

Anastasia Shirokova

SECURITY OF SOFTWARE-DEFINED
NETWORKS

Denial-of-service attack detection and mitigation

Bachelor’s thesis
Degree programme in Information Technology

2019

Author (authors) Degree

Time

Anastasia Shirokova

Bachelor of
Engineering

December 2019

Thesis title

Security of software-defined networks
Denial-of-service attack detection and mitigation

40 pages

Commissioned by

South-Eastern Finland University of Applied Sciences

Supervisor

Matti Juutilainen

Abstract

Software-defined networking (SDN) is a recently developed architecture. This design brings
programmability and efficiency into traditional networks. Awareness of potential SDN
specific threats and complications is essential information for developers and engineers
who intent to implement this network design for their business.

The main goal of this thesis was to research the expanding field of software-defined
networking and the security of this design. Narrowing down this comprehensive area, this
work covered the reliability of SDN controllers against denial-of-service (DoS) attacks. The
objective was to answer two questions after the practical part was conducted: Is SDN less
secure because of its architecture compared to traditional networks? Are DoS attacks a big
threat for SDN architecture or can they be easily mitigated?

In the theory part, the attack surface of SDN and the available security solutions for these
networks were studied. The purpose of the practical part was to illustrate a DoS attack
against an SDN controller and to show possible methods to detect such types of attacks in
SDN environment. To achieve this, the SDN topology was simulated using GNS3 software
and the behaviour of the controller was observed under the DoS attack.

This research showed that the existing techniques can minimize the impact of denial-of-
service attacks in SDN environments. Moreover, with correctly configured monitoring and
proper network design, the threats can be detected instantly and mitigated accordingly.
While it is certainly challenging to successfully maintain secure SDN settings and the right
knowledge base is required, using this design over traditional networks does not bring
additional risks.

Keywords

Software-defined networking, network security, GNS3, OpenDaylight, denial-of-service
attacks

CONTENTS

1 INTRODUCTION .. 5

2 SOFTWARE-DEFINED NETWORKS ... 6

2.1 History .. 7

2.1.1 From traditional networks to SDN ... 7

2.1.2 Start of SDN .. 9

2.2 Architecture .. 10

2.2.1 Application plane .. 11

2.2.2 Northbound interface .. 12

2.2.3 Control plane .. 13

2.2.4 Southbound interface .. 14

2.2.5 Data plane .. 15

2.3 Use cases of SDN .. 16

2.4 Security of SDN .. 18

2.4.1 Attack surface ... 19

2.4.2 Control plane security ... 20

3 DENIAL OF SERVICE .. 20

3.1 History .. 21

3.2 Techniques ... 22

3.3 DoS of SDN .. 23

3.3.1 Detection and mitigation solutions .. 24

4 IMPLEMENTATION .. 25

4.1 Simulation environment setup... 25

4.2 Simulation of software-defined network .. 26

4.3 Simulation of DoS traffic ... 30

4.4 Findings and results .. 31

5 THE FUTURE OF SDN .. 33

6 CONCLUSIONS ... 34

REFERENCES .. 36

5

1 INTRODUCTION

Today businesses focus a lot on continuous integration and development to get

faster software delivery, to reduce the application development life-cycle and to

simplify the troubleshooting of bugs. DevOps and Agile are the most used

methodologies to achieve this. (Veritis Group Inc. 2019.) Moreover, these

characteristics can be improved using software-defined networking (SDN) design,

and therefore, engineers are more likely to choose this architecture for their

network structure (Riveners 2016).

A new approach for network management has been introduced with the emerging

of SDN. It can be distinguished from traditional networks by the following: the

separation of control and data planes, existing overview of a complete network,

APIs to manage the network and an efficient and automated orchestration of the

services. This architecture brings numerous benefits, such as programmability,

flexibility and a centralized management. (Zinner et al. 2013.) However, this

creates new security concerns and challenges too. The centralized controller

being the single of point of management in SDN makes it an attractive target for

DoS attacks. If an attacker is able to compromise the controller, he will get control

over the whole network, thus, proper security solutions should be applied to

detect and mitigate denial-of-service attacks. (Dridi & Zhani 2016.)

SDN keeps growing in popularity even more than was predicted just five years

ago. Figure 1 represents the growing revenue of SDN, that was expected to be

3.2 billion USD according to the forecast of International Data Corporation made

in 2015 (Dargue 2015.) However, the recent report by Market Research Future

(2019) shows that the actual market of SDN is 8.8 billion USD in 2018 and is

expected to reach 28.9 billion USD by 2023.

6

Figure 1. SDN and Enterprise networking revenue (Dargue 2015)

Chapter 2 of this thesis covers the structure of SDN, the OpenFlow and the

business use cases for this network design. Moreover, this chapter provides an

overview of the attack surface and the security solutions. Chapter 3 describes

techniques of DoS attacks and their mitigation methods in SDN. In Chapter 4, a

software-defined network is created in a virtual environment and a DoS attack is

simulated to examine the performance of the controller. Furthermore, the results

of the simulation are discussed. Finally, Chapter 5 and 6 summarize the project

with the analysis of the future of SDN and the conclusions of this bachelor’s

thesis.

2 SOFTWARE-DEFINED NETWORKS

This section covers the background that is required to understand the concept of

SDN. It starts with describing the initial demand in this approach from traditional

networking perspective. Then, the design architecture is explained thoroughly,

including application, control and data planes. Additionally, use cases that can be

applied in the industry are defined together with the attack surface of SDN.

Security of the control layer is outlined separately to gain more expertise required

for the practical part of the thesis.

7

2.1 History

Network provisioning has not changed much for over 20 years. Speed and

bandwidth have been noticeably enhanced, while in a nutshell the network kept

the same structure and principles. The network settings are usually implemented

in dedicated hardware, each piece of which is managed separately. This

approach brings many difficulties in managing the systems, most importantly that

it is unscalable, error-prone and not flexible.

Moreover, humanity could not predict the amount of traffic going through today’s

networks, and therefore, protocols in the TCP\IP model were not designed for the

modern speed and amount of transmitted data. Eric Schmidt, CEO of Google in

2010, stated at the Techonomy conference that “there was five Exabytes of

information created between the dawn of civilization through 2003, but that much

information is now created every two days, and the pace is increasing”

(Kirkpatrick 2010). If engineers could create the network protocols from scratch

today, they would have developed them in a very different way.

After personal computers were introduced in the 1980s, the demand for the

availability of resources increased. Thus, the operational part had to move to

dedicated data centers (Bartels 2011). Separating client and server functionality

brought improvements in system management and made it easier to distribute

resources between users.

2.1.1 From traditional networks to SDN

The first significant change in computing was the virtualization of computer

resources. In 2002, VMware introduced ESX Server which was software to run

several operating systems on only one hosting OS, while allowing operating

systems to be used as a normal file. This has decreased expenses and improved

performance. (VMWare 2018.) Moreover, it gave the opportunity to allocate the

resources matching specific needs and to move or clone the machines between

physical locations by effortlessly copying files containing an OS. According to

8

Kaspersky Lab US (2012), server virtualization was implemented by 69% of

companies in the US.

The demand for computing power was growing extremely fast and it required

companies to plan their resource usage by ordering the required physical network

equipment in advance. Expanding the physical devices on premises brought

several problems. Granted that physical infrastructure uses energy, space and

other resources, it often sat idle before the upcoming demand and was not

utilized in an efficient way. (Miller 2016.) In 2006, a noticeable part in network

evolution was played by Amazon. The company launched its cloud platform,

Amazon Web Services (AWS), providing its overabundant computer resources to

retail users. Additional network, computational power and storage could be

accessed straight over the Internet. (Amazon Web Services 2019.) Furthermore,

AWS offered elastic computing services that allow the clients to rent virtual

machines for their own applications and specific needs. Cloud technologies

introduced the opportunity to pay only for the usage and made IT infrastructures

more scalable and flexible. (Bohm et al. 2011.)

Multitenant data centers were the next stage in the efficiency of network design.

Initially, the challenge was to create an isolated environment for each client and,

at the same time, to efficiently allocate the resources of data centers. (Chao

2016.) Multiprotocol Label Switching (MPLS) protocol was used to design overlay

networks above source networks and to keep data flow at layer 2 of the OSI

model. Additionally, it allowed maintaining MAC and IP addresses of each virtual

machine correctly during its physical relocation and holding the machines

externally accessible and routable. (Guo et al. 2014.)

Network equipment, such as switches and routers, had configuration interfaces,

but their functionality was still limited by the vendors that did not allow access to

low level settings. At that moment, control and data planes were located together

in one device. For instance, this meant that routing protocols had to be distributed

between all devices to communicate routing. (Nadeau & Gray 2013.)

9

2.1.2 Start of SDN

In 2007, the first implementation of the OpenFlow (OF) protocol was introduced

within the campus network of Stanford University. The researchers defined

several causes for need for this technology. Traditional network equipment was

mostly proprietary, with the functionality of routers available and switches being

inflexible and relatively limited for researching purposes. Furthermore, the

incompatibility of devices from different vendors was a concern. The existing

open-source platforms were not sufficient in terms of performance. Thus, it was

suggested to create the OpenFlow, the communication protocol between

switches operating with only the data plane and the controller managing them.

(McKeown et al. 2008, 69-74.)

After receiving support from the research community, Open Networking Research

Center (ONRC) was founded in Stanford and UC Berkeley Universities. As a part

of ONRC, Open Networking Lab (ON.Lab) was developing open source SDN

platforms and software. In 2011, Open Networking Foundation (ONF) was started

as a non-profit organization with financial support from the leading IT companies.

The aim of ONF was to advertise development of SDN and to contribute to the

technology standards, particularly the OpenFlow. In 2017, ONF and ON.Lab were

merged together to combine their goals and resources (Open Networking

Foundation 2016).

In 2007, in addition to research contributions, Martin Casado, Nick McKeown and

Scott Shenker started Nicira company that began the commercial development of

software-defined networks. Nicira Network Virtualization Platform (NPV) and

Distributed Virtual Network Infrastructure (DVNI) were developed as a new

approach in virtual networks with the use of SDN. The company was growing

very fast and had several big companies as clients, such as eBay, AT&T and

DreamHost. (Park 2013.) In 2012, when Nicira was acquired by VMWare, NSX

was launched. It became the first network with SDN approach and the security

virtualization platform of VMWare. That was the first big transaction that

demonstrated the separate market and demand for SDN solutions. (Bort 2014.)

10

Realizing the increased attention towards SDN, many companies decided to

contribute and to implement the technology in their products. For instance,

according to Burt (2012), in 2011, Cisco added OpenFlow to their Nexus switches

and Juniper configured OpenFlow protocol to JunOS SDK. Further, the

OpenDaylight Project was started in 2013 by the Linux Foundation whose main

delivery is the SDN controller. (Knorr 2013.)

2.2 Architecture

Centralized management is the main distinguishing feature of software-defined

networks compared to traditional network design. In this part, the general design

structure and the details of each layer are covered. Furthermore, the

communication between the layers is explained.

The architecture is comprehensively divided into three layers, sometimes

mentioned as planes: application, control and data. Data layer is also referred to

as an infrastructure or forwarding layer. This separation provides a general

framework of this network design. Figure 2 shows a logical view of SDN

architecture visualized by ONF (2012).

Figure 2. Software-defined network design (Open Networking Foundation 2012)

11

SDN combines applications that communicate with a controller using an API. The

forwarding devices are separated from the control plane and get commands from

the controller through the OpenFlow protocol. For comparison, control and data

planes are combined in one device in traditional networks. (Nadeau & Gray

2013.)

2.2.1 Application plane

Applications on this plane are used by engineers to program and to maintain the

network. Having in possession all network-related information, it provides the

requirements to the lower layers. Moreover, the monitoring and security solutions

are developed on this plane. (Open Networking Foundation 2012.)

According to Madhava (2018), the execution environment for applications can be

internal and external as follows:

• The internal applications run inside the container of the controller. To be
compatible with the OpenDaylight controller these applications should be
written in Java and run within the Model-Driven Service Abstraction Layer
(MD-SAL).

• The external applications can operate remotely and communicate with the
controller using RESTful API. It gives the flexibility to use any
programming language, for instance, Python, Bash or Java. However, this
design is slower than the internal one.

Additionally, there are two types of application classes, reactive and proactive, as

introduced by Brocade Communications Systems (2015):

• Reactive applications send the rules to the flow table once they receive a
packet from a switch. Usually, for efficient callbacks and communication
with the controller, such applications are developed to be internal.

• Proactive applications are triggered by external settings, such as link
failures or data load changes, and not by received packets.

The internal reactive approach is well-suited for security applications because of

the low latency and rapidity, whereas the proactive solution is commonly used to

set up policy configurations and monitoring. Figure 3 compares the internal and

external applications of the highest SDN layer.

12

Figure 3. Internal and external application of SDN (Brocade Communications Systems 2015)

Various vendors build their own application plane solutions for different use

cases. These applications can meet various business needs and they are actively

used by network engineers. (Madhava 2018). For instance, on HPE SDN App

Store, there are multiple applications available for network optimization,

visualization and protection as well as load balancer application by different

vendors (HP Inc. 2014).

2.2.2 Northbound interface

The area between application and control planes is named the Northbound

interface (NBI). It is a programmatic control of abstracted network resources.

Figure 4 shows the domains where the Northbound interface can be used.

Figure 4. Northbound interface APIs

The NBI is a high-level application program interface (API), such as NETCONF or

REST. It conceptualizes the infrastructure layer details and provides a method to

13

retrieve information from there. However, the development standard for the NBI

does not exist yet. (Banse & Rangarajan 2015.)

A number of companies started the implementation of the NBI in their networking

software. It is advantageous for big network enterprises to build their own NBI

solutions, because it can be later integrated with their proprietary controller. For

example, in the operating system Cisco IOS XE 16, NETCONF is provided to

enable the integration with SDN. (Cisco 2018).

2.2.3 Control plane

The control plane is the center of SDN and is represented by an operation

system and a controller. It is the abstraction layer that hides forwarding layer

details from the application layer and translates the requirements from it to the

forwarding layer. (Nadeau & Gray 2013.) Figure 5 presents the high-level

overview of the SDN controller.

Figure 5. High-level SDN controller design

The operation system in SDN is the infrastructure consisting of the monitoring,

access and resource management of the whole network, not only a single node.

The role of the controller is to rule the data layer and to orchestrate a network.

The controller consists of the interface for network applications, the network-wide

state management layer and the communication to the data plane layer. (Hu et

14

al. 2017.) Moreover, it possesses the whole overview and topology of the network

that helps to optimize packet flow. For instance, with this approach, the

implementation of a mesh topology is possible on the layer 2 of the OSI model

without IP routing involved. (Nadeau & Gray 2013.)

In the SDN world, Westbound and Eastbound API terms are commonly used.

Westbound API is applied as a communication channel between the controllers

of different network domains. The purpose of the Eastbound API is interacting

with non-SDN planes, for instance, MPLS. (Zinner et al. 2013.)

The most common controller today is the OpenDaylight controller. It is a project

under Linux foundation with the first release ‘Hydrogen’ launched in 2014. Since

then, the development has never been stopped and the project keeps evolving

with several releases each year. The latest version ‘Sodium’ was published in

September 2019. The controller is open source and executed on Java Virtual

Machine. (Knorr 2013.)

2.2.4 Southbound interface

The Southbound interface (SBI) is a logically centralized control of network

resources. It is a low-level interface between network devices and a controller.

There are several protocols of this interface for network device configuration,

such as OpenFlow, NETCONF and SNMP. To programmatically change network

devices from the application layer, other protocols should be used, for instance,

OF-Config or NETCONF. (Azodolmolky 2013.)

OpenFlow is the most popular protocol used for the Southbound interface that is

used in some implementations of SDNs between switches and the controller.

OpenFlow does not change the configuration of network devices. Instead, it

modifies the forwarding of traffic through the network devices. It is used to

program traffic flows that go via routers and switches. To achieve this, three

crucial components should be included in the OpenFlow switch: The flow table,

the secure channel and the OpenFlow protocol. The secure channel is a

15

communication interface between the controller and the switch, usually it is a TLS

asymmetrical encryption. (Kandoi 2015.)

A flow table is filled with rules sent by a controller. The traffic control in SDN is

based on the flow and not on separate packets. A rule is specified for the first

packet and then it is applied to the rest of the packets in the same flow (Lee &

Chiueh 2014). The packets for each flow are defined based on port, MAC

address and IP address. To illustrate this, Figure 6 shows the structure of an

OpenFlow table row.

Figure 6. Flow table structure of an OpenFlow switch (Azodolmolky et al. 2011)

OpenFlow protocol has started as a research project in the University. Currently,

it is maintained by the Open Networking Foundation. Nevertheless, they do not

provide the standards for the Westbound and Eastbound interfaces nor for the

Northbound interface. (Nadeau & Gray 2013.)

2.2.5 Data plane

The fundamental objective of the data plane is traffic forwarding and processing,

including de-encapsulation, encryption, matching MAC addresses and changing

source and destination IP addresses. Devices of this plane are routers, layer 2

and layer 3 switches. (Nadeau & Gray 2013.)

16

In comparison with Ethernet switches, which contain the table and have an

integrated controller, an SDN switch only has data forwarding functionality and

can be programmed with OpenFlow protocol by a controller. SDN switches are

simpler and therefore faster. Figure 7 shows the structure of the OpenFlow

switch. Each OpenFlow switch has a flow table that is filled in based on the

information from the controller. If the switch does not have a matching flow rule

for a packet, it buffers a packet and then sends a request OFPT_PACKET_IN

message a rule for it from the controller. After, the response OFTP_FLOW_MOD

message is sent back by a controller. OFTP_FLOW_MOD message consists of

the action to perform and a timeout for which to keep the rule in the flow table.

(Kandoi 2015.)

Figure 7. Main components of OpenFlow switch (McKeown et al. 2008, 69-74.)

Since vendors want to be up-to-date with SDN technologies, nowadays many

commercial switches are OpenFlow-enabled. This means that on top of

traditional switching infrastructure there is an SDN traffic steering available. To

illustrate this, Cisco OpenFlow agent can be enabled on Cisco Nexus 3000 and

9000 series switches. The switches are configured by this agent with OpenFlow

databases and interfaces (Cisco 2018.)

2.3 Use cases of SDN

Automation, agility and having an outline of a network topology are several

advantages that SDN brings to network design. This section discusses how

17

enterprises can use this to improve or to plan their infrastructure. The most

common use cases are discussed here, however, there are many other less

popular options that are out of the scope of this paper.

Software-defined storage (SDS) is a technology, where local storage is located

across multiple servers and the physical management is centralized. It can be

compared with a traditional NAS network. However, it is not required to purchase

actual NAS. As a result, with SDS it is possible to earmark storage within all

physical computers, appearing as a solid logical volume and to hold it as a

shared storage. Moreover, auto tiering is introduced with SDS. Providing

flexibility, it automatically shifts the storage based on workload and needs of

virtual machines. (Harvey 2018.)

Software-defined data centers (SDDC) are combinations of SDS, SDN and

virtualization. More specifically, this structure involves a server, a CPU and

memory, network and storage virtualization. It provides environment flexibility,

especially for multi-tenant data centers. It is a great solution to improve scalability

and automation in data centers. (Nadeau & Gray 2013.)

Software-defined security (SDSec) is common in infrastructures that are

virtualized, or cloud-based. The capability of the controller to be aware of the

whole network topology is a significant benefit in dynamically address security

threats. Being in possession of such information, the powerful monitoring can be

configured in the network. (Yoon et al. 2017).

The first use case, where SDN comes very handy, is a lack of network

omniscience. A centralized controller gives a live overview of the network

conditions allowing to troubleshoot easier and faster. The second use case is

when managing many devices is time consuming. A standard interface for all

devices via the controller is implemented using software. The long provisioning

time is the third reason why SDN could be considered. Its virtualization and

programmability improve the deployment and make DevOps achievable.

18

To summarize, according to Dargin (2018), SDN design is beneficial and highly

advantageous in the following cases:

• When there is no necessity or recourses for buying hardware.

• When the resources are not utilized constantly.

• When the quality of service is essential for the business.

A different useful aspect of SDN is the ability of a controller to speak to different

devices supporting the same protocol using standard interface. An SDN controller

has the capability to orchestrate all the necessary changes as required. The

vendor lock-in of the devices is not an unsolvable problem anymore. Consistency

across devices is achieved with centralized controller automation, simultaneously

updating the required configurations. Typos and human mistakes are less of a

problem. Rolling back is straightforward, because the SDN controller knows the

current state of the network. (Azodolmolky 2013.)

2.4 Security of SDN

To ensure the reliability and stability of SDN infrastructure, the network

administrators need to implement common security practices. Particularly, the

system and the OS should be kept updated and patched. The unused ports

should be disabled and locked. For easy and reliable operations and

troubleshooting, configuration management and log monitoring should be

enforced. (Dargin 2018.)

The Confidentiality, Integrity, Availability (CIA) triad is a model that is applied to

evaluate the security of any IT infrastructure and its appropriateness for the

business requirements and standards. Figure 8 shows the CIA model of each

plane of SDN, as suggested by Yoon et al. (2017).

19

Figure 8. CIA model of SDN (Yoon et al. 2017)

This section covers the general attack surface of SDN. Separately, the security of

the control plane is discussed. These topics are important to understand in order

to answer the research questions of this work.

2.4.1 Attack surface

SDN is a new and developing architecture. Thus, the attention of security hackers

focuses on its potential vulnerabilities. This statement is true for OpenFlow

protocol as well. Moreover, as SDN is a highly virtualized infrastructure, the

attack footprint is big. (Dargin 2018.)

The programmable application plane and the NBI are agile and flexible, and this

brings several security challenges. Firstly, there are no compulsory security

features enforced for these applications. Secondly, the NBI does not have a

default standard that forces the development to be depended on a controller and

its implementation. (Banse & Rangarajan 2015.)

If a business wants to implement SDN in its network, it is important to consider

OpenFlow protocol vulnerabilities during the design stage. To give an example,

OpenFlow handshake does now request authentication of switches. (Thimmaraju

2018.) This can be mitigated using other authentication methods, such as TLS

certificates.

20

Data plane attacks are regularly related to wrong or illegitimate entries of the flow

rules. For instance, the flow rules can overload the switch with bogus traffic.

Other things to consider regarding the data plane attack surface is that a switch is

a good target for eavesdropping; an intruder can explore the set up and

configuration of the SDN network to plan an actual attack. (Yoon et al. 2017.)

2.4.2 Control plane security

The synchronization between a controller and the switches in a big SDN network

takes a noticeable amount of time. Delays, packet loss and equipment from

different vendors may cause asynchronization. This is a vulnerable moment for

system security as it is not easy to predict its behaviour. This is the reason why

monitoring traffic in the system is very important. (Hu et al. 2017.)

Multi-controller architecture is a way to resolve a single point of failure problem of

SDN. However with such setup it is challenging to manage the reliability of the

control plane. (Hu et al. 2017.) Hu et al. (2017) also suggest using controller

clustering for load balancing of the controllers.

The control plane is the brain of the network. In order to avoid the stability issues

of the controller, the appropriate security solution should be in place. It requires to

cover confidentiality, integrity and availability of the controller. (Yoon et al. 2017.)

3 DENIAL OF SERVICE

Denial of Service is one of the most common attacks nowadays and has a share

of 15% of all network attacks, after 20% for both browser and brute force attacks

(McAfee Labs 2017). In a Denial of service attack, the hacker tries to prevent

normal operations of a website, a server or a user. By overloading the system

with traffic, it consumes all the available resources and bandwidth.

According to Bulletproof Annual Cyber Security Report 2019 (2019), the cost of

denial of service attacks can goes to up to 120,000 USD for a small business and

21

more than 2 million USD for an enterprise. Thus, these attacks are very

expensive for companies, especially for startups and other small business.

In this chapter, the history of denial-of-service attacks is described. Next, the

available methods to execute such attacks are explained. Lastly, the impact of

DoS attack and the solutions to mitigate them in SDN are research before the

practical part.

3.1 History

In 1974, the first DoS attack was initialized by accident on a PLATO terminal, a

shared electronic learning system. David Dennis, a 13-year-old student from the

United States, accidentally found the “external” command that was initially used

for communication with external hosts. A Denial of Service was caused by the

student running the command on a computer with no external devices. This

action made the terminal freeze with a shutdown being the only way to fix it.

(Radware security 2017.)

The first distributed DoS attack succeeded in 1999 using the Trinoo tool. The

UDP traffic from the infected hosts flooded servers of University of Minnesota in

1999. The attacker used the vulnerability of buffer overrun in the RPC protocol

services. (Kessler 2000.) The Trinoo was used to make zombies out of Unix

hosts. Later, The Wintrinno tool made it possible to infect Windows systems in

2000.

One more way to create a DoS attack is to flood a target host with ICMP

packages. This attack is called ping of death. This is quite an old-fashioned

attack and usually does not have big impact nowadays. Operating systems

usually have ICMP requests blocked on the firewall level. (Ballal 2018.)

Since 1999 there has been an enormous amount of DDoS attacks differentiated

by approach and impact. For instance, in 2012, several big US banks became the

targets of a DDoS attack. The attack was executed by different methods in order

22

to monitor which one worked better. The peak load from this attack was over 60

Gbps. (Constantin 2012.)

Once technology has been evolving and more resources and companies have

moved their businesses to the internet world, the potential impact of a DoS-like

attack increased significantly. Moreover, nowadays such attacks are not

performed for fun or curiosity, but for other motivation, such as gaining profits or

political manipulation. Not to mention that the tools to perform such attacks exists

and are available for purchase on the Darknet. Before, advanced knowledge and

skills were the essential components to implement cyber security attacks.

Nowadays, denial-of-service is available as-a-service. (Radware security 2017.)

3.2 Techniques

To efficiently mitigate an attack, it is important to correctly categorize it. Denial-of-

service attacks can be grouped by three types: volume, protocol and application

layer. Whereas they have a common goal, each of the three types targets

different levels of the network. (Ballal 2018.)

Volume based attacks are processed by overloading the bandwidth of the target.

Bits per second is the measure of its size. According to Ballal (2018), a few of the

most well-known attacks of this type are the following:

• UDP flood is triggered when the attacker sends UPD packets to random
ports of the attacked host. After a no listening application is found on the
port, the host replies with ICMP package “destination unreachable” that
causes the resource starvation of the victim. This attack can be performed
using ready-to-use software, for instance, UDP Unicorn.

• ICMP flood works the same way as UDP flood, but in stead of UDP, the
attacker overwhelms the target with ICMP Echo request without waiting for
the reply. Such an attack not only consumes incoming bandwidth but
outcoming as well, as the victim host tries to response with ICMP Echo
reply messages.

Protocol attacks are focused on the resources of servers or on intermediate

devices, for instance, load balancers and firewalls. The strength of this type is

measured in packets per second. According to Clouldflare (2019), the protocol

attacks are as follows:

23

• TCP SYN flood attacks exploit an implementation of TCP protocol,
particularly the design of the three-way handshake. An attacker initiates a
TCP connection with a victim with SYN package. Then the victim responds
with a SYN-ACK packet to the attacker or a spoofed IP address and waits
for the response, the final ACK packet. If there is a sufficient amount of
half-open connections that occupy entire resources, the victim will not be
able to accept any further TCP connection requests.

• A Smurf DDoS attack is another attack that makes use of ICMP protocol.
An attacker, using the spoofed source IP address of the victim, broadcasts
ICMP Echo request within a network. Then the victim will receive all the
ICMP Echo reply traffic, which may depreciate the whole victim’s network.

Application layer attacks are usually based on webserver requests. They are

measured in requests per second. Ballal (2018) describes the following

application layer attacks:

• HTTP flood is an attack in which an attacker targets a victim web server
with HTTP request.

• Slowloris attack is processed by holding many open connections to a
victim web server for long time. It is implemented by transmitting partial
requests, that overload the victim and results in denying other
connections.

The separate type of DoS attacks is a zero-day attack. It exploits the

vulnerabilities in a system that are not yet known by the software vendor but

found by an attacker. To minimize the chance of this attack, the best security

practices should be implemented in the environment. (Bennet 2016.)

3.3 DoS of SDN

Although the controller is usually more attractive as a DoS attack target, SDN

switches are vulnerable too. For example, an intruder can overload the Ternary

Content Addressable Memory (TCAM) table of an OpenFlow switch. For this

overflow attack, many new flows are created and forwarded to the switch.

Therefore, it is occupied with removing and adding the entries to the table and

flooding the messages to the controller. (Balogh 2017.)

There are a few attack vectors in SDN that an attacker can use to successfully

implement a DoS attack on an SDN controller. There are several potential

24

vulnerabilities described by Yoon et al. (2017) that can be used to complete the

attack against the controller as follows:

• Architectural bottleneck: Hosts in the same network can generate an
extensive number of packets to flood the control plane.

• Weak authentication: Switches in the network can be spoofed and be
exploited to drop the connections or to generate not legitimate traffic.

• Improper exception handling: An intruder can inject malformed messages
to the control plane to perform the attack.

• Dependence on external variable: Manipulation with system time can lead
to unstable behaviour of the controller.

Using the above vulnerabilities, for instance, an attacker can target a data plane

device and inject many false flow request that are not yet existing in flow table.

The controller receives all these requests and needs to process them. If there are

sufficient requests sent, the controller’s CPU usage might go up to 100%. (Dridi &

Zhani 2016.) A different approach is to send fake flow requests to the controller

that will push wrong network flows back to the switches.

3.3.1 Detection and mitigation solutions

The fundamental attack detection solution in SDN is to detect dubious traffic

using complete overview of the network. The main mitigation technique is to

configure flow tables correctly. For instance, they should include event filtering,

rule timeout adjustments and packet dropping. Access Control List (ACL) should

be configured as flow rules as well. (Ballal 2018.)

The SDN infrastructure should adopt specialized monitoring systems for deeper

packet inspection (DPI). DPI is an advanced traffic filtering technology that is

commonly implemented in firewalls to mitigate attacks, particularly DoS. (Cisco

2019). According to Finnie (2012), DPI is the most efficient when collocated with

the devices on the data plane layer or the controller. A challenging aspect of this

method is to configure DPI in real time. As the network resources should be

properly allocated, Quality of service (QoS) should be implemented as well.

Machine learning (ML) provides intelligence into traffic analysis within SDN. It has

capabilities of dynamically updating flow tables based on machine learning

25

algorithms. Machine learning models reside in the application plane of SDN and

communicate with the controller via the NBI. A deviation from what is known by

the model triggers an alert. Before the model is properly trained, it gives many

false positive alerts. However, with the right dataset this approach can achieve

significant results in DoS attack detection. (Nguyen 2018).

4 IMPLEMENTATION

In this chapter, an SDN environment is built in the GNS3 simulation environment.

Then, a DoS attack is created against the controller and its behaviour is observed

under the attack. Before the actual documentation of the built system, the

technologies that are used to conduct the practical part of this thesis are

described.

4.1 Simulation environment setup

This thesis project is implemented on a single physical machine. Thus, the

simulation and hypervisor software is required in order to build a working test

setup. GNS3 and VMware were chosen as such tools.

Graphical Network Simulator 3 (GNS3) is an open source and free-to-use

software under GNU General Public License for virtual and real networks

simulation. GNS3 has an expanding community of 800,000 users, who support

and develop the application. (Bombal 2018). To start working in the GNS3

environment, two components are required to be installed: GNS3 virtual machine

and GNS3-all-in-one GUI application. GNS3 VM acts as a server to run the

nodes and appliances created in the GUI. The installation link of GNS3 is

available after registration on the official website (https://www.gns3.com/). For

this project GNS3 2.2.0 version is installed. During the setup, it is possible to

install different components, such as console clients, network packet sniffing and

analyzer tools.

VMware Workstation is hypervisor software that can be installed on Windows and

Linux operating systems. It is free to use for non-commercial personal use.

https://www.gns3.com/

26

(VMWare 2019). VMware Workstation is chosen as a tool for creating virtual

machine’s setup for this project. GNS3_VM.ova file can be downloaded from the

GNS3 website. This Open Virtualization Format (OVA) file is used to describe the

GNS3 VM image and is loaded into VMware Workstation. The imported GNS3

VM runs on the Ubuntu 64-bit operating system and its configurations are shown

in Figure 9.

Figure 9. GNS3 VM 2.2.0 settings

The combination of these tools provides flexibility. This setup allows to

experiment with the network configurations. Moreover, both technologies are free

for personal use.

4.2 Simulation of software-defined network

The chosen approach is to have the topology consisting of two Open vSwitch

devices and one controller. The controller is the OpenDaylight controller running

in a Docker container. Four Ubuntu hosts are added to the network to complete a

DoS attack.

First, the Ubuntu appliance is downloaded from the GNS3 website. The file

ubuntu.gns3a is imported as a Docker container to the GNS3 project. Later, this

container is set up to host the OpenDaylight controller. Additionally, a layer 3

Ethernet switch and a NAT cloud are added to provide internet access for the

topology. The next step is to create two Open vSwitch switches, the management

interface of these switches is eth0. To each of Open vSwitch switches, two

Ubuntu hosts are connected. Figure 10 presents the SDN topology created.

27

Figure 10. SDN topology in GNS3

At this stage, the OpenDaylight controller and OF switches are in the same

network and can ping each other. The next steps are to install OpenDaylight

controller and to configure devices to communicate with each other using

OpenFlow protocol.

To update, install or delete the packages in Linux from the command line, apt-

get command is used. (Siever et al. 2009.) The commands in Code 1 update the

installed packages, install Java, export JAVA_HOME and install wget to

download files from the internet.

root@OpenDaylightController:~# apt-get update

root@OpenDaylightController:~# apt-get install default-jre-

headless

root@OpenDaylightController:~# export

JAVA_HOME=/usr/lib/jvm/default-java

root@OpenDaylightController:~# apt-get install wget

root@OpenDaylightController:~# apt-get install unzip

Code 1. Updating and installing packages to the ODL controller

The next step is to download the Karaf distribution of OpenDaylight from Nexus

Repository manager where all versions of ODL are stored and to install the ODL.

28

The compressed file with Karaf 0.6.4 Carbon is downloaded using wget and

unzipped with unzip (Code 2).

root@OpenDaylightController:~# wget

https://nexus.opendaylight.org/content/repositories/public/o

rg/opendaylight/integration/distribution-karaf/0.6.4-

Carbon/distribution-karaf-0.6.4-Carbon.zip

root@OpenDaylightController:~# unzip distribution-karaf-

0.6.4-Carbon.zip

Code 2. Downloading and unzipping the file

Figure 11 illustrates what the installation folder of the ODL distribution artifact

consists of.

Figure 11. Content of distribution-karaf-0.6.4-Carbon folder

The command ./bin/karaf starts Apache Karaf, that is OSGi runtime

environment, that hosts OpenDaylight controller. Figure 12 shows the ODL

console launched.

29

Figure 12. The ODL console in Apache Karaf

Next, the RESTCONF (odl-restconf), layer 2 switch functionality (odl-

l2switch-switch) and MD-SAL interfaces (odl-mdsal-apidocs) features

are installed (Code 3).

opendaylight-user@root> feature:install odl-restconf odl-

l2switch-switch odl-mdsal-apidocs

Code 3. Installing features for ODL controller

The next action is to set up the switches to listen to the controller. Before that, to

avoid loops in the topology it is important to run the command that enables STP

protocol on both Open vSwtich switches (Code 4).

ovs-vsctl set bridge br0 stp_enable=true

Code 4. Enabling STP protocol

The command in Figure 13, shows the flows available on the OpenFlow table.

Currently, actions=NORMAL is shown. This means the packets are processed

using the traditional layer 2 and layer 3 forwarding functionally.

Figure 13. Show the flow table

30

The command configures the ODL controller on the switches (Code 5). The

management interface of the switches is by default eth0, so all other

connections are made to br0 interface. The port for OpenFlow TCP traffic is

6633.

ovs-vsctl set-controller br0 tcp:192.168.122.203:6633

Code 5. Setting the controller

Figure 14 shows an output of the ovs-vsctl command that confirms that the

controller is successfully connected to the OF switch.

Figure 134. br0 interface with controller connected

Now, in Figure 15, dump-flows command shows the flow entries with the

controller specified.

Figure 145. dump-flows command

Finally, when the SDN topology is setup and OpenFlow is enabled, packet

capturing is enabled on eth0 interface of the OpenDaylight controller.

Preinstalled with GNS3, Wireshark is a free and open-source software for packet

capturing and network analysis. (Petters 2019.)

4.3 Simulation of DoS traffic

First, IPv4 addresses are assigned to the Ubuntu hosts connected to the OF

switches, as illustrated in Figure 10. The hosts are in the same 10.1.1.0

31

255.255.255.0 network. With the command ifconfig eth0 10.1.1.4

netmask 255.255.255.0 up, UbuntuHost-1 obtains 10.1.1.1.

Correspondingly with the similar command, UbuntuHost-2 gets 10.1.1.2,

UbuntuHost-3 – 10.1.1.3 and UbuntuHost-4 – 10.1.1.4.

The approach of the attack is to create ping packets from UbuntuHost-1 to

UbuntuHost-3 and from UbuntuHost-4 to UbuntuHost-2. The source IP addresses

of these ICMP packets are generated randomly. The hping3 tool is used to

created DoS attack on the controller. This tool can send custom ICMP and

TCP/IP packets. (Kacherginsky 2008.)

The hping3 is executed on UbuntuHost-1 and UbuntuHost-4. This command is

represented in Figure 16. --flood option rapidly sends the packets and does

not show incoming replies, --rand-source is a random source option, changes

the source IP of each request and, in the end, 10.1.1.3 is the IP address of the

destination, of UbuntuHost-3. The same command is run on UbuntuHost-4, with

the destination address of UbuntuHost-2, 10.1.1.2.

Figure 156. hping3 command

4.4 Findings and results

There are several observations about the controller’s behaviour during the ping

flood attack. These can be used as an indication of malicious traffic in order to

detect a DoS attack in time and to mitigate it. For instance, such network actions

are good entries to be logged into monitoring systems and to trigger alerts.

Firstly, the ODL controller is not able to reply to each received OFPT_PACKET_IN

message with an OFTP_PACKET_OUT message, as illustrated in Figure 17.

During the normal load, if a switch receives a packet for which it does not have a

flow rule yet, it buffers the data and sends only the header in OFPT_PACKET_IN

32

message to the controller. In case the buffer of the switch is already full,

OFPT_PACKET_IN message will consist of both the header and the data.

Accordingly, the controller will also send the full packet in OFPT_PACKET_OUT

message back as a reply. Transmitting complete packets in these messages

massively consumes the SBI bandwidth. (Kandoi 2015.)

Figure 17. OFPT_PACKET_IN and OFPT_PACKET_OUT messages during the DoS attack

Secondly, the controller was periodically sending OFPT_BARRIER_REQUEST

messages back to the switches. This example is shown in Figure 18. This

message indicates that the controller requests an OF switch to process all the

messages received before the OFPT_BARRIER_REQUEST message. When the

switch processes the requested operations, it sends an OFPT_BARRIER_REPLY

message back. At the same time, this guarantees message ordering.

Figure 168. OFPT_BARRIER_REQUEST and OFPT_BARRIER_REPLY messages

Also, TCP Out-Of-Order and TCP Retransmission issues were observed

by Wireshark, as shown in Figure 19. The first error indicates that a transmitted

segment is received in a wrong order. The TCP Retransmission problem can

be a result of a buffer overflow.

33

Figure 19. TCP error packets

One of the ways to prevent bandwidth starvation is to set a rate limit on the

controller. In OpenFlow 1.3 version, it is possible for the controller to install a rate

limiting rule for one of the OF switches, which sends more packets than the

controller can handle. The disadvantage of such a solution is that it slows down

legitimate traffic together with malicious packets.

5 THE FUTURE OF SDN

SDN made its way from the virtualization technology of data centers to the

architecture that is seen as a flexible and programable alternative to traditional

networks. According to a Market Research Future (2019) prediction, the market

revenue of SDN will increase over three times in a 5-year period, from 2018 to

and 2023, rising to 28.9 billion USD. One of the most important aspects to

consider, when forecasting the future of a technology, is the implementation and

usage costs for the consumer. SDN is highly beneficial economically as it

combines virtualization and agility, which brings hardware components and IT

management expenses down. (Nadeau & Gray 2013.)

Today, the biggest challenge is to find a universal way to recognise a DoS attack.

In academic research, machine learning techniques are already accessible.

However, to adopt these practices for commercial products, ML models should

generate proper logs and follow a security development process. Artificial

intelligence and machine learning have great potential to improve packet analysis

and cyber-attack prevention within SDN. (Nguyen 2018.)

34

To sum up, SDN will grow along with cloud computing and virtualization. The

security aspect of it is advancing as well. There are not many experiences with

SDN-targeted attacks yet. Since traditional networks are still vulnerable for new

and unpredictable attacks, the potential target point of SDN should be only

anticipated. Even if currently an SDN has security flaws for some use cases,

more security solutions and research work will be done in this field by industry

and in academia in the future. (Banse & Rangarajan 2015.)

6 CONCLUSIONS

The purpose of this work was to research the area of software-defined networks.

It was important to evaluate if this new approach to network design brings

additional security concerns and threats. Particularly, the goal was to understand

if the centralized management could become a critical vulnerability to denial-of-

service attacks.

The background research covered the initial separation and evolution of SDN

from traditional networks. Furthermore, the main architecture components and

use cases of SDN were described. Then, the overall attack surface and the

control plane security were evaluated. Before moving to practical part, it was

important to explain the history and technologies behind denial-of-service attacks.

In the practical part, an SDN network topology simulation was created using

GNS3 software. In this simulation, the OpenDaylight controller communicated to

switches using OpenFlow protocol. The ping flood DoS attack against the

controller was simulated. During the attack, Wireshark software was capturing the

traffic and based on this the controller’s behaviour was evaluated.

This thesis described a general high-level overview of the comprehensive field of

software-defined networks. The security aspects were covered more in depth and

were elaborated on. Nevertheless, there are topics that can be researched and

developed more in scope of future projects, for instance, ML models built

specifically for SDN or application layer security software.

35

Nowadays, more and more companies move their businesses to cloud and adopt

DevOps methodologies to keep up with the pace of information technologies.

SDN is a rapidly evolving technology and with the added flexibility and

virtualization, it gains more popularity in enterprises. Another thing to bear in

mind is that security risks and threats should always be carefully evaluated and

considered on the design stage of any network to avoid complications in the

future.

A centralized management of SDN can be properly secured against DoS attacks

using various methods, such as a multi-controller setup or appropriate monitoring

techniques. Moreover, security should be considered and be properly planned

from the initial stages of network design. Today, successfully maintaining a stable

SDN environment is challenging but it is possible with the right knowledge and

technologies.

36

REFERENCES

Amazon Web Services. 2019. About AWS. WWW document. Available at:
https://aws.amazon.com/about-aws/ [Accessed 8 April 2019].

Azodolmolky, S. 2013. Software Defined Networking with OpenFlow.
Birmingham: Packt Publishing Ltd.

Azodolmolky, S., Nejabati, R., Escalona, E., Jayakumar, R., Efstathiou, N. &
Simeonidou, D. 2011. Integrated OpenFlow-GMPLS control plane: an overlay
model for software defined packet over optical networks. Optical Society of
America.

Ballal, S. K. 2018. Bumper to Bumper: Detecting and Mitigating DoS and DDoS
Attacks on the Cloud, Part 2. WWW document. Updated 16 May 2018. Available
at: https://securityintelligence.com/bumper-to-bumper-detecting-and-mitigating-
dos-and-ddos-attacks-on-the-cloud-part-2/ [Accessed 25 November 2019].

Balogh, A. 2017. Addressing TCAM limitations in an SDN-based Pub/Sub
System.

Banse, C. & Rangarajan, S. 2015. A Secure Northbound Interface for SDN
Applications.

Bartels, A. 2011. Data Center Evolution: 1960 to 2000. WWW document.
Updated 31 august 2011. Available at: https://blog.rackspace.com/datacenter-
evolution-1960-to-2000 [Accessed 1 April 2019].

Bennet, M. 2016. Zero-Day DDoS Attacks? What? WWW document. Updated 1
November 2016. Available at: https://medium.com/@bennettaur/zero-day-ddos-
attacks-what-93f57e0e2d6 [Accessed 9 December 2019].

Bohm, M., Leimeister, S., Riedl, C. & Krcmar, H. 2011. Cloud Computing and
Computing Evolution.

Bombal, D. 2018. Why Use the GNS3 Virtual Network Simulator? WWW
document. Updated 4 October 2018. Available at:
https://business.udemy.com/blog/why-use-the-gns3-virtual-network-simulator/
[Accessed 25 November 2019].

Bort, J. 2014. The Inside Story Of A $1 Billion Acquisition That Caused Cisco To
Divorce Its Closest Partner, EMC. WWW document. Updated 26 October 2019.
Available at: https://www.businessinsider.com/inside-the-1-billion-vmware-nicira-
buy-2014-10?international=true&r=US&IR=T [Accessed 9 April 2019].

Brocade Communications Systems, Inc. 2015. SDN Applications. WWW
document. Updated 29 September 2015. Available at:
https://github.com/BRCDcomm/BVC/wiki/SDN-applications [Accessed 25
November 2019].

about:blank
about:blank
about:blank
about:blank
about:blank
https://medium.com/@bennettaur/zero-day-ddos-attacks-what-93f57e0e2d6
https://medium.com/@bennettaur/zero-day-ddos-attacks-what-93f57e0e2d6
about:blank
about:blank
about:blank
about:blank

37

Burt, J. 2012. How Cisco, HP, Juniper, Others Are Tackling SDN, OpenFlow.
WWW document. Updated 27 April 2012. Available at:
https://www.eweek.com/networking/cisco-systems [Accessed 9 April 2019].

Chao, L. 2016. Cloud computing networking: theory, practice, and development.
Boca Raton: CRC Press.

Cisco. 2018. A Cisco Guide to Defending Against Distributed Denial of Service
Attacks. WWW document. Available at:
https://tools.cisco.com/security/center/resources/guide_ddos_defense [Accessed
28 November 2019].

Cisco. 2018. Cisco IOS XE 16: Secure, Open, and Flexible. PDF document.
Available at: https://www.cisco.com/c/dam/en/us/products/collateral/ios-nx-os-
software/ios-xe/nb-09-ios-xe-secure-open-flex-aag-cte-en.pdf [Accessed 3
December 2019].

Cloudflare. 2019. What is a Denial-of-Service (DoS) Attack? Available at:
https://www.cloudflare.com/learning/ddos/glossary/denial-of-service/ [Accessed 3
December 2019].

Constantin, L. 2012. DDoS attacks against U.S. banks peaked at 60 Gbps.
WWW document. Updated 13 December 2012. Available at:
https://www.computerworld.com/article/2493861/ddos-attacks-against-u-s--
banks-peaked-at-60-gbps.html [Accessed 25 November 2019].

Dargin, M. 2018. Secure your SDN controller. WWW document. Updated 2
January 2018. Available at:
https://www.networkworld.com/article/3245173/secure-your-sdn-controller.html
[Accessed 1 December 2019].

Dargue, M. 2015. Software-Defined Networking: Disruption and Opportunity.
WWW document. Updated 5 November 2015. Available at:
https://blog.cartesian.com/software-defined-networking-disruption-and-
opportunity [Accessed 8 December 2019].

Dridi, L. & Zhani, M. F. 2016. SDN-guard: DoS attacks mitigation in SDN
networks. 5th IEEE International Conference on Cloud Networking, 213-217.

Finnie, G. 2012. The Role of DPI in an SDN World. Heavy Reading.

Guo, C., Lv, G., Yang, S. & Wang J. H. 2014. Virtual Data Center Allocation with
Bandwidth Guarantees. U.S. Pat. 8,667,171.

Harvey, C. 2018. What is Software Defined Storage? WWW document. Updated
22 February 2018. Available at: https://www.enterprisestorageforum.com/storage-
software/what-is-software-defined-storage.html [Accessed 26 November 2019].

about:blank
about:blank
about:blank
about:blank
https://www.cloudflare.com/learning/ddos/glossary/denial-of-service/
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank

38

HP Inc. 2014. HP Launches Industry’s First SDN App Store, Unleashing New
Wave of Networking Innovations. WWW document. Updated 25 September 2014.
Available at: https://www8.hp.com/us/en/hp-news/press-release.html?id=1798074
[Accessed 26 November 2019].

Hu, T., Guo, Z., Baker, T. & Lan, J. 2017. Multi-controller Based Software-
Defined Networking: A Survey.

Kacherginsky, P. 2008. Hping Tips and Tricks. WWW document. Updated 13
August 2008. Available at: https://medium.com/@iphelix/hping-tips-and-tricks-
85698751179f [Accessed 2 December 2019].

Kandoi, R. 2015. Denial-of-Service Attacks in OpenFlow SDN Networks.

Kaspersky Lab US. 2012. Survey: Among U.S. Companies Adopting IT
Virtualization, 53 Percent Use Sub-Par Protection to Secure Virtual Infrastructure.
WWW document. Updated 27 April 2012. Available at:
https://usa.kaspersky.com/about/press-releases/2012_survey-among-u-s-
companies-adopting-it-virtualization-53-percent-use-sub-par-protection--to-
secure-virtual-infrastructure [Accessed 8 April 2019].

Kessler, G. C. 2000. Defences Against Distributed Denial of Service Attacks.
WWW document. Available at: https://www.garykessler.net/library/ddos.html
[Accesses 28 November 2019].

Kirkpatrick, M. 2010. Google CEO Schmidt: “People Aren’t Ready for the
Technology Revolution”. WWW document. Updated 4 August 2010. Available at:
https://readwrite.com/2010/08/04/google_ceo_schmidt_people_arent_ready_for_t
he_tech/ [Accessed 28 March 2019].

Knorr, E. 2013. OpenDaylight: A big step toward the software-defined data
center. WWW document. Updated 8 April 2013. Available at:
https://www.infoworld.com/article/2614152/opendaylight--a-big-step-toward-the-
software-defined-data-center.html [Accessed 9 April 2019].

Market Research Future. 2019. Software Defined Networking (SDN) Market
Research Report- Global Forecast 2023. WWW document. Updated February
2019. Available at: https://www.marketresearchfuture.com/reports/software-
defined-networking-market-1607 [Accessed 20 November 2019].

Lee, Y. & Chiueh, T. 2014. OpenFlow switch and methods for packet exchanging
thereof, SDN controller and data flow control method thereof. U.S. Pat.
US20160142285A1.

Madhava, K. 2018. What is Software-Defined Networking (SDN) Application?
WWW document. Updated 27 April 2018. Available at:
https://lavellenetworks.com/sdn-applications/ [Accessed 25 November 2019].

about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
https://www.marketresearchfuture.com/reports/software-defined-networking-market-1607
https://www.marketresearchfuture.com/reports/software-defined-networking-market-1607
about:blank

39

McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L.,
Rexford, J., Shenker, S. & Turner, J. 2008. OpenFlow: Enabling innovation in
campus networks. ACM SIGCOMM Computer Communication Review, 69-74.

Miller, R. 2016. How AWS came to be. WWW document. Updated 2 July 2016.
Available at: https://techcrunch.com/2016/07/02/andy-jassys-brief-history-of-the-
genesis-of-aws/ [Accessed 8 April 2019].

Nadeau, T. D. & Gray, K. 2013. SDN: Software Defined Networks. Sebastopol:
O'Reilly Media, Inc.

Nguyen, T. April 2018. The Challenges in SDN/ML Based Network Security: A
Survey. PDF document. Available at: https://arxiv.org/pdf/1804.03539.pdf
[Accessed 28 November 2019]

Open Networking Foundation. 2012. Software-Defined Networking: The New
Norm for Networks. PDF document. Available at:
https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-
papers/wp-sdn-newnorm.pdf [Accessed 28 November 2019].

Open Networking Foundation. 2016. Open Networking Foundation and ON.Lab
to Merge to Accelerate Adoption of SDN. WWW document. Updated 19 October
2016. Available at: https://www.opennetworking.org/news-and-events/press-
releases/open-networking-foundation-and-on-lab-to-merge-to-accelerate-
adoption-of-sdn/ [Accessed 9 April 2019].

Park, B. 2013. History and Significance of Nicira. WWW document. Updated 26
September 2013. Available at:
https://www.bhagwad.com/blog/2013/technology/history-and-significance-of-
nicira.html/ [Accessed 9 April 2019].

Petters, J. 2019. How to Use Wireshark: Comprehensive Tutorial + Tips. WWW
document, Updated 29 August 2019. Available at:
https://www.varonis.com/blog/how-to-use-wireshark/ [Accessed 2 December
2019].

Radware Security. 2017. History of DDoS Attacks. WWW document. Updated 13
March 2017. Available at: https://security.radware.com/ddos-knowledge-
center/ddos-chronicles/ddos-attacks-history/ [Accessed 25 November 2019].

Riveners, L. 2016. Why DevOps Should Care About SDN. WWW document.
Updated 2 September 2016. Available at: https://devops.com/devops-care-sdn/
[Accessed 8 December 2019].

Siever, E., Figgins, S., Love, R. & Robbins, A. 2009. Linux in a Nutshell, Sixth
Edition. Sebastopol: O'Reilly Media, Inc.

Thimmaraju, K. 2018. CVE-2018-1000155: Denial of Service, Improper
Authentication and Authorization, and Covert Channel in the OpenFlow 1.0+
handshake. Email 9 May 2018. Technische Universität Berlin.

about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank

40

Veritis Group Inc. 2019. DEVOPS - A Successful Path To Continuous Integration
And Continuous Delivery. PDF document. Available at:
https://www.veritis.com/wp-content/uploads/2016/09/devops-a-success-ful-path-
to-continuous-integration-and-continuous-delivery-white-paper.pdf [Accessed 25
November 2019].

VMWare. 2018. 20 Year Anniversary Timeline. WWW document. Available at:
https://www.vmware.com/timeline.html [Accessed 7 April 2019].

VMWare, Inc. 2019. Workstation Player FAQs. WWW document. Available at:
https://www.vmware.com/products/player/faqs.html [Accessed 26 November
2019].

Yoon, C., Lee, S., Kang, H., Park, T., Shin, S., Yegneswaran, V., Porras, P. &
Gu, G. 2017. Flow Wars: Systemizing the Attack Surface and
Defenses in Software-Defined Networks.

Zinner, T., Jarschel, M., Hossfeld, T., Tran-Gia, P. & Kellerer, W. 2013. A
Compass Through SDN Networks. Wurzburg: University of Wurzburg Institute of
Computer Science.

about:blank
about:blank
about:blank
about:blank

