

Jorma Pohjola

Design Rules Manual for Volvo Multi-
plex Toolbox

Metropolia University of Applied Sciences

Bachelor of Engineering

Automotive Electronics

Bachelor’s Thesis

02 December 2019

 Abstract

Author
Title

Number of Pages
Date

Jorma Pohjola
Design Rules Manual for Volvo Multiplex Toolbox

17 pages
2 December 2019

Degree Bachelor of Engineering

Degree Programme Automotive Engineering

Professional Major Automotive Electronics Engineering

Instructors

Eero Kalevo, Business Unit Manager
Vesa Linja-aho, Senior Lecturer

In modern world, networking and data sharing enable corporations to spread out design
work. The creative work in designing new products, such as a bus, can be spread between
many teams. In some cases, these teams, and in fact members of a team, might be sepa-
rated by continents. It is possible for one to have close working relations with people that
they have never met in person.

In this kind of environment, standardization of practices and uniformity of output is more
important than ever. To this end, multinational entities create manuals and rules to make it
easier for workers around the globe to keep their creations such that others can easily un-
derstand them.

Volvo Multiplex Toolbox, abbreviated VMT, is a design tool suite used by Volvo Bus Corpo-
ration in making the software packages that control behavior of the bus body systems. This
software package combines needed tools to create, modify and share different software
components used for making software packages that are then installed in completed vehicle.
The software is created using Functional Block Diagram-language, a graphical logic pro-
gramming language.

In this thesis, a rules manual was created, and it works both as introduction for new em-
ployee on how different parts of VMT work and creates ground rules on how to design new
body software. Much importance is placed on creating rules for the graphical look of the final
code, and uniform naming policies on different signals, components and parts.

Keywords Function block diagram, Automotive electronics, User manual

Contents

List of Abbreviations

1 Introduction 1

1.1 Microteam Oy 2

1.2 Volvo Bus Corporation 2

1.3 Volvo Multiplex Toolbox 2

2 Design rules manual 4

2.1 Basis 4

2.2 Requirements for the manual 4

2.3 Scope of the manual 5

3 Function Block Diagrams and bus body control 7

3.1 What are Function Block Diagrams? 7

3.2 FBD in bus body control systems 8

4 Process of creating design rules manual 10

4.1 Introduction, installing and setting up the program 10

4.2 Component description 10

4.3 Software package generation 10

4.4 Software component design 11

4.5 FBD design rules 11

4.6 Troubleshooting and debugging information 11

4.7 Information about hardware 12

4.8 Practical examples of using VMT 12

5 Guidelines for FBD-programming 13

5.1 Function block diagrams in VMT 13

5.2 Styling needs and best practices 13

5.3 Finding and creating examples 14

5.4 Naming conventions 15

6 Conclusions 16

References 17

List of Abbreviations

BEA Bus Electronic Architecture. Describes the generation of electronic archi-

tecture in a Volvo bus.

CAN Controller Area Network. Message-based communications protocol used

extensively in automotive industry.

DTIC Distributed Target Independent Code.

FBD Function Block Diagram. Graphical PLC-programming language described

in IEC-61131-3-standard.

PLC Programmable Logic Controller. Ruggedized and simple computer used in

industrial applications that don’t need much computing power.

VMT Volvo Multiplex Toolbox. Software suite used for creating body software

packages for Volvo buses.

ORM Object-relational mapping. The set of rules for mapping objects in a pro-

gramming language to records in a relational database, and vice versa.

DBMS Database management system. Software for maintaining, querying and up-

dating data and metadata in a database.

1

1 Introduction

Thanks to the spread of internet, new ways of networking and sharing of data across the

world is possible in ways that were unthinkable just a couple of decades ago. Information,

ideas and digital products can move between continents in seconds, and people can

connect and communicate without needing to think about distances.

In a modern, multinational workplace, networking allows workloads to be spread over a

wide area. It is not necessary for a team to go to one place to design a new product.

Especially for large corporations that function globally it is much easier and cheaper to

spread the work to be done across multiple locations. Moving personnel and equipment

is expensive, moving information costs next to nothing.

This kind of spreading the workload raises new kinds of problems. Members of a design

team come from different cultures. They have different backgrounds and they speak dif-

ferent languages. They think differently and solve problems in different ways. How is it

then ensured that people who might have never even met in person can understand

each other?

To solve this problem, businesses create rules and procedures that are implemented in

same way everywhere. No matter whether you work in Finland or India, you conduct your

work in the same way: Use the same document forms, use the same abbreviations and

the same tools with the same names.

To spread these rules around, you need manuals that contain the rules in a form that is

easy to digest. Manuals should be made so that new employees find in them easy to

learn what to do and how, and so that professionals that have been working for years

can easily refresh their memories where needed.

In this thesis, creation of one such manual is examined, made for Volvo Bus Corporation

(VBC). The aim of the manual is to uniform the workflow, naming conventions and coding

practices used with Volvo Multiplex Toolbox (VMT), a software suite created by Micro-

team Oy and used by VBC to create software packages for bus body systems.

2

1.1 Microteam Oy

Microteam Oy was a Finnish engineering company, now a part of Insinööritoimisto Co-

matec Oy. Founded in 1981 and based in the city of Tampere, Finland, Microteam of-

fered product and software development and engineering services in areas of industrial

electronics, machine automation, robotics, and vehicle control systems. (1)

Microteam Oy was merged with Insinööritoimisto Comatec Oy in July 2019.

1.2 Volvo Bus Corporation

Volvo Bus Corporation is part of Volvo Group, a global manufacturer of trucks, buses,

construction equipment and marine and industrial engines. Volvo group has close to

100 000 employees worldwide and sells its products in more than 190 different markets.

Volvo Buses develops, manufactures and sells complete buses and bus chassis for city,

intercity and tourist operations. Offerings include electric city buses, hybrid buses and

diesel buses in different power ratings. Volvo Bus Corporation includes four different

brands: Volvo, Nova Bus, Prevost and UD. (2)

1.3 Volvo Multiplex Toolbox

VMT is a suite of programs, created by Microteam and first released in 2005. It was first

made as a proof-of-concept-software for testing new hardware ecosystem but ended up

being used as-is for over a decade. The current version, VMT2, was released in 2015

and is actively being further improved and updated.

VMT contains all the necessary tools for developing and creating all the application soft-

ware and hardware-related software components used in Volvo buses for body system

control. This includes necessary definitions for input/output (I/O) of electronic control

modules (ECUs), hardware-software-interface definitions and function block diagram-

language compiler for creating application software for different body functions.

3

All the software components are stored in cloud storage, so that all users of VMT have

the same components available to them. Access to the cloud storage for saving and

distributing software components between users is implemented in VMT. The cloud stor-

age is part of Volvo IT, but it is managed and administrated by an administrator team

based in Finland.

In addition to Volvo Bus Corporation, Prevost Car and Nova Bus, both based in North

America, use VMT for developing body software.

4

2 Design Rules Manual

2.1 Basis

Before this project, there had been no unified manual about using VMT. Users and de-

velopers of VMT had made some short and incomplete manuals on different parts of the

software during the past decade. Many of these documents were so much out of date as

of being nearly unusable. Others were not usable alone, describing just one part of soft-

ware or one process.

There were also many technical aspects of VMT, especially on hardware-side, that were

glossed over in older manuals. These parts required a lot of research in Volvo documen-

tation libraries to find more about hardware specifications, as more information was

needed to answer questions about why software interfaces with hardware as it does.

Training new users has been on hands of colleagues to be done as they see fit, with

manuals and rules made in each different office doing BEA-body software design around

the globe. Different ways of working with the software was starting to show as software

components with different levels of documentation and style of programming. This

causes rising costs, as interpreting premade parts of software was taking longer.

In the end, VBC decided to rectify the situation by ordering creation of a complete manual

describing the basic usage of VMT and setting down a set of rules to govern the software

development for Volvo buses.

2.2 Requirements for the Manual

Basic requirements given to the manual were:

• To be usable as a training and support manual for new employees working in

software component design, and as a reference manual for senior designers.

5

• To be extensive enough to cover most use cases of VMT, including installation,

component creation and modification, database management and post-process

compilation of complete body software packages.

• To contain all the necessary rules and conventions to unify software component

creation across VBC offices, including naming conventions and styling of graph-

ical function block diagram-code.

• To contain information about solving common program compilation errors that a

designer might encounter.

• To contain real use case examples of component creation and modification, and

• To contain information about hardware components, how they interface with soft-

ware and how to find necessary information about input and output options, in as

much detail as is necessary for software component development.

2.3 Scope of the Manual

Despite the name, the finished product is much more than rules library for designing

software. It is also a user manual for the whole VMT-software and most support functions

tied to it. The aim is for the manual to be written in such a way that a new employee can

use it as a guide to easily start working with the software.

Due to being written by someone who had no prior experience using the software, the

scope of the manual was not apparent at the start of the work. While learning more about

the usage of VMT, more and more chapters were being added in the manual.

When this bloat of information was starting to be noticed, it was decided that some parts

that were included in older manuals made for different parts of the software were to be

left out. Things that had nothing, or very little, to do with people working with design and

more to do with the field work at the Volvo workshops or manufacturing plants were

glossed over briefly or completely cut out. This had to be done to keep the workload

manageable.

6

Despite cutting out parts of old manuals, the complete manual contains more information

than requested in the initial requirements. It seemed that this was necessary to give

designers enough in-depth information about underlying principles of VMT to enable ef-

fective management of workflow.

One of the main goals given for the design rules manual was to create unified style for

developing the Function block diagram-code used in Volvo BEA-systems. There have

previously been rules about naming and conventions about visual style and commenting

of programs. However, as the software component development has been branched out

between multiple different offices, it was deemed necessary to compile the official man-

ual codifying all the rules and the established conventions. The manual was to have

examples on how to implement the rules mentioned earlier.

7

3 Function Block Diagrams and Bus Body Control

3.1 What are Function Block Diagrams?

Function Block Diagrams, abbreviated FBD, are one form of graphical languages used

for programming Programmable Logic Controllers (PLCs). These kinds of ruggedized,

simple digital computers are widely used in many kinds of control tasks in industrial en-

vironment. (3, p. 3-4)

FBD is one of two graphical logic programming languages defined in IEC-61131-3-stand-

ard. In addition to graphical languages, this standard describes two text-based lan-

guages to be used with PLC programming. (4, p. 9) The standard works as a guideline,

not ruleset, for PLC-programming. (5, p. 12)

While IEC-standard defines syntax of PLC-programming languages using text-based in-

struction sets, usually FBD-programs are created in graphical environment for simpler

user experience. Exact look of this graphical user interface is not standardized. (4, p.

211-212) An example of simple graphical FBD-program taken from VMT programming

environment can be seen in Figure 1.

Figure 1 Example of FBD-program, taken from VMT enviroment.

Basic premise of FBD-programming is using inputs, coming from the left side of the pro-

gram, and feeding them through logical functions, drawn as rectangular blocks, achiev-

ing outputs on the right side of the program. Programs execute, or flow, from left to right

and from up to down. This results in that the arrangements of the blocks are important

8

when creating the code. Creating situations where signal paths go wrong way, can cause

unexpected behaviour or compilation issues.

Logical functions that can be used with FBD-programs vary from simple Boolean alge-

braic functions such as AND, OR and NOT, to simple set-reset-latches and timers, to

more complex user-created functions such as networking control and error correcting

algorithms. How these more advanced user-created functions get implemented vary be-

tween PLC-vendors and different programming environments. Some systems also sup-

port processing of analogue values, but this requires compatible hardware.

3.2 FBD in Bus Body Control Systems

In the automotive industry, cost efficient manufacturing and design processes are one of

the leading elements of today. To this end, body systems controlled with computers pro-

grammed using PLC-like systems and FBD-logic offer great benefits.

In general market, bus manufacturers usually choose between two commonly available

competing control systems with ability to provide control and communication for a whole

body system: Thoreb ELSY offered by Thoreb Ab, and KIBES created by Continental

Automotive GmbH. There are also manufacturer-specific systems, such as Volvo Body

Multiplex, that are not available on open market.

In bus market, manufacturers see two different kinds of customers: large companies of-

fering mass transport with large fleets of identical vehicles, and usually smaller busi-

nesses offering coach services. These two kinds of customers require quite different

kinds of vehicles, with different level of customisation and standardisation. Suitably flex-

ible control system that is easily modified to suit customers’ needs is a great marketing

tool for any manufacturer.

Using PLC-like systems with added Controller Area Network (CAN)-capabilities for flex-

ibility offers possibilities for easy customer-specific tailoring of functions. Creation of

standardized software packages allows for re-using created code for faster development

process.

9

Customer adaptations are also easier and faster to create when standard programs can

be used as a base and are simply modified. As an added benefit, with flexible enough

interface, modifications to body functions can even be made many years after the vehicle

has left the manufacturing plant: this increases the resale value of the vehicle, making it

more enticing purchase for the original buyer.

10

4 Process of Creating Design Rules Manual

4.1 Introduction, Installing and Setting up the Program

The manual creation process was started by finding out basic information about the pro-

gram: why and when VMT was made, what the principles were when designing it. This

was done to give the reader some perspective on the history of VMT and Volvo Bus Body

design, information about different services and support functions, and basic information

about different user levels.

After the short introduction, steps on installing and setup of the program were given. This

includes where to find the installation package, where to request access to necessary

databases and how-to setup the necessary folder structure by the user. These instruc-

tions were accompanied by multiple screenshots to make the process clear and simple.

Process of and importance of daily updating the databases used on handling different

software components was described in-depth.

4.2 Component Description

The manual describes all the different software components it is used to create. These

short descriptions give basic information about function and importance of each different

type of component.

4.3 Software Package Generation

Manual includes a chapter about back-end processes that are invisible to a basic user

of VMT but are of great importance for the process of automatic generation of basic body

software packages from pre-made, standardized software components. This information

is useful for end users who work with aftermarket support processes and need to be able

to do problem solving with limited resources.

11

4.4 Software Component Design

Part of the user manual concerning the day-to-day usage of VMT. This includes creation

and upkeep of software components and how to distribute the created components to

other VMT-users.

The manual includes description and use case of every different component used in a

complete Volvo Bus body software package. There are also descriptions of related hard-

ware-software-interfaces and instructions how to use them to help with troubleshooting

and find more information when encountering problems with software development.

4.5 FBD Design Rules

The original request for the thesis work was to create rule package for styling of graphical

function block diagram programs created with VMT. Before starting, the scope of work

was extended to the whole manual. This part of the manual is closely associated with

software component creation.

More detailed description about the creation process and examples of rules can be found

in chapter 5.

4.6 Troubleshooting and Debugging Information

Information for troubleshooting and debugging created programs is included for most

common problems encountered. Examples with screenshots showing some of the pos-

sible errors and ways to fix them are given.

As a small amount of information about troubleshooting problems with full software pack-

ages downloaded to a vehicle are given. This is, however, kept to a minimum as this kind

of diagnostic work is detailed in other manuals.

12

4.7 Information about Hardware

Some information about the physical components of the body system is given, as know-

ing the limits of physical input and output capabilities of available hardware is needed

when designing programs. Knowing, in example, limits of output current of the module

when designing lighting or blower motor controls is extremely important for designers.

4.8 Practical Examples of using VMT

In the last part of the manual, practical use-case examples of VMT were created. For

these, specifications for imaginary customer adaptation order for body system were cre-

ated and according to these, software components were created and tested.

13

5 Guidelines for FBD-programming

5.1 Function Block Diagrams in VMT

At the heart of the BEA-body software are software functions executing programs cre-

ated using a graphical FBD-programming environment. More information about FBD can

be found in chapter 3.

During initial development of VMT and its accompanying ecosystem of ECUs, it was

decided that FBD offered best possible combination of necessary features and ease of

use and it was implemented as part of VMT. Inspiration was drawn from Thoreb ELSY-

system. Originally, ISaGRAF-editor by Rockwell Automation was used for FBD-program-

ming but eventually own, in-house developed programming and compilation environment

was created and ISaGRAF was phased out.

FBD-code created with VMT is compiled in Distributed Target Independent Code-format

by compiler built-in with VMT. The control units installed to the vehicle are listed for the

compiler in the code and using this list code is distributed to the control units during

compilation process. This compiled code package is then downloaded into bus system

and used to control body functions.

During the pre-work investigation on the matter, it was found that there is no publicly

available collection of practices or styling guides for FBD-programming. It was, therefore,

up for the writer to codify the rules for FBD-programming for VBC from scratch.

5.2 Styling Needs and Best Practices

Finding out the best practices in making FBD-programs involved interviewing people that

have been making programs for years. As FBD is a graphical language, some amount

of artistic expression is evident in each interviewee’s personal style.

Easy readability of the code was the number one requirement of every coder interviewed.

Positioning of function blocks and signals is important and was emphasized heavily. By

14

keeping the signal lines in the code straight, having fixed places for inputs and outputs

and lining function blocks straight makes code easier to read, and pleasant to look at.

Debugging the code is easier when signal naming is simple and follows established con-

ventions and guidelines.

Some technical needs for styling arise from the development process. For example,

sometimes code needs to be printed on paper in order to facilitate easier debugging or

going through parts of the code in meetings. To minimize clipping of the code, it needs

to be kept narrow enough to be able to be printed on A3-sized sheets.

Commenting code, especially more complex parts, was mentioned as an important part

of the programming process. This makes comprehending the code faster and makes re-

using existing functions easier. Using ability to change the colour of parts of code imple-

mented in VMT is also important, as marking modifications done to code using colours

speeds up possible debugging, especially when done by other developers.

5.3 Finding and Creating Examples

For some requirements, examples were easy to find. Especially the older code, created

well before any kind of unified system for signal naming or placement of logical elements

in the code were made, offered ample amount of examples on how not to create pro-

grams. Changes in VMT has also affected some of the older software components, mak-

ing the visual elements of programs not looking right. An example of this kind of a

problem can be seen in Figure 2.

Figure 2 Styling problem example used in finished manual

15

In some cases, suitable programs with correct problems were not easily found. When

this happened, an example was created.

5.4 Naming Conventions

Naming rules for input and output signals was an important issue to underline in the

manual. Naming of signals directly constitutes to the ease, or unease, of reading the

code made by someone else. Descriptive naming makes the function of inputs and out-

puts of code easily recognized, while signals named in just alphanumerical strings makes

it hard for others to decipher the intention of the original creator.

Sometimes one program can have well above hundred different input and output signals,

from both physical hardwired components and from other control units in form of data

signals from CAN-bus, in addition to private variables. If naming of the signals is not done

according to uniform style, interpreting code will become extremely hard.

To make it easier for designers to name new signals, a simple table with preferred pre-

fixes and shorthand for common components, such as switches, buttons and doors, was

included in the manual. It was also emphasized that using existing signals is preferred

to creation of new ones whenever possible.

16

6 Conclusions

In conclusion, the main objective of the thesis work was achieved: the customer received

a new manual containing necessary information about usage of Volvo Multiplex Toolbox

in body software creation, and a new set of rules was created for styling of graphical

function block diagram programming.

17

References

1 Microteam, company introduction. 2007. Internal document, Microteam Oy.

2 Making a difference – Moving people. Volvo Buses corporate presentation. 2019.
Internal document, Volvo Buses Ab

3 Bolton, W. 2009. Programmable Logic Controllers, fourth edition. E-book. Else-
vier Science & Technology.

4 SFS-EN 61131-3. Programmable controllers – Part 3: Programming languages.
2013. Helsinki. Finnish Standards association.

5 John, Karl-Heinz; Tiegelkamp, Michael. 2010. IEC 61131-3: Programming Indus-
trial Automation Systems. E-book. Springer-Verlag Berlin Heidelberg

