
 

KARELIA-AMMATTIKORKEAKOULU 
Tietojenkäsittelyn koulutusohjelma 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Olli Ritari 
 
MONITORING A KUBERNETES APPLICATION 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Opinnäytetyö 
Marraskuu 2019 
 



 

 
 

 

 
OPINNÄYTETYÖ 
Marraskuu 2019 
Tietojenkäsittelyn koulutusohjelma 
 
Tikkarinne 9 
80200 JOENSUU 
+358 13 260 600 (vaihde) 

Tekijä(t) 
Olli Ritari 

Nimeke 
Monitoring a Kubernetes Application 
 
Toimeksiantaja  
Siili Solutions Oyj 
Tiivistelmä 
 
Tämän opinnäytetyön aiheena oli Kubernetes teknologialla toteutetun mikropalveluarkki-
tehtuuriin nojaavan ohjelmiston monitorointi. Monitorointi toteutettiin Elastic Stack työka-
luilla toimeksiantajan projektissa. 
 
Opinnäytetyö koostuu teoriaosuudesta ja case esimerkistä. Teoriaosuudessa selostetaan 
Kubernetes teknologian periaatteet ja toiminta perusteellisesti, sekä esitellään Elastic 
Stack -työkalut ja niiden konfigurointiperiaatteet. Case esimerkissä kuvataan, kuinka mo-
nitorointi on toteutettu toimeksiantajan sisäisessä tuotekehitysprojektissa. 
 
Työn tuloksena toimeksiantajalle rakennettiin toimiva monitorointiratkaisu, joka tarjoaa 
helposti toistettavan asennustavan myös tuleviin projekteihin. Työ tuotti myös uutta tutki-
musta Kubernetes klusterien monitoroinnista. Aiempaa tutkimusta juuri monitoroinnin nä-
kökulmasta ei ollut toteutettu. 

Kieli 
englanti 

Sivuja 43 
Liitteet 0 
Liitesivumäärä 0 

Asiasanat 
Kubernetes, Elastic Stack, monitorointi, mikropalveluarkkitehtuuri 

 
  



 

 

 
THESIS  
November 2019 
Degree Programme in Business Infor-
mation Technology 
 
Tikkarinne 9 
80200 JOENSUU 
FINLAND 
+ 358 13 260 600 (switchboard) 

Author (s) 
Olli Ritari 

Title  
Monitoring a Kubernetes Application  
 
Commissioned by 
Siili Solutions Oyj 
Abstract  
 
The aim of this thesis is monitoring a microservice application, that is deployed with Ku-
bernetes. The monitoring is implemented with a set of tools called Elastic Stack in a project 
for the client. 
 
The thesis consists of a theoretical part and a case example. The theoretical part explains 
Kubernetes in detail and introduces the Elastic Stack and its configuration. The case ex-
ample describes how monitoring is implemented with these tools in an internal product 
development project for the client. 
 
As a result, a complete and fully working monitoring system was built for the client. It also 
provides a repeatable installation example for future projects. Furthermore, new research 
was produced about Kubernetes, specifically from monitoring perspective that was not 
previously covered. 

Language 
English 

Pages 43 
Appendices 0 
Pages of Appendices 0 

Keywords 
Kubernetes, Elastic Stack, monitoring, microservices  
 



 

Contents 
 
 
1 Introduction ............................................................................................................... 5 
2 Client .......................................................................................................................... 5 
3 Objective ................................................................................................................... 6 
4 Theory ....................................................................................................................... 7 

4.1 Kubernetes .................................................................................................... 7 
4.1.1 Overview ........................................................................................................ 8 
4.1.2 Architecture ................................................................................................... 8 
4.1.3 Components .................................................................................................. 9 
4.1.4 Objects ......................................................................................................... 11 
4.1.5 Workloads .................................................................................................... 12 
4.1.6 Services and Networking ........................................................................... 14 
4.1.7 Storage ......................................................................................................... 17 
4.1.8 Infrastructure ............................................................................................... 18 
4.2 Elastic Stack ................................................................................................ 18 
4.2.1 Elasticsearch ............................................................................................... 19 
4.2.2 Kibana .......................................................................................................... 21 
4.2.3 Beats ............................................................................................................ 22 
4.2.4 Logstash ....................................................................................................... 22 
4.2.5 APM .............................................................................................................. 23 

5 Case Siili ................................................................................................................. 24 
5.1 Architecture ................................................................................................. 24 
5.2 Implementing Elastic Stack ....................................................................... 25 
5.2.1 Elasticsearch ............................................................................................... 27 
5.2.2 Kibana .......................................................................................................... 28 
5.2.3 Kube-state-metrics ..................................................................................... 30 
5.2.4 Beats ............................................................................................................ 32 
5.2.5 APM .............................................................................................................. 34 
5.2.6 Logstash ....................................................................................................... 37 
5.3 Pros and cons ............................................................................................. 39 

6 Conclusion .............................................................................................................. 39 
List of References ....................................................................................................... 41 

 

 



5 

1 Introduction 
 

 

The current thesis examines the monitoring of a software application that is de-

ployed and maintained with a technology called Kubernetes and monitored with 

a set of tools called Elastic Stack. This thesis consists of a theoretical part and a 

case example. The theoretical part introduces the fundamentals of Kubernetes 

with figures and configuration examples. It also explains what the parts of Elastic 

Stack are, and how they are configured. The case example shows in detail how 

monitoring is conducted with these technologies in an enterprise-level project and 

how the data is visualized to browser-based dashboards. 

 

Kubernetes is a technology and an open-sourced project of Google. Kubernetes 

provides a way to implement microservice-architecture either in cloud computing 

infrastructure (like Amazon Web Services or Microsoft Azure) or on-premises 

servers. Microservices are an architectural and organizational approach to soft-

ware development where software is composed of small independent services 

that communicate over well-defined APIs (Amazon Web Services 2019a). Elastic 

Stack is a set of open-source tools from a company called Elastic. These tools 

range from acquiring, sending, refining and storing logs and data to aggregating 

and visualizing them to timelines and dashboards. Using Elastic Stack for moni-

toring allows accessing and visualizing all gathered data from one user interface. 

 

 

2 Client 
 

 

The client of this thesis is Siili Solutions, a Finnish consulting company that pro-

vides IT-services to its customers. Siili has over 700 experts employed. Most of 

them are consultants, who help Siili’s customers in the digitalization of their busi-

nesses. Other employees are project coordinators, such as scrum masters, 

salespeople and human resources workers. Siili has ten offices located in Fin-

land, Poland, Germany and the USA. (Siili 2019.) 

 



6 

The case example of this thesis explains how the Elastic Stack is implemented in 

an internal product development project of Siili Solutions. The product is KnoMe-

redux, an enterprise system for managing customer demand, employee compe-

tence and employee interests. This system is built to replace an older system 

which is complicated to maintain and has fewer features and integration capabil-

ities. 

 

 

3 Objective 
 

 

The objective of this thesis is to provide a fully functional and repeatable exam-

ple of monitoring a specific application-deployment. The monitoring implementa-

tion is configured and run in KnoMe-redux project and a comprehensive report 

is written of it. The client can then use this example as one possible implemen-

tation model in future projects. Having multiple toolsets from which to choose 

from alleviates the time-consuming configuration of a new project and lets de-

velopers concentrate on more case specific challenges. 

 

A secondary objective is to create new research about this subject. Kubernetes 

is a growing technology, and not much has been written specifically about the 

monitoring aspect. The Finnish Theseus database holds works only about Ku-

bernetes in general or how a specific application is containerized and deployed 

into a cluster. No previous reports exist that cover monitoring in particular. This 

thesis can, therefore, broaden the field of research and provide a new perspec-

tive on application monitoring. 

 

 

 

 

 

 

 



7 

4 Theory 
 

 

4.1 Kubernetes 
 

“Kubernetes is a portable, extensible, open-source platform for managing con-

tainerized workloads and services, that facilitates both declarative configuration 

and automation.” (Kubernetes 2019a.) 

 

The principal idea of Kubernetes is to run and manage scalable workloads inside 

containers. The containers are similar to virtual machines (and even physical 

servers), in the way that they have their own filesystem, CPU and memory. Con-

tainers, however, are considered lightweight compared to VMs. Kubernetes is 

developed and maintained by Google. Originally it was made for their purposes, 

but Google decided to open-source the project in 2014. (Kubernetes 2019a.) 

 

A container is a piece of software that packages, not only application code, but 

also all its dependencies, runtime, libraries and settings into a reliable and porta-

ble unit. Docker is a technology and a product of Docker, Inc. Docker is consid-

ered to be the de-facto technology for running containerized workloads (Messina 

2018). The definition and declaration of a Docker container is a Docker container 

image. Container images become containers at runtime. Because containers iso-

late the software from its environment, they will always be run the same, regard-

less of the infrastructure. An orchestration of containers that share a network is 

called a cluster. (Docker. 2019.) 

 

Kubernetes provides a framework to run containers as distributed systems resili-

ently. For example, it takes care of scaling requirements, failover, deployment 

patterns, storage orchestration, rollouts and rollbacks and management of se-

crets and configuration. (Kubernetes 2019a.) Kubernetes can manage other con-

tainer runtimes besides Docker as well, for example, CRI-O and Containerd (Ku-

bernetes 2019b).  

 



8 

So, Kubernetes lets the user configure some aspects, but also automates a lot of 

the infrastructure where containers are run. No coincidence, the name Kuber-

netes originates from Greek, meaning helmsman or pilot. (Kubernetes 2019a.) 

 

 

4.1.1 Overview 
 
In the heart of Kubernetes is the clusters desired state. The desired state defines 

what workloads to run, what images the containers use, how many replicas of 

each container to have or what networks are made available, to name a few. 

Once the desired state is configured, the Kubernetes Control Plane makes the 

current state of the cluster match it. The desired state is defined in configuration 

files and set by creating objects using the Kubernetes API. The API is typically 

accessed via the command-line interface, kubectl.  (Kubernetes 2019c.)  

 

Kubernetes API can be accessed without kubectl as well. There are client librar-

ies that enable API calls directly from other programs. A number of third-party 

cluster-management software is available also, for example, Rancher and a Finn-

ish product, Kontena. These provide graphical user interfaces and pre-configured 

environments for accessing, managing and monitoring clusters. 

 

 

4.1.2 Architecture 
 

A running Kubernetes cluster consists of a master and several worker nodes. The 

master is another term for the control plane, and the nodes are either VMs or 

physical machines. Nodes are not inherently created by Kubernetes, rather by 

the cloud provider where the cluster is running (they can also exist on-premises). 

Kubernetes does create a node object for each node, so it can do a health check 

and decide whether or not the node is eligible to run a Pod. (Kubernetes 2019d.)  

 



9 

 
Figure 1. Simplified Kubernetes cluster. 

 

Figure 1 illustrates a simplified Kubernetes clusters architecture. The cluster has 

two nodes, which could be cloud providers virtual machines for example, and a 

master that controls the nodes. The desired state of the cluster is defined in local 

yaml-files, which are pushed to the master’s API using kubectl command-line tool. 

The master then creates objects for the resources and uses kube-scheduler and 

kube-control-manager to make the clusters state to match the desired state. In 

this case, the cluster runs two replicas of a Pod defined in deployment x and one 

replica of a Pod defined in deployment y. 

 

 

4.1.3 Components 
 

A functioning Kubernetes cluster requires various binary components. These 

components can be divided into three sections: Master components, Node com-

ponents and Addons. (Kubernetes 2019e.) 



10 

 

Master components provide the cluster’s control plane. They make global deci-

sions and respond to events. For example, they start a new Pod when the number 

of replicas is unsatisfied. Master components are typically run on the same ma-

chine, although they can reside on any machine in the cluster. 

Master components are: 

• kube-apiserver, which exposes the Kubernetes API. 

• etcd, which is the distributed key value storage system where cluster state 

is backed. 

• kube-scheduler, which selects a node for newly created Pods to run on. 

• kube-controller-manager, which runs all controllers. 

o Node controller: Notices and responds to nodes going down 

o Replication Controller: Maintains the correct number of Pods for 

every replication controller object. 

o Endpoints Controller: Populates the Endpoints object (joins Ser-

vices to Pods). 

o Service Account & Token Controllers: Create default accounts and 

API tokens for new namespaces. 

• cloud-controller-manager, which runs all controllers that interact with the 

underlying cloud provider. (Kubernetes 2019e.) 

 

Node components run on all of the nodes in the cluster. They maintain running 

Pods and provide the Kubernetes runtime environment.  

Node components are:  

• kubelet, which makes sure that containers are running in Pods inside the 

node. 

• kube-proxy, which maintains network rules in nodes. 

• Container Runtime, which is the software that is running containers (for 

example Docker). (Kubernetes 2019e.) 



11 

 

Addons use Kubernetes resources to implement cluster features. As the name 

suggests, addons are not required, but they can be useful. DNS addon provides 

a DNS server to the environment, which serves DNS records for Kubernetes ser-

vices. Containers that are started by Kubernetes automatically include this DNS 

server in their DNS searches. Another addon, for example, is Web UI, which 

serves a web-based UI for managing and troubleshooting the cluster. (Kuber-

netes 2019e.) 

 
 
4.1.4 Objects 
 

Objects are the persistent entities in the Kubernetes system that represent the 

desired state. Configuration files are written and sent to the cluster’s API, usually 

with the kubectl command-line interface. API calls are made with JSON in the 

request body. Usually, the configuration is written in a yaml-file, and kubectl con-

verts the information to JSON when making the request. Kubernetes then creates 

objects based on this configuration. When the objects are created, Kubernetes 

will continuously work to ensure that the state of the cluster equals to the state 

defined in the objects. (Kubernetes 2019f.) 

 

Kubernetes objects include two nested object fields, spec and status. The spec 

is provided by the user through the API and represents the desired state. Status 

is supplied and updated by the Kubernetes system and represents the current 

state. (Kubernetes 2019f.) 

 

Figure 2 shows an example of a yaml configuration file. It describes one Deploy-

ment type object, which has the spec part of the object. In this case it describes 

an app that should be called nginx, which is based on the publicly available 

docker image nginx:1.7.9. It also describes that two simultaneously running in-

stances are needed and port 80 should be open in these containers. 

 



12 

 
Figure 2. Yaml configuration example of a Deployment controller. 

 

These yaml configuration files have four required fields: apiVersion, kind, 

metadata and spec. ApiVersion specifies which version of the Kubernetes API 

will be used. Kind states what kind of object is created, and metadata defines 

data that helps in identifying the object. Metadata includes name, UID, and op-

tional namespace. Kubernetes supports multiple namespaces for separating re-

sources inside the cluster. If no namespace is given, Kubernetes uses default. 

Spec field contains nested fields that are different for each type of Kubernetes 

object. These fields contain all the technical specifications that make up the de-

sired state. (Kubernetes 2019f.) 

 

 

4.1.5 Workloads 
 

Workloads divide into two subcategories, Pods and Controllers. Pods are the 

basic execution units of a Kubernetes application. They are the smallest and sim-

plest units in the object model that can be created and deployed. A Pod repre-

sents processes running on a cluster. It encapsulates an applications container, 

storage resources, a unique network IP and options on how to run the container. 

(Kubernetes 2019g.)  

 



13 

Pods can run either one or multiple containers. One container per Pod is the most 

common use case. It means basically that the Pod acts as a wrapper layer around 

the container and Kubernetes manages the Pod rather than the container directly. 

Multiple containers per Pod is used when containers are tightly coupled and need 

to share resources. One container is serving files from a volume and another 

container is refreshing and updating those files, for example. The other, updating 

container is also called a sidecar container. This sidecar implementation is also 

used in some addons and managing tools. They allow manipulation of the appli-

cation container from within the cluster. (Kubernetes 2019g.)  

 

Although single Pods can be described and created as objects, this is very rarely 

a valid use case. Because Pods are designed to be disposable and re-creatable, 

they are usually described with a higher-level abstraction, a controller. Because 

each Pod runs a single instance of an application, to scale the application hori-

zontally (run multiple instances) the number of Pods is increased. This behavior 

is called replication, and these replicas are created and managed as a group by 

the controller. 

 

Kubernetes Controllers are: 

• ReplicaSet, which maintains a stable set of replica Pods. (Kubernetes 

2019h.)  

• Deployment, which provides declarative updates for Pods and Replica-

Sets. A deployment can be modified dynamically after it has been created.  

For example, changing the image of containers causes a rolling update 

with no downtime. Deployment is a controller used to deploy stateless ap-

plications. (Kubernetes 2019i.)  

• StatefulSet, which, like a Deployment manages Pods that are based on an 

identical container spec. Unlike a Deployment, a StatefulSet maintains a 

sticky identity for each of their Pods. These Pods are created from the 

same spec but are not interchangeable: each has a persistent identifier 

that it maintains across any rescheduling. StatefulSets is a controller used 

to deploy applications with stable identifiers e.g. unique network identifiers 

or persistent storage. (Kubernetes 2019j.) 



14 

• DaemonSet, which ensures that all (rarely some) nodes in the cluster run 

a copy of a Pod. A typical use case is running a logs collection or a moni-

toring daemon on each node. (Kubernetes 2019k.) 

• Carbage Collection, which deletes certain objects that once had an owner 

but no longer have. Carbage Collection controller is part of the cluster and 

is not manually deployed. (Kubernetes 2019l.) 

• Job, which creates one or more Pods and ensures that they complete suc-

cessfully. When a specified number of successful completions are 

reached, the job is complete. Deleting a job deletes all Pods it created. An 

example use case for a job is populating a database with a container. After 

the population is complete, the job completes, and the Pod is killed. (Ku-

bernetes 2019m.) 

• CronJob, which runs jobs on a time-based schedule, contrary to the job 

controller, which only runs a job once on its creation. An example use case 

could be a scheduled backup job, which runs daily or weekly. (Kubernetes 

2019n.) 

 
 
4.1.6 Services and Networking 
 

Containers that are inside the same Pod can communicate using localhost. When 

a container communicates with entities outside the Pod, shared network re-

sources need to be configured. Each Pod is assigned a unique IP address for 

this. However, since Pods are mortal, the set of Pods running at a given time can 

differ from the set running a moment later. This leads to the need for an abstrac-

tion layer, hence Services. (Kubernetes 2019o.) 

 

Service defines a logical set of Pods and a policy by which to access them. The 

set of Pods targeted by a service is usually determined by a selector (figure 3). 

For example, a frontend Pod serving a web interface to a client needs to acquire 

data from a backend Pod that is running in 3 replicas. The frontend does not care 

from which of these three the response is coming from. In fact, it does not know 

how many replicas are running at a given time. Knowing the service is enough 



15 

for the frontend, and the service abstraction will route the traffic accordingly. (Ku-

bernetes 2019o.) 

 

 
Figure 3. Yaml configuration of a Service. 

 

Figure 3 shows an example of a Service configuration file. It creates a service 

which targets TCP port 9376 on any Pod that has label app=MyApp. Kubernetes 

assigns an IP address for this service (also called a cluster IP), which is used by 

the Service proxies. As stated before, each node in the cluster runs a kube-proxy 

which is responsible for implementing this virtual IP for these services. 

 

Publishing services has two basic options: internal and external. External ser-

vices means exposing the service to connections from outside the Kubernetes 

cluster. The type of service is specified in the configuration yaml with ServiceType 

annotation. (Kubernetes 2019o.) 

 

Possible service types are: 

• ClusterIP, which exposes the service on an internal IP. This is the default 

ServiceType. 

• NodePort, which exposes the service externally on each nodes IP and a 

static port. A ClusterIP where this service routes traffic is automatically 

created as well.  

• LoadBalancer, which exposes the service externally using a cloud pro-

vider’s load balancer. Both a NodePort and a ClusterIP are automatically 

created for the LoadBalancer to route traffic to. Example use case could 

be an applications frontend, which needs to be accessible from the internet 

and needs specific load balancing rules. 



16 

• ExternalName, which maps the service to the value of externalName field 

(e.g. foo.bar.example.com), by returning a CNAME record with its value. 

No proxying is set up, so the redirection happens at the DNS level. Exam-

ple use case could be a database that is outside the cluster and needs to 

be accessed via service. (Kubernetes 2019o.) 

 

 
Figure 4.  Kubernetes service example. 

 

Figure 4 illustrates an example of a service that is of type LoadBalancer, so it has 

an external IP address. It has a selector for an app called webapp, so it routes 

traffic to Pods that have the same app defined in their configuration. 

 

In addition to the IP address records, a Kubernetes cluster defines DNS names 

for all services and Pods. A normal service that has a cluster IP is assigned a 

DNS A record for a name in the form “my-service.my-namespace.svc.cluster-do-



17 

main.example”. DNS names for Pods are defined in the same manner: “host-

name.subdomain.my-namespace.svc.cluster-domain.example”, although Pods 

are usually accessed via their respected services. (Kubernetes 2019p.) 

 

 

4.1.7 Storage 
 

On-disk files inside a container are ephemeral, meaning that when the container 

dies, the files are gone. The Kubernetes Volume abstraction allows all containers 

in a Pod and all Pods created from a deployment to have the same volume. Ku-

bernetes supports several types of Volumes, many of which are specific to cloud 

providers, for example, awsElasticBlockStore and azureDisk. (Kubernetes 

2019q.) 

 

Another type of volume is configMap, which provides a way to inject configuration 

data into Pods. This is a fairly common way to configure Pods that run generally 

available docker images from public repositories, and thus need customization to 

work properly. (Kubernetes 2019q.) 

 

In addition to the ephemeral volumes, Kubernetes offers PersistentVolume sub-

system. It is a resource in the cluster, like a node, which has a lifecycle independ-

ent of any Pod that uses it. The PersistentVolume API object captures the details 

of the storage, and it can be NFS, iSCSI or a given cloud provides own storage 

system. (Kubernetes 2019r.) 

 

For a Pod to be able to access a PersistentVolume resource, it needs a persis-

tentVolumeClaim in its volumes block. In other words, Pods do not consume Per-

sistentVolumes as such but access them through claims. If no static Persis-

tentVolumes (that match the given specs) are available, Kubernetes may try to 

provision a volume dynamically. This action requires a specific StorageClass ob-

ject that specifies the provider, names and binding mode for the dynamic volume. 

The PersistentVolumeClaim then needs to request this StorageClass in its con-

figuration. (Kubernetes 2019r.) 

 



18 

 

4.1.8 Infrastructure 
 
Many cloud providers offer hosted Kubernetes clusters. These clusters use cloud 

providers’ virtual machines or bare metal servers as their nodes and various other 

resources, e.g. storage, load balancers or security features. The list of available 

cloud providers is extensive, and it consists of, at least, Amazon Web Services, 

Microsoft Azure, CloudStack, Google Cloud Platform, Oracle Cloud Infrastruc-

ture, OpenStack, OVirt, Photon, VSphere, IBM Cloud and Baidu Cloud. (Kuber-

netes 2019s.) 

 

In addition to cloud providers’ clusters, Kubernetes can be run on local hardware 

as well. Using local data center or server rack needs more configuration than a 

cloud provided cluster. For example, networking needs to be implemented man-

ually. (Kubernetes 2019t.) 

 

For testing and development needs, Kubernetes can be run on a laptop using 

Minikube. Minikube runs a single-node cluster inside a virtual machine. It sup-

ports only some of the features of Kubernetes, namely DNS, NodePorts, Config-

Maps, Secrets, Dashboards, Container Runtime (Docker, CRI-O, containerd), 

Container Network Interface and Ingress. (Kubernetes 2019u.) 

 

 

4.2 Elastic Stack 
 

Elastic Stack (also called the ELK stack) is a set of tools from Elastic NV. Elastic 

NV is a company founded in Amsterdam, Netherlands 2012. Originally called 

Elasticsearch, the company changed its name in 2015 to distinguish the commer-

cial entity from its opensource project, Elasticsearch (Kepes 2015). Elastic Stack 

provides a full range of needed components from shipping application or infra-

structure metrics, storing that data and visualizing it in a graphical interface. The 

stack consists of four main parts: Elasticsearch, Kibana, Beats and Logstash. In 

addition to the core four, Elastic offers other products as well. One of the most 

notable is Elastic APM (Application Performance Monitoring).  (Elastic 2019a.) 



19 

 

Figure 5 illustrates the basic data flow of Elastic Stack in a Kubernetes cluster. 

Beats, APM and Logstash ship data to Elasticsearch, while Kibana visualizes that 

data to the user. Kibana and all the arrow-shaped entities in the figure are de-

ployed as Pods. Elasticsearch is a cluster itself, so it needs at least two Pods (a 

master node and a data node). 

 

 
Figure 5. Elastic Stack data flow (simplified) 

 

 

4.2.1 Elasticsearch 
 

Elasticsearch is a distributed document store. It does not store information as 

rows of columnar data, rather as serialized JSON documents. A document is in-

dexed and fully searchable within a second of its storing. An index is an optimized 

collection of documents, and each document is a collection of key-value pairs. 

Elasticsearch indexes all data in every field and each indexed field has a dedi-

cated, optimized data structure. For example, text fields are stored as inverted 

indexes and numeric and geo fields as BKD trees. These per-field data structures 

are what make searching with Elasticsearch so fast. (Elastic 2019b.)  

 

Elasticsearch has the ability to be schema-less, meaning that documents can be 

indexed without explicitly specifying all fields. This is called dynamic mapping, 

and when it is enabled, Elasticsearch automatically detects and adds new fields 

to indexes. All fields of the documents can also be manually mapped to get full 

control of the indexing. With defined rules and mappings, more sophisticated and 

faster searches can be conducted. For example, full-text string fields and exact 



20 

value string fields behave differently and depending on the search type either of 

these can be preferred over the other. One field can also be indexed in multiple 

ways, so the same text field can be used for text search and aggregating the 

results. (Elastic 2019b.) 

 

The document store and its capabilities are just one part of the service. Elas-

ticsearch provides a REST API for managing, indexing and searching data. For 

testing and development, the API can be accessed from the command line or 

through the Developer Console in Kibana’s graphical user interface. For applica-

tion-level, Elasticsearch offers clients for multiple programming languages. Third-

party implementations also exist, for lesser-known languages. Search queries 

themselves can be accessed using Elasticsearch’s own JSON-style query lan-

guage Query DSL. SQL-style queries can be constructed to search and aggre-

gate data natively inside Elasticsearch, and JDBC and ODBC drivers enable a 

broad range of third-party applications to interact with Elasticsearch via SQL. 

(Elastic 2019c.) 

 

Elasticsearch’s search capabilities are built on the Apache Lucene search engine 

library. Searching supports structured queries, full-text queries and complex que-

ries that combine the two. Structured queries are similar to SQL queries. In other 

words, searching for specific fields in an index and sorting the matches by another 

field. Full-text queries find all documents that match the query string and are 

sorted based on relevance (how well they match the search terms). In addition to 

individual terms searching, Elasticsearch supports phrase searches, similarity 

searches, prefix searches and it can give autocomplete suggestions. (Elastic 

2019c.) 

 

Data analyzing is possible on Elasticsearch with aggregations. Aggregations en-

able building complex summaries of the data and gaining insights to key metrics, 

patterns and trends. With aggregations, averages, medians, time-series data, 

anomalies and other types of calculations can be returned from the index. Aggre-

gations leverage the same data-structures as search, so they are also very fast. 

This enables analyzing and visualizing data in real time. Reports and dashboards 

update as the data changes. Because aggregations operate alongside search 



21 

requests, searching and analytics happen at the same time, on the same data, in 

a single request. Elasticsearch also offers automated analysis with the utilization 

of machine learning. (Elastic 2019c.) 

 

 

4.2.2 Kibana 
 

Kibana is an analytics and visualization platform, designed to work especially with 

Elasticsearch. Kibana is used to search, view and interact with data stored in 

Elasticsearch indices. It offers a browser-based interface to create and share dy-

namic dashboards. Queries, visualizations and dashboards can be made through 

the graphical interface, so no coding or learning the Query DSL is required to get 

real-time access to the data in Elasticsearch.  Just as Elasticsearch, Kibana is 

also open source. (Elastic 2019d.) 

 

In order to visualize and explore data in Kibana, an index pattern must be created. 

Index patterns are what connect indices in Elasticsearch to Kibana. An index pat-

tern can match a single index or multiple indices. Index patterns support wildcards 

and the ability to exclude. For example an index pattern “index*, -index3” would 

map together all indexes that begin with “index“, but explicitly leave out “index3”. 

When Kibana detects an index with timestamp values, it is required to choose a 

field to filter the data by time. If no field is specified, time filters cannot be used. 

(Elastic 2019e.) 

 

From a monitoring perspective, Kibana can be divided into three basic elements: 

discover, visualize and dashboard. Discover enables data exploring on all indices 

in Elasticsearch. An index-pattern is selected, search queries can be made, and 

results filtered with custom filters. The number of matching documents is shown 

as well as field value statistics (Elastic 2019f). Visualizations are, as the name 

suggests, visual representations of some aggregation metric or entity (Elastic 

2019g). Dashboards, in turn, are collections of visualizations that are grouped 

together and shown on the same page (Elastic 2019h). 

 

 



22 

4.2.3 Beats 
 

Beats are open source data shippers that are installed as agents on servers. They 

send operational data to Elasticsearch. Elastic offers eight different types of 

Beats: 

• Auditbeat, which ships audit data. 

• Filebeat, which ships log files. 

• Functionbeat, which ships cloud data. 

• Heartbeat, which ships availability data. 

• Journalbeat, which ships systemd journals. 

• Metricbeat, which ships metrics. 

• Packetbeat, which ships network traffic. 

• Winlogbeat, which ships Windows event logs. 

 

Beats can send data directly to Elasticsearch, or it can be sent via Logstash, 

where it can be further processed or enhanced before indexing to Elasticsearch. 

(Elastic 2019i.) 

 

Since Beats is also an open source, it has a plethora of community created Beats 

as well. The list contains dozens of different projects from amazonbeat that reads 

data from an Amazon product to elasticbeat that reads status from the Elas-

ticsearch cluster itself. Elastic offers no support or warranty to community pro-

vided add-ons. (Elastic 2019j.) 

 

 

4.2.4 Logstash 
 

Logstash is a data collection engine with real-time pipelining capabilities. It can 

be used for dynamically unifying data from disparate sources and normalizing it 

into destinations of choice, usually Elasticsearch. For example, logs from different 

services of an application might be in very different forms. Logstash can receive 

this data and filter it into a unified form. It can also be used to relay and refine 

data from outside sources to the Elastic Stack, like webhooks from GitHub, 



23 

GitLab, JIRA or other sources. Just like many other Elastic products, Logstash is 

open source as well. (Elastic 2019k.) 

 

 

4.2.5 APM 
 

Elastic APM is an application performance monitoring system built on the Elastic 

Stack. It allows monitoring of software on the application level. With it, response 

times and spans can be tracked for incoming requests, database queries and 

more. It helps to pinpoint performance problems and to fix bottlenecks on appli-

cations. APM also automatically collects unhandled errors and exceptions. (Elas-

tic 2019l.) 

 

Elastic APM consists of Agents and a Server. APM Agents are open source li-

braries that are installed into the service like any other source code libraries. 

These libraries provide a way to collect performance data and errors. Some func-

tionalities are automatic, and some require manual implementation (webserver 

middleware, wrapping functions). This data is buffered for a short period and sent 

on to APM Server. APM Server is a separate application that receives the data 

from agents, validates it, processes it to documents and stores the documents to 

Elasticsearch indices. (Elastic 2019m.) 

 

In addition to the two main components, Elastic APM is also part of the Kibana 

UI. It is provided with a basic license and provides a pre-configured way to visu-

alize APM data. Because the APM Server writes the data into a specific index in 

the Elasticsearch, only an index pattern is required to be created in Kibana. After 

this, the application appears automatically to the APM UI in Kibana. (Elastic 

2019n.) 

 

 

 

 

 



24 

5 Case Siili 
 

 

The case example of this thesis is an internal product development project in Siili 

Solutions Oyj called KnoMe-redux. It is an application for handling human re-

sources in the company. It contains personal knowledge data of the people work-

ing at Siili, as well as data about Siili’s customers, including projects made for 

these customers. An employee’s contact info, skills, certificates, education and 

projects are shown in the employee’s profile pages, while customers and projects 

have their own pages. These entities are linked together to create a network of 

people, skills and references. All entities can also be tagged to combine data 

further. 

 

KnoMe-redux is built to replace an older system called KnoMe. Because KnoMe 

has its data stored in an unstructured document database, KnoMe-redux’s rela-

tional data-model will unify entities and significantly improve user experience. 

Alongside the stricter data, KnoMe-redux also provides better maintenance and 

further development capabilities. Kubernetes and utilization of containers is a big 

part of this because independent parts of the system can be replaced or updated 

individually. 

 

 

5.1 Architecture 
 

KnoMe-redux is a distributed micro-service application. The processing logic is 

shattered to individual modules, and a Docker container is built to represent each 

module. Almost all containers are stateless so that they can be scaled up or down 

at any time. Exceptions are Elasticsearch and Redis containers, which are in-

memory data stores and thus stateful by nature. 

 

The backend of KnoMe-redux consists of eleven micro-services. Nine of these 

are custom written with Clojure, using embedded Jetty servers for handling 

HTTP-traffic. These Jetty servers have Ring wrappers, which abstract the details 

of HTTP into a simple and unified API (McGranaghan, Reeves & contributors 



25 

2018). Two other backend services are the before mentioned Elasticsearch and 

Redis, which are used as-is from Dockerhub repository. In addition to these 

eleven services, the KnoMe-redux cluster also includes an authorizing service. 

This is a third-party service called Authorizer, and it consists of an application 

container and an SQL database container. Authorizer is responsible for oauth2 

login flow, ADFS integration and handling of user roles and groups. 

 

The frontend of KnoMe-redux is a container that runs an NGINX based container 

with a Vue.js web application inside. NGINX is a gateway for incoming connec-

tions and serves the Vue.js user interface that is accessible with a web browser. 

NGINX works as a reverse-proxy for the frontend, enabling calls to be made to 

its router and it is then responsible for proxying calls to correct endpoints in the 

backend. 

 

KnoMe-redux is deployed into an Amazon EKS cluster. EKS stands for Amazon 

Elastic Kubernetes Service. Despite the similar name, it has nothing to do with 

Elastic, co. Amazon EKS runs the Kubernetes management infrastructure across 

multiple AWS availability zones to eliminate a single point of failure (Amazon Web 

Services 2019b). In addition to the services running in Kubernetes, KnoMe-redux 

uses Amazon DynamoDB document database for storing data, AWS Lambda 

serverless functions with Simple Notification Service queues for system to system 

integrations and Amazon S3 object storage for storing logs, user pictures and 

other assets. 

 

 

5.2 Implementing Elastic Stack 
 

As KnoMe-redux is running in Kubernetes, the Elastic Stack needs to be config-

ured accordingly. All services are running in containers in the cluster. From the 

stack, Elasticsearch, Kibana, Metricbeat, Filebeat, Logstash and APM are se-

lected. Since Elasticsearch is a scalable cluster, a master-node is required along 

with a number of data-nodes. For this monitoring implementation, a single Elas-

ticsearch data-node is used for storing all data. Data from different sources is 

stored to different indices in Elasticsearch. 



26 

 

Because of distributed servers and container orchestration, a Kubernetes appli-

cation should be monitored on three separate levels: infrastructure, service and 

application. In addition to these, also the cluster itself can be monitored. (Datadog 

2019.) 

 

Infrastructure level monitoring means tracking metrics and statuses of the host 

servers. In practice, it means CPU and memory utilization and network traffic of 

the entire worker nodes. It is essential to know what type of loads the servers are 

running and how many Pods they can run. It is not cost-effective to schedule five 

worker nodes if an application only needs three, for example. Implementation 

wise, kube-state-metrics is a service that gathers this data and pushes it to an 

Elasticsearch index. Since host metrics can be read from outside the actual 

server, only one instance of kube-state-metrics is required in the cluster. 

 

Even if infrastructure level monitoring would show that nodes are using significant 

resources, no further conclusions can be made from it. Service level monitoring 

is required to identify which Pods are using the resources of the node they are 

running on. Service level data can be acquired with Beats. In this monitoring im-

plementation, Metricbeat and Filebeat are used. Filebeat ships logs from the 

stdout (standard output) of containers and Metricbeat ships resource usage sta-

tistics of each individual Pod. While kube-state-metrics only needs to be run as 

one instance in the whole cluster, Beats need to be present on all worker nodes 

to be able to access all Pods. 

 

Knowing which Pods use what number of resources is good, but in order to un-

derstand why, monitoring needs to reach into the applications running inside the 

containers. For this, Elastic APM is used. Unlike infrastructure and service level 

monitoring, properly implementing Application Performance Monitoring means 

adding an agent and proper functionality to the source code. These agents then 

send the data they have gathered to an APM server, which is deployed to the 

Kubernetes cluster. The server, in turn, sends the data on to Elasticsearch. 

 



27 

Getting all this data becomes valuable only when it can be accessed and visual-

ized. For this, Kibana is deployed. It gives access to Elasticsearch native queries 

and visualizing tools with a browser-based interface for creating informative dash-

boards. To secure access to this information, an oauth2 proxy is deployed and 

configured to use GitLab as a login provider with a list of allowed user accounts. 

Kibana’s loadbalancer is then configured to route traffic to Kibana through this 

proxy. 

 

Resources for the stack are deployed to two different namespaces in the cluster, 

depending on the type of resource. Elasticsearch, Kibana, Logstash and APM 

server are deployed to knomeredux-elk namespace, which is a custom 

namespace only for these resources. Kube-state-metrics and Beats are deployed 

to kube-system namespace because they need access to Kubernetes internal 

resources that recede there. 

 

 

5.2.1 Elasticsearch 
 

Elasticsearch is in the heart of this monitoring implementation. As stated before, 

Elasticsearch is a cluster and to configure it properly in Kubernetes infrastruc-

ture, at least one master Pod and one data Pod are required. All Elasticsearch 

resources are deployed to knomeredux-elk namespace. The master node is de-

ployed with a Deployment controller, and it has a selector with app: elas-

ticsearch and role: master. Data node is then configured to have a selector with 

app: elasticsearch and role: data. To keep the data node’s storage persistent 

across Pod rescheduling, it is deployed as a StatefulSet, and a volu-

meClaimTemplate is added to it. Two hundred fifty gigabytes are requested for 

storing logs and other monitoring data (figure 6). Both the master and the data 

node are deployed with a default service object, configured with same selectors 

as the Pods. The services are given a clusterIP: None specification to keep 

them headless. This headless implementation combined with selectors modifies 

the DNS configuration to return records (addresses) that point directly to the 

Pods backing the services (Kubernetes 2019o). 

 



28 

 
Figure 6 Elasticsearch’s volumeClaim 

 

Elasticsearch is extended with a CronJob. This CronJob uses a Docker con-

tainer image called Curator. Curator is a tool for managing time-based indices in 

Elasticsearch. Curator is configured with five actions, one of which is a snap-

shot action and four are deleting actions. The snapshot action sends backup 

data to Amazon S3 bucket from all indices that are not logstash- prefixed and 

are older than one day. The four deleting actions delete metricbeat-, filebeat-, 

and amp- prefixed indices that are older than seven days. Logstash indices are 

deleted as late as 31 days old because Logstash is configured to receive data 

only from GitLab webhooks and it does not pile up as fast as the metrics data. 

Visualizations for ci/cd pipeline and the repository are also relevant on a longer 

time period. 

 

 

5.2.2 Kibana 
 

As stated before, Kibana is accessed through a web browser. To secure the in-

formation gathered by Elastic Stack, an oauth2 proxy is deployed to give access 

only to pre-defined users. Kibana itself is deployed with a Deployment controller 

and a default Service. The container spec of the controller can be seen in figure 

7. The setup also has a LoadBalancer type Service. This service routes traffic 

from the internet to the oauth2 Pod, which (on successful login) redirects to the 

Kibana Service. 

 



29 

 
Figure 7 Container spec of Kibana’s Deployment 

 

Kibana Pods need the URL of Elasticsearch as an environment variable to access 

the gathered data. The Kubernetes DNS name of Elasticsearch’s service object 

is used. Otherwise, Kibana is used as it comes from the Dockerhub image repos-

itory. Needed visualizations and dashboards can be constructed manually from 

the UI or uploaded with an HTTP post query. It is advised to export these from 

Kibana to keep them backed up. Figure 8 shows Kibana’s Discover screen. 

 



30 

 
Figure 8 A screenshot of Discover in Kibana 

 

 

5.2.3 Kube-state-metrics 
  

Kube-state-metrics is not a part of the Elastic stack, but it works seamlessly to-

gether with it. It acquires metrics data on the infrastructure level, for example, 

state and resource usage of nodes. It also sees the state of Pods, but nothing 

more specific about them. While kube-state-metrics is capable of scraping data 

from Kubernetes’ endpoints, it needs a Metricbeat instance to ship the data on-

wards. A default Dashboard template of Kubernetes overview can be added to 

Kibana, which illustrates state metrics data (figure 9). 

 



31 

 

Figure 9 Kubernetes Overview Dashboard in Kibana (from template) 

 

Kube-state-metrics is deployed with a Deployment controller and a default clus-

terIP service object to the kube-system namespace. It needs heightened access 

inside the cluster to access needed data so custom role and cluster role are 

configured. To get this data properly to Elasticsearch, it needs a singleton in-

stance (one Pod in any of the nodes) of Metricbeat in the cluster to receive and 

relay the data. This Metricbeat instance is configured independently of the other 

Metricbeat Pods that ship service level data. It has a configuration that is loaded 

as a volume to the deployment. The configuration, shown in figure 10, defines 

what metrics are collected on what frequency. 

 



32 

 

Figure 10 Kube-state-metrics’ module configuration 

 

 

5.2.4 Beats 
 

Beats implementation includes Metricbeat and Filebeat. Both are deployed with 

DaemonSet controllers so that each node gets one Pod for shipping data. They 

also have custom ClusterRoles to gain needed access inside the cluster. Met-

ricbeat needs a generic configuration file to describe an output endpoint of Elas-

ticsearch and how to load modules into it. The output endpoint is the DNS name 

of the Elasticsearch service. This configuration is loaded into the Pods as a vol-

ume called config. The modules themselves are defined in two configurations 

which are called system.yml and kubernetes.yml, and they are loaded into the 

Pods as a single volume called modules.  

 

Kubernetes.yml configures what metricsets are gathered, how often they are 

shipped, and how the host machine is discovered. The selected metrics are 

node, Pod, container, volume and system. Host machine means the worker 

node where each Pod is assigned to. It also has the optional ssl verification set-

tings, which are disabled since the stack is running in a private virtual cloud net-

work inside a locked down cluster network. One of the defined metricsets is sys-

tem, and system.yml (figure 11) configures this in a bit more detail. It defines 

that from the system module CPU, load, memory, network, process and pro-



33 

cess summary metrics are gathered and shipped. It is possible to filter what pro-

cesses are monitored, but in this implementation a wildcard is used, so no filter 

is applied. 

 

 
Figure 11 Part of Metricbeat’s system.yml configuration 

 

Filebeat needs a configuration file as well. Like in Metricbeat, it is loaded to the 

Pods as a volume called config. For Filebeat, the config defines inputs of the 

system logs it is gathering and an Elasticsearch output. The inputs are then de-

fined in a configuration called kubernetes.yml that is loaded as a volume called 

inputs. This implementation has only one type of input, docker. A wildcard query 

is used for container ids to get logs from all containers.  

 

Figure 12 shows how Metricbeat’s data is visualized in a Kibana Dashboard. 

This Dashboard and all its visualizations are custom made for KnoMe-redux. It 

shows the CPU and memory usage for each Pod. Namespace can be selected 

from a dropdown menu since different stages are deployed into different 

namespaces. Figure 13 shows a zoomed view of two Pods’ resource usage. 

 



34 

 
Figure 12 Kubernetes CPU and RAM Usage Dashboard in Kibana 

 

 
Figure 13 Closeup on Pods’ resource usage 

 

 

5.2.5 APM 
 

Application Performance Monitoring is implemented in a bit different fashion than 

regular Beats shippers. It consists of a number of agents that ship data from in-

side the application containers and one server that relays this data to specified 

Elasticsearch indices. 



35 

 

APM-server is deployed to the Kubernetes cluster with Deployment controller and 

a clusterIP Service. It also needs some finer definitions, and these are done with 

apm-server.yml configuration. In it, the server host is defined along with the num-

ber of shards to use for the agent data and what codec to use for refining it. Output 

is also configured for Elasticsearch (figure 14). In addition to the host’s address, 

it needs the indices to be specified for each type of APM-agent message. 

 

 
Figure 14 APM-server’s output configuration 

 

The APM-agent is configured on the application level, so the steps are very dif-

ferent from other data shippers. Since the backend is composed of containers 

written with Clojure, two dependencies are added to the project.clj file of each 

micro-service: apm-agent-api and clojure-elastic-apm. The before mentioned is 

made by Elastic, co. and provides the basic functionalities for the APM-agent. 

The latter is an open-source library made under Yleisradio’s GitHub account. To 

have the executables for the APM-agent, they need to be installed on the Docker 

containers that are running the code. Since Clojure runs on top of JVM (Java 

Virtual Machine), a java agent executable can be used. This is done by adding a 

wget (a Linux command line program) script to the Dockerfile that downloads the 

agent as a jar file. Jar files are compressed Java applets with their requisite com-

ponents (Oracle 2019). 

 



36 

In addition to downloading the agents and adding libraries to the codebase, the 

actual container needs to be started with a specific command to configure the 

agent correctly. This Java agent could be configured with environment variables 

as well, but since the containers in KnoMe-redux are running embedded Jetty 

servers, it needs to be started with a specific startup command. For example, a 

Deployment called core – which has its own code bundled to a jar file called 

knome-core-standalone.jar – uses the command in figure 15. The command de-

fines what agent to use and gives that agent some specifications. The service 

name is given with a parameter, which is shown in the command inside double 

braces. 

 

 
Figure 15. Container startup command in Deployment configuration. 

 

One trackable metric for Elastic APM is transaction span. Transaction span in this 

context means the time it takes for a given part of the application to run. For 

example, one function can be wrapped to apm-transaction to track its span. Using 

it with a Ring middleware tracks the time a container takes to process the incom-

ing HTTP request and send a response. To have this metric, wrap-apm-transac-

tion function is used. It is part of the clojure-elastic-apm dependency library. As a 

middleware function, it is part of the Ring app and therefore all incoming HTTP 

queries launch the span tracking. 

 

Figure 16 shows how Kibana’s APM shows one transaction span. It is a GET 

request to /search endpoint in a microservice called Search. Search offers a 

REST API for GraphQL and constructs Elasticsearch queries to the actual Elas-

ticsearch container based on the HTTP requests it receives from GraphQL. The 

/search endpoint does searches to an index that holds users’ complete CVs, 

based on given parameters. The transaction in figure 16 has taken 96 millisec-



37 

onds, of which Elasticsearch has used 94 milliseconds. Kibana has APM func-

tionalities preinstalled, so no visualizations or dashboards are needed for access-

ing APM data. 

 

 
Figure 16 APM transaction span in Kibana 

 

 

5.2.6 Logstash 
 

Logstash is a part of the Elastic Stack, and in this implementation, it is configured 

to allow an integration to the GitLab ci/cd pipeline of KnoMe-redux. GitLab has a 

webhook-based integration method, in which selected changes or actions in 

GitLab are sent out with HTTP requests. In KnoMe-redux, these HTTP messages 

go to a Lambda function in AWS. This Lambda function checks the source and 

integrity of the message and then sends these messages on to the LoadBalancer 

endpoint of Logstash inside the Kubernetes cluster. This endpoint is secured with 

an SSL certificate, and because GitLab does not have access to KnoMe-redux 

AWS resources like secrets and certificates, the Lambda function is needed in 

the middle. Figure 17 shows how data that comes from GitLab via Logstash is 

visualized in Kibana.  

 



38 

 
Figure 17 GitLab dashboard in Kibana 

 

The Logstash Kubernetes resources are deployed with a Deployment controller 

and a LoadBalancer service (figure 18). The Deployment is also configured with 

a configMap, which defines HTTP port 8080 as the input and the cluster-specific 

DNS address of Elasticsearch as the output. Index is also specified to have a 

static prefix with the current date.  

 

 
Figure 18 Logstash service configuration (SSL certificate’s identity hidden) 

 



39 

 

5.3 Pros and cons  
 

Implementing monitoring for a relatively complex application deployment like Ku-

bernetes is not a simple task. Monitoring needs to reach infrastructure, service 

and application levels, and the extracted data needs to be aggregated and visu-

alized in a way that provides value for the developers and customers alike. Value 

for the developers means giving visibility to performance bottlenecks at applica-

tion level and resource demands at service level. Having factual data of the per-

formance is needed for reaching fast and reliable performance, which is expected 

of modern applications. Value for customers translates, in the end, to money 

saved. Having efficient software that is running on appropriate hardware is cost-

effective. 

 

Elastic Stack, in particular, is not the most straightforward way of accomplishing 

monitoring. The stack is quite massive, and it needs a lot of configuring. There 

are other solutions available for monitoring specific levels or parts of a deploy-

ment that are easier to set up. Some of them work “out of the box” or need just a 

few startup parameters to work. However, Elastic Stack reigns above these sim-

ple solutions in unifying all data under one user interface. All parts of the stack 

run around Elasticsearch as a data storage and Kibana provides a native and 

intuitive way to visualize and learn from that data. Elastic Stack is also open 

source, so it does not cost anything to use. Ultimately, going through the trouble 

of configuring and deploying the stack is paid back in the extensive value that 

accessing all information from one place gives to all user groups.  

 

 

6 Conclusion 
 

 

This thesis was based on a business need of its client, Siili Solutions Oyj. It re-

searches the theories of Kubernetes and Elastic Stack and provides a case ex-

ample of implementing the stack on an existing Kubernetes cluster. Two objec-

tives were given, and both of them were achieved to some degree. 



40 

 

The secondary objective of this thesis was to create new research about moni-

toring Kubernetes. This was reached quite well. This thesis is very solution heavy, 

and it has no comparative or exploratory aspects of different monitoring products. 

It does, however, give a detailed view of one option and provides a good theoret-

ical base of Kubernetes, on which to build on. Future research could give similar 

perspectives on some other monitoring solution or make comparisons on multiple 

solutions. 

 

The primary objective was to provide a working implementation example for the 

client and document the theory and configuration of it. This objective was fulfilled 

well since the technical solution is in use in KnoMe-redux. Reusing the configu-

ration has not been tested since no other suitable projects have yet emerged. 

The theoretical part of this thesis can be used for achieving knowledge about 

Kubernetes in the client company, while the case example provides a way for 

minimizing the inconvenience of setting up a monitoring stack and going straight 

to producing value. 



41 

List of References 
 
 
Amazon Web Services. 2019a. Amazon Elastic Kubernetes Service. Amazon 

Web Services, Inc. https://aws.amazon.com/microservices/. 
26.11.2019 

Amazon Web Services. 2019b. Amazon Elastic Kubernetes Service. Amazon 
Web Services, Inc. https://aws.amazon.com/eks/. 5.11.2019. 

Datadog. 2019. Monitoring in the Kubernetes era. Datadog, Inc. 
https://www.datadoghq.com/blog/monitoring-kubernetes-era. 
5.11.2019. 

Docker. 2019. What is a Container? Docker Inc. https://www.docker.com/re-
sources/what-container. 26.9.2019. 

Elastic. 2019a. The Elastic Stack. Elasticsearch B.V. https://www.elas-
tic.co/products/elastic-stack. 5.11.2019. 

Elastic. 2019b. Elasticsearch Reference - Data in: documents and indices. Elas-
ticsearch B.V. https://www.elastic.co/guide/en/elasticsearch/refer-
ence/7.0/documents-indices.html. 5.11.2019. 

Elastic. 2019c. Elasticsearch Reference - Information out: search and analyze. 
Elasticsearch B.V. https://www.elastic.co/guide/en/elasticsearch/ref-
erence/7.0/search-analyze.html. 5.11.2019. 

Elastic. 2019d. Kibana Guide - Introduction. Elasticsearch B.V. 
https://www.elastic.co/guide/en/kibana/7.0/introduction.html. 
5.11.2019. 

Elastic. 2019e. Kibana Guide - Index Patterns. Elasticsearch B.V. 
https://www.elastic.co/guide/en/kibana/7.0/index-patterns.html. 
5.11.2019. 

Elastic. 2019f. Kibana Guide - Discover. Elasticsearch B.V. https://www.elas-
tic.co/guide/en/kibana/7.0/discover.html. 5.11.2019. 

Elastic. 2019g. Kibana Guide - Visualize. Elasticsearch B.V. https://www.elas-
tic.co/guide/en/kibana/7.0/visualize.html. 5.11.2019. 

Elastic. 2019h. Kibana Guide - Dashboard. Elasticsearch B.V. https://www.elas-
tic.co/guide/en/kibana/7.0/dashboard.html. 5.11.2019. 

Elastic. 2019i. Beats Platform Reference - Beats overview. Elasticsearch B.V. 
https://www.elastic.co/guide/en/beats/libbeat/7.0/beats-refer-
ence.html. 5.11.2019. 

Elastic. 2019j. Beats Platform Reference - Community Beats. Elasticsearch B.V. 
https://www.elastic.co/guide/en/beats/libbeat/7.0/community-
beats.html. 5.11.2019. 

Elastic. 2019k. Logstash Reference - Logstash Introduction. Elasticsearch B.V. 
https://www.elastic.co/guide/en/logstash/7.0/introduction.html. 
5.11.2019. 

Elastic. 2019l. APM Overview - Overview. Elasticsearch B.V. https://www.elas-
tic.co/guide/en/apm/get-started/7.0/overview.html. 5.11.2019. 

Elastic. 2019m. APM Overview - Components and documentation. Elas-
ticsearch B.V. https://www.elastic.co/guide/en/apm/get-
started/7.0/components.html. 5.11.2019. 

Elastic. 2019n. Kibana Guide - APM Getting Started. Elasticsearch B.V. 
https://www.elastic.co/guide/en/kibana/7.0/apm-getting-started.html. 
5.11.2019. 



42 

Kepes, B. 2015. Elasticsearch changes its name, enjoys an amazing open 
source ride and hopes to avoid mistakes. Forbes. 10.3.2015. 
https://www.forbes.com/sites/benkepes/2015/03/10/elasticsearch-
changes-its-names-enjoys-an-amazing-open-source-ride-and-hopes-
to-avoid-mistakes. 5.11.2019 

Kubernetes. 2019a. What is Kubernetes. The Kubernetes Authors. https://ku-
bernetes.io/docs/concepts/overview/what-is-kubernetes/. 26.9.2019. 

Kubernetes. 2019b. Container runtimes. The Kubernetes Authors. https://kuber-
netes.io/docs/setup/production-environment/container-runtimes/. 
26.9.2019. 

Kubernetes. 2019c. Concepts. The Kubernetes Authors. https://kuber-
netes.io/docs/concepts/. 26.9.2019. 

Kubernetes. 2019d. Nodes. The Kubernetes Authors. https://kuber-
netes.io/docs/concepts/architecture/nodes/. 26.9.2019. 

Kubernetes. 2019e. Components. The Kubernetes Authors. https://kuber-
netes.io/docs/concepts/overview/components/. 26.9.2019. 

Kubernetes. 2019f. Understanding Kubernetes Objects. The Kubernetes Au-
thors. https://kubernetes.io/docs/concepts/overview/working-with-ob-
jects/kubernetes-objects/. 26.9.2019. 

Kubernetes. 2019g. Pod Overview. The Kubernetes Authors. https://kuber-
netes.io/docs/concepts/workloads/pods/pod-overview/. 26.9.2019. 

Kubernetes. 2019h. ReplicaSet. The Kubernetes Authors. https://kuber-
netes.io/docs/concepts/workloads/controllers/replicaset/. 26.9.2019. 

Kubernetes. 2019i. Deployment. The Kubernetes Authors. https://kuber-
netes.io/docs/concepts/workloads/controllers/deployment/. 
26.9.2019. 

Kubernetes. 2019j. StatefulSets. The Kubernetes Authors. https://kuber-
netes.io/docs/concepts/workloads/controllers/statefulset/. 29.9.2019. 

Kubernetes. 2019k. DaemonSet. The Kubernetes Authors. https://kuber-
netes.io/docs/concepts/workloads/controllers/daemonset/. 26.9.2019. 

Kubernetes. 2019l. Carbage Collection. The Kubernetes Authors. https://kuber-
netes.io/docs/concepts/workloads/controllers/garbage-collection/. 
26.9.2019. 

Kubernetes. 2019m. Jobs – Run to Completion. The Kubernetes Authors. 
https://kubernetes.io/docs/concepts/workloads/controllers/jobs-run-
to-completion/. 26.9.2019. 

Kubernetes. 2019n. CronJob. The Kubernetes Authors. https://kuber-
netes.io/docs/concepts/workloads/controllers/cron-jobs/. 26.9.2019. 

Kubernetes. 2019o. Service. The Kubernetes Authors. https://kuber-
netes.io/docs/concepts/services-networking/service/. 26.9.2019. 

Kubernetes. 2019p. DNS for Services and Pods. The Kubernetes Authors. 
https://kubernetes.io/docs/concepts/services-networking/dns-pod-
service/. 26.9.2019. 

Kubernetes. 2019q. Volumes. The Kubernetes Authors. https://kuber-
netes.io/docs/concepts/storage/volumes/. 26.9.2019. 

Kubernetes. 2019r. Persistent Volumes. The Kubernetes Authors. https://kuber-
netes.io/docs/concepts/storage/persistent-volumes/. 26.9.2019. 

Kubernetes. 2019s.Cloud Providers. The Kubernetes Authors. https://kuber-
netes.io/docs/concepts/cluster-administration/cloud-providers/. 
26.9.2019. 



43 

Kubernetes. 2019t. Cluster Administration Overview. The Kubernetes Authors. 
https://kubernetes.io/docs/concepts/cluster-administration/cluster-ad-
ministration-overview/. 26.9.2019. 

Kubernetes. 2019u. Installing Kubernetes with Minikube. The Kubernetes Au-
thors. https://kubernetes.io/docs/setup/learning-environment/mini-
kube/. 26.9.2019. 

McGranaghan, M, Reeves, J & contributors. 2018. Readme-file. Ring project re-
pository. https://github.com/ring-clojure/ring/blob/mas-
ter/README.md. 5.11.2019. 

Messina, D. 2018. 5 years later, Docker has come a long way. Docker Blog. 
20.3.2018. https://blog.docker.com/2018/03/5-years-later-docker-
come-long-way/. 26.9.2019. 

Oracle. 2019. JAR File Overview. Oracle Corporation. https://docs.ora-
cle.com/javase/8/docs/technotes/guides/jar/jarGuide.html. 
14.11.2019. 

Siili. 2019. Frontpage. Siili Solutions Oyj. https://www.siili.com/. 11.11.2019. 


