

Juho-Jaakko Leppälä

The Process of Quality Assurance at Critical

Force Ltd

Bachelor of Business
Administration

Business Information
technology

Autumn 2018

Tiivistelmä

Tekijä: Leppälä Juho-Jaakko

Työn nimi: Laadunvarmistusprosessi Critical Force Oy:ssä

Tutkintonimike: Tradenomi (AMK), tietojenkäsittely

Asiasanat: Laadunvarmistus, prosessi, pelisuunnittelu, pelit, pelitestaus

Opinnäytetyö on kehittämisprojekti. Opinnäytetyön tarkoitus oli kuvailla ja kehittää laadunvarmistusta
Critical Force Oy:llä. Tavoitteena oli osoittaa laadunvarmistuksen ongelmat ja ymmärtää, mistä hyvät ja
huonot toimintatavat laadunvarmistuksessa koostuvat. Toinen tavoite oli löytää ratkaisuja tämänhetkisiin
laadunvarmistuksen ongelmakohtiin. Työssä keskitytään pääasiassa laadunvarmistuksen prosesseihin
testauksen sijaan.

Tämä opinnäytetyö on tehty yhteistyössä Critical Force Oy:n kanssa, jossa tekijä työskentelee
laadunvarmistuksen managerina. Critical Force on peliyhtiö, joka tuottaa mobiilipelejä.

Teoreettinen osuus kertoo pelinkehitysprosessista ja siinä työskentelevien henkilöiden eri rooleista.
Prosessin osat ovat esituotanto, tuotanto, testaus ja jälkituotanto. Rooleja ovat suunnittelija, tuottaja,
artisti, ohjelmoija ja testaaja. Seuraavaksi määritellään laadunvarmistusta, ja kerrotaan sen hyödyt ja
haitat pelinkehityksessä. Hyötyjä ovat kyky löytää ja korjata ongelmia ajoissa, haittoja ovat ajan menetys
korjaamiseen ja virheiden löytymisen aiheuttama paine työntekijöiden keskinäisissä suhteissa. Lisäksi
perehdytään testaukseen pelinkehityksessä ja erilaisiin testausmetodeihin, joita ovat funktionaalinen ja
epäfunktionaalinen testaus.

Toiminnallinen osuus kuvailee ensin käytössä olevat laadunvarmistusprosessit Critical Forcella käyttäen
tiedonlähteinä yhtiön keskustelulokeja, yhtiön Atlassian (tärkeiden dokumenttien kokoelman)
muistiinpanoja, ja vanhoja bugiraportteja. Seuraavaksi analysoidaan nämä prosessit laadunvarmistuksen
teoriaan pohjautuen. Kaksi muuta yhtiön työntekijää varmistivat laadunvarmistusprosessien kuvauksen ja
niistä tehdyn analyysin todenperäisyyden.

Opinnäytetyö antoi paljon informaatiota Critical Force:n laadunvarmistuksen toiminnoista, ja osoitti
tämänhetkisten systeemien ongelma-alueet. Ongelmien korjaamiseksi yhtiössä kannattaisi ensimmäiseksi
kehittää ajankäytön hallintaa. Tämän pitäisi auttaa joidenkin laadunvarmistuksen ongelmien
selvittämisessä, ja se saattaisi vähentää kiireen tuntua, jota laadunvarmistuksessa ajoittain koetaan.
Ajankäytön hallinta auttaisi myös muita pelinkehitysprosessin osia, sillä pullonkaulan avautuminen
laadunvarmistuksessa kiihdyttäisi myös muiden tiimien toimintaa. Toinen asia, miten ongelmia voisi
korjata, on lisähenkilöstön palkkaaminen laadunvarmistukseen. Tämä helpottaisi laadunvarmistuksen
työmäärää ja lisäisi henkilöstön osaamista vielä enemmän, jolloin se ei hidastaisi pelinkehitystä yhtä
paljon.

Abstract

Author: Leppälä Juho-Jaakko

Title of the Publication: The process of quality assurance at Critical Force Ltd

Degree Title: Bachelor of Business Administration

Keywords: quality assurance, process, designing, games, testing

The practical portion of this Bachelor’s thesis is a developing project. The objective of this thesis is to
describe and develop quality assurance at Critical Force Ltd. The aim of this developing project is to
highlight the problems of the project and understand what constitutes as good and bad practices in
quality assurance at the company. Another goal is to find solutions to the main problem areas of quality
assurance processes. The main focus is on the quality assurance processes instead of the testing.

This thesis is made in collaboration with Critical Force Ltd where the author is working as a Quality
assurance manager. Critical Force is a gaming company who produces online multiplayer games focusing
on mobile platforms.

The theoretical section tells about game development process and roles in game development. It also
defines quality assurance and tells about the pros and cons of quality assurance in game development.
Next it tells about use of testing in game development and different testing methods.

The operational section first describes the quality assurance processes in place at Critical Force using
company chat logs, Atlassian notes (a collection of important documentations), personal notes and past
bug reports. Then it evaluates these processes based on the theory of quality assurance. The correctness
of my description of the processes and evaluation was ensured by two of my colleagues at the company.

The thesis gave plenty of information on the inner workings of quality assurance at Critical Force, and
pointed out currently problematic parts of the systems in place. The first action to take to solve the issues
should be looking into time management at the company in general. This should help with some of the
issues quality assurance is currently facing, and it should alleviate the time pressure from busy periods. It
would also benefit other parts of the development process, making it beneficial to everyone instead of
just the quality assurance. Another action to take would be considering hiring more quality assurance
personnel, easing the workload of current quality assurance even further.

Table of content

1 Introduction ... 1

2 Quality assurance in game development .. 3

2.1 Game development process ... 3

2.2 Roles in game development .. 4

2.3 Definition of quality assurance ... 6

2.4 Pros and cons of quality assurance in development process 8

3 Testing in quality assurance .. 10

3.1 Testing in game development ... 10

3.2 Testing Methods.. 12

4 Quality assurance of Critical Force .. 14

4.1 Starting point and the purpose of the thesis .. 14

4.2 The process of game development at Critical Force ... 15

4.3 Development of quality assurance at Critical Force ... 16

4.4 Good Practices at Critical Force .. 19

4.5 Problems with quality assurance at Critical Force .. 20

4.6 Solutions to problems and further development ... 21

5 Conclusion ... 23

List of references ... 26

1

1 Introduction

Quality has multiple definitions. According to some, it is about satisfying specific needs that the

product has. According to others, it is about satisfying the needs of the customer. Regardless of

the definition, they all share some characteristics and opinions on how to improve the quality of

the product. These similarities might cause one to think that there is one optimal way to

improve quality, but in reality the needs of every company are completely different. Some

companies might have higher need for quality than others, so their systems regarding quality

must be more sophisticated as well. (Nanda 2005, 2.) For example, a company building planes

must have higher standards for quality than a company making buckets.

Game development is a multilayered process, which needs teamwork from all branches of the

development team to successfully finish a project. Game development process generally

consists of following stages: planning, designing, producing and testing. These stages do not

necessarily proceed in a linear order, but in a manner that lets all the teams of these stages

interact with each other, and helps change the project based on feedback. Co-operation

between these different teams is the key for creation of high quality product.

Quality management in general takes place during all these stages in different capacity. During

planning and designing quality management is more a passive part of the process, where

designers need to keep the quality of the product in mind while they are designing the features.

If their designs do not meet their own quality standards, they will make changes until they are

satisfied with it. During the actual production and testing quality management takes a more

active role, and there are separate parts of the process completely dedicated to making sure the

product meets the quality standard set for it.

One of the most important tasks quality assurance has is finding bugs. Bugs are errors and

issues in the projects code that can cause unexpected things to happen to the software. These

errors can manifest ways such as game crashing on the device, the game characters behaving in

ways they are not intended to, or simply showing wrong graphics in certain areas of the game.

2

This thesis is made in collaboration with Critical Force Ltd where the author is working as a

Quality assurance manager. Critical Force is a gaming company who produces online multiplayer

games focusing on mobile platforms.

The objective of this Bachelor’s thesis is to describe and develop quality assurance at Critical

Force Ltd. The author has been working in quality assurance at Critical Force Ltd during last two

years. The aim of this developing project is to highlight the problems of the project and

understand what constitutes as good and bad practices in quality assurance at the company.

Another goal is to pinpoint problem areas in current quality assurance processes, so that those

problem areas can be improved upon in the future.

3

2 Quality assurance in game development

The theoretical background consists of what quality assurance (QA) is in general and in game

development specifically. The theoretical part of this thesis deals with quality assurance testing

methods and different kinds of problems quality assurance deals with. I will also go through the

game development process in a nutshell.

2.1 Game development process

Game development process includes a lot more than programming and playing games. There

are multiple different parts in game development that are all equally important to make sure

that the game becomes as good as it can be. While each company has their own way and order

of doing things, most development processes can be summed up to four phases: pre-

production, production, testing and post-production. All of these phases have numerous smaller

tasks that need to be done for the phase to be complete, and the project’s larger success

depends on the completion of these smaller tasks. (Nguyen 2014, 7.)

Pre-production is the first phase of game development process. In this phase all the features of

the game are designed, and all the necessary planning for the development process is done. The

most important part is to have a complete plan for all of the development process, including

things such as documentation of things, estimated costs of the project, monetization of the

finished product and required team size to finish the project on time. The amount of time pre-

production takes can be completely different between different projects. As a rule, however, it

should take something between 10 to 25 percent of the total development time. (Chandler

2014, 5.)

In the production phase the team starts creating the game. In many cases the production phase

has already started before the end of the pre-production phase, since in many cases there are

certain things during pre-production that require production to start. These can be things such

as playable prototypes requested by the studios brass before approving the full production of

the game. If everything was planned carefully during pre-production, the production phase

should go smoothly. This is often not true, however. In most projects there are aspects that

4

were either overlooked during the planning or simply arose during the production itself.

Depending on the plans made in pre-production, these can either hinder the existing plans by a

huge degree, or not really at all. (Chandler 2014, 9.)

Testing phase is ongoing throughout most of the production phase, as the quality assurance

team should be checking every new feature or other addition to the game as soon as it is added

to the game. During this phase the quality assurance team inspects the game for any issues,

such as bugs or differences from design. At certain point near the end of the development

process, the main job of the development team switches to fixing all the issues that the quality

assurance team finds during their testing, and making new builds for the quality assurance team

to test. (Chandler 2014, 12.)

Post-production comes after all the other phases are done. This phase is mostly about wrapping

up the project after it has been deemed ready to be shipped to the customers. It includes

looking back at the project and learning about all the issues and triumphs during the

development process, creating a closing kit for the project, and most importantly, relaxing a bit

before the next project starts. (Chandler 2014, 15.)

2.2 Roles in game development

Game development usually starts with designers. Designers are the ones who plan out how the

game works, what makes it fun to play, and how the game should be played. They write out the

design plans that other people will need to be able to follow to make sure the game is made to

be as it was intended to be. Designers themselves can be split into different roles. Some of the

more important ones are map designers, gameplay designers and user interface designers.

(Chandler 2014, 28-31) In the article by Korhonen and Koivisto (2006), they talk about different

kinds of heuristics that should be observed in game development. Designers should look into

the mobility heuristics with their producers and/or team leads when designing certain elements

of the game, such as multiplayer gameplay. However, they mostly need to concentrate on the

gameplay heuristics mentioned in the article, since they help designers to make sure the game

is as challenging, rewarding and fun as it can be.

5

Gameplay heuristics remain the same no matter what platform the game is on. Prior knowledge

in game design is a good thing to have when using these heuristics to evaluate gameplay. Some

of the more important heuristics are: game providing clear goals, player can see their progress

in the game, players are rewarded meaningfully, and the players are in control of the game.

(Korhonen & Koivisto 2006, 14.)

Producers are the ones who decide how the game will be made. They take the design

documents the designers have made and split them into tasks that their team can handle one

by one. They are also the ones who plan out the schedule for those tasks and figure out how

long it will take to have the game ready to go. Their most important task however is to ensure

that the development team has all the resources it needs, and that the operation is running

smoothly. There are usually producers of some kind for every team, although some teams

simply have the team lead doing same sort of tasks. (Chandler 2014, 18-21.)

Artists are responsible for bringing the vision of the game alive. They are the ones who create

the worlds and characters that the designers wanted for the game, and they make sure that the

game looks like something that the players want to play with for long periods of time. Without

the artist video games would still look like simple blocks interacting with each other. Although

their job doesn’t necessarily require them to pay much attention to the larger heuristics groups

mentioned in the article, there are some singular heuristics in the game usability heuristics that

artists should think about while doing their tasks, such as making sure audio-visual

representation enhances the gameplay and indicators not blending with environment.

(Chandler 2014, 22-24)

Programmers work side by side with the artists to bring the game into being. More specifically,

programmers are the ones who create the actual functionality of the game. They make the

gameplay work as planned, make the UI do what it is supposed to and fix the issues that the

player runs into. Programming is one of the hardest tasks in game development. It can be

especially difficult if the game has a lot of old legacy code that is still needed for the game to

function, even if it is rarely used anymore with addition of new improved features that do the

task better. (Chandler 2014, 25-28)

Quality assurance, be it testers or managers, are usually mostly used near the end of feature or

project development. Their mission is to make sure everything works and looks as it is supposed

6

to, and report all the issues that need to be dealt with before the game can be released. They

should also have the final say in if and when the game can even be released. At this point all of

the heuristics should have already been looked into in some extent, but quality assurance

should keep all of them in mind while testing things, and give their feedback if things feel off in

some way. (Chandler 2014, 32-33.)

2.3 Definition of quality assurance

According to Test Institute (International Software Test Institute) quality assurance in software

can be split in two aspects: external and internal quality. The external quality concentrates on

the quality of the user experience, while the internal quality concentrates on the quality of the

code the programmer creates. (International Software Test Institute 2018, 12.)

Quality assurance is a wide definition. The official definition is defined by International Software

Qualification Board (ISTQB) as “Part of quality management focused on providing confidence

that quality requirements will be fulfilled” (ISTQB 2018, 52). In other words, quality assurance

tries to make sure that the product is of good quality in the end. Quality Assurance can be any

process of control if it assures that product that is in development is satisfactory to all specified

demands (Komár 2017, 5).

In game development, quality assurance has a part in all phases of development, but it is most

important in the production phase (Komár 2017, 9). While this may be the case, in the whole of

game development industry there is no one style of quality assurance that everyone uses.

Because of this, every developer has their own way of doing quality assurance (Bethke 2003,

52). In this thesis I will describe the specific way Critical Force does quality assurance.

7

Figure 1. Quality control and quality assurance (International Software Test Institute 2018, 17)

Quality assurance is often confused with quality control. Many seem to think these two terms

are interchangeable with each other. This is not the case however. Quality control is a smaller

part of quality assurance, just like software testing is a smaller part of quality control. Quality

control’s main task is making sure that the project is being made in the accordance with the

client’s specifications. Testing the project is one of the main quality control tools. (International

Software Test Institute 2018, 17.)

Table 1. describes the differences between quality assurance and quality control. The main

differences between the two are in their orientation. Quality control tries to find the issues in

the product after it is done, while quality assurance aims to prevent those same issues from

ever happening in the first place. Quality control also affects the product specifically, while

quality assurance affects the whole development process, all the different parts of the

development team and all of the projects that are done within the company. (Software Testing

Fundamentals 2018b.)

Testing is one of the most important parts of quality assurance in game development. Without

testing it would be impossible to be sure about anything working as intended in the game. Even

if a development team doesn’t have quality assurance personnel in the team, they will do

rudimentary testing as much as they can to be certain that their product functions in intended

manner. More details about testing in chapter 3.

8

Criteria Software Quality Assurance (SQA) Software Quality Control (SQC)

Definition A set of activities for ensuring quality in
software engineering processes. The
activities establish and evaluate the
processes that produce products.

SQC is a set of activities for ensuring
quality in software products. The
activities focus on identifying defects in
the actual products produced.

Focus Process focused Product focused

Orientation Prevention oriented Detection oriented

Breadth Organization wide Product/project specific

Scope Relates to all products that will ever be
created by a process

Relates to specific product

Activities • Process Definition and
Implementation

• Audits

• Training

• Reviews

• Testing

Table 1. Differences between quality assurance and quality control (Software Testing

Fundamentals 2018b)

2.4 Pros and cons of quality assurance in development process

Although quality assurance is a much needed and helpful resource for software development, in

some ways it can also be detrimental for some parts of development. Engel (2014) describes in

her article a situation where a quality assurance manager has volunteered to help other teams

with certain tasks to help them save time. While this seems like a good move, in the end both

the team and Engel herself end up using more time to deal with the issues that rose from Engel

dealing with the tasks. Similar overly eager helpfulness isn’t necessarily limited to only quality

assurance. However, since quality assurance is more limited to certain parts of development,

they might have more free time to tackle issues from other parts of development when they

have no immediate tasks to do.

Another good example of the duality of quality assurance in game development can be found in

an article written by Schreier (2017) for Kotaku. In his article he writes about how in some

studios quality assurance aren’t treated as equal members of the development team, since the

quality assurances job is to break the game, whereas the developers job is to fix the game. Thus,

they can be seen as the enemies, since they show the programmers all their mistakes. This can

cause friction and stress during possibly already stressful project. On the other hand, it is good

9

that the issues are found and dealt with, but on the other it can grate in the mental health of

the development team.

Quality assurance can also cause a lot of delays to the production if it is done to the finest

detail. In his article Schreier (2017) also mentions cases where quality assurance has found tons

of issues that need to be fixed, but because of the deadlines for the project, there is no time to

fix all of them. Issues that do not flat out prevent the game from working may be ignored when

found, since they do not prevent the release. Some other issues might be scheduled for fixing

post-release, if enough people find them and start raising noise about it. Some might never get

fixed, if they are extremely rare or hard to reproduce. This is often the reason why quality

assurance gets blamed for buggy releases of modern games. The issues were found in time, but

the schedule and deadlines didn’t allow for them to get fixed.

10

3 Testing in quality assurance

In this chapter I will go through what testing is, how it is used in game development, what kinds

of testing there is, and what kind of testing methods there are.

3.1 Testing in game development

Testing is the main tool of quality assurance, and while all developers want to do as much

testing as possible, not every studio has their own quality assurance team. External quality

assurance companies are a common tool to use in game development when your own team

does not have the manpower or budget for internal quality assurance team. Another way to

handle testing without full quality assurance team is to automate as much of the testing as

possible. (Komár 2017, 11-12.)

Game testing can be a quite stressful and daunting job. Most game testing is about repetition

over and over again, over a long period of time, and that can get frustrating quite fast. Often the

testers concentrate on singular part of the game so much that they have no chance to really

play the game. Testing can also cause delays in schedule that projects often do not have time

for, causing even more stress to those that have to report issues causing these delays.

Unfortunately, this is one of the reasons many companies cut testing time if other issues

happen during development. This is why testing should be scheduled into the development as

early as possible, to make sure that issues do not get ignored due to lack of time. Producers and

quality assurance should also discuss early on how much testing each feature is going to

theoretically need, and limit certain functionalities if the testing would be next to impossible

with given time. (Chandler 2014, 235-236)

In the past testing used to only be done at the end of development to save time and money for

other parts of the project deemed more important than testing. These days testing is integrated

throughout the development process, ensuring that the project has gone through thorough

testing before it even gets to the hands of the testers. This prevents large amount of issues from

ever getting through to the testing phase and eases the amount of bugfixing at the end of

production. (Redavid & Farid 2011.)

11

One of the best testing tools is simply having regular builds of the game whenever there are

changes in the game. This helps in catching issues early, since the new additions can be tested

before they make it to the live version of the game. Builds are also helpful in finding any kind of

visual issues on the target platform that couldn’t be found on the editor on PC, since the way

everything looks visually is quite different between every platform. Some bugs might also

prevent the builds from compiling properly, which will also notify the team that there are issues

to fix in the build. (Chandler 2014, 225)

There are multiple different kinds of testing in game development that do not all have

something to do with quality assurance. In game design, designers can do tests to find out if

their game prototypes are fun to play (Lucero, Holopainen, Ollila, Suomela & Karapanos 2013).

This is an important step in designing the game. By the time something comes to quality

assurance for testing, testing things for fun is no longer a concern. In quality assurance, tests are

about making sure things function as intended, and checking for visual issues.

Testing is also done to make sure the customers find the game enjoyable by having either

private or public test sessions before the game releases. These aren’t a norm, but holding these

sessions can be a good way to find out what parts of the game might need some more polish or

adjustments before the game releases, or make even some radical changes if some parts of the

game were thoroughly unenjoyable.

Another important thing to test regarding mobile games is connectivity, especially when it

comes to multiplayer games. Mobile games often use the players internet connection to contact

other players, the game’s servers, or the app marketplace of the used device. There aren’t

perfect ways to test connectivity, but automated testing can be used to emulate the online

functions of the game. (Helppi 2014c.)

Most testing has historically been done manually, but recently test automation has become

more and more common when testing software. Automatic testing that is integrated into the

development process itself can help development teams to find all the issues in the game and

get them fixed before the game is shipped out. Compared to automated testing, manual testing

has way more faults in it. Since manual testing is done by humans, it is more prone to miss

things, way slower than automatic testing, and unable to do as detailed a test as automatic

testing can. (Helppi 2014b.)

12

3.2 Testing methods

There are four main methods that software testing can be split into: code-based testing, object-

oriented testing, component-based testing and specification based testing (Muccini 2009). All of

these can be used in quality assurance testing to some degree, but specification-based testing is

the main style of testing quality assurance does. In specification-based testing the tester follows

given test case and makes sure the software under test behaves as the test case says when

given specific inputs. If it does not behave as intended, the tester reports the behavior as a bug.

(Redavid & Farid 2011.)

Black-box and white-box testing are also testing terms that can be applied to software testing.

In game testing, they do not differ from normal software testing, but their end-goals are not the

same. In Black-box testing the testing concentrates on the actual gameplay elements of the

game, such as UI functionality, visuals or animations. White-box testing on the other hand

concentrates on the functionality of systems and components outside of the gameplay

elements, such as third-party plugins, engine functions and audio functions. (Helppi 2014a.)

There are many ways to do testing in quality assurance, but some of the more important testing

methods can be listed into non-functional and functional testing. Non-fuctional testing focuses

on testing things that do not affect the game itself directly, such as hardware and ease of use.

Functional testing on the other hand focuses on testing that the game itself works as it is

supposed to, with tests inspecting the smallest parts of the game and how they work together.

Non-functional testing consists of vulnerability, compatibility, usability and performance testing,

and functional testing consists of unit, integration, system and acceptance testing (Cordasco

2016.)

One of the easiest to understand testing methods is Ad Hoc testing. In it, there are no set steps

or planned tasks to test. Instead, everything is improvised during the testing sessions. Because

of this, it is also called monkey testing or random testing. It can be helpful in finding edge cases

that wouldn’t have been found with strict planned test cases. On the downside, found issues

can be harder to reproduce, since there are no documented steps to take to end up at the issue.

Often the tester will have to try to recall the steps they took to recreate the issues, which can be

hard since they were doing whatever came to mind at the time of testing. Depending on the

creativity of the testers, the success of ad hoc testing can vary greatly. Regardless, it is the

13

simplest and often best ways to find the gamebreaking issues, and it doesn’t require any kind of

training or education for the testers (Software Testing Fundamentals 2018a.)

14

4 Quality assurance of Critical Force

In this chapter I will describe quality assurance at Critical Force Ltd. in as much detail as I am

allowed to. I will first describe developments in the quality assurance during past two years

based on the background given above, after which I will describe the current quality assurance

practices in use at the company, and the current problems.

4.1 Starting point and the purpose of the thesis

The practical portion of this thesis is a developing project. I will analyze the process of quality

assurance at Critical Force Ltd. which is the client of this thesis. The goal is to locate any

problematic parts in quality assurance at the company and improve upon them.

The thesis will have succeeded if it describes accurately the development and the current

problematic parts of the quality assurance at Critical Force Ltd. and manages to give possible

solutions to those problems. Additionally, other marks of success are if the company considers

developing the quality assurance department further.

Critical Force is a Kajaani-based mobile game company aiming to create a thriving mobile

esports scene. The company was founded in 2012 by Veli-Pekka Piirainen and a group of game

development students, with a vision of creating an online first-person shooter game for mobile

environment (Critical Force 2018). One of the biggest reasons to concentrate in mobile games

was the ever-growing market. Consoles and gaming PCs are a commodity that many people

have, but they are still in a point where everyone doesn’t have one. Mobile devices such as

phones and tablets however can be found in any household, even in the poorest families.

Critical Force has released multiple small mobile games such as Critical Strike Portable,

Company of Tanks, and their currently biggest game, Critical Ops.

When I started at Critical Force, there were no prior quality assurance personnel at the

company. Features were tested by the person who made it first, then by the team if there was

enough time. Any bugs that were found were reported the reporting tool Hansoft, and those

bugs were fixed as soon as there was time. After that, the new features would be updated to

15

the game, and any leftover bugs would be reported by customers in various way, ranging from

customer support email to posts on Facebook and angry messages sent to the CEO. Even with

all these ways bugs were reported, the player base was relatively small at the time. Due to this,

many issues weren’t reported in a timely manner, causing some smaller problems to run

rampant for longer periods of time.

I used my personal logs as well as past bug reports, company Atlassian (a collection of important

documentations), customer feedback and company conversation logs to evaluate quality

assurance at the company. My analysis is grounded on theory of quality assurance, and it is

based on my experiences and knowledge I have gotten during working at Critical Force Ltd as a

quality assurance manager and studying at Kajaani University of applied sciences.

To guarantee the correctness of the information on the quality assurance processes, I had

another member of the quality assurance team and one of the producers at the company read

the thesis and asked them if the information given is right.

4.2 The process of game development at Critical Force

The process of game development at Critical Force Ltd can be summed down to the chart Figure

2. below.

Figure 2. The process of game development at Critical Force

First step in the development cycle is planning. In this step the team looks at what features are

needed or what has been asked for and decide on the next features to be made. After a rough

plan on what features will be added, those features are given to designers to figure out how

Planning Designing
Pre-

Production
Production QA Release

16

they would work out in the game. As they figure the features out, the designers then create the

design documentation for the feature. These documents should describe the functions of the

features to the finest detail, to try and make the programmer’s job easier in later stages. The

documents might have to be edited at later date, if some things have to be changed due to

issues during development. If that happens, the designers should be the first ones to try and

circumvent the issues with new design.

Next comes the pre-production. In this step producers and team leads begin splitting the

feature into tasks that need to be done to finish the feature. They then schedule those tasks for

programmers and artists for the upcoming sprints and start thinking about release dates based

on past experience and predicted time it takes to finish the feature. When the tasks are

assigned, the production step starts. In this step the programmers and artists do the tasks given

to them and then combine those tasks into the feature. After the initial testing done by the

programmer of the task making sure that the basic functionality of the feature is okay, the

feature is given to the quality assurance team.

While quality assurance mostly takes place at the end of production at the company, it does

happen in lesser extent during all of the process. Main difference is that during other phases,

the ones doing the task at hand are the ones making sure the quality of the feature stays

acceptable. In the end of production, the quality assurance team does the full pass of the

feature for bugs and other issues. Then those bugs will be assigned to be fixed by the team

creating the feature, and once they are done the quality assurance team will check the feature

again. This repeats until the quality assurance team is satisfied that the feature is good for

release.

4.3 Development of quality assurance at Critical Force

The quality assurance team of Critical Force was founded in the summer of 2016 with my hiring

as an intern. Before this, there had not been anyone specifically for quality assurance at the

company, and tasks that would normally fall to quality assurance were handled by whoever

happened to be free for those tasks at the time. Even then if they got new tasks while doing the

testing, they might just drop the testing to concentrate on the new tasks given. This caused

17

many issues to go unnoticed until they were reported by the player base to the support email.

Since the player base was also a lot smaller than it is now, some smaller issues would still often

be missed up to the point that we are still dealing with some tiny old graphical issues.

 At the start of my internship, the tasks given to quality assurance were mostly about testing

new features under development for any issues, reporting those to our bug reporting tool

Hansoft and testing the live version for issues that hadn’t been caught previously. Additionally,

if there was time from other tasks, answering support mail and reporting the bugs from there.

Since the development team was quite small at the time, there was a lot more time to handle

support mail while already reported issues were being fixed. After I had gotten used to those

tasks, I was also given reign over handling beta testing of one of the maps under development

at the time. The testing was done with the help of volunteers from our player base. The testing

lasted for little over a month, and the map released couple weeks after then end of testing after

issues reported in the testing were resolved.

Near the end of 2016 the development team started to slowly grow bigger, causing the number

of tasks for the quality assurance team to grow. The player base was also growing rapidly at this

point. Because of this, there was less and less time for quality assurance to handle support

email too, and in January of 2017 there was a support person hired to help handle the support

emails. At the start quality assurance was still involved in the process, since there were a lot of

bug reports coming through the mail, but with time support was completely separated from

quality assurance into its own team. They technically still worked in tandem with the quality

assurance, but they had much more independence on the decisions they made regarding

support than previously.

In January of 2017 the company paid for a lecturer to come teach about quality assurance

testing to a small part of the development team. The lectures mostly covered things that were

already being used at the company to some degree, such as ad hoc testing, and some finer

details about how to use those things in the company. One of the new things that were not in

use yet at the time was the use of test case sheets, which is now an important part of the

release candidate checkup.

Near the end of March 2017, the second member of the quality assurance team, Igor Bernardo,

was hired. The dev team and the product were starting to get too big for one person to handle

18

alone, which is why acquiring additional personnel was made a priority at this point. After a

short acclamation period where Igor was given smaller tasks to handle, we started doing tasks

together, allowing us to test new builds and features in half the time it took previously. Over the

past year and a half our teamwork has gotten to the point where we can handle most tasks in a

swift manner.

In the autumn of 2017, Critical Ops team started using automated build pipeline for creating

new game builds for the quality assurance to test. The programmers would trigger a new build

of whatever needed testing, and soon enough the test version would be ready to be

downloaded using Hockeyapp, an application where all the builds from the pipeline are

available from. With the new pipeline whoever was creating a new feature could have

something testable building in the background for quality assurance while they themselves

could keep working on other tasks. This sped up development time significantly since the

programmers didn’t have to manually create everything for the quality assurance whenever

there was something to test.

Ever since summer of 2017, there has been talks about how programmers need to investigate

doing more unit testing, as well as automatizing unit testing as much as possible. During latter

half of 2017 they started doing unit testing more, but we have still to achieve unit test

automatization. Unfortunately, there hasn’t been enough time or manpower in the teams to

assign anyone into looking more closely into automatization, and it seems unlikely that there

will be time anytime soon.

During spring of 2018 we finally managed to set up a staging environment. Previously when our

updates had changes that might affect server or game stability in some way, we couldn’t be

sure about how live environment would react to those changes unless we pushed the changes

to alpha or beta, depending on how many people we needed to properly test the change. If

those changes then happened to break something important, and affect live players, we would

have to try to fix everything while players were unable to play. Naturally this would affect player

numbers and their review ratings of the game. With staging environment, we can try those

same changes in a nearly identical environment, without worrying about breaking the live

version of the game.

19

4.4 Good Practices at Critical Force

The automated build pipeline is one of the most helpful tools and practices in use at Critical

Force. The pipeline automatically creates new test builds whenever the programmer tells it to,

instead of the programmer setting everything up manually. This helps reduce both the amount

of time the programmers have to spend not working on their tasks, as well as the time quality

assurance has to wait for new builds. The pipeline is also an excellent tool for the level designers

to quickly get playtest data on their new maps, since they can put one map into the pipeline,

and work on another while it builds. When it is ready, they can put the other one into the

pipeline and hold a testing session for the first map.

Another good practice is the use of test case sheets. Test case sheets are basically a list of tasks

or things to test in a build. Most commonly at Critical Force test case sheets are used whenever

there is an update coming to the live version, and when a large feature is added to the master

build of the game. The former is done to make sure the update doesn’t unexpectedly break

anything in the live version of the game. There have been times where a new feature has

worked in the development environment perfectly, but interaction with the live servers and

backend has somehow caused it to break the game. The previously mentioned master build

testing is done because even when the new features are made to work with the game as a

whole, there is always a chance that some piece of legacy code has an unexpected interaction

with the added features, causing the master build to break horribly.

The amount of play testing and ad hoc testing done on the game is also an extremely good

practice at the company. Whenever there is a new feature that somehow affects the gameplay,

there are play test sessions scheduled with larger test groups to make sure there have been no

negative changes caused by the new feature. Usually these test groups are comprised of game

designers, quality assurance team, community team members and whoever else happens to be

free from artists and programmers at that moment. The programmers in charge of the feature

that triggered the testing are often also present for these tests to see the possible issues

firsthand. Ad hoc testing happens more often than not without any planning. Usually it simply

happens because there is nothing else to do for a moment, and quality assurance can just start

up the live version and play for a while. More often than not these do not have result in any

20

new findings, but every now and then some quality of life changes are introduced due to quality

assurance asking about something they thought about during these ad hoc sessions.

4.5 Problems with quality assurance at Critical Force

Main problem overall at Critical Force is lack of manpower. There are often times when there

are multiple different feature development builds to test at the same time, all of them equally

urgent. At those times it can get quite hectic with only two people in the quality assurance

team. Often this can result in some testing being pushed back to the following day, and

combined with possible game breaking issues being found, it can result in the feature being

behind in schedule.

Another problem with quality assurance at Critical Force is the quality assurance teams lack of

knowledge regarding quality assurance technology. Neither of the members of the quality

assurance team are trained programmers, and we cannot help with quality assurance tasks that

require programming as a skill. As mentioned in chapter 4.3, programmers have had no time

during the development to figure out automated unit testing. If the quality assurance team had

the ability to do it, they could try to figure it out during the lulls they get in their schedule when

there is nothing to test.

Time management for quality assurance is another big problem, which partly causes the first

problem mentioned. As said previously, there are times when the quality assurance team is

extremely busy with multiple different builds coming in for testing at the same time. This can

cause a bottleneck in development Figure 3., since some parts of the development team cannot

keep working on their feature until quality assurance has finished checking it out. This then

might force quality assurance to try and rush the checkup and miss something.

21

Figure 3. Bottleneck at quality assurance due to multiple simultaneous features in need of

testing

To counterbalance this, there are also times where the quality assurance team goes without any

meaningful work for long periods of time since there is absolutely nothing to test. These times

can be seen as welcome breaks, but in truth they simply add stress to the team. It dulls

concentration, and when more work arrives it can take a while to get back into full swing with

the testing after not doing anything for a long while. It can also cause friction between the

quality assurance team and other teams when the main development team is busy at work and

quality assurance is doing nothing at all.

4.6 Solutions to problems and further development

Most of the problems quality assurance currently faces can be solved with one strategic

recruitment of a knowledgeable quality assurance programmer. Both the manpower problem

and the lack of technological knowledge boil down to the fact that the quality assurance team

has never been properly trained for quality assurance-oriented programming or quality

assurance tasks in general. With a more knowledgeable worker in the team, there would be

someone consult about quality assurance methods and optimal ways to tackle certain tasks.

Having a more experienced quality assurance member would also help rest of the teams to

learn new things from them, making the overall experience level of the team even higher.

Feature 1

Feature 2

Feature 3

Feature 4

Feature Team 1

Feature Team 2

Feature Team 3

Feature team 4

Ready for testing Testing done QA

22

Another solution would be to arrange further education about quality assurance to the team in

the vein of the lectures held in January of 2017, as mentioned in chapter 4.3. This would help

the quality assurance team learn new and possibly better methods to use during development,

and possibly even streamline the work processes currently used by the team. This could help

other branches of the company too, since optimizing quality assurance would reduce the

waiting time for other teams while the quality assurance are testing their current development

tasks.

Another simple solution for some of the problems quality assurance team is facing would be

more efficient time management for the teams. If the periods of time where the quality

assurance team has too much to do could be spread out to cover the times when they have

nothing to do, it would in the end speed up the development process for all the teams

significantly. Currently development process can bottleneck at quality assurance during the

busiest times when there are multiple things to test at the same time.

23

5 Conclusion

The goal of this thesis was to shed light into the quality assurance situation at Critical Force.

Critical Force is a small indie game studio located in Kajaani, Finland. They wanted to improve

the quality assurance at the company, which is why I created this developing project as a thesis.

I mainly focused on the quality assurance processes instead of the testing, because we felt at

the company that we had a good handle of testing, whereas the processes are lacking in some

areas. First I described the quality assurance processes in place at Critical Force using company

chat logs, Atlassian notes, personal notes and past bug reports. Next I evaluated these

processes based on the theory of quality assurance. The correctness of my analysis was ensured

by two of my colleagues at the company.

The thesis gave plenty of information on the inner workings of quality assurance at Critical

Force, and pointed out currently problematic parts of the systems in place. The main results I

got from the thesis can be put into a SWOT analysis in the following manner Figure 4:

Figure 4. SWOT-analysis of the process of quality assurance at Critical Force Ltd

• Delays in development

• Burn out of personnel

• Hiring additional QA
personnel

• Better time management

• Further education about
quality assurance
systems

• Lack of time

• Lack of programming
skills

• Overlapping QA tasks

• The amount testing

• Automated gamebuild
pipeline

• Use of test case sheets

Strengths Weaknesses

ThreatsOpportunities

24

As Figure 4 shows, the main strengths are all things that factor into the game testing.

Automated build pipeline gives the testers easy access to the newest test versions, and test case

sheets help in knowing what to test in those builds. Both of these also help in the last strength,

the large amount of testing done at the company. The opportunities on the other hand are all

with the personnel. Further education about the quality assurance systems and time

management could strengthen the current personnel significantly. Hiring more quality

assurance personnel on the other hand would ease the workload on the current staff, lessening

the need to further education.

On the negative side, the weaknesses are also mostly faults in the personnel. The lack of

programming knowledge can hinder the quality assurance team with some tasks, and asking for

help with those tasks from programmers will cause both them and the programmers to lose

time from other important tasks. This time loss will then cause more tasks to arrive for the

quality assurance team before the previous tasks are done, causing the overlap in tasks. The

threats shown in figure 4 are in fact mostly caused by this overlap. Development is delayed

while quality assurance goes through the tasks one by one, and the overlapping tasks can cause

burnouts if the amount of tasks get too high.

The first action to take to solve the issues should be looking into time management at the

company in general. This should help with some of the issues quality assurance is currently

facing, and it should alleviate the time pressure from busy periods. It would also benefit other

parts of the development process, making it beneficial to everyone instead of just the quality

assurance.

Even better documentation of my early times at the company would have been helpful for the

creation of this thesis. Better balancing of work and studies would also have helped in the

completion of the thesis. If I wanted to continue research even further, I could give my

colleagues a questionnaire or interview them about what they see as the problem areas of

quality assurance.

I deepened my knowledge of quality assurance theory, helping both myself to do my work

better, and the company to get better results with their quality assurance. This new theoretical

knowledge helped me to see my tasks in a new light, and helps me to develop the quality

assurance at the company even further.

25

The company now has additional information about the issues quality assurance faces, as well

as suggestions on how to handle those issues, allowing them to take action to solve them. As

the person responsible for the quality at the company, I wish to also resolve problems in other

areas of the development process that other development team members face. Hopefully this

research will also help uncover some of those issues.

26

List of references

Bethke, E. (2003). Game Development and Production. Texas: Wordware Publishing, Inc.

Chandler, H. M. (2014). The Game Production Handbook. 3rd Edition. Massachusetts: Jones &

Bartlett Learning.

Cordasco, M. (2016). What QA Testing Methodologies Are There? MyCrowd, A QASource

Company. 12.5.2016. Retrieved 28.7.2018 from https://mycrowd.com/blog/what-qa-testing-

methodologies-are-there/.

Critical Force (2018). Company’s website. Retrieved 30.9.2018

from https://criticalforce.fi/presskit/.

Engel, K. (2014). Can Test Managers Harm Product Quality by being Too Helpful? Testing

Trapeze 14.2.2014, 10-13. Retrieved 18.8.2018 from

http://www.testingtrapezemagazine.com/wp-content/uploads/2015/10/TestingTrapeze-2014-

February.pdf.

Helppi, V-V. (2014a). Mobile Game Testing – Part #1: The Importance and Difference from App

Testing. 27.8.2014. Blog series of 10 Best Practices in Mobile App Testing. Bitbar testing.

Retrieved 30.9.2018 from https://bitbar.com/mobile-game-testing-the-importance-and-

difference-from-app-testing/ .

Helppi, V-V. (2014b). Mobile Game Testing – Part #2: UI and Functionality + Image Recognition.

3.9.2014. Blog series of 10 Best Practices in Mobile App Testing. Bitbar testing. Retrieved

30.9.2018 from https://bitbar.com/mobile-game-testing-part-2-ui-and-functionality-image-

recognition/ .

Helppi, V-V. (2014c). Mobile Game Testing – Part #4: Testing for Connectivity. 17.9.2014. Blog

series of 10 Best Practices in Mobile App Testing. Bitbar testing. Retrieved 30.9.2018

https://bitbar.com/mobile-game-testing-part-4-test-for-connectivity/.

https://mycrowd.com/blog/what-qa-testing-methodologies-are-there/
https://mycrowd.com/blog/what-qa-testing-methodologies-are-there/
https://criticalforce.fi/presskit/
http://www.testingtrapezemagazine.com/wp-content/uploads/2015/10/TestingTrapeze-2014-February.pdf
http://www.testingtrapezemagazine.com/wp-content/uploads/2015/10/TestingTrapeze-2014-February.pdf
https://bitbar.com/mobile-game-testing-the-importance-and-difference-from-app-testing/
https://bitbar.com/mobile-game-testing-the-importance-and-difference-from-app-testing/
https://bitbar.com/mobile-game-testing-part-2-ui-and-functionality-image-recognition/
https://bitbar.com/mobile-game-testing-part-2-ui-and-functionality-image-recognition/
https://bitbar.com/mobile-game-testing-part-4-test-for-connectivity/

27

International Software Test Institute. (2018). Software testing revealed. Training book. Web

document. Retrieved 27.7.2018 from https://www.test-

institute.org/What_is_Software_Quality_Assurance.php.

ISTQB. 2018. Standard Glossary of Terms used in Software Testing version 3.1. Web document.

Retrieved 27.7.2018 from https://www.astqb.org/certified-tester-resources/glossary-software-

testing-terms/.

Komár, M. (2017). Quality Assurance in Game Development. Master’s thesis. Masaryk

University, Faculty of Informatics. Retrieved 28.7.2018 from

https://is.muni.cz/th/tlkuv/Quality_Assurance_in_Game_Development_-_Matej_Komar.

Korhonen, K. & Koivisto E. M. I. (2006). Playability Heuristics for Mobile Games. Conference

Paper, January 2006, uploaded on 10 March 2014. Retrieved 18.8.2018 from

https://www.researchgate.net/publication/221270478_Playability_heuristics_for_mobile_game

s.

Lucero, A., Holopainen, J., Ollila, E., Suomela, R. & Karapanos, E. (2013). The Playful Experiences

(PLEX) Framework as a Guide for Expert Evaluation. DPPI '13 Proceedings of the 6th

International Conference on Designing Pleasurable Products and Interfaces, Newcastle upon

Tyne, United Kingdom 3.-5.9.2013, 221-230. doi: 10.1145/2513506.2513530.

Muccini, H. (2009). Software testing: Testing new software paradigms and new artefacts. The

Wiley Encyclopedia of Computer Science and Engineering, 2716-2732. Retrieved 23.9.2018 from

https://pdfs.semanticscholar.org/6049/54b82254deef726a93f7565285bba975aea0.pdf.

Nanda, V. (2005). Quality Management System Handbook for Product Development Companies.

New York: CRC Press. Retrieved 27.10.2018 from

https://books.google.fi/books?id=guizsuAAyR4C&pg=PA1&redir_esc=y#v=onepage&q&f=false.

Nguyen, P. (2014). Game Production and Role of Game Producer. Case study: Research on

demographic of gamers in Hanoi, Vietnam. Savonia university of applied sciences, Degree

Programme in International Business, Social Sciences, Business and Administration. Bachelor’s

Thesis. Retrieved from http://urn.fi/URN:NBN:fi:amk-2014120318055.

https://www.test-institute.org/What_is_Software_Quality_Assurance.php
https://www.test-institute.org/What_is_Software_Quality_Assurance.php
https://www.astqb.org/certified-tester-resources/glossary-software-testing-terms/
https://www.astqb.org/certified-tester-resources/glossary-software-testing-terms/
https://is.muni.cz/th/tlkuv/Quality_Assurance_in_Game_Development_-_Matej_Komar
https://dl.acm.org/citation.cfm?id=2513530
https://dl.acm.org/citation.cfm?id=2513530
https://dl.acm.org/citation.cfm?id=2513530
https://pdfs.semanticscholar.org/6049/54b82254deef726a93f7565285bba975aea0.pdf
https://books.google.fi/books?id=guizsuAAyR4C&pg=PA1&redir_esc=y#v=onepage&q&f=false
http://urn.fi/URN:NBN:fi:amk-2014120318055

28

Redavid, C. & Farid, A. (2011). An Overview of Game Testing Techniques. Retrieved 29.7.2018

from https://pdfs.semanticscholar.org/4361/a1882ca8ea296ff6411dbbaa90ca5fbc3ed4.pdf.

Schreier, J. (2017). Quality Assured: What it’s Really Like To Test Games For A Living. Kotaku –

The gamers guide, Gizmodo Media Group. 18.1.2017. Retrieved 16.9.2018 from

https://kotaku.com/quality-assured-what-it-s-really-like-to-play-games-fo-1720053842.

Software Testing Fundamentals (2018a). Ad Hoc Testing. Web Document. Retrieved 27.10.2018

from https://softwaretestingfundamentals.com/ad-hoc-testing/.

Software Testing Fundamentals 2018b. Differences between Software Quality Assurance and

Software Quality Control. Web Document. Retrieved 27.10.2018 from

https://softwaretestingfundamentals.com/sqa-vs-sqc/.

https://pdfs.semanticscholar.org/4361/a1882ca8ea296ff6411dbbaa90ca5fbc3ed4.pdf
https://kotaku.com/quality-assured-what-it-s-really-like-to-play-games-fo-1720053842
https://kotaku.com/quality-assured-what-it-s-really-like-to-play-games-fo-1720053842
https://softwaretestingfundamentals.com/ad-hoc-testing/
https://softwaretestingfundamentals.com/ad-hoc-testing/
https://softwaretestingfundamentals.com/sqa-vs-sqc/
https://softwaretestingfundamentals.com/sqa-vs-sqc/

