

Creating Two Audio Features

with Wwise
Red Stage Entertainment

Jaakko Liukkala

BACHELOR'S THESIS
November 2019

Business Information Systems
Game Development

TIIVISTELMÄ

Tampereen ammattikorkeakoulu
Tietojenkäsittely
Pelituotanto

LIUKKALA, JAAKKO:
Creating Two Audio Features with Wwise
Red Stage Entertainment

Opinnäytetyö 38 sivua, joista liitteitä 1 sivu
Marraskuu 2019

Opinnäytetyön tavoitteena oli esitellä lyhyesti äänisuunnittelun historiaa, tutkia
Wwise-äänimoottorin perusominaisuuksia ja selvittää, miten äänimoottorin avulla
pystytään toteuttamaan kaksi ääniominaisuutta toimeksiantaja Red Stage
Entertainmentille: interaktiivisen musiikin hyödyntäminen pelissä ja pelaajan
antaman syötteen sovittaminen musiikin iskuille. Tarkoituksena oli toteuttaa
nämä ominaisuudet uuteen Unity-pelimoottorin projektiin ja kuvailla niiden
luomisprosessia. Tarkoitus oli myös reflektoida toimeksiantajan saamaa hyötyä
ominaisuuksien kehittämisestä.

Opinnäytetyön teoriaosuutta varten etsittiin aiheisiin liittyviä verkkolähteitä ja
dokumentaatiota sekä analysoitiin niiden tekstiä. Käytännön osuudessa
hyödynnettiin Wwise-äänimoottoria kahden ominaisuuden luomiseen.
Ensimmäisessä ominaisuudessa tutkittiin Wwisen tarjoamia mahdollisuuksia
interaktiivisen musiikin käyttämiseen, missä pelin musiikin osat kykenevät
muuttumaan pelaajan vuorovaikutuksen ansiosta. Toisessa ominaisuudessa
pyrittiin saamaan pelaajan syöttämien näppäimen painalluksien aiheuttamat
vaikutukset tapahtumaan musiikin iskuilla riippumatta siitä, painaako pelaaja
näppäintä liian aikaisin tai liian myöhään. Tätä tapahtumaa voidaan kutsua
pelaajan syötteen kvantisoinniksi.

Opinnäytetyössä toteutettiin kaksi ääniominaisuutta Unity-projektiin ja
syvennettiin Wwise-pelimoottorin perustoimintojen ymmärrystä. Toimeksiantaja
oli tyytyväinen tuloksiin ja halusi hyödyntää interaktiivisen musiikin
toteuttamistapoja peliprojektissaan tulevaisuudessa. Pelaajan syötteen
kvantisointiominaisuus yhdistettiin toimeksiantajan projektiin jo opinnäytetyön
tekemisen aikana.

Interaktiivisen musiikin toteutustapojen tutkiminen ja kehittäminen opinnäytetyötä
varten meni suunnitelman mukaisesti. Kvantisointiominaisuus oli hankalampi
toteuttaa ja vaati apua sekä jatkokehitystä toimeksiantajan yrityksessä
työskentelevältä ohjelmoijalta.

Asiasanat: Wwise, Unity, interaktiivinen musiikki, syöte, kvantisointi

ABSTRACT

Tampereen ammattikorkeakoulu
Tampere University of Applied Sciences
Business Information Systems
Game Development

LIUKKALA, JAAKKO:
Creating Two Audio Features with Wwise
Red Stage Entertainment

Bachelor's thesis 38 pages, appendices 1 page
November 2019

The objective of the thesis was to briefly introduce the history of sound design,
examine the basic functions of the sound engine Wwise, and to find out how the
sound engine can be used to create two audio features for the client of the thesis,
Red Stage Entertainment. The features required utilizing interactive music in a
game and fitting player input onto the beats of a music track. The purpose was to
create these features inside of Wwise and a new Unity game engine project, and
to describe the creation process. Reflecting upon the benefits that the features
provide for the client was also a goal.

Suitable web sources and documentation were researched and analyzed for the
theory portion of the thesis. For the practical side, the Wwise sound engine was
utilized in the creation of the two features. In the first feature, the possibilities that
Wwise offers for interactive music were studied. Interactive music is the
interaction of a player affecting the whole or parts of a music track. The second
feature focused on getting the reaction of the player input to happen on the beats
of a music track, regardless of whether the player gives the input too early or too
late. This event can be referred to as player input quantization.

The results of the thesis were the creation of the two features into a Unity project,
and a better understanding of the basic functions of Wwise. The client of the
thesis was satisfied with the results and wanted to utilize the different ways of
creating interactive music in their game project in the future. The feature for player
input quantization was already integrated into the project of the client during the
making of the thesis.

The research for the methods of utilizing interactive music and the creation of
them in a project went according to plan. The quantization feature was more
difficult to accomplish and required help and further development from a
programmer who works at the client company.

Key words: Wwise, Unity, interactive music, input, quantization

4

CONTENTS

1 INTRODUCTION .. 6

2 WWISE BASICS ... 10

2.1 Overview .. 10

2.2 Installation .. 10

2.3 Assets .. 11

2.4 Events .. 13

2.5 Sound banks .. 15

2.6 Game syncs ... 17

2.7 Unity integration ... 18

3 INTERACTIVE MUSIC .. 21

3.1 Starting out ... 21

3.2 Controlling Music Tracks .. 23

3.3 Making it work in Unity ... 25

4 INPUT QUANTIZATION ... 29

4.1 Getting started.. 29

4.2 Creating the script .. 30

4.3 Summary .. 32

5 CONCLUSION .. 33

REFERENCES .. 34

APPENDICES .. 38

Appendix 1. Link to Youtube video: the interactive music feature 38

5

GLOSSARY

Child object Objects that are housed under a parent object.

Collider In Unity, allows collision on a game object and can also

trigger methods by another collider entering or exiting it.

Cross-platform E.g. programs that offer functionality for multiple

platforms, such as PC, Mac, PS4 and Xbox One.

Float In scripting, using float variables allows the use of

decimal values.

Game engine E.g. Unity, offers a framework to develop games in.

(Baker 2016).

Input lag Lag between entering an input and a receiver reacting

to the input (Shafer 2019).

Middleware program A program that acts as a connecting element between

two programs and offers its capabilities to the other

program (Red Hat N.d.).

Script class Most scripting in Unity is done by creating and utilizing

classes which feature variables and methods inside of

them.

Script component Can be attached to game objects, variables can be

added to them via scripting and controlled from the

game objects.

6

1 INTRODUCTION

A sound designer creates the soundscape for media. Soundscapes usually

consists of music, ambience, sound effects and dialogue. The work requires the

finding, recording, editing and mixing of all these elements. (Berklee College of

Music N.d.; Metcalfe 2013.) Sound design for video games differs from movies

and music, as games are a combination of audiovisual elements and player

interaction (Esposito 2005). Another separating aspect is the way the sound is

implemented, often demanding programming skills (Berklee College of Music

N.d.).

Sounds in the earliest games were meant to make the experience of a player feel

more enjoyable. Sound effects were also essential in giving feedback to the

player. When the ball in the game Pong hits one of the paddles, an audio cue is

given in the form of a beep. This signals to the player that they should pay

attention to the next pass. (Gamedesigning.org 2018.) The game reacting to the

interaction of the player is important in game sound design. As the player jumps

in Super Mario Bros, a sound effect is played. This is the ultimate example of a

sound signaling interaction. (WIRED 2017, 4:29-4:46.) Sound in games also

helps the player immerse in the game world along with the visuals and gameplay.

If the player is hearing sounds that they think they should hear in the game,

depending on its setting and style, it can be easier to get into the game without

getting distracted. (Campbell 2016.)

A game's music and sound effects can relay the sorts of emotions the player is

intended to be feeling through how they sound. The emotions evoked can be

positive, such as the feeling of succession through consonance, or negative, such

as the feeling of failure through dissonance or anything in between (WIRED 2017,

3:57-4:16). Picture 1 presents a simple comparison of consonance and

dissonance.

7

PICTURE 1. Consonance versus dissonance chart (Wither N.d.)

The space that was made available for storing music and sound effects in games

has increased from a few kilobytes to multiple gigabytes over the years. For

music, using simple waveform sounds and only a few instrument tracks was

necessary to keep memory usage to a minimum, while now it is common to have

many lengthy and complex orchestral compositions, recorded with real

instruments, comprise the soundtrack of a game. Sound effects have changed

from bleeps to actual sounds heard in real life recorded with microphones. Game

sound designers have been able to utilize techniques largely used in film, such

as creating foley sounds. (ACMI N.d.) Foley sound effects are used to recreate

commonplace sounds in a studio or otherwise quiet environment to ensure

pristine audio quality (ACMI N.d.; Stinson N.d.). This often requires

unconventional ways of achieving the desired sound, for example imitating the

footsteps of a fox by using a glove with paper clips attached to each finger (Hogan

2014).

8

Games evolving constantly introduced new audio problems that required solving.

One of those was positioning. Sounds needed to only trigger and be audible when

the player was near an object that was producing sound, e.g. an enemy. (WIRED

2017, 8:26-8:36.) This aided with saving resources that would be required by all

the sounds playing over and over. With the rise of 3D games, 3D positioning of

sounds became necessary. Sound effects were to be heard from the correct

position relative to the position of the player, making the player a listener and all

the objects producing sound, audio sources. For example, if the player is standing

to the left of a sound-emitting object, the sound effect needs to be heard from the

right side of the headphones or speaker system. (Cullen N.d.) Looping sounds,

like a waterfall, need to have their volume increase as the player gets close, and

decrease as the player walks away from their vicinity, otherwise known as

distance-based attenuation (Audiokinetic Applying... N.d.). Picture 2 shows how

this works. All these advancements made more realistic and inventive sound

design possible in games.

PICTURE 2. Distance-based attenuation (Audiokinetic Applying... N.d.)

Nowadays, interactive music and real-time effects on sounds offer many

possibilities for reacting to player interaction and giving feedback. Music in the

game can switch to another track depending on e.g. the progress or the state of

the player character in the game. A music track can also be split into many

individual instrument tracks and have different game events triggering the

9

addition or removal of these instruments while the music is playing. (Audiokinetic

Understanding Interactive... N.d.; Sweet 2016.) Sound effects can have effects

put on them in real-time, such as a low-pass filter or reverb (Audiokinetic Using

Real-time... N.d.). A low-pass filter cuts off higher audio frequencies giving a

sound a deeper quality. The amount of the effect can be adjusted. (Audiokinetic

Glossary N.d.) Reverb is an effect “that simulates the acoustics of a particular

room or space” (Audiokinetic Glossary N.d.).

Audio middleware programs, such as FMOD and Wwise, were created by audio

design professionals to help streamline the game sound design process. These

audio engines give sound designers tools and features to create dynamic and

varied audio in games. They nowadays integrate into many game engines, such

as Unity and Unreal Engine, with the integration also providing custom scripting

and components for the user. (Audiokinetic About N.d.; FMOD N.d.; Audiokinetic

Using the... N.d.)

The aim of this thesis is to utilize one of these audio engines, Wwise, to develop

two audio features that fit the needs of the client, Red Stage Entertainment. The

first feature is the utilization of interactive music, with the other one being player

input quantization. Interactive music is music that responds to player actions.

Music is created for the first feature, and a few interactive music methods are

applied to the song with Wwise. For the second feature, a script that fits the input

of a player onto the beats of a music track is created. Both features use the Wwise

integration into Unity.

Describing the process of development and reflecting on what is accomplished is

important. The reflection portion also includes the analysis of how useful the

developed features are for Red Stage Entertainment. Seeing as the client only

uses Unity for developing their games at this moment, how Wwise integrates into

other game engines, such as Unreal Engine, is left out of the thesis. The

programming side is only referenced as much as required. In order to help clarify

the terms and features that Wwise has, the next section of the thesis is about the

basics of Wwise.

10

2 WWISE BASICS

2.1 Overview

Audiokinetic, a company comprised of music, film and gaming industry experts,

released the first commercial version of Wwise in 2006. They wanted sound

designers to be able to give players more immersive experiences in games in

terms of audio. Wwise offers cross-platform solutions for sound and many tools

for creating interactive and varied audio. (Audiokinetic About. N.d.) Today, the

middleware audio engine can be downloaded for free from the Audiokinetic

website.

This thesis only explains the basic functions of Wwise that are essential for the

creation of the two features intended for Red Stage Entertainment: a solution for

interactive music and player input quantization. The essentials consist of the

installation of the audio engine, the importing of audio assets, the creation and

utilization of events, sound banks and game syncs as well as the introduction to

the integration of Wwise into Unity. The functionality for interactive music that

Wwise offers will be introduced and explored during the creation of the first

feature.

2.2 Installation

The Wwise Launcher program can be downloaded from the Audiokinetic website.

After installing and starting the program up, the newest version of Wwise can be

downloaded from the Wwise tab in the Launcher. A pre-existing Unity project can

have Wwise integrated into it by going into the Unity tab in the Wwise Launcher

and selecting the Integrate Wwise into Project... option on the intended Unity

project.

Before going ahead with the integration, a version of the Wwise Unity integration

and SDK files that correspond to the installed Wwise version need to be installed.

The Wwise Launcher will give advice on how to do this. SDK is an acronym for

11

software development kit, and is the way Wwise provides their tools, scripting

and documentation for the integration (Sandoval 2018). Once the installation is

done, the platforms planned for the project are to be declared. The folder path for

a Unity installation needs to also be set. After everything is done, the Integrate

button can be pressed to commence the integration. The integration window is

shown in picture 3.

PICTURE 3. Adding Wwise integration for a Unity project in the Wwise Launcher

2.3 Assets

The Project Explorer window is where the audio files brought into the Wwise

project can be found. The window features multiple tabs which all house different

assets, with the imported audio files being shown in the Audio tab. The Audio tab

is split into three sections: The Master-Mixer Hierarchy, the Actor-Mixer Hierarchy

and the Interactive Music Hierarchy (picture 4).

12

These hierarchies, and most elements in Wwise, feature a Default Work Unit.

Work Units are used for splitting the workload so that multiple team members can

work on the same Wwise project simultaneously. They have the relevant

information of a specific element, such as the Actor-Mixer Hierarchy or Events,

inside of them. Default Work Units are created for the project by default. They

need to exist for a user to be able to create more objects for an element in the

project. (Audiokinetic What are Work Units? N.d.)

PICTURE 4. The Audio tab view of the Project Explorer window

The Master-Mixer Hierarchy is for audio and auxiliary buses. A Master Audio Bus

is created in a Wwise project by default, and all the audio is routed through it.

This means that by e.g. changing the volume of a Master Audio Bus, the changes

apply to all sounds if they are routed through that audio bus. (Audiokinetic The

Master Audio… N.d.) Sound effects, dialogue, music and ambience are often

assigned to separate audio buses so that each type of audio can be controlled

individually (Audiokinetic Structuring a Bus… N.d.). These new audio buses are

child objects of the Master Audio Bus, meaning all the audio in the project can

still be globally changed via the master bus. Auxiliary buses can have effects put

on them and are used for what Wwise refers to as environments, more commonly

known as reverb zones. (Audiokinetic The Master Audio… N.d.) They are zones

13

where effects are applied, most often a reverb effect, to create the necessary

echo and delay for sounds in that specific environment. For example, a large

empty cave might require huge reverb with plenty of echo, delay and perhaps

other effects. (Audiokinetic Understanding Sends N.d.)

Sound effects and dialogue are most commonly imported into the Actor-Mixer

Hierarchy while the Interactive Music Hierarchy houses the music and ambience

tracks of the project. Audio file importing happens by right-clicking on the Default

Work Unit or a folder-type object inside it in either the Actor-Mixer Hierarchy or

the Interactive Music Hierarchy and selecting Import Media Files. New objects

can also be created by dragging files into either hierarchy’s Default Work Unit

(Audiokinetic Importing Media Files N.d.).

Depending on which hierarchy the audio files are imported into, different types of

Wwise objects are created (Audiokinetic Creating Wwise Objects… N.d.). Sound

SFX and Sound Voice objects relate to the Actor-Mixer Hierarchy, and are usually

meant for sound effects and dialogue, respectively. Sound SFX objects can be

music and ambience as well. Importing audio files into the Interactive Music

Hierarchy creates Music objects, either in the form of a Music Segment object, a

Music Track object or a Music Clip object. Music Segments can have multiple

Music Tracks inside of them, and Music Tracks are composed of a single, or

multiple Music Clips which are a representation of the imported audio file.

(Audiokinetic Glossary N.d.)

2.4 Events

Events are objects that perform an action or multiple actions for the Sound SFX,

Sound Voice and Music objects assigned to them. The type of action can simply

be playing or stopping an audio clip, but it can also be something more complex,

such as setting the volume of a clip to a different level or changing the amount of

an effect that is being put on an audio clip. Some event types can affect audio in

a game globally, e.g. pausing or stopping all sounds. Events reference the audio

objects assigned to them and are posted in a game engine to perform the action

or actions that they are set to do. (Audiokinetic Understanding Events. N.d.)

14

Events are accessible through the Events tab in the Project Explorer window. A

new event can be created in multiple ways (picture 5). The desired Sound or

Music object must be assigned to the event for it to perform the action on that

specific object. This can be done from the Event Editor window.

PICTURE 5. Adding a new empty event into the Wwise project

According to the Audiokinetic Event Actions List (N.d.), the options for what an

event action type has are different for nearly all actions. The most common

properties are target, scope, delay and fade time. For example, the Play action

type features properties for the target of the event, the scope of the event action,

the initial delay after posting the event before the audio begins playing, the

probability of the event action happening and the duration and curve shape of a

fade-in that helps with smoothly transitioning into the audio clip (picture 6). The

scope of the action can be global or within one game object.

15

PICTURE 6. Properties related to the Play event action shown on the right

2.5 Sound banks

The Audiokinetic Glossary (N.d.) which explains terms related to Wwise and

audio in general defines a sound bank in this way: “A group of Event data, Sound,

Music, and Motion structure data, and/or media files that will be loaded into the

game's platform memory at a particular point in a game.” Sound banks are used

to store the data of audio files and events that are created in the project. The

audio of a project can be divided into many sound banks that are loaded and

unloaded into the game when needed. There is also an initialization bank that

has the basic information of a project in it (Audiokinetic Understanding

SoundBanks N.d.). Generating these sound banks inside of Wwise is the means

of getting the data onto the side of the game engine.

New sound banks can be created in a similar way to the creation of events. The

SoundBank Manager window showcases the sound banks in the project. It can

be viewed by making sure the SoundBank layout is presented. As shown in

picture 7, this is done by pressing the Layouts button in the top-left corner options

and selecting SoundBank.

16

PICTURE 7. How to change layouts in Wwise

When a new sound bank has been created, events can be added into it by e.g.

dragging events from the Events tab in the Project Explorer window into the

sound bank. Generating sound banks is done from the SoundBank Manager

window. Having a sound bank checkmarked means it will be a part of the

generation process. The Generate Selected button at the top of the window can

be pressed to start the generation. This opens a separate window that informs

the user of the progress of the sound bank generation (picture 8). To simply

generate all the sound banks of a project, Generate All can be selected.

PICTURE 8. Wwise sound bank generation window

17

2.6 Game syncs

Game syncs are elements that are affected by what is happening in a game, and

then influence the audio of the game in a set way (Audiokinetic Glossary N.d.).

The game syncs that are necessary to explain for the thesis are switches, states

and game parameters. Switches change a sound to another while states change

the properties of one sound. Games often feature multiple surface materials for

the footsteps of a character, such as grass and dirt. Usually, there are multiple

footstep sounds for each material, and switches are used for switching between

these collections of sounds. (Audiokinetic Glossary N.d.) States are used to e.g.

add effects to a sound or change the volume of it (Audiokinetic Glossary N.d.).

The change from one state or switch to another is done via programming.

Game parameters can cause real-time effects on sounds via real-time parameter

controls, abbreviated as RTPCs (Audiokinetic Glossary N.d.). One way to utilize

them is to link a game parameter to the health of the player in a game. With an

RTPC, a low-pass filter effect can intensify as the player's health decreases

(picture 9). The game parameter can then be assigned to respond to changes in

player health through code. This makes for dynamic feedback to the player in

terms of audio.

PICTURE 9. An RTPC with a low-pass filter and a game parameter

18

2.7 Unity integration

If a Unity project has Wwise integrated into it, Wwise-based scripting is made

available for use in the project. This makes control of sound banks, events, game

syncs, etc. possible on the side of Unity via the script components of Audiokinetic

and the ability to create custom code with Wwise script classes. There are a few

components that are required to be used in the Unity project for the functions of

the Wwise integration to work.

The WwiseGlobal object initializes Wwise functionality in the Unity project by

referencing the AkWwiseInitializationSettings asset and is automatically added to

every scene in Unity by default. (Audiokinetic Using the Wwise Unity Integration

N.d.) The Unity documentation on Scenes (N.d.) states that Scenes can be

thought of as the levels in a game that is being developed. They are where the

work is done, and where objects, characters and environments are placed. The

Scene window displays a visual representation of the scene for the user.

With a new game object selected and the Inspector window open, the

components of an object are visible. A desired component can be added to a

game object via the Add Component button. The ability to search for specific

components helps with finding the correct one (picture 10).

PICTURE 10. The Inspector window in the Unity Editor

19

An audio listener component is required to make positioning in a Unity project

possible. For the Wwise integration, the default audio listener of Unity, located in

the Main Camera object, is replaced with the AkAudioListener component.

(Audiokinetic Using the Wwise Unity Integration N.d.)

Many of the other Wwise-specific components are for utilizing objects created in

Wwise on the side of Unity, such as loading sound banks, playing sounds and

controlling game syncs (Audiokinetic Using the Wwise Unity Integration N.d.). For

a Wwise event to play, the sound bank it is assigned to must be loaded in the

Unity scene. This is done by adding the AkBank component to a game object.

There are multiple options for when the bank should be loaded and unloaded,

e.g. upon the start of a scene, entering a collider or the destruction of the game

object the component is assigned to. The intended sound bank can be assigned

by pressing the box next to the Name option.

A sound bank, much like all the Wwise elements brought over to Unity through

the integration, can also simply be dragged into the Inspector window of a game

object from the Wwise Picker (Audiokinetic Using the Wwise Unity Integration

N.d.). This adds an AkBank component to the game object. The Wwise Picker

window conveniently shows all Wwise objects as a list.

Events can be played in multiple ways. The components AkEvent or AkAmbient

can be attached to game objects, and then set to play a specific event. Like the

AkBank component, how the event is triggered can be stated. An event can also

be dragged from the Wwise Picker into a game object.

On the scripting side, the AkSoundEngine class can be used for more general

code. The class contains many of the different functions available for use in the

Wwise integration. (Audiokinetic Using the Wwise Unity Integration N.d.) An

example of using the AkSoundEngine class to load a bank and then play an event

in the game would look like the code in picture 11.

20

PICTURE 11. Utilizing the AkSoundEngine class

For the LoadBank function, the name of the desired sound bank needs to be

inserted as the first parameter in string form. String variables require the text to

be wrapped around quotation marks. The second parameter refers to what

memory pool the sound bank should be in. The last parameter is required for the

bank load request to go through. (Wwise SDK LoadBank N.d.) The PostEvent

function requires the name of the desired event as a string and the game object

the script is attached to as a component, to be the parameters. By writing

gameObject, Unity knows to reference the correct game object.

There are separate custom classes known as Wwise Types for sound banks,

events, RTPCs, states and switches that can be declared and used as variables

(Audiokinetic Using the Wwise Unity Integration N.d.). The example code in

picture 12 demonstrates the use of Wwise Types to declare sound bank and

event variables, and then load the sound bank and play the event.

PICTURE 12. Utilizing Wwise Types

Public variables show up as options on a component in the Inspector window of

the Unity Editor. They can also be referenced in any other script freely. After

declaring the variables at the start of a script, they can be used in a desired

function. The Start function in the example uses the functions of the Bank and

Event classes to load a sound bank and post an event from the game object,

whose component is this script. Finally, the user needs to set the references to

the intended sound bank and event on the component from the Unity Editor.

21

3 INTERACTIVE MUSIC

3.1 Starting out

Interactive music in Wwise can be divided into two structures: a horizontal and a

vertical project structure. In a horizontal structure, the order of the segments of a

music track can be changed by e.g. introducing sequences of randomness for

certain segments. A structure like this requires multiple segments of music to

make it varied. With a vertical project structure, the music is made varied by

having instrument tracks added to and removed from the music score. This can

be used to e.g. build a music track up with layers of instruments as a player

progresses through a level in a game. Another way to utilize the structure is by

using sub-tracks, which are different versions of the same instrument track that

can be e.g. switched to after a player interaction. A vertical structure requires all

the instrument tracks of a music segment, and their possible other versions, to

be brought into Wwise separately. (Audiokinetic Interactive Music Project... N.d.)

The structures can be combined by e.g. making multiple music segments that all

have different versions of each instrument track that they contain (Audiokinetic

Interactive Music Project... N.d.). This is a very multiphased way of creating

interactive music, but it offers many possibilities for varying up the music both

randomly and via player interaction.

The first feature starts off with the creation of a music track in a digital audio

workstation program, DAW, called Logic Pro X. DAWs allow for music production

via software by offering solutions for recording, mixing and mastering audio (Case

2014). The track features two sections that both have four instrument tracks

(picture 13). The individual instrument tracks are exported out of Logic Pro X as

audio files, adding up to eight files in total for the music.

22

PICTURE 13. The multitrack view in Logic Pro X showing the instrument tracks

of the music created for the feature

In Wwise's Interactive Music Hierarchy, a Music Playlist Container object called

PianoThingy is created, and two empty Music Segment objects are put inside of

it as child objects. The Music Segment objects represent the two sections of the

track, PianoThingy-A and PianoThingy-B. Four audio files are imported into both

Music Segments as Music Track objects, representing the different instrument

tracks of the sections. By selecting the PianoThingy parent object, the editor

window for the object opens. On the General Settings tab, there is a Time

Settings section where the tempo and time signature of the song can be set. The

song made for the feature has a tempo of 126 beats per minute and is in 4/4 time.

Setting the time settings on the parent object will pass the settings down to the

child objects. Selecting the PianoThingy-A object that has the four Music Track

objects inside it and pressing F10 to switch to the Interactive Music layout opens

a window that shows a multitrack view of all the audio files. This Music Segment

Editor window is shown in picture 14.

23

PICTURE 14. The Music Segment Editor window in Wwise showing the first

section of the music created for the feature

The window offers options for the individual tracks, such as muting them or

changing their volume level. The green and red vertical lines with arrows at the

top indicate the start and end positions for a Music Segment, also known as cues.

The positions can be changed by dragging a cue arrow to the desired position.

By making sure Bars/Beats is selected in the Snap to option, the cues and visual

representations of the audio files will snap to the bars and beats of the music.

3.2 Controlling Music Tracks

A way to control which Music Tracks are audible while the music is playing is to

use states to control the volume level of the tracks. Creating a State Group is

done from the Game Syncs tab in the Project Explorer window. States are added

into the State Group as child objects. The State Group Property Editor window

will open if a state group is selected. Here it is possible to change transition times

for switching to other states either on a global level or between two specific ones

(picture 15). If long transition times are used as a default, a custom transition can

be created for switching between states None and NoAction. The state in Unity

is always None until it is set to another one. Having the switch between None and

NoAction be zero seconds and setting the state to NoAction upon starting Play

Mode in Unity, will ensure that the NoAction state will immediately be active when

the game starts.

24

PICTURE 15. Showing the InteractiveMusic state group and its transitions

The different states need to be added to the Music Tracks of the PianoThingy-A

and PianoThingy-B Music Segments. Selecting one of the Music Tracks opens a

Music Track Property Editor. On the States tab, the new state group can be added

which adds a list of the possible states to the tab. Next to the states are options

for how the properties of the track change when a certain state is active. The

Piano Music Track has no states as it is always audible, but the other tracks can

have Voice Volume set to the value -96 for the states that should not feature that

specific instrument. For example, if the LeadPiano track comes in last, all other

states except the last one where all the instruments can be heard should be set

to -96 (picture 16). In this case, the last state would be the MuchAction state.

PICTURE 16. The state setup for the LeadPiano Music Track

25

Once all the states have been set for the Music Tracks in both Music Segments,

the segments can be dragged into the empty space under Sequence Continuous

in the Music Playlist Editor window (picture 17). This makes it possible for the

music to play from the Music Playlist Container object when it is put into an event.

The loop count for the sequence should also be set to Infinite, so that the music

will loop and play indefinitely unless otherwise told. Playlists can be used to

create structures for songs, and then break them by introducing e.g. random loop

counts for individual segments or segments that are sometimes skipped. Now the

PianoThingy Music Playlist Container is ready and can be put into a Play action

event and a sound bank.

PICTURE 17. Setting the playlist for a Music Playlist Container object

As a summary, the ways of making interactive music presented in this thesis are

controlling music tracks individually through states, which requires the use of a

vertical project structure, as well as building varied playlists out of Music

Segments, which needs a horizontal project structure. A combination of these

options is what Red Stage Entertainment are looking for in their project. Being

able to affect both the segments of a song as well as the instrument tracks the

segments are built out of provides plenty of variety for the music.

3.3 Making it work in Unity

The adding of instruments with state changes can be triggered by a player. For

this feature, a player character walks across a long pathway, triggering the

addition of instruments along the way by hitting colliders. In order to achieve this,

a player character and trigger colliders need to be created in the Unity project.

26

After the Music Playlist Container has been put into an event and a sound bank,

and the sound bank has been generated, the state functionalities for the music

should work on the side of Unity. Assuming the Wwise integration has

automatically replaced the basic Unity Audio Listener for the Main Camera object

with AkAudioListener and added the WwiseGlobal game object inside of the

default scene, the next phase is to create new game objects and add AkBank

and AkEvent components to them (picture 18). After that, the correct sound bank

and event references need to be set for components. The event reference should

be the music created for the feature.

PICTURE 18. Unity scene hierarchy after Wwise integration and the creation of

SoundBank and PlaySound game objects

A player character is created in the form of a capsule object. The ground that the

character stands under can be a plane object. A script that allows the player to

move either forward or back is attached to the character as a component. The

plane is made into a long pathway. The player should move forward on the

pathway and hit colliders that trigger the state changes. The colliders can be

sphere objects that contain a Sphere Collider component (picture 19). There is a

checkbox for a Boolean IsTrigger variable in this component that should be

checked. This sets the variable to be true, meaning the collider of the sphere

object now works as a trigger for when other objects enter it, exit it or stay inside

it.

27

PICTURE 19. A sphere object with a Sphere Collider that is set to IsTrigger

containing a custom EnterTrigger script component

A new script called EnterTrigger is created and added on to the sphere object as

a component. This is where a Wwise state variable is declared and made visible

on the component in the Unity Editor. A function called OnTriggerEnter is created

where the state is set to be the same as the state selected on the component via

a SetValue function. Picture 20 shows the lines of code in the EnterTrigger script.

PICTURE 20. The code in the EnterTrigger script

28

Now the sphere objects can be multiplied and placed along the plane object

(picture 21). When the state references have been set correctly on the

components, the feature is almost ready for use. A script much like EnterTrigger

called OnStart can be created to change the state or switch to NoAction in a Start

function. By starting Play Mode from the Unity Editor, the player character can be

moved forward and back triggering different states. The music should also

change from one Music Segment to another and then loop again.

PICTURE 21. The Scene and Hierarchy views of the interactive music feature

Experiencing the result of the feature gives ideas and inspiration for furthering

these implementations. The actions of the player affecting the music is an

interesting way to help with e.g. feedback and atmosphere. More ambitious and

efficient versions of these interactive music methods can be applied into the game

Red Stage Entertainment is developing.

29

4 INPUT QUANTIZATION

4.1 Getting started

What is desired from the player input quantization feature is the ability to have

player inputs happen on the beats of a music track. This means that inputs that

are given too early or too late will either be delayed until the next beat or made to

happen instantly after a beat, respectively. The reason for the latter is to give the

player a bit more time to react to the upcoming beat. That is why a short window

for getting an input through is presented right at the start of a beat. The way to

keep track of beats on the side of Unity is done by using Wwise callbacks.

Callbacks can be used to e.g. gain information about the tempo and time

signature of a song as well as when a measure or beat occurs in a song. One of

the suggestions for the feature from the client is to have the quantization happen

to sub-beats as well. Sub-beats are beats that are split into shorter segments, for

example 1/8th of a beat.

Firstly, individual notes on the piano are exported out of Logic Pro X as the

sounds that the player will input. The notes are brought into Wwise and put into

one Random Container object as shown in picture 22. Random Containers play

the audio files put into them one at a time, picking which file is played at random.

This object is put into an event and a sound bank, and the sound bank is

generated.

PICTURE 22. The PianoNotes Random Container object

30

4.2 Creating the script

For the previous feature, the music event was posted with an AkEvent

component. Since it is easier to control callbacks via code, the posting of the

music event should be moved to a new InputQuantization script. An event

variable can be declared in a script with the AK.Wwise.Event class. An event for

the piano notes that are the input of the player should be declared as well. A

function for the callbacks requires parameters, of which the AkCallbackType

variable is the most important one for telling Unity which callbacks should be

considered. In this case, finding out when a beat occurs, and the music starts are

the desired callbacks (picture 23).

PICTURE 23. Using Wwise callbacks to give Unity information about when the

music starts and when each beat occurs

Initially, as a test, player input is only allowed on the beat. The accuracy is not

ideal at all as barely any of the inputs register because of input lag and lag

between the two programs, Wwise and Unity. A timer that counts down the length

of a beat in seconds is created via code. The duration of a beat is then divided

by the possible sub-beat amount (picture 24). The timer is reset and brought back

up via the beat callback. The first attempt at input quantization is declaring a

Boolean variable that when set to true, posts the PianoNotes event at the next

possible beat callback. The value is set to true when a player input happens.

Boolean variables offer two options, true and false values. They are most often

used to control when statements, e.g. if statements, should be executed.

(Processing N.d.) If statements are only executed if the value of the parameter

attached to them is true. For the feature, there are now a couple of restrictions

for when the player can input an action in terms of timing. Input lag and other

31

forms of lag are only addressed by having a LatencyBalance float value that is

manually set.

PICTURE 24. Counting the length of a beat in seconds divided by the intended

sub-beat amount

This way of doing it produces some results, but it is not consistent at all.

Sometimes sound doesn't play even when it is completely on the beat with the

actual music because of input and Wwise to Unity lag determining that the

beginning or end of the beat is somewhere else than it should be. Using a simple

float value to try to fix this is not going to work.

At this point of creating the feature, one of the programmers working at Red Stage

Entertainment cleans up the script by getting rid of unneeded variables and lines

of code. They make the code work in a more consistent manner by using more

efficient scripting and doing better calculations on accepting player inputs at an

earlier or later time than right on the beat (picture 25). In order to make everything

work properly, they also get rid of any code related to dividing the beats into sub-

beats, which requires that to be investigated again. The script is integrated into

the game project that Red Stage Entertainment is working on.

PICTURE 25. The function that sends the input on the beat or very close to it

32

After a few days, the programmer makes the InputQuantization script work with

the music system that has been created for the project of the client. This means

that information regarding the tempo and duration of a beat is retrieved from

Wwise via callbacks. The retrieval is done in a separate script and the

InputQuantization script references that script for all the relevant information

about a song. The most important thing to add to the feature again is allowing

more inputs during a beat which means dividing the beat into smaller segments

through code. Picture 26 displays how this is achieved by simply dividing the

correct beat duration time received from Wwise by the desired beat division. The

script is functional, and the beat can be divided into anything between one and

16 sub-beats.

PICTURE 26. A more refined version of the code in picture 24 done by a

programmer

4.3 Summary

Creating a feature such as this requires adequate programming knowledge and

familiarity with the Wwise to Unity integration. To get the feature to the point

where it needed to be for the game project of Red Stage Entertainment and the

thesis, help from a programmer was necessary. The feature is specific and might

not have many uses outside of quantizing input of some kind. It is a feature that

Red Stage Entertainment feels would fit for their game.

Tackling something more challenging helped with learning basic and more

advanced Wwise theory and techniques. Wwise callbacks were a new thing to

learn for the creation of the feature. Calculating the quantization of input was new

and interesting as well.

33

5 CONCLUSION

Wwise is a powerful tool that allows audio designers to achieve varied and

dynamic audio for games. It works on multiple platforms, integrates into the most

common game engines and offers a free trial version which includes most

capabilities of the sound engine. After about a year of getting to know Wwise,

there is still a lot to learn about not only the features in the program itself but also

in the game engine integration.

The objectives of the thesis were all met to a degree, some better than others.

The introduction featured some untrustworthy sources but did its job in

introducing the reader to video game audio design and the features that were

developed for the thesis. Thorough source searching was not done due to time

constraints. The section about Wwise basics introduced most of the basic

elements of Wwise.

The interactive music feature section of the thesis managed to successfully

convey a few ways in which interactive music can be created. While the actual

player input quantization feature created for Red Stage Entertainment turned out

to work well after further development by a programmer, the documentation of it

in the thesis was not very detailed in the end. Both features were received well

by the client and have further usage and iteration planned.

In terms of further research into Wwise and the features that can be created with

it, the topic of this thesis is mainly tied to the client, Red Stage Entertainment.

Wwise will most likely come up in future theses but what is done with the program

and what the reasons behind doing it are, will be different. So, the topic of this

thesis specifically warrants no further research but e.g. Wwise as a sound engine

and more detailed interactive music testing are interesting topics.

34

REFERENCES

ACMI. N.d. The evolution of audio in videogames. Web article. Article posted on
the Australian Centre for the Moving Image (ACMI) web page. Read 2.10.2019.
https://www.acmi.net.au/ideas/read/evolution-audio-videogames/

Audiokinetic About. N.d. Audiokinetic About page. Web page. Read 1.10.2019.
https://www.audiokinetic.com/about/

Audiokinetic Applying Distance-Based Attenuation. N.d. Applying Distance-
Based Attenuation. Web documentation. Wwise documentation about basic
attenuation for audio. Read 1.10.2019.
https://www.audiokinetic.com/library/edge/?source=Help&id=applying_distance
_based_attenuation

Audiokinetic Creating Wwise Objects on Import. N.d. Creating Wwise Objects
on Import. Web documentation. Wwise documentation about Wwise objects.
Read 16.11.2019.
https://www.audiokinetic.com/library/edge/?source=Help&id=creating_wwise_ob
jects_on_import

Audiokinetic Event Actions List. N.d. Event Actions List. Web documentation.
Wwise documentation showcasing all the different event actions and properties.
Read 14.11.2019.
https://www.audiokinetic.com/library/edge/?source=Help&id=event_actions_list

Audiokinetic Glossary. N.d. Audiokinetic Glossary. Web page. A web page
explaining terms related to Wwise and audio. Read 30.8.2019.
https://www.audiokinetic.com/library/edge/?source=Help&id=glossary

Audiokinetic Importing Media Files. N.d. Importing Media Files. Web
documentation. Wwise documentation about media file importing. Read
16.11.2019.
https://www.audiokinetic.com/library/edge/?source=Help&id=importing_media_fi
les

Audiokinetic Interactive Music Project Structure. N.d. Interactive Music Project
Structure. Web documentation. Wwise documentation about interactive music
structures. Read 21.11.2019.
https://www.audiokinetic.com/library/edge/?source=Help&id=interactive_music_
project_structure

Audiokinetic Structuring a Bus Hierarchy - Example. N.d. Structuring a Bus
Hierarchy - Example. Web documentation. Wwise documentation about the
structuring of an audio bus hierarchy. Read 15.11.2019.
https://www.audiokinetic.com/library/edge/?source=Help&id=structuring_bus_hi
erarchy_example

Audiokinetic The Master Audio Bus Hierarchy. N.d. The Master Audio Bus
Hierarchy. Web documentation. Wwise documentation about the Master Audio
Bus hierarchy. Read 15.11.2019.

https://www.acmi.net.au/ideas/read/evolution-audio-videogames/
https://www.audiokinetic.com/about/
https://www.audiokinetic.com/library/edge/?source=Help&id=applying_distance_based_attenuation
https://www.audiokinetic.com/library/edge/?source=Help&id=applying_distance_based_attenuation
https://www.audiokinetic.com/library/edge/?source=Help&id=creating_wwise_objects_on_import
https://www.audiokinetic.com/library/edge/?source=Help&id=creating_wwise_objects_on_import
https://www.audiokinetic.com/library/edge/?source=Help&id=event_actions_list
https://www.audiokinetic.com/library/edge/?source=Help&id=glossary
https://www.audiokinetic.com/library/edge/?source=Help&id=importing_media_files
https://www.audiokinetic.com/library/edge/?source=Help&id=importing_media_files
https://www.audiokinetic.com/library/edge/?source=Help&id=interactive_music_project_structure
https://www.audiokinetic.com/library/edge/?source=Help&id=interactive_music_project_structure
https://www.audiokinetic.com/library/edge/?source=Help&id=structuring_bus_hierarchy_example
https://www.audiokinetic.com/library/edge/?source=Help&id=structuring_bus_hierarchy_example

35

https://www.audiokinetic.com/library/edge/?source=Help&id=the_master_audio
_bus_hierarchy

Audiokinetic Understanding Events. N.d. Understanding Events. Web
documentation. Wwise documentation about the basics of Wwise events. Read
14.11.2019.
https://www.audiokinetic.com/library/edge/?source=WwiseFundamentalApproac
h&id=understanding_events_understanding_events

Audiokinetic Understanding Interactive Music. N.d. Understanding Interactive
Music. Web documentation. Wwise documentation about the basics of
interactive music. Read 1.10.2019.
https://www.audiokinetic.com/library/edge/?source=Help&id=understanding_inte
ractive_music_understanding_interactive_music

Audiokinetic Understanding Sends. N.d. Understanding Sends. Web
documentation. Wwise documentation about auxiliary sends. Read 15.11.2019.
https://www.audiokinetic.com/library/edge/?source=Help&id=understanding_sen
ds

Audiokinetic Understanding SoundBanks. N.d. Understanding SoundBanks.
Web documentation. Wwise documentation about the basics of Wwise sound
banks. Read 14.11.2019.
https://www.audiokinetic.com/library/edge/?source=WwiseFundamentalApproac
h&id=understanding_soundbanks_understanding_soundbanks

Audiokinetic Using Real-time Effects. N.d. Using Real-time Effects. Web
documentation. Wwise documentation about the basics of real-time effects on
sounds. Read 4.11.2019.
https://www.audiokinetic.com/library/2017.2.10_6745/?source=WwiseProjectAd
venture&id=using_real_time_effects

Audiokinetic Using the Wwise Unity Integration. N.d. Using the Wwise Unity
Integration. Web documentation. Wwise documentation about the Wwise to
Unity integration. Read 1.10.2019.
https://www.audiokinetic.com/library/edge/?source=Unity&id=pg_appscripts.htm
l

Audiokinetic What are Work Units? N.d. What are Work Units? Web
documentation. Wwise documentation about Wwise Work Units. Read
16.11.2019.
https://www.audiokinetic.com/library/edge/?source=Help&id=what_are_work_un
its

Baker, M. 2016. How Do Game Engines Work? Web article. Published
2.11.2016. An article on the Interesting Engineering website. Read 2.12.2019.
https://interestingengineering.com/how-game-engines-work

Berklee College of Music. N.d. Sound Designer (Games and Tech) Career
Explanation. Web page. Read 27.10.2019.
https://www.berklee.edu/careers/roles/sound-designer-games

https://www.audiokinetic.com/library/edge/?source=Help&id=the_master_audio_bus_hierarchy
https://www.audiokinetic.com/library/edge/?source=Help&id=the_master_audio_bus_hierarchy
https://www.audiokinetic.com/library/edge/?source=WwiseFundamentalApproach&id=understanding_events_understanding_events
https://www.audiokinetic.com/library/edge/?source=WwiseFundamentalApproach&id=understanding_events_understanding_events
https://www.audiokinetic.com/library/edge/?source=Help&id=understanding_interactive_music_understanding_interactive_music
https://www.audiokinetic.com/library/edge/?source=Help&id=understanding_interactive_music_understanding_interactive_music
https://www.audiokinetic.com/library/edge/?source=Help&id=understanding_sends
https://www.audiokinetic.com/library/edge/?source=Help&id=understanding_sends
https://www.audiokinetic.com/library/edge/?source=WwiseFundamentalApproach&id=understanding_soundbanks_understanding_soundbanks
https://www.audiokinetic.com/library/edge/?source=WwiseFundamentalApproach&id=understanding_soundbanks_understanding_soundbanks
https://www.audiokinetic.com/library/2017.2.10_6745/?source=WwiseProjectAdventure&id=using_real_time_effects
https://www.audiokinetic.com/library/2017.2.10_6745/?source=WwiseProjectAdventure&id=using_real_time_effects
https://www.audiokinetic.com/library/edge/?source=Unity&id=pg_appscripts.html
https://www.audiokinetic.com/library/edge/?source=Unity&id=pg_appscripts.html
https://www.audiokinetic.com/library/edge/?source=Help&id=what_are_work_units
https://www.audiokinetic.com/library/edge/?source=Help&id=what_are_work_units
https://interestingengineering.com/how-game-engines-work
https://www.berklee.edu/careers/roles/sound-designer-games

36

Campbell, B. 2016. History of Video Game Music. Web page. A part of a lesson
for a course. Read 27.10.2019. http://bdcampbell.net/music/

Case, A. 2014. Digital Audio Workstation. Web page. Published 31.1.2014.
From the Grove Music Online website. Read 23.11.2019.
https://www.oxfordmusiconline.com/grovemusic/view/10.1093/gmo/9781561592
630.001.0001/omo-9781561592630-e-1002256346

Cullen, M. N.d. Basics of Sound Design for Video Games. PDF document.
Slides made for a presentation during a lesson by an experienced sound
designer. Read 1.10.2019.
https://frost.ics.uci.edu/ics62/BasicsofSoundDesignforVideoGames-
MichaelCullen.pdf

Esposito, N. 2005. A Short and Simple Definition of What a Videogame Is.
Conference paper. PDF available. Read 2.10.2019.
https://www.researchgate.net/publication/221217421_A_Short_and_Simple_Def
inition_of_What_a_Videogame_Is

FMOD. N.d. FMOD Studio: The adaptive audio solution for games. Web page.
Introduction to FMOD Studio on the official website of FMOD. Read 1.10.2019.
https://www.fmod.com/studio

Gamedesigning.org. 2018. Video Game Sound Design 101. Web blog article.
Published 31.12.2018. Read 1.10.2019.
https://www.gamedesigning.org/learn/video-game-sound/

Hogan, B. 2014. How the Sound and Music Came Together. Web blog post.
Published 15.12.2014. Blog post detailing sound design for the game Never
Alone. Read 27.10.2019. http://neveralonegame.com/sound-music-came-
together/

Metcalfe, N. 2013. Sound Design For Visual Media & Radio. Web article. From
Sound On Sound online article. Read 1.10.2019.
https://www.soundonsound.com/techniques/sound-design-visual-media-radio

Processing. N.d. True/False. Web page. A web page on Processing.org
explaining Boolean variables. Read 30.11.2019.
https://processing.org/examples/truefalse.html

Red Hat. N.d. What is middleware? Web page. Read 2.12.2019.
https://www.redhat.com/en/topics/middleware/what-is-middleware

Sandoval, K. 2018. What is the Difference Between an API and an SDK? Web
blog post. Published 16.11.2018. Posted on the Nordic APIs website. Read
14.11.2019. https://nordicapis.com/what-is-the-difference-between-an-api-and-
an-sdk/

Shafer, R. 2019. What Is Input Lag And How Important Is It For Gaming? Web
article. Published 10.6.2019. Read 2.12.2019.
https://www.displayninja.com/what-is-input-lag/

http://bdcampbell.net/music/
https://www.oxfordmusiconline.com/grovemusic/view/10.1093/gmo/9781561592630.001.0001/omo-9781561592630-e-1002256346
https://www.oxfordmusiconline.com/grovemusic/view/10.1093/gmo/9781561592630.001.0001/omo-9781561592630-e-1002256346
https://frost.ics.uci.edu/ics62/BasicsofSoundDesignforVideoGames-MichaelCullen.pdf
https://frost.ics.uci.edu/ics62/BasicsofSoundDesignforVideoGames-MichaelCullen.pdf
https://www.researchgate.net/publication/221217421_A_Short_and_Simple_Definition_of_What_a_Videogame_Is
https://www.researchgate.net/publication/221217421_A_Short_and_Simple_Definition_of_What_a_Videogame_Is
https://www.fmod.com/studio
https://www.gamedesigning.org/learn/video-game-sound/
http://neveralonegame.com/sound-music-came-together/
http://neveralonegame.com/sound-music-came-together/
https://www.soundonsound.com/techniques/sound-design-visual-media-radio
https://processing.org/examples/truefalse.html
https://www.redhat.com/en/topics/middleware/what-is-middleware
https://nordicapis.com/what-is-the-difference-between-an-api-and-an-sdk/
https://nordicapis.com/what-is-the-difference-between-an-api-and-an-sdk/
https://www.displayninja.com/what-is-input-lag/

37

Stinson, J. N.d. Real-time Sound Effects: The Foley Way. Web article. Article
posted on the Videomaker website. Read 27.10.2019.
https://www.videomaker.com/article/7220-real-time-sound-effects-the-foley-way

Sweet, M. 2016. Top 6 Adaptive Music Techniques in Games – Pros and Cons.
Web article. Published 13.6.2016. An article on the Designing Music Now
website. Read 1.10.2019.
https://www.designingmusicnow.com/2016/06/13/advantages-disadvantages-
common-interactive-music-techniques-used-video-games/

Unity Documentation Scenes. N.d. Unity Documentation Scenes. Web
documentation. Unity documentation about Scenes. Read 21.11.2019.
https://docs.unity3d.com/Manual/CreatingScenes.html

WIRED. 2017. Classic Video Game Sounds Explained By Experts (1972-1998)
| Part 1 | WIRED. Youtube video. Published 12.6.2017. Cited parts 3:57-4:16,
4:29-4:46 and 8:26-8:36 of the video. Viewed 1.10.2019.
https://www.youtube.com/watch?v=jlLPbLdHAJ0

Wither, C. N.d. Difference Between Consonance and Dissonance. Web article.
An article on the Difference Between website. Read 14.11.2019.
http://www.differencebetween.net/science/difference-between-consonance-and-
dissonance/

Wwise SDK LoadBank. N.d. Wwise SDK LoadBank. Web documentation.
Wwise documentation about the function LoadBank of the AkSoundEngine
class. Read 21.11.2019.
https://www.audiokinetic.com/library/edge/?source=SDK&id=namespace_a_k_1
_1_sound_engine_ada82aef371a6375339196976e80a38f8.html

https://www.videomaker.com/article/7220-real-time-sound-effects-the-foley-way
https://www.designingmusicnow.com/2016/06/13/advantages-disadvantages-common-interactive-music-techniques-used-video-games/
https://www.designingmusicnow.com/2016/06/13/advantages-disadvantages-common-interactive-music-techniques-used-video-games/
https://docs.unity3d.com/Manual/CreatingScenes.html
https://www.youtube.com/watch?v=jlLPbLdHAJ0
http://www.differencebetween.net/science/difference-between-consonance-and-dissonance/
http://www.differencebetween.net/science/difference-between-consonance-and-dissonance/
https://www.audiokinetic.com/library/edge/?source=SDK&id=namespace_a_k_1_1_sound_engine_ada82aef371a6375339196976e80a38f8.html
https://www.audiokinetic.com/library/edge/?source=SDK&id=namespace_a_k_1_1_sound_engine_ada82aef371a6375339196976e80a38f8.html

38

APPENDICES

Appendix 1. Link to Youtube video: the interactive music feature

https://www.youtube.com/watch?v=X33w1eSWs6s

https://www.youtube.com/watch?v=X33w1eSWs6s

