Denial of Service attacks .. 30

Table 3. Results of TCP Hijacking attacks ... 30

Table 4. Results of Port Scanning attacks... 31

Table 5. Results of Password Guessing attacks .. 31

Table 6. Results of Software Exploitation attacks .. 32

Table 7. Results of configuration tests ... 33

Table 8. Results of updates comparison .. 33

Table 9. Result of Alert output comparison ... 34

Table 10. Results of testing areas... 34

4

Acronyms

APT Advanced Persistent Threat

BWA Broken Web Applications

DDOS Distributed Denial-Of-Service

DOS Denial-Of-Service

Gbps Gigabits per second

HIDS Host-based Intrusion Detection System

HTTP Hypertext Transfer Protocol

IDS Intruder Detection System

IGMP Internet Group Management Protocol

IP Internet Protocol

IPS Intrusion Prevention System

IPv6 Internet Protocol Version 6

IT Information Technology

LAMP Linux, Apache, MySQL, PHP/PERL/Python

LAN Local Area Network

NFS Network File System

NIDS Network Intruder Detection System

OWASP Open Web Application Security Project

SMTP Simple Mail Transfer Protocol

SYN Synchronize

TCP Transmission Control Protocol

UDP User Datagram Protocol

5

1 Introduction

In the thesis, three intrusion detection systems (IDS) are compared in terms of their

capabilities and usability from the point of view of small and medium-sized

enterprises. The motivation for the thesis in the area of IDS was provided by the

author’s role as a security officer at Paytrail Oyj. As a security officer, it is necessary

to train and gather more information about security related tools and solutions and

keep ahead of the growing threat environment. This thesis provided an opportunity

to delve into the world of intrusion detection systems and better understand the

systems themselves and the differences there are between the readily available open

source solutions.

As the information technology (IT) threat environment is continually evolving, the

tools and processes used to counter these threats have to develop at a similar pace

or one gets left behind (Macdonnell 2014). As the security tools themselves develop,

it is difficult to choose proper tools for any given task without firsthand experience or

a comprehensive review.

IDS in a corporate local area network (LAN) provides a line of defense against a legion

of threats that can infect hosts and provide malicious actor access to network. When

a malicious actor has already access to the LAN, the best possible remedy is

detection as fast as possible; hence, possible repercussion can be limited as much as

possible. In addition, IDS can provide help with malware and faulty configurations

causing traffic to LAN and taxing company resources. IDS is today considered a

normal part of the security layers in security conscious organizations. Figure 1 shows

how common different security technologies are; IDS systems are used in 50.4% of

companies that responded to the survey.

6

Figure 1. Percentage of security technologies used in CSI survey (Computer Security
Institute 2011, 33)

Paytrail is a payment institution providing services to e-commerce merchants and

consumers, enabling payments through the internet with a variety of payment

methods. The company was founded in 2007 as Suomen Verkkomaksut, and Paytrail

brand was established in 2013. Currently Paytrail provides internet payments for

over 10 000 webstores and services. During its history from 2007 to 2019, Paytrail

7

has provided internet payments worth over EUR 8 billion to its customers. Paytrail is

situated in Jyväskylä, Finland and is fully owned by Nets A/S from Denmark.

As Paytrail(in future also Company) continually develops its information security, it is

necessary to evaluate the tools and compare them, to provide necessary knowledge

to make informed decisions. While IT operations in the assigner company had

already experience of IDS tools, there has been no evaluation or comparison done

between different products concerning how they would serve the needs of the

company. The Company uses a lot of open source technology, has not adopted open

source tool under its own administration for this purpose, instead using commercial

services on this front. Open source IDS tool was seen as excellent addition to the

existing tools and services in use.

In the assignment, the assigner is interested in three different factors. The first factor

is what kind of security performance can be expected without big work effort, how

does the solution work out of the box? The second factor is the trustworthiness of

the open source project. What does the project development look like, is the future

of the project credible? The third factor is the integration. To work well in an existing

system, the solutions must be easily integrated to existing logging solutions. How

good are the integration options in the solution?

The thesis provides a comparison between the IDS solutions and an understanding of

what are the strengths and weaknesses of the different solutions based on these

factors. By giving a different emphasis in areas of scoring, the reader of the thesis can

customize the results to fit the needs of their company, organization or as an

individual. To the assigner, the thesis provides way to compare the open source

solutions and make informative decision about the future developments on the open

source IDS front with some knowledge.

2 Theoretical background

2.1 Related research

Intrusion detection systems are a target of constant research and internet media

articles. In non-academic articles that compare the products, one can find

8

comparisons including Snort, Suricata and Zeek; however, they are short reviews

based on features as well as brief lists of strengths and weaknesses. The comparisons

in such articles are very superficial and can be used to list potential tools for use;

however, not to get any actual knowledge about the capabilities of the products. A

good example is provided by Bricata (2018) in their white paper Suricata vs. Snort vs.

Bro IDS. The paper describes the products on a general level, mentioning their

strengths but it does not provide enough substance to make informed decisions.

More in-depth articles on the internet media usually concern the use of one product

and certain use cases, how to execute the use cases or how one solution tackles

some issue.

The effectiveness of IDS in general is a topic that is touched on in research papers.

Hartstein (2008) views available information on the effectiveness of Snort against

malicious programs. In the Harstein study, the results of a Snort research study were

noted, where 1,259 programs that created network traffic for Snort to detect, Snort

created alerts from 68% of them that would get the attention of administrator. The

author also notes that while malicious programs might escape detection on the host

by being packaged differently, other behavior stays the same, thus being detectable

by IDS by its network traffic.

In academic research, there are papers available comparing Snort, Suricata and Zeek;

however, they focus on specific areas. For example, Pihelgas (2012) research about

network performance of these solutions focuses on that area and does not provide

any additional information about the feasibility of these products for any given user.

In the area of network performance, Suricata and Zeek both were able to process

1Gbps network link traffic without dropped packets. Snort dropped 41% packets; yet,

the desired configuration was not achieved in the research, so the result on Snort is

inconclusive. In Pihelgas (2012), in terms of memory usage, Suricata used most

memory, with Snort and Zeek using markedly less. In terms of CPU, Suricata seemed

the most efficient using CPU resources, with Snort and Zeek being significantly less

efficient.

Rødfoss (2011) compares the systems by testing few different attack methods on

them and what kinds of alerts are provided; however, the research is very limited by

scope and does not provide the overall view but a very limited focus on specific

9

issues. In the research that was carried out, Snort and Suricata had a different level

of rulesets in use; thus, Snort alerted much more traffic than Suricata. Zeek uses

built-in rules so the result was more comparable, Zeek losing to Snort in terms of

alerts. The number of alerts in the research was staggering at hundreds of

thousands. While the research carried out a raw comparison between the products,

it was not very informative in practical terms.

Ivvala (2017) takes in-depth look at Snort and its capabilities on IPS front against DOS

and DDOS attacks. The study is very IPS focused and DOS specific review of Snort’s

capabilities. The research showed that Snort is capable IPS against DOS attacks with

good reliability up to a point, after which packet loss starts and the IPS loses the

legitimate traffic.

In Open Source IDS High Performance Shootout, Khalil (2015) looks at existing

literature and research about the performance of Snort, Suricata and Zeek. The

research discovered that Zeek and Suricata are capable of handling 10Gbps traffic

and beyond. Snort was recommended to environments or between links with less

than 1Gbps speeds due to single thread design.

On the literature front, Caswell, Beale and Baker (2007) take delve deep into Snort

and its capabilities; however, the book itself does not provide any insight in

comparison with other solutions. The succeeds well in explaining how IDS works and

providing practical information about Snort at the same time.

In conclusion, while the works for the focused area of comparison or in-depth dive to

one solution could be found, there was no research about the solutions on overall

level, comparing the solutions in a manner, that would provide enough information

to make an informed choice about which of the products would best serve enterprise

IT environment. Some of the existing studies can be used to provide additional

information on their specific areas about the solutions.

2.2 Intrusion detection systems (IDS)

In computing, intrusion means unauthorized access or use of a computer system.

Schell and Martin (2006, 180) define the act of intrusion as “to compromize

computer system by breaking the security or causing it to enter into an insecure

10

state”. To monitor and alert system administrators of such unauthorized used, a tool

is needed. Rehman (2003, 5-6) describes IDSs as systems with methods and

techniques to detect such an unauthorized activity based on rules and signatures.

These intrusion detection systems provide system administrators a viable tool that

can be used to automatically monitor systems and provide system administrators

with alerts. Using these systems, administrators can discover an unauthorized use of

their systems and trace suspicious usage.

Intrusion detection systems have a decade- long history alongside the development

of computer systems. Khan Pathan (2014, chapter 2.1.1) tracked the start of IDS

history to the 1980s when the first research into such systems was published. The

systems’ development just as a subject of academic research continued, until in the

early 1990s when first commercial IDS products were launched.

Intrusion detection systems can be categorized using different ways based on their

detection methods, the situation in system architecture and post-detection actions.

According to Khan Pathan (2014, chapter 2.1.2) there are signature and anomaly-

based detection methods, host-based, network-based or hybrid systems using sensor

location and intrusion detection systems and intrusion prevention systems based on

post-detection actions.

Signature and anomaly detection methods differ in the way the system evaluates the

traffic. Signature-based systems detect intrusions by storing the signatures of attacks

and the behavior of known intrusion methods and comparing these signatures to

actions, commands and network traffic that these known intrusion methods use.

When a match is found, the event is reported. An example of signature detection

would be to monitor network traffic to system service port sending data packets that

are trying to exploit a known bug.

In anomaly-based detection, the system is monitoring the actions, commands and

network traffic and is aware of normal acceptable behavior. When the behavior is

sufficiently different from a normal baseline, the event is reported. An example of

anomaly detection would be a backend server trying to take an outbound SSH

connection to the internet host when it is not allowed per company policy.

11

Host-based IDS (HIDS) are installed on every host that requires intrusion detection

and they report all events that take place on the host they are installed on, for

example file changes or suspicious commands. Network-based IDSs (NIDS) monitor

network traffic and report all events regarding the network traffic they monitor, for

example suspicious connections or data packets containing known attack patterns.

Hybrid IDS is a system that uses a combination of both host-based and network-

based IDS methods and techniques to discover intrusions.

Post-detection methods divide IDS into two different categories. The logical

evolution of an intrusion detection system is an intrusion prevention systems (IPS).

NIST-800-94 (2-1) describes IPS as “software that has all the capabilities of an

intrusion detection system and can also attempt to stop possible incidents”. By using

the capabilities of IDS to discover possible intrusions, the IPS systems take active

action to prevent the intrusion. An example of IPS event would be malicious traffic to

a network service port; after detection, the IPS will alert the administration of such

an event, but also block the network traffic from the source IP to the network service

port to prevent any intrusion. This also means that the IPS needs to be in position to

perform these preventive actions, for example as passthrough entity in network, or

as HIDS installed on the host which is the target of the intrusion. Figure 2 shows the

difference between IDS and IPS in network security.

12

Figure 2. Difference between IPS and IDS in network security (Difference between IPS

and IDS in network security, 2017)

This thesis concentrates on IDS instead of IPS, and NIDS specifically, instead of HIDS

or hybrid systems. As can be surmised from the previous chapters, this selection is

made based on location and post detection action basis. The assigner of this work,

Paytrail Oyj, designated the need based on their needs in network security and thus

the scope of this work.

NIDS as a solution has certain strengths and weaknesses that are based on its

operation model. When looking at the strengths Khan Pathan (2014, chapter

2.1.2.2.1.2) mentions real time attack discovery and invisibility to the attacker.

Having real time information enables the administration to react immediately when

intrusions are detected and thus minimize the possible damage. Invisibility to the

attacker creates issues for the intruder, as the intruder cannot be sure if their actions

are monitored or not and thus cannot know if a reaction to the intrusion has started.

NIST-800-94 (4-9 – 4-10) adds few more strengths to the list, an in-depth analysis of a

wide variety of common protocols and detection of policy violations and

unauthorized services. Most NIDS can analyze all common application protocols such

as HTTP, NFS, and SMTP, transport layer protocols such as TCP and UDP and network

layer protocols such as IPv6 or IGMP. As these protocols are the ones that enable the

attacks as well, most are covered by the monitoring. NIDS can also detect policy

violations and unauthorized services. As security issues can be caused by users and

misconfigured services as well, it is important that such incidents are discovered as

soon as possible. NIDSs are generally capable of discovering such issues from

network as well if they are configured to do so.

As weaknesses, according to Khan Pathan (2014, chapter 2.1.2.2.1.2) there are the

inability to monitor encrypted traffic and restricted application on fragmented

networks. As traffic can be encrypted, the NIDS cannot analyze such traffic in detail

and it must rely only on basic routing information and handshakes. This causes NIDS

to miss malicious traffic that is sent within encrypted transmissions as payload. On

the other hand, if a network is very fragmented, it causes issues to NIDS as it must be

able to listen to on all the traffic that needs to be analyzed. In very fragmented

13

networks, this would require a huge number of NIDS installations that might not be

feasible due to workload or the complexity of the whole.

NIST-800-94 (4-9 – 4-10) mentions a number of false positives and issues with

complex operating environments. False positives cause issues with alerts and

administration. If there are plenty of false positive alerts that require personnel to

check them through; unnecessary work is created as well as distrust of the

technology. If the number of false positives is truly great, the real positives can be

buried under a mountain of false positives. The modern network environments can

be very complex for the NIDS due to the sheer number of devices, operating systems,

protocols and communication methods. It is almost impossible to be up to date with

all changes and new content that might be transmitted in the network; hence, there

is always a possibility of IDS not understanding the transmissions and thus being

unable to analyze the content. This might lead to false positives, missing real

positives and simply not understanding the traffic at all, thus ignoring it.

2.3 Risk, threat and vulnerability

In information technology, risk, threat and vulnerability are terms interwoven

together and sometimes not used properly. According to Kim & Solomon (2014), risk

is the probability that something bad is going to happen. A threat is any action that

can damage or compromise an asset. A vulnerability is a weakness in the design or

software code itself.

In this thesis, the scope of threats and vulnerabilities is limited to issues that are

observable from network activity. As described in chapter 2.2 concerning IDS, these

activities are recognized either from signature or as statistical anomaly, through rule

relating to it. In the following pages, network threats and vulnerabilities how NIDS

might mitigate them are discussed more in detail.

2.4 Network threats

The scope of the thesis contains network threats that are already active in a

corporate LAN. The evaluation is performed based on the ability to catch malicious

14

traffic in network and on use cases where a breach has already occurred to some

system, and that system generates a malicious network activity.

In the thesis the threats that IDS can detect are divided into two different categories:

Advanced Persistent Threat (APT) and malware. APT activities are such, that they are

controlled fully or to a high degree by a human whereas malware activities are

performed mostly by a program without active human guidance. In both cases, the

attention is only on malicious activities. Based on these threats, use cases are

created that are then evaluated in the thesis. Both, APT and malware, are threats

that are relatively common, while not the most common threats. Figure 3 illustrates

how common different security related events are. Malware and unauthorized use

of computers, networks and servers by outsiders has occurred in 20% and 10% of the

corporations respectively, within a 12-month observation period.

Figure 3. Types of breaches suffered in 12 month period (Department for Digital,

Culture, Media, and Sport 2019, 43)

15

2.4.1 Advanced Persistent Threat

In case of APT activities, actions taken by a malicious actor in the network are the

topic. In these cases, a malicious actor is in complete or partial control of some

device attached to a network, which enables communication through the network. In

simplest cases, the activity is simple network tool use from the original host to

another, such as SSH connection. In more advanced cases, the malicious user has

access to advanced tools, such as port scanners for information gathering or exploit

tools like Sqlmap.

To create test and evaluate cases against human controlled activities, the threat

model used to create the evaluation cases is Advanced Persistent Threat. Cyber

security company Kaspersky (2019) defines Advanced Persistent Threat as using

continuous, clandestine and sophisticated hacking techniques to gain access to a

system and remain inside for a prolonged period of time, with potentially destructive

consequences. APT provides a threat use case where all the steps during the network

intrusion demonstrate different challenges when it comes to noticing and alerting

the administrators.

Kaspersky (2019) defines APT attack in following five stages:

Stage one – Gain access

Malicious actor gains entry to a network through some means, e.g. infected file, or

vulnerability. This provides the attacker access to the network that the infected

system is connected to. In stage one, NIDS can only notice these events if the

Internet traffic is monitored and access is gained to publicly offered resource.

Stage two – Establish a foothold

Malicious actors implant malware to provide means to move around the systems

undetected. It will also enable a better control through more sophisticated

backdoors around the systems. NIDS can detect control connection in stage two. The

malicious actor needs a control connection to send commands to a compromised

system. The best way to detect intrusions at this point is a host-based intrusion

detection system.

16

Stage three – Deepen access

Malicious actors aim to gain administrator rights to gain more control and greater

access. This will enable the attacker to gain full access to a system and a better

capability to attack other systems. As in stage two, NIDS can only detect control

connection at this point. HIDS are designed to create a layer of security against this

stage as well.

Stage Four – Move laterally

Having administrator rights, malicious actors attempt to gain access to other systems

and networks. An attacker tries to gain access to systems that it is interested in.

Different systems might provide ways to previously inaccessible segmented

networks. This is where NIDS in a local area network are most useful. As attacker

tries to gain access to other systems, the network traffic is then analyzed by the NIDS

and attacks are detected if they are performed.

Stage Five – Look, learn and remain

Malicious actors aim to gain a deeper understanding of the system and means to

harvest information they want at will. NIDS can still detect attacks at this phase

based on the network traffic that the attacker causes, be it attacks against system or

exfiltration of data. Figure 4 shows the attack from stages one through five.

Figure 4. Stages of APT attack

17

As the thesis is about NIDS, only network activities are relevant from the threat

perspective. For that reason, stages two and three have much less meaning for the

thesis in the use cases than stages one, four, and five.

2.4.2 Malware

Malware works without or with minimum amount of human guidance by the

attacker. From figure 3 what was introduced earlier illustrates that malware is still a

common threat in corporate environments and more common than APT attacks. All

malware can perform a range of malicious actions based on their programming from

creating backdoors to encrypting file systems for ransom.

Cisco (2018) offers definitions for different categories of malware using the technical

method of operation: worms, viruses, Trojans and bots are explained as follows.

Worms are malware that aim to replicate functional copies of themselves. Worms

are standalone software that spread by exploiting vulnerabilities or by social

engineering. Worms are usually visible to NIDS as the common way to replicate is

through networks to other hosts through vulnerability that they exploit.

Viruses are malware that spread by inserting a copy of itself to another computer

program. Viruses are usually attached to executable files and are usually only active

when the executable program is run with the virus as part of it. Viruses in general are

usually not detectable by NIDS; however, they might include some functionality that

causes network traffic and thus be visible.

Trojan is malware that tries to trick users to load or execute it and causing the Trojan

to attack. Unlike a worm or virus, a Trojan does not reproduce by itself. Trojans by

themselves are not visible to NIDS as the infection occurs at host level; nevertheless,

Trojans can install a backdoor and download additional malware through a network

connection causing visible traffic in network.

Bots are malware that infect the host system and then connect back to command

and control system for further instructions. Bots have worm like capabilities;

however, they are much more versatile and can create botnets, network of bots that

command and control can then use to attack their targets. Bots often work through a

18

network by having a command channel and when they are used for distributed

attacks. Bots often cause network traffic visible to NIDS.

2.5 Network attack vectors

To keep the scope of thesis reasonable, the testing of attack vectors is limited to

common attacks through network, which can be performed either as APT attack or

malware. In their book Network Security Bible, Cole, Krutz & Conley (2005, chapter

17) give definitions to five common attacks by intruders:

Denial-of-server (DoS) attacks try to incapacitate the system by consuming the

system resources to a point where the system is unable to function. There are many

ways to achieve this result, for example TCP SYN flood where so many requests are

created towards the system that it is unable to respond to all of them. Another way

could be a buffer overflow attack, where the system is provided for example with too

big a data packet, which can then cause the system to crash or become unstable.

(ibid, chapter 17).

In the thesis, DOS attacks are not given great attention due to the nature of the

attack vector. When a DOS attack takes place, the target usually becomes aware of

the attack without any special monitoring, as the services become non-functional,

service logs usually provide the origin of these attacks as well. In the use cases, just

basic flooding attacks are taken against a firewall to see that the if the NIDS tested

will notice the attack and report the origin of the attack in the network.

With spoofing, an attacker tries to confuse the target system with spoofed messages,

causing it to send transmission to attacker instead of the correct system. Spoofing

enables attacks such as Man-In-The-Middle as common spoofing attack is trying to

get the victim host to route network traffic through the attacking host. (ibid, chapter

17). The thesis will test if the NIDS can notice spoofing attempts and report them

correctly.

Port scanning can be used to gather information about the structure of networks and

hosts. Port scanners can also scan hosts for vulnerabilities and software versions to

aid in further intrusions. Port scanning is an important part in the thesis due to its

usability in steps one and four in an ATP attack. (ibid, chapter 17). Several different

19

port scanning attacks are performed with differing parameters and port scanning

software to see how well each NIDS notices and reports such scans.

By guessing passwords, using existing accounts and passwords is a common and

effective attack vector. In addition of social engineering and guessing, password

attacks can be performed in a random or systematic manner. Brute-force means

guessing passwords in a random manner until a working password is found. In a

dictionary attack, commonly used password lists are used to gain access. (ibid,

chapter 17). In the thesis, password guessing is tried against web applications and

operating systems to see if NIDS can notice and report these attacks.

Software exploitation provides many different attack vectors towards systems to

gain information and privileged access. Different methods of exploiting software are

tested, for example SQL injections, parameter fuzzing and scanning for known

vulnerabilities. Vulnerable software is very useful in all steps of ATP attacks and is a

pre-requisite for almost all automated attacks not based on end user actions. NIDS

monitoring is tested against software exploitation of an application server, an

operating system and a network service.

2.6 Open source projects

Snort, Suricata and Zeek are open source projects. The thesis evaluates what the

development of said solutions looks in terms of future by looking at near history of

the projects. With commercial projects it is easier to observe the reputability of the

company and how common any given solution is. If it seems commercially viable, its

development will most likely continue. In open source world, even usable solutions

can end up withering away due to lacking active contributors for the project.

The Open Source Guide(Starting an Open Source Project) defines project as open

source when “anybody can view, use, modify, and distribute your project for any

purpose. These permissions are enforced through an open source license.”. As such,

there are different reasons for sustainability for open source project and commercial

project. To evaluate sustainability of these projects, factors that make sustainable

and successful open source projects are observed.

20

In their article Making Lightning Strike Twice, Weinstock and Hissam (2005, 147-148)

go through the requirements for a successful open source software project. They

argue for a potential developer pool and dedicated developer community as a

meaningful factor for successful open source software project as seen in figure 5

showing contributor history of relatively successful openSUSE project.

Figure 5 Contributors per month in openSUSE open source project. (openSUSE Linux

Report, 2019)

With such a community, software should be updated frequently and the releases will

be of good quality. Time is also seen as an essential factor as time horizon for mature

project might be too short and contributors disappear. OSS Watch (2014) continues

the same line in their article How to evaluate sustainability of an open source

project. It lists code activity, release history, user community, longevity and

ecosystem as meaningful factors for success. As most of these issues are recorded in

the open source projects, the situation can be evaluated where different projects

currently are.

3 Research

3.1 Case study

The Research method in use is a collective case study, usually qualitative research

method; however, in this case quantitative data is included as well. The method was

21

selected to provide information about features, quality and usability of different

open source products in same category. The research itself is conducted on virtual

machines with a simple network structure usually found in small and medium

enterprises.

Case study provided a way to compare the solutions by using selected narrow cases

to see the differences and similarities of the solutions. The research goals required

the use of both qualitative and quantitative methods to provide the necessary

information about the solutions in order to carry out overall evaluation. Tight (2017)

explains that case studies provide a method to study narrowly scoped areas;

however, still providing results that are useful in a wider sense.

In the thesis, the solutions are evaluated with criteria based on the factors set by the

assigner. The criteria led to creation of four sub areas of the research, where test

cases were created for comparing the solutions in them and using both qualitative

and quantitative methods to set them in order of preference based on the results.

These results were then used to compare the solutions on an overall level. While the

overall result can be used in a quantitative manner, it is the qualitative evaluation of

the factors and their emphasis to any subjective reader that determines the real end

result.

3.2 Research objectives

When the research was organized, the assigner provided us the three factors they

use to evaluate the usefulness of IDS solution in their use. The factors are as follows:

1. Security performance out of the box, without a big work effort
2. Credibility of the open source project in terms of its future
3. Integration options of the solution

Based on the three factors mentioned, following research goals were devised:

1. How well do the IDSs detect the variety of network attacks using built-in scripts
2. How much effort does configuration of the IDSs require?
3. How well are the IDSs maintained and developed?
4. What kind of alert outputs are supported?

22

Goals 1 and 2 provide us with information to first factor set by the assigner. Goal 3

provides information to second factor. Goal 4 answers third factor. The results of this

research should provide insight how these different products work out of the box

and what are their strengths and weaknesses are concerning the factors set.

3.3 Targets of research

The targets of research are well established open source IDS tools that are available

as separate tools and as part of commercial products. The tools were set by the

assigner for this research to provide information about them for making informative

decisions about their use in corporate network setting. Snort, Suricata and Zeek are

the generic open source NIDS that are available in the open source market at this

time.

3.3.1 Suricata

Suricata is open source NIDS owned and supported by the Open Information Security

Foundation (Open Information Security Foundation). Suricata’s history starts from

grant funding provided to Open Information Security Foundation in 2009. First

release of Suricata was in 2010 and it has roots in Snort architecture. (White,

Fitzsimmons & Matthews. 2013, chapter 1.2). Suricata is the most recent entry of the

three at the IDS stage. It has the advantage of starting from scratch with lessons

learned from the previous solutions and trying to improve upon them. Suricata’s

design has roots in Snort development and Suricata can use rules and signatures

designed for Snort with little effort. Suricata is primarily a signature-based detection

tool.

3.3.2 Snort

Snort is an open source NIDS that was originally created by Martin Roesch and

released in 1998. Later in 2001, Roesch created a company, Sourcefire Inc., to

develop and offer commercial products based on Snort. Sourcefire Inc. was acquired

by Check Point Software Technologies in 2005 and later, Cisco Systems in 2013, and

Cisco Systems is currently managing the development of Snort. (What is Snort?,

2017). Snort has a long development history and is used in commercial products for

https://suricata-ids.org/

23

IDS purposes. While a long history can be a burden, it is also a source of strength

through wider community and recognition. In any list of open source IDSs, Snort is

certainly found in the listing. It is usually sitting on top of the list as most

recognizable. Snort is primarily a signature-based detection tool.

3.3.3 Zeek (formerly known as Bro)

Zeek is an open source NIDS project initially started by Vern Paxson in 1995 when he

was a researcher at the Lawrence Berkeley National Laboratory. The first operational

deployment was carried out in 1996 and a research paper about Zeek (then known as

Bro) was published in 1998. In 2003 National Science Foundation began supporting

Zeek development and a team of researchers and students has been developing the

system since. The development of Bro has been different from other open source

IDSs, as the development has mostly been based on academic research projects.

(Zeek documentation 2019, chapter History). From the three, Zeek is clearly less

known, most likely related to its development history as research project.

Regardless, there is a commercial solution offered that is based on Zeek and it can be

expected that Zeek will be better known in the future. Zeek is primarily an anomaly-

based detection tool.

3.4 Test environment

The test environment was created with virtual servers running on Oracle VirtualBox

virtualization software. VirtualBox software enabled running all the hosts in testing

on the same machine and lessened the complexity of setting up the testing. Oracle

VirtualBox is an open-source project and free to use for personal and educational

use.

The test environment has three target servers, two clients, all in the same network

with NIDS solutions listening traffic in promiscuous mode. Promiscuous mode

provides all VirtualBox related network traffic to virtual servers as if they were part

of a hub instead of a switch, thus enabling the use of NIDSs in such a manner as they

were in real networks with port mirroring.

24

With all NIDSs in promiscuous mode, it is possible to provide an identical test setting

in all performed tests. The tests are run once, and results documented from all

NIDSs, thus making tests and results comparable without the possibility of a test

error between solutions due to the environment in the testing situation. Figure 6

shows logical graph of the testing environment in VirtualBox.

Figure 6. Test environment

3.4.1 Network and the hosts

All the hosts in the VirtualBox environment were set up with IP address in host-only

network 192.168.56.0/24. Table 1. Shows the test network environment used in the

testing.

Table 1. Test network environment

Name Version IP

Network VirtualBox 6.0.12 192.168.56.0/24

OWASPBWA 1.2 192.168.56.103

25

Old Ubuntu server 9.10 Karmic Koala 64-bit 192.168.56.150

PfSense 2.3.5 64-bit 192.168.56.140

Kali-1 2019_4 192.168.56.115

Kali-2 2019_4 192.168.56.116

OWASP BWA is a tool created by the Open Web Application Security Project

(OWASP) which provides tools to improve software security. Broken Web Application

(BWA) project provides tools to learn about software vulnerabilities and learn by

doing in different web application environments. As vulnerable web application

Mutillidae II tool is used, which has been created by OWASP foundation to provide

training environment for cyber security concerning web applications. (Owasp, 2015).

An old Ubuntu server is used to provide the testing environment with a vulnerable

Linux installation for testing attacks against networked Linux OS and network

services that run on it. By using the old Linux version, exploits attacking against

known vulnerabilities are easily tested. Following Linux services were installed:

OpenSSH, Mail server, LAMP server, PostgreSQL database, Print server, Samba file

server and Tomcat Java server.

PfSense is an open-source firewall used as the network device in the tests. Firewall is

mainly used for testing DOS attacks, but also attacks against vulnerabilities. PfSense

is based on FreeBSD and provides a community edition which is distributed under

Apache 2.0 license. PfSense is offered in a cloud and appliance versions in a

commercial setting as well.

Kali-1 and Kali-2 are both Kali Linux installations and are used to create attacks

against targets. Kali Linux is a Linux distribution developed by Offensive security

containing a set of tools that can be used, among other things, for network attacks.

3.4.2 Snort configuration

Snort was installed and configured to use the community rules and subscriber rules

from www.snort.org. Subscriber rules are rules maintained by the

http://www.talosintelligence.com and 30 day old rules are given free of charge to

registered users at www.snort.org

Snort version: 2.9.15 (Build 7)

http://www.snort.org/
http://www.talosintelligence.com/
http://www.snort.org/

26

Rules fetched: 18.10.2019

3.4.3 Suricata configuration

Suricata-update tool provides rulesets for Suricata. All non-commercial rulesets were

enabled with tool and used during the tests.

Suricata version: 4.1.5

Rules fetched: 20.10.2019

Suricata JA3 fingerprint rules require that JA3 is enabled in Suricata configuration.

JA3 fingerprint is method of fingerprinting SSL handshakes. The following line was

modified in /etc/suricata/suricata.yaml as yes:

ja3-fingerprints: no

3.4.4 Zeek configuration

Zeek has rule-scripts built-in that just need to be enabled in the configuration. All

available detection scripts were enabled in the configuration.

Zeek version: 3.0.0

Rules built-in. Version fetched 23.10.2019.

Zeek has automated notice (alarm) suppression, which means that it does not report

same issue twice, unless specified time interval has gone by. To prevent this,

following option was set in base/frameworks/notice/main.zeek file:

option default suppression interval = 0secs;

3.5 Testing areas and scoring

3.5.1 Network attack monitoring

In the thesis, network attack vectors are defined as attack vectors that attack

through network connections. Furthermore, the scope of this thesis is limited to

attack vectors that use technical means; therefore, social engineering / dumpster

diving and other non-technical information gathering methods are outside of the

27

scope of this thesis. Excluded are also all technical attack vectors that are invisible to

network monitoring, as they have no relevancy to NIDS performance analysis.

Evaluating network attack monitoring provides information how each product

performs in its main function. In this question it was interesting to see how well

different solutions observe and report different attacks. Additionally, it was to be

seen if there are meaningful differences between the solutions in reporting attacks.

All solutions had all their built-in scripts and signature libraries enabled if they were

available at no cost.

The only log that is followed is the alert log or notice log that the software uses to

flag priority events. Normal traffic logs are not inspected. With Suricata and Snort,

the alert log Priority: 2 and Priority: 1 -messages are examined. With Zeek, all entries

logged in notice.log are examined. The reason for this is that all IDS log massive

amounts of informational data, and the amount of information makes such logging

levels useless in terms of human observation. It is possible to spot the attack from

such logs; however, going through such amounts of logs is not feasible in a real life

environment. Thus, only those entries are examined, that the IDSs themselves

consider more important. With Zeek, it was necessary to exclude certificate errors

from the notice.log as well, because Zeek informed about all non-valid certificates in

the log.

To answer to the research goal 1, the most common network attack vectors were

studied and the test cases were built for them. These test cases are performed in a

network, where each solution is monitoring the traffic while attacks are performed

and then results are scored. The test documentation includes information about

which common attack vector it relates to.

3.5.2 Configuration

On the configuration and updates side the focus is on how easily the changes in

configuration are performed. With configuration changes the focus will be on simple

manually created alert rules for network traffic that are useful in any environment.

These tests answer to research the goal 2. In the test time between starting to create

rule is measured in the system and the time when the rule is successfully triggered in

28

the solution by the traffic defined in the test. The test is performed without previous

knowledge of the syntax used in creating the rules.

3.5.3 Software maintenance and development

A comparison is made between the IDSs to see how well they are maintained and if

the products are developed in an active manner. The results of these tests provide

information concerning the research goal 3. The time between the major version

releases and development of minor releases between major versions is observed.

Contributor numbers in the last 12-month period are checked from the development

projects. These factors are seen most relevant for comparisons between solutions

considering they all have a long development history.

Tool https://www.openhub.net/ is used to check the code contributions.

3.5.4 Alert outputs

As the relevant integration in IDS use is logging and alerts, a comparison of the

number and quality of outputs that the solutions support is performed. Each of the

solutions’ documentation is checked to verify how many different outputs the

solution can provide and if there are any differences between the solutions, such as

the extent of the output options. These tests were performed to provide information

relevant to research goal 4.

3.6 Scoring

In the network attack tests one score point is given if the attack is reported. One

score point is given if the report of the attack matches the attack itself and is not

misleading. Thus, any single test can provide a maximum of two points to a solution

and a minimum of zero. The scores from all tests are then tallied, and different

solutions can be compared by their total score and their score with each test case.

The total scores are then compared, and the best solution gives three points, the

second best two points and the last solution one point from this area of tests.

In the configuration tests, the solutions were timed in each test. Each test was scored

with three points to the best solution, two points for the second best and one point

https://www.openhub.net/

29

for the third best. The total scores were then compared and the area was scored by

giving three points for the best solution, two points for the second and one point for

the third.

In software maintenance and development, the project was evaluated based on the

major releases, development in the last few years and the number of contributors

they had. The evaluation then scored the projects by giving three points for the best

solutions, two to the second best and one for the last. The area score was gained

directly from the result of the evaluation.

Alert outputs were evaluated by looking at the number and quality of outputs that

each solution provided. Based on the evaluation, the best solution scored three

points, second one was given two points and the third best, one point. The area

score is based on the result of the evaluation scores.

If solutions tied in scoring results of an area, both solutions were given the points

based on the position they were tied in. The position immediately behind the tie was

considered filled at that point. If solutions were tied at first place, both were given

three points, and the last solution one as it is deemed placed third. If the solutions

were tied at the second place, both were awarded two points, and none one point.

4 Results and analysis

4.1 Network attack monitoring

Network attack monitoring is divided into five areas of different attacks that were

tested based on the common attack vectors listed in chapter 2.5. The basis for the

test measurement is described in chapter 3.5.1. Each solution was given one point if

it reported an attack related to the issue tested. Another point was given if the

reported attack was correctly identified in the alert.

Denial of service attacks included a network attack with TCP, an attack against web

server and an attack against the operating system service. The attacks were

performed by using Metasploit tool. DOS attacks can be used to cause a service

outage to a specific server or service. Depending on the sophistication of the attack,

30

DOS attacks can be a nuisance or part of more elaborate attack to replace some

infrastructure service such as DNS with the attacker’s own version, providing

malicious data. Specific tests and results in Appendix 1. Table 2 shows the results of

the DOS tests.

Table 2. Results of Denial of Service attacks

Denial Of Service Snort Suricata Zeek

TCP DOS 0 0 0

Web server DOS 0 0 0

OS service DOS 0 2 0

Only one attack against operating system service Samba was detected during all the

tests by Suricata with correct information about the attack. The result was not

expected, especially TCP DOS is something that is easily observable from the firewall

statistics and the traffic is not meaningful in any manner. This might be something

that can be tweaked in the sensitivity settings of the solutions; however, out of the

box, the results were not good.

TCP Hijacking attack was performed by spoofing ARP messages to the client and

gateway using ARPSpoof tool. ARPspoofing can be used to provide faulty routing

data to network hosts causing them to send network traffic to a malicious host. This

false routing can be used to disrupt the network or as the first step for a more

complex man-in-the-middle attack. The specific test is found in Appendix 2.

As we can see from table 3, none of the solutions reported this attack. This was not

an expected result. While the ARP messages themselves are perfectly appropriate,

one would expect the solutions to compare the ARP messages monitored to those

moving in the same network by other hosts and deem the attack as anomalous

traffic. This might be something that can be tweaked in the settings; however, out of

the box, none alerted.

Table 3. Results of TCP Hijacking attacks

TCP Hijacking Snort Suricata Zeek

ARPspoof 0 0 0

31

Port scanning attacks included two port scans and one fingerprinting action. The

tools used in attacks were NMAP and Dmitry. Port scanning and fingerprinting can be

used for reconnaissance to learn more about the network and detect vulnerable

versions of network services and hosts. The Details of the attack can be found in

Appendix 3. Table 4 shows the results of port scanning tests.

Table 4. Results of Port Scanning attacks

Port Scanning Snort Suricata Zeek

NMAP port scan 0 1 2

Dmitry port scan 0 0 2

Fingerprinting 0 2 0

In port scanning better results were observed with Suricata and Zeek reporting

attacks and the attacks were identified correctly. Port scanning and fingerprinting

inevitably rely on some set limit of connections to ports to make the determination

of suspicious action. It is likely that the limits on the solutions out of the box are too

high for the test, as they do not alert about attacks even though the tools connect

many different ports in short order.

Two password guessing attacks were made with Hydra, one against the web server

application and one against the operating system (OS) service. Easy passwords

provide low lying fruit for any attacker. One bad password can provide the first step

to any system, even if the related account is an unprivileged one. More detailed

information about the test can be found in Appendix 4.

In this case, Suricata alerted about strange traffic against the Web Server; however, it

was unable to identify it being a password guessing attack. In the attack against the

OS service, Zeek was able to identify and report the attack. Table 5 shows the results

of the tests. These were not expected results, since password attacks are well known

and should be identifiable from the traffic, especially HTTP as the attempt is made in

unencrypted form. The reason for this can be that there is some high limit of

password tries in the IDS for this and the limit was not reached.

Table 5. Results of Password Guessing attacks

Password Guessing Snort Suricata Zeek

Hydra - Web Server 0 1 0

32

Hydra - OS Service 0 0 2

Six different attacks were performed with software exploitation: vulnerability scan,

SQL injection, parameter fuzzing, forced directory browsing and two vulnerability

exploits. Vulnerable or badly configured software often offers various ways for a

malicious attacker to exploit the systems and either gain access or deepen it without

a huge effort. Appendix 5 provides detailed information about the tests. Table 6

shows the results of the software exploitation attacks.

Table 6. Results of Software Exploitation attacks

Software Exploitation Snort Suricata Zeek

NMAP - Vulnerability scan 2 2 1

SQLMAP SQL injection 2 2 0

Burp Suite Parameter fuzzing 0 2 0

Nikto Forced directory browsing 0 2 0

Linux Samba vulnerability exploit 0 0 0

Linux Apache/Bash vulnerability exploit 2 2 0

Software exploitation shows great differences between the solutions with Suricata

coming on top. Snort performs at adequate level; however, Zeek is clearly struggling.

Suricata’s and Snort’s reliance on signature detection is their advantage. These

attacks contain a payload that is easy to configure as signature. Zeek, on the other

hand, works in a different manner and does not have extensive signature libraries.

4.2 Configuration

The comparison tests concerning configuration illustrated how easy simple network

traffic rules are to configure to different solutions. The tests were performed without

previous knowledge of the syntax for the rules, and the effort was timed. Three

points were given to the best solution, two to the second best and one point to the

last one. The rules used in testing are such that they are used in any given installation

of IDS in the real world to set up rules for acceptable and non-acceptable network

traffic. Table 7 shows the results of the configuration tests and Appendix 6 contains

detailed information about the tests.

33

Table 7. Results of configuration tests

Configuration Snort Suricata Zeek

Custom rule for network traffic 3 3 1

Network traffix rule exception 3 3 3

In this case, Snort and Suricata used a very similar syntax and configuration for the

custom rules and were given the same time, as the experience from the first test

benefitted the second. All the solutions had simple systems for creating an alert

from specified network traffic. Zeek suffered from a greater attention to more

complex rules that the solution offers, which caused a longer time to find the syntax

for the simpler signature rules that could be used to create an alert notice from

specified network traffic.

4.3 Software maintenance and development

Version update dates were checked for major versions and number and size of

updates between last two major version to see what the development state of the

different solutions is. The tests also included a check of the number of contributors in

the last twelve months. The results are displayed in table 8. These checks provided

information about basic activity in the open-source project to evaluate what their

future looks at this moment. The best was given a score of three points, the second

two and the third one point. Detailed information about the versions can be found in

Appendix 7.

Suricata and Zeek showed strong active development in recent years and had

constant updates every year with a good number of contributors. Snort had few

releases and a very inactive year in 2018 with only one release and a relatively low

number of contributors in the last twelve months. Table 8 shows the results of the

evaluation. Snort 3.0 has been in Beta since 09/2018 and this inactivity in releases

and updates might be related to it; however, as this was not public knowledge, The

scoring was carried out accordingly

Table 8. Results of updates comparison

Updates Snort Suricata Zeek

Version updates 1 3 3

34

4.4 Alert outputs

All the solutions were compared to see what alert output methods were supported

out of the box. The outputs were considered by their variety and importance.

Outputs are an important factor when considering how the solutions are integrated

to existing systems. Varied and extensive outputs offer an easy way to integrate the

solutions to any given need whereas narrow options likely lead to an increased work

effort. Information about the comparison can be found in Appendix 8.

As table 9 shows, Suricata and Snort tied with their outputs, with Zeek getting the

last place. By sheer numbers, Snort had the most options, however, it lacked JSON

output, which is often used in logging solutions and provides human readable text

log. Suricata had a good variety of outputs and an excellent JSON output parser. Zeek

had only few outputs and lacked some common ones.

Table 9. Result of Alert output comparison

Alert outputs Snort Suricata Zeek

Comparison of alert outputs 3 3 1

5 Discussion

5.1 Solution comparison

By scoring each of the testing areas, giving best solution three points, second two

and the third one point, results shown in table 10 were gained.

Table 10. Results of testing areas

Testing area Snort Suricata Zeek

Network Attack Monitoring 1 3 2

Configuration 3 3 1

Updates 1 3 3

Alert outputs 3 3 1

Total 8 12 7

35

By looking at the results, it can be observed that Suricata was the first or shared the

first place in each area of tests. Snort places as second with one point over Zeek. The

result was somewhat expected, Suricata is the newest product of the three;

however, it is already mature with nine years of releases. Zeek performed better

than expected, being on same level with Snort, even though Zeek is based on a

research project. Part of Snort’s struggle might be related to its upcoming version 3.0

that has been in beta since 2018. The results can be easily tweaked to different

situations by either going through the tests and evaluating their importance to any

given use case or giving multipliers to testing areas based on the needs. It is also

possible that the signatures currently offered by Snort out of the box are not as

varied as Suricata’s and thus the marked differences in the results of the network

attack portion of the tests.

5.2 Research

The First goal of the research was to test how well different IDS solutions detected a

variety of network attacks with freely available scripts and rules. The attacks were

devised based on common attack vectors used by malware and APT. The tests

themselves provided clear quantifiable results. The only question about the test is

how well the selected tests correspond to real world events. While the results in

chapter 4.1 show the difference between the solutions when testing these specific

issues, different results might be gained by testing something else. The tests were

based on common attack vectors and the results did provide a clear division between

the solutions. The testing itself was carried out without great issues. The only trouble

during the testing was Zeek as it logged all the certificate errors, thus making the logs

less readable. This issue was corrected by parsing all but certificate errors in the log.

The second goal was related to the first goal, as they both were questions that

answered the same factor set by the assigner company. The tests performed towards

the second goal were very simple; however, most likely done in all real-world

implementations of an IDS solution. The results in chapter 4.2 showed the effort

required to carry out such changes in practice and thus provided good information

towards the goal set. During the testing it was apparent that Snort and Suricata have

rules based on a very similar syntax, thus creating rules for either is relatively simple

36

if one is familiar with the syntax of the other. Luckily, this enabled setting the same

time for both solutions, as there was little difference in creating them.

Gathering information towards the third goal was different from first two goals.

Evaluating the test results with active development and maintenance of solutions is

not as simple as comparing time and log results. Research to literature provided

some good solutions to performing these tests and in the end, the results in chapter

4.3 provided at least a glimpse of the current situation, even if forecasting future

developments is of course impossible. The development of open source projects can

be cyclic and thus this result as a comparison of the solutions is not the most reliable

but does give a basis to believe that all three projects are under active development.

Looking at research goal 4, alert outputs, the test comprised a comparison of natively

supported output modules of each solution. While it is easy to compare the amount

of supported outputs, evaluating which format is better or more meaningful than

another is a highly subjective matter. The results in chapter 4.4 showed that Zeek

was easy to set aside as the “loser” of this comparison due to very limited options,

whereas Suricata and Snort had both strengths and weaknesses in the results that

could push the result to any direction. The result between Suricata and Snort might

change depending on who is performing the evaluation and the requirements of that

particular use case.

When the overall results in chapter 5.1 are observed and the research goals stated in

this thesis and the overall picture they paint are concerned, the answer seems clear:

to a small and medium enterprise, Suricata seems the best option. Suricata can

detect attacks, it is relatively easy to create alerts concerning corporate network, the

solution is under active development and one can be sure that one gets the alerts to

the logging system of one’s choice with relative ease.

This is not the whole story though. When the research was carried out, novelties of

the different solutions became apparent as well. Zeek, while third in this comparison,

for example had detailed logging in terms of protocols and packets and would prove

useful if such information is needed for forensics when investigating network issues

or a breach. Snort is considered an industry standard, and information as well as help

and literature about Snort is available in greater degree than there is about Suricata

37

or Zeek. Snort is also part of many commercial IDS devices and is in part developed

by Cisco.

While this thesis would show that if an enterprise needs to improve its network

security, Suricata would be an efficient and low effort solution to provide that

security; however, the other solutions have their places as well. As IDSs do not

actively manipulate the network, there is no issue of having many IDSs in use and

aggregating their alerts. There is a free open source Linux distribution called Security

Onion that offers all these tools and more in a single package for use in any network

environment. While the administration of such combined tool is most likely more

demanding and requires a greater effort, the security level it provides should be

higher as well, as different solutions have different strengths and weaknesses.

From the point of view of the research goals, the configuration portion could have

provided more useful information by going more in depth to rules and signatures as

well as comparing the creation of complex rules and signatures. This area was limited

to simple useful rules due to great growth in effort that learning the creation of

complex rules and signatures would have required.

The accuracy of research should be good as this thesis enabled the comparison of the

IDS solutions by seeing their results based on the same unique time the attack was

made. The rules and signatures used were limited to those easily available to make

the research as useful as possible to all sorts of organizations. There might be a small

variance in results when using commercial rules and signatures, in this case the effect

should be limited as only Suricata had signatures that were left out based on their

commercial nature. Snort used a non-commercial ruleset; however, it is the same

ruleset the commercial one, it is just released 30 days later for free to registered

users.

In some rules and signatures there are sensitivity settings as well. By tweaking such

settings, different kind of alert results might have been reached, especially in testing

that causes a certain amount of traffic, like port scanning. Nevertheless as it is very

difficult to compare such tweaking between solutions, it was left out. However,

results might be slightly better in real world, where such tweaking is probable at

least on some level.

38

5.3 Field of study

While the author was unable to find similar researches comparing these products in

the same manner, there was plenty of research available about these products,

comparisons between them that are closely related and provide different kind of

information about the products, for example the research about Snort, Suricata and

Zeek network performance by Pihelgas (2012).

Using this thesis as base, other studies can be used to gather comparison information

about different areas of IDSs not included in this thesis and then provide even more

information to make informed decisions about which IDS is a good fit for any given

environment. This creates possibilities for future research, as literature review of

different comparisons could provide a very good overall view of these products. This

kind of research could provide better knowledge about the solutions than any single

research comparing some given features between the solutions.

6 Conclusions

Without having user experience about different IDS solutions, it is very difficult to

make an informed decision to choose one for any given use. This thesis looked at

three different open source solutions, Snort, Suricata and Zeek, to see how they

compare with each other in terms of providing security to a small and medium-sized

enterprise network environments. Snort, Suricata and Zeek are established open

source IDS tools suitable for generic use, thus a reasonable target for a research that

excludes commercial products. Other open source products are either host-based or

limited somehow, for example OpenWIPS-NG, which is targeted at wireless

networks. There are also many solutions that can use data provided by an IDS;

however, they are in the domain of network security monitoring.

The research questions were set in a manner to provide information about how the

systems would perform when set up to run with a moderate amount of effort and

with out of the box features. They were then compared to see how they performed

against common attack situations in a network, how easy it was to create small IDS

rules in a simple network environment, how actively they were developed and

39

finally, how varied their output capabilities were, so the alerts are easy get out of

them to other systems.

On the terms set above, the thesis provided clear results in chapter 4.5. If one has

use for an open source IDS solution, Suricata is a good choice to start with. Both

Snort and Zeek are good solutions themselves and provide similar features and their

own strengths; however, out of the box they do not provide as good a solution as

Suricata

Snort gave the impression of a well working and widely known solution, there was

easily the greatest amount of information available about it in books, forums and

articles. It left the feeling that one cannot go wrong with Snort, yet it also felt

somewhat dated and was not updated as often as the competitors. Snort is also the

only solution not offering any multi-threaded functionality, thus limiting the

capabilities of a single Snort instance in terms of network traffic volume. This feature

is promised in the upcoming version 3.0; however, it has been in beta phase for over

a year.

Zeek was a very different product from either Snort or Suricata. It has evolved as an

academic research project and it showed. The information about it was most scarcely

available and it had no support outside of few online forums. Zeek also uses primarily

anomaly detection whereas Snort and Suricata are signature-based. Zeek created the

most interest in author’s IT expert side, and with infinite resources, the author would

certainly put time and effort to study all aspects of Zeek.

Suricata felt the freshest solution of the three. Snort and Suricata are very similar

products from user perspective, Suricata just felt like it was a newer better version of

Snort with additional features. Information about Suricata was easily available, yet

not as widely as it was about Snort.

The results followed the impressions that the solutions created during this thesis. If

one solution had to be recommended for small and medium-sized enterprises to use,

Suricata would be that recommendation by the thesis and the author.

The thesis could have been broadened by adding different areas to testing such as

performance or delving deeper in areas such as rule and signature creation and alert

40

outputs. The scope of the thesis was difficult to set and a great deal of balancing

between the size of the thesis and practical need for information had to be done. In

the end I am satisfied with the thesis and the knowledge it provides about the

solutions.

Related research can also be used to complement this thesis. For example,

performance knowledge from Pihelgas (2012) and Khalil (2015) can help to decide

what kind of networks or points the IDS is used to monitor, or what product to select

in any given case based on network performance. Caswell, Beale and Baker (2007)

provide information for the organizations taking the logical step from IDS to IPS as

the requirements on security front develop. Rødfoss’s (2011) study is very similar to

parts of this thesis in looking at network threats. The way Rødfoss’s study was

conducted was such that the results are not comparable with the results of this

thesis. The problem is that Rødfoss’s study did not use all available rulesets in their

tests, thus leading to results that do not provide a fair comparison between

solutions.

Harstein (2008) viewed the results of Snort against malicious programs with network

traffic, showing 68% result for alerts that an administrator would take seriously. In

this thesis, with much smaller test set for network attack threats, Suricata reached

60%, Snort 20% and Zeek 26% detection rate. Compared to the Harstein (2008), this

test was arguably more difficult to the IDS, as the traffic produced was in great part

based on human created traffic instead of being automatically created by a known

malicious program. Network traffic of malicious program is often more easily

detected via signatures and rules, as it is more regular. The low detection rate during

the research was a surprise, especially in terms of Suricata vs. Snort, as both are

based on a similar signature detection method. Part of the reason is likely related to

more varied signature sources that Suricata provides out of the box and to the more

modern detection engine.

One area of interest came up during the research relating to comparison of the

products. As there is no way to have 100% security, security breaches in networks

take place despite best efforts. When a such breach occurs, network forensics is a

very important tool to investigate the breach and to get information about the

attacker. All the IDSs provide extensive logging features to provide such forensic

41

information. These capabilities to provide forensic information would be an

interesting area of research when comparing different solutions and would provide

more information to decision makers when selecting solutions for their network

security.

7 Recommendation

Based on the whole thesis, all tests and the experience gained during it, the

recommendation as single open source IDS solution for a corporation would be

Suricata. It provided the best results out of the box and has the advantage of being

built upon the shoulders of Snort. It is multi-threaded and can be used in networks

where Snort and even Zeek might need additional installations to keep up. Suricata’s

detection engine also contains features that Snort does not support. The only

weakness that Suricata really has is that it is based primarily on signatures. In an

optimal case, there would be both mature anomaly detection and signature

detection in the same tool. While Zeek did not do as well as Suricata in tests, Zeek

has better capabilities to detect attacks with no known signature yet, as it is primarily

an anomaly-based IDS.

If there are more resources available, a combination of Zeek and Suricata would

provide more in-depth security than Suricata alone. To be complete, IDS solutions

can be supplemented by a network security monitoring system that provides

administrators clearer view to security events in their network. Therefore, the best

result, as always in security is not achieved by use of one tool but by use of many

tools together to provide a comprehensive view to the security environment in

question.

42

REFERENCES

Bricata, 2018. Suricata vs. Snort vs. Bro IDS. Accessed on 29. October 2019

https://storage.pardot.com/350921/13942/Bricata_BroVsSnortSuricata_Whitepaper_2

018.pdf

Caswell, U. Beale, J. Baker, A. 2007. Snort Intrusion Detection and Prevention

Toolkit. Burlington, MA: Syngress Publishing Inc.

Cole, E., Krutz, R., Conley, J. 2005. Network Security Bible. John Wiley & Sons. E-

book from Books24x7. Accessed on September 3, 2019
http://common.books24x7.com.ezproxy.jamk.fi:2048/toc.aspx?bookid=12199

Computer Security Institute. 2011. 2010/2011 Computer Crime and Security Survey.

Accessed on November 17, 2019. Retrieved from

https://cours.etsmtl.ca/gti619/documents/divers/CSIsurvey2010.pdf

Department for Digital, Culture, Media & Sport. 2019. Cyber Security Breaches

Survey 2019. Accessed on November 17, 2019. Retrieved from

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachme

nt_data/file/813599/Cyber_Security_Breaches_Survey_2019_-_Main_Report.pdf

Difference between IPS and IDS in network security. Ipwithease website, 2017.

Accessed November 17, 2019. Retrieved from https://ipwithease.com/difference-

between-ips-and-ids-in-network-security/

Hartstein, B. 2008. Intrusion Detection Likelihood: A Risk-Based Approach. SANS

Institute. Accessed November 18, 2019. Retrieved from https://www.sans.org/reading-

room/whitepapers/detection/intrusion-detection-likelihood-risk-based-approach-32938

Ivvala, A. 2017. Assessment of Snort Intrusion Prevention Systems in Virtual

Environment Against DoS and DDos Attacks. Master’s thesis, Institute of Technology.

Blekinge Institute of Technology, Faculty of Computing. Accessed on 31. October

2019. Retrieved from http://www.diva-

portal.org/smash/get/diva2:1085340/FULLTEXT02

Kaspersky, 2019. What Is an Advanced Persistent Threat (APT)?. Accessed October

4, 2019. Retrieved from https://usa.kaspersky.com/resource-

center/definitions/advanced-persistent-threats

Khalil, G. 2015. Open Source IDS High Performance Shootout. SANS Institute.

Accessed November 17, 2019. Retrieved from https://www.sans.org/reading-

room/whitepapers/intrusion/open-source-ids-high-performance-shootout-35772

Khan Pathan, A. 2014. The State of the Art in Intrusion Prevention and Detection.

Auerbach Publications. E-book from Books24x7. Accessed on October 4, 2019.

Retrieved from

http://common.books24x7.com.ezproxy.jamk.fi:2048/toc.aspx?bookid=61769,

Books24x7.

Kim, D, & Solomon, M. 2014. Fundamentals of Information Systems Security, Second

Edition. Jones and Bartlett Learning. E-book from books24x7. Accessed on January

29, 2019. Retrieved from

http://common.books24x7.com.ezproxy.jamk.fi:2048/toc.aspx?bookid=69815,

Books24x7

https://storage.pardot.com/350921/13942/Bricata_BroVsSnortSuricata_Whitepaper_2018.pdf
https://storage.pardot.com/350921/13942/Bricata_BroVsSnortSuricata_Whitepaper_2018.pdf
http://common.books24x7.com.ezproxy.jamk.fi:2048/toc.aspx?bookid=12199
https://cours.etsmtl.ca/gti619/documents/divers/CSIsurvey2010.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/813599/Cyber_Security_Breaches_Survey_2019_-_Main_Report.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/813599/Cyber_Security_Breaches_Survey_2019_-_Main_Report.pdf
https://ipwithease.com/difference-between-ips-and-ids-in-network-security/
https://ipwithease.com/difference-between-ips-and-ids-in-network-security/
https://www.sans.org/reading-room/whitepapers/detection/intrusion-detection-likelihood-risk-based-approach-32938
https://www.sans.org/reading-room/whitepapers/detection/intrusion-detection-likelihood-risk-based-approach-32938
http://www.diva-portal.org/smash/get/diva2:1085340/FULLTEXT02
http://www.diva-portal.org/smash/get/diva2:1085340/FULLTEXT02
https://usa.kaspersky.com/resource-center/definitions/advanced-persistent-threats
https://usa.kaspersky.com/resource-center/definitions/advanced-persistent-threats
https://www.sans.org/reading-room/whitepapers/intrusion/open-source-ids-high-performance-shootout-35772
https://www.sans.org/reading-room/whitepapers/intrusion/open-source-ids-high-performance-shootout-35772
http://common.books24x7.com.ezproxy.jamk.fi:2048/toc.aspx?bookid=61769
http://common.books24x7.com.ezproxy.jamk.fi:2048/toc.aspx?bookid=69815

43

Klein, D., 2019. Understanding the types of cyber threats on the rise in 2019.

Accessed on 29. January 2019. Retrieved from

https://www.guardicore.com/2019/1/types-of-cyber-threats

MacDonnell, U. 2014. Cyber Threat!: How to Manage the Growing Risk of Cyber

Attacks. New Jersey: John Wiley / Sons, incorporated.

NIST-800-94. Guide to Intrusion Detection and Prevention Systems (IDPS).

Gaithersburg: National Institute of Standards and Technology. February 2007.

Accessed on November 5, 2019.

https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-94.pdf

Open Information Security Foundation. Suricata homepage. Accessed October 4,

2019. Retrieved from https://suricata-ids.org/

openSUSE Linux Report. 2019. Report page on Black Duck Inc. corporation’s

openhub website. Accessed November 18, 2019.

https://www.openhub.net/p/opensuse-linux

OSS Watch. 2014. How to evaluate the sustainability of an open source project.

Accessed November 17, 2019. https://opensource.com/life/14/1/evaluate-

sustainability-open-source-project

OWASP. 2015. OWASP Mutillidae 2 Project. Accessed November 28, 2019.

https://www.owasp.org/index.php/OWASP_Mutillidae_2_Project

Pihelgas, M. 2012. A Comparative Analysis of Open-Source Intrusion Detection

Systems. Master’s Thesis, University of Technology. Tallinn University of

Technology, Department of Computer science. Accessed on 31.2019. Retrieved from

http://mauno.pihelgas.eu/files/Mauno_Pihelgas-

A_Comparative_Analysis_of_OpenSource_Intrusion_Detection_Systems.pdf

Rehman, R. 2003. Intrusion Detection Systems with Snort. New Jersey: Prentice Hall

PTR.

Rødfoss, J. 2011. Comparison of Open Source Network Intrusion Detection Systems.

Thesis, University College. Oslo University College, Network and System

Administration. Accessed on 31. October 2019. Retrieved from

https://www.duo.uio.no/bitstream/handle/10852/8951/Rodfoss.pdf

Schell, B. Martin, C. 2006. Webster’s New World Hacker Dictionary. Indianapolis,

IN: Wiley Publishing Inc.

Starting an Open Source Project. Page on GitHub’s open source guide website. 2019.

Accessed November 17, 2019. Retrieved from https://opensource.guide/starting-a-

project/

Tight, M, 2017. Understanding Case Study Research: Small-scale Research with

Meaning. Croydon: CPI Group (UK) Ltd.

What is Snort? Page on InfosecAddicts website, 2017. Accessed October 4, 2019.

Retrieved from https://infosecaddicts.com/snort/

Cisco, 2018. What Is the Difference: Viruses, Worms, Trojans, and Bots? Accessed on

October 4, 2019. Retrieved from

https://tools.cisco.com/security/center/resources/virus_differences

https://www.guardicore.com/2019/1/types-of-cyber-threats
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-94.pdf
https://suricata-ids.org/
https://www.openhub.net/p/opensuse-linux
https://opensource.com/life/14/1/evaluate-sustainability-open-source-project
https://opensource.com/life/14/1/evaluate-sustainability-open-source-project
https://www.owasp.org/index.php/OWASP_Mutillidae_2_Project
http://mauno.pihelgas.eu/files/Mauno_Pihelgas-A_Comparative_Analysis_of_OpenSource_Intrusion_Detection_Systems.pdf
http://mauno.pihelgas.eu/files/Mauno_Pihelgas-A_Comparative_Analysis_of_OpenSource_Intrusion_Detection_Systems.pdf
https://www.duo.uio.no/bitstream/handle/10852/8951/Rodfoss.pdf
https://opensource.guide/starting-a-project/
https://opensource.guide/starting-a-project/
https://infosecaddicts.com/snort/
https://tools.cisco.com/security/center/resources/virus_differences

44

White, J., Fitzsimmons, T. & Matthews, J. 2013. Quantitative analysis of Intrusion

Detection Systems: Snort and Suricata. Accessed October 4, 2019. Retrieved from

https://web2.clarkson.edu/class/cs644/ids/Paper/build/PDF/SnortVsSuricata.pdf,

Clarkson University.

Weinstock, C & Hissam, S. 2005. Making Lightning Strike Twice. In publication

Perspectives on Free and Open Source Software. Cambridge, MA: The MIT Press.

Zeek documentation, 2019. Accessed October 4, 2019. Retrieved from

https://docs.zeek.org/en/stable/intro/

https://web2.clarkson.edu/class/cs644/ids/Paper/build/PDF/SnortVsSuricata.pdf
https://docs.zeek.org/en/stable/intro/

45

APPENDICES

Appendix 1

Network attack monitoring - DOS

TCP DOS

Threats: APT(Stage one, four), Worm, Virus, Bot.

TCP SYN flood attack against PfSense firewall with Metasploit module

auxiliary/dos/tcp/synflood.rb

Attack command:

use auxiliary/dos/tcp/synflood.rb

set RHOSTS 192.168.56.140

exploit

Expected:

Alert relating to TCP, DOS, Flooding should be reported towards 192.168.56.140

Snort:

No results

Suricata:

No results

Zeek:

No results

Scoring:

46

 Points

Snort 0

Suricata 0

Zeek 0

47

Web server DOS

Threats: APT(stage four), Worm, Bot.

Apache Range Header DoS with Metasploit module

auxiliary/dos/http/apache_range_dos.rb

Attack command:

use auxiliary/dos/http/apache_range_dos.rb

set RHOSTS 192.168.56.150

exploit

Expected:

Alert relating to Apache, Header, DOS, Flooding should be reported towards

192.168.56.150

Snort:

No results

Suricata:

No results

Zeek:

No results

Scoring:

 Points

Snort 0

Suricata 0

Zeek 0

48

OS service DOS

Threats: Worm, Virus, Bot.

SMBLoris NBSS Denial of Service attack against Ubuntu server Samba service with

Metasploit module auxiliary/dos/smb/smb_loris.rb

Attack command:

use auxiliary/dos/smb/smb_loris.rb

set RHOSTS 192.168.56.150

exploit

Expected:

Alert relating to Samba, DOS, Flooding should be reported towards 192.168.56.150

Snort:

No results

Suricata:

1 hit

Zeek:

No results

Scoring:

 Points

Snort 0

Suricata 2

Zeek 0

49

Appendix 2

Network attack monitoring - TCP Hijacking

ARPspoof

Threats: APT(Stage four, five)

Arpspoof attack against kali-2 machine in 192.168.56.116

Attack command:

arpspoof -t 192.168.56.116 192.168.56.1

arpspoof -t 192.168.56.1 192.168.56.115

Expected:

Attack notification about ARP, spoofing or network related attack.

Snort:

No results

Suricata:

No results

Zeek:

No results

Scoring:

 Points

Snort 0

Suricata 0

Zeek 0

50

Appendix 3

Network attack monitoring - Port Scanning

NMAP portscan

Threats: APT(Stage four, five)

Network portscan with nmap scans the network for 100 most common ports.

Attack command:

nmap --top-ports 100 --script-args http.useragent="" -n 192.168.56.0/24

Expected:

Portscan should be reported

Snort:

No results

Suricata:

1 hit with wrong attack reported

Zeek:

7 hits

Scoring:

51

 Points

Snort 0

Suricata 1

Zeek 2

52

Dmitry

Threats: APT(stage four, five)

Network portscan with dmitry scans IP 192.168.56.150 TCP ports.

Attack command:

dmitry -p 192.168.56.150

Expected:

Portscan should be reported towards 192.168.56.150

Snort:

No results

Suricata:

No results

Zeek:

1 hit

Scoring:

 Points

Snort 0

Suricata 0

Zeek 2

53

Fingerprinting

Threats: APT(stage three, four, five)

Service fingerprint attack against Ubuntu server with nmap

Attack command:

nmap --script-args http.useragent="" -sV 192.168.56.150

Expected:

Portscan or fingerprint related attack should be reported towards 192.168.56.150

Result:

Snort:

No results

Suricata:

1 hit

Zeek:

No results

Scoring:

 Points

Snort 0

Suricata 2

Zeek 0

54

Appendix 4

Network attack monitoring - Password guessing

Hydra – Web Server

Threats: APT(one, three, four, five), Bot, Worm

Web application password brute force attack against OWASP Broken Web

applications Mutillidae using Hydra

Attack command:

hydra -l muhvi -P /usr/share/wordlists/fasttrack.txt 192.168.56.103 http-post-form

"/mutillidae/login.php:username=^USER^&password=^PASS^&Login=Login:Passwor

d incorrect

Expected:

Brute force related attack should be reported towards 192.168.56.103

Snort:

No results

Suricata:

3 hits

Zeek:

No results

55

Scoring:

 Points

Snort 0

Suricata 1

Zeek 0

56

Hydra – OS service

Threats: APT(stage three, four, five)

SSH password brute force attack against Ubuntu server using Hydra

Command used:

hydra -l root -P /usr/share/wordlists/fasttrack.txt 192.168.56.150 -t 4 ssh

Expected:

Brute force related attack should be reported towards 192.168.56.150

Snort:

No results

Suricata:

No results

Zeek:

1hit

Scoring:

 Points

Snort 0

Suricata 0

Zeek 2

57

Appendix 5

Network attack monitoring - Software exploitation

NMAP - Vulnerability scan

Threats: APT(Stage one, four, five)

Vulnerability scan is done by using NMAP -vuln script that scans server for many

known vulnerabilities.

Attack command:

nmap -Pn --script vuln --script-args http.useragent=”” 192.168.56.103

Expected:

Several different attacks should be reported

Result:

Snort

22 hits

Suricata

58

30 hits

Zeek

1 hit

Scoring:

 Points

Snort 2

Suricata 2

Zeek 1

59

SQLMAP SQL injection

Threats: APT(stage one, three, four, five)

SQL injection attack against OWASP Broken Web Applications Mutillidae using

SQLMAP

Attack command:

sqlmap -u "http://192.168.56.103/mutillidae/index.php?page=user-info.php" --

data="username=muhvi"

Expected:

SQL injection related attack should be reported towards 192.168.56.103

Snort:

23 hits

Suricata:

7 hits

Zeek:

No results

60

Scoring:

 Points

Snort 2

Suricata 2

Zeek 0

61

Burp Suite Parameter fuzzing

Threats: APT(stage one, four, five)

Parameter fuzzing attack against OWASP Broken Web Applications Mutillidae using

Burp Suite

Attack:

Wordlist used:

/usr/share/wfuzz/wordlist/Injections/

bad_chars.txt

XML.txt

XSS.txt

Expected:

Alert about injection, characters or http related attack should be reported towards

192.168.56.103

Snort:

No results

Suricata:

62

1 hit

Zeek:

No results

Scoring:

 Points

Snort 0

Suricata 2

Zeek 0

63

Nikto Forced directory browsing

Threats: APT(stage one, four, five), Worm, Bot

Forced directory browsing – directory enumeration against Ubuntu server Nikto

Attack command:

nikto -h 192.168.56.150

Expected:

Alert about scanning, vulnerabilities, information gathering or http should be

reported towards 192.168.56.150

Snort:

135 hits

Suricata:

133 hits

Zeek:

No results

Scoring:

 Points

Snort 0

Suricata 2

Zeek 0

64

Linux Samba vulnerability exploit

Threats: APT(stage three, four, five), Worm

Linux Samba vulnerability attack with Metasploit module

exploits/linux/samba/setinfopolicy_heap.rb

Attack command:

use exploits/linux/samba/setinfopolicy_heap.rb

set RHOSTS 192.168.56.150

set SMBUser <username>

set SMBPass <password>

exploit

Expected:

Alert relating to samba or connections related issues to its ports 139 or 445 should

be reported towards 192.168.56.150

Snort:

No results

Suricata:

No results

Zeek:

No results

Scoring:

 Points

Snort 0

Suricata 0

Zeek 0

65

Linux Apache/Bash vulnerability exploit

Threats: APT(two, three, four, five) Worm, Bot

Linux bash vulnerability attack through Apache CGI with Metasploit module

exploits/multi/http/apache_mod_cgi_bash_env_exec.rb

Attack command:

use exploits/multi/http/apache_mod_cgi_bash_env_exec.rb

set RHOSTS 192.168.56.103

set TARGETURI /cgi-bin/<somecgi.cgi>

exploit

Expected:

Alert relating to Apache, CVE-2014-6271, CVE-2014-6278, bash or CGI should be

reported towards 192.168.56.150

Snort:

2 hits

Suricata:

2 hits

Zeek:

66

No results

Scoring:

 Points

Snort 2

Suricata 2

Zeek 0

67

Appendix 6

Configuration

Custom rule for network traffic

SSH connection from Any host in the network to OWASP BWA creates an alert or a

notice.

Snort:

Rule:

alert tcp any any -> 192.168.56.103 22 (msg:”SSH to OWASPBWA”; sid:1000002;

rev:001;)

Time to create: 16min

Suricata:

Rule:

alert tcp any any -> 192.168.56.103 22 (msg:”SSH TO OWASPBWA”; priority:1;

sid:101010; rev:1;)

Time to create: 16min

As the rule syntax for Suricata is so similar to Snort, I deem the time same for

Suricata as for Snort. After noticing the similar rule syntax, the rule for Suricata took

only few minutes to make.

68

Zeek:

Rule:

signature ssh {

ip-proto == tcp

dst-ip == 192.168.56.103

dst-port == 22

event “SSH TO OWASPBWA”

}

Time to create: 30min

Scoring:

 Points

Snort 3

Suricata 3

Zeek 1

69

Network traffic rule exception

SSH connection from Kali-1 and Kali-2 to OWASP BWA 192.168.56.103 will not create

an alert or a notice

Snort:

From kali-1 and kali-2 : No results

From Ubuntuserver:

Rule:

alert tcp ![192.168.56.115,192.168.56.116] any -> 192.168.56.103 22 (msg:”SSH TO

OWASPBWA”; sid:10000002; rev:001;)

Time to create: 5min

Suricata:

From kali-1 and kali-2: No results

From Ubuntuserver:

Rule:

alert tcp any any -> 192.168.56.103 22 (msg:”SSH TO OWASPBWA”; priority:1;

sid:101010; rev:1;)

Time to create: 5min

The rule syntax with Suricata is so similar with Snort so same time is recorded with

Suricata as with Snort

Zeek:

From kali-1 and kali-2: No results

70

From Ubuntuserver:

Rule:

signature ssh {

ip-proto == tcp

dst-ip == 192.168.56.103

dst-port == 22

event “SSH TO OWASPBWA”

}

Time to create: 5min

Scoring

 Points

Snort 3

Suricata 3

Zeek 3

71

Appendix 7

Software maintenance and development

Version updates

We look at version histories to see how active the development has been between

last major versions and after latest major version.

Snort:

Major releases:

2.9.0 in 2011

Snort has been developing on 2.9.x versions since 2011 and in last few years the

updates have been farther between and have included mostly bug fixes. 2019 had

three smaller releases, but 2018 only one release and 2017 three releases. Snort 3

has been in beta since 09/2018 but stable 3.0 release date is not yet available. While

development seems active, it does not seem as active as with Suricata and Zeek.

Contributors in last 12 month period: 13

Suricata:

Major releases:

5.0 in 2019

4.0 in 2017

3.0 in 2016

Very active development with many version releases every year between 5.0 and 4.0

providing features and bug fixes. 5.0 released very recently in October 2019 so no

history data available of post 5.0 development.

Contributors in last 12 month period: 36

72

Zeek:

Major releases:

3.0 in 2019

2.0 in 2012

1.0 in 2005

Very active development with many version releases every year between 2.0 and 3.0

providing features and bug fixes. Active development after release of 3.0.

Contributors in last 12 month period: 71

Scoring:

 Points

Snort 1

Suricata 3

Zeek 3

73

Appendix 8

Alert outputs

Comparison of alert outputs

Alert outputs of the IDS were collected from documentation and table of supported

outputs was created:

Output Snort Suricata Zeek

syslog X X

Ascii X X X

JSON X X

CSV X

TCPdump X

Unified2 X X

Unixsock X

SQLite X

Syslog is well known and widely used standard for logging.

Ascii refers to normal text file logs

JSON, JavaScript Object Notation, is widely used file format that is easily readable

CSV, comma separated values, simple delimited text file format.

TCPdump, common file format for analyzing network traffic, used by many network

sniffer tools.

Unified2, output data format used in IDS tools to provide additional data along

normal event as unified output

Unixsock, output is provided via UNIX domain socket

74

SQLite, file-based SQL database system

Evaluation of outputs

Snort provides the greatest amount of logging options, but it is lacking JSON output,

which is very common way to parse logs and supported by wide variety of logging

solutions. Suricata has smaller number of logging outputs than Snort, but provides

very extensive JSON logging out of the box. Zeek has very limited logging options out

of the box, while it supports JSON, the JSON output does not have as extensive

features as Suricata’s JSON output. Zeek also lacks native support for syslog, which is

industry standard in log messaging.

Scoring:

 Points

Snort 3

Suricata 3

Zeek 1

