

Jan Hagqvist

LAGGINGMETER
The Importance of QoS in Network Gaming

Bachelor’s Thesis
TI15STIVE

2019

Author (authors)

Degree

Time

Jan Hagqvist

Bachelor of
Information
Technology

December 2019

Thesis title

LaggingMeter
The importance of QoS in network gaming

71 pages

Commissioned by

Xamk ICTLAB

Supervisor

Martti Kettunen

Abstract

The purpose of this thesis was to develop a system that allows the generation of individual
interference or lag in the network connection of gamers. This LaggingMeter system also
provides each gamer a button to press when they experience lag in their gameplay. The
first research question was how to implement such a system using a modern PC system.
The second research question was how modern and efficient such a PC system would
need to be. The research was made as a design-based research.

The work is based on a project idea by principal lecturer Martti Kettunen. In the beginning
quality of service theory was studied and it was established that there are four important
network parameters that affect it. These parameters are delay, delay hopping or jitter,
packet loss and bandwidth. These were chosen as the parameters that could be individu-
ally changed for each gamer in the system that was implemented.

The basis of the LaggingMeter system is the Source Router software which is run in a
bridging computer that is placed between the server and client computers. The bridging
computer has two network interfaces, one on the server side and one on the client side.
Source Router captures all the network frames coming in from each of the interfaces, iden-
tifies the used player computers and interferes the connection of each client computer indi-
vidually.

The user interface of the Source Router software is web-based and utilizes a WebSocket
connection. The operator can set different interference for each of the client computers and
monitor the system status using the user interface. Furthermore, a separate software was
created to collect the lag button presses from the users. This software is run in a Raspberry
Pi computer and it sends the button presses to the Source Router software for storage and
further analysis.

As a result of the thesis a system was created that allows interference generation with a
software-only approach and can be used on a regular PC system that has two network
adapters available. The system was tested on four different PC systems which all ran the
system properly. Thus, the minimum level of PC system required was not established.

Keywords

network, gaming, interference, quality of service, lag

Tekijä/Tekijät

Tutkinto

Aika

Jan Hagqvist Insinööri (AMK) Joulukuu 2019

Opinnäytetyön nimi

LaggingMeter
QoS:n merkitys verkkopeleissä

71 sivua

Toimeksiantaja

Xamk ICTLAB

Ohjaaja

Martti Kettunen

Tiivistelmä

Tämän opinnäytetyön tarkoituksena oli kehittää LaggingMeter eli järjestelmä, jolla verkko-
pelaajien verkkoyhteyteen voidaan kehittää yksilöllisiä häiriöitä ja kerätä pelaajilta palaute
heidän kokemistaan häiriöistä jokaiselle pelaajalle erikseen tarjottavan painikkeen avulla.
Työssä tutkittiin, miten edellä mainittu järjestelmä voidaan toteuttaa modernilla PC-laitteis-
tolla. Lisäksi pyrittiin selvittämään minkä tasoinen PC-laitteisto on riittävä järjestelmän käyt-
tämiseksi. Opinnäytetyö tehtiin kehittämistutkimuksena.

Työ pohjautuu yliopettaja Martti Kettusen projekti-ideaan. Työn alkuvaiheessa perehdyttiin
palvelunlaatuteoriaan ja todettiin, että neljä tärkeää verkkoparametria, jotka vaikuttavat pal-
velunlaatuun ovat viive, viiveen vaihtelu, pakettien häviäminen ja kaistanleveys. Nämä va-
littiin parametreiksi toteutettavaan järjestelmään, joita muuttamalla käyttäjien yhteyttä voi-
daan häiritä.

LaggingMeter toteutettiin luomalla Source Router -ohjelma, jota ajetaan palvelimen ja pe-
laajakoneiden väliin asetettavassa siltauskoneessa. Siltauskoneessa on kaksi verkkoliitän-
tää, joista toinen kytketään palvelimen puolelle ja toinen pelaajakoneiden puolelle. Source
Router kaappaa jokaisen verkkoliitäntöihin tulevan verkkokehyksen, tunnistaa niistä eri pe-
laajakoneet ja häiritsee jokaisen pelaajakoneen yhteyttä erikseen järjestelmän käyttäjän
asettamalla tavalla.

Source Router -ohjelman käyttöliittymä on toteutettu web-pohjaisena käyttäen WebSocket-
yhteyttä tiedon välittämiseen. Käyttöliittymän avulla järjestelmän käyttäjä voi asettaa eri häi-
riöitä eri pelaajakoneille ja tarkkailla järjestelmän tilaa. Lisäksi luotiin erillinen häiriönilmai-
supainikkeiden painallukset keräävä ohjelmisto, jota ajetaan Raspberry Pi -pienoistietoko-
neessa. Tämä ohjelma lähettää painikkeiden painallukset Source Router -ohjelmalle keski-
tettyä taltiointia varten.

Tuloksena saatiin järjestelmä, jossa häiriöiden luominen tapahtuu täysin ohjelmallisesti ja
jonka käyttämiseen riittää tavallinen PC-laitteisto kahdella verkkokortilla. Järjestelmä testat-
tiin neljällä eri tehoisella ja eri ikäisellä PC-laitteistolla ja todettiin, että se toimii käytetyllä
100 Mbps:n nopeudella oikein kaikilla testatuilla PC-laitteistoilla. Tämän vuoksi tarvittavan
PC-laitteiston minimivaatimuksia ei kyetty selvittämään.

Asiasanat

tietoverkko, pelaaminen, häiriöt, palvelunlaatu, lägi

CONTENTS

1 INTRODUCTION .. 7

1.1 Aims and method .. 7

2 QOS THEORY .. 9

2.1 QoS service levels .. 10

2.1.1 Best-effort service ... 11

2.1.2 Differentiated service .. 11

2.1.3 Guaranteed service .. 13

2.2 QoS performance metrics ... 15

2.2.1 Network delay ... 15

2.2.2 Delay jitter ... 17

2.2.3 Packet loss ... 19

2.2.4 Bandwidth and throughput .. 21

2.2.5 Per flow sequence preservation .. 22

2.2.6 Availability ... 23

2.3 Quality of Experience .. 24

3 STUDIES ON NETWORK LAG .. 25

3.1 The perceived effect of network lag .. 25

3.2 The effect of tick rate .. 26

3.3 Jitter modeling .. 27

4 LAGGINGMETER DESIGN .. 28

5 SYSTEM IMPLEMENTATION .. 29

5.1 Source Router software .. 30

5.1.1 Web browser user interface .. 33

5.1.2 Delay buffer .. 36

5.1.3 Bandwidth limiting ... 36

5.1.4 Random number generation ... 37

5.1.5 Packet loss and jitter generation ... 39

5.1.6 Configuration and log files .. 40

5.2 Button Press Collector software.. 43

6 SYSTEM TESTING .. 45

6.1 TEST 1: Four different bridging computers ... 46

6.1.1 Bypass test ... 48

6.1.2 Packet loss test ... 50

6.1.3 Base delay test ... 52

6.1.4 Jitter test ... 53

6.1.5 Bandwidth test .. 54

6.1.6 CPU usage test ... 58

6.2 TEST 2: More thorough feature testing ... 59

6.2.1 Packet loss test ... 60

6.2.2 Base delay test ... 61

6.2.3 Jitter test ... 62

6.2.4 Bandwidth test .. 63

6.3 TEST 3: Online gaming test .. 64

7 CONCLUSIONS ... 64

REFERENCES .. 68

LIST OF FIGURES

LIST OF TABLES

ABBREVIATIONS

ADSL Asymmetric Digital Subscriber Line
AF Assured Forwarding
ARP Address Resolution Protocol
BER Bit Error Rate
BTC Bulk Transport Capacity
CoS Class of Service
CRC Cyclic Redundancy Check
DiffServ Differentiated Services
ECMP Equal Cost Multipath
EF Expedited Forwarding
FEC Forward Error Correction
FPS First Person Shooter
FRR Fast Reroute
FTP File Transfer Protocol
IGP Interior Gateway Protocol
IntServ Integrated Services
IP Internet Protocol
IPFRR Internet Protocol Fast Reroute
ITU International Telecommunications Union
LAN Local Area Network
LFSR Linear Feedback Shift Register
MAC Media Access Control
MPLS Multiprotocol Label Switching
OS Operating System
QoE Quality of Experience
QoS Quality of Service
PHB Per-Hop Behavior
RSVP Resource Reservation Protocol
SLA Service Level Agreement
TCP Transport Control Protocol
TE Traffic Engineering
UDP User Datagram Protocol
UI User Interface
USB Universal Serial Bus
VoIP Voice over Internet
V-Sync Vertical Synchronization
XOR Exclusive-OR

7

1 INTRODUCTION

In a world were networking is becoming ever more important the quality of net-

work connections is emphasized. This is especially true in real time communi-

cations where even a slightest delay might ruin the user experience. Tradi-

tional real time applications include video and voice calls. One important real

time application in present-day world is video gaming.

The evolution of video gaming is setting the requirements the network must

possess to new highs especially regarding to the fault tolerance and quality of

the network connection. The failure of the network to meet these requirements

will subject players to an unwanted phenomenon known to players as lag.

The main causes of lag are network delays, the loss of network packets and

limited bandwidth. To a gamer who is playing a real time game these will man-

ifest themselves as various issues in the game play such as the player char-

acter not moving as expected or the player not being able to pick up items.

This thesis will introduce a system to generate deliberate lag for research and

quality control purposes by manipulating the parameters mentioned above.

The first part of the thesis introduces Quality of Service theory which is closely

tied to network lag. Quality of Service is a way for the network to try to mini-

mize the effects of lag. Several studies have been carried out about network

lag. The theory section also includes a review of a few studies.

The second part of the thesis will introduce a system that can be used to in-

tentionally create lag on a network game connection. This part also includes

system tests on the lag creation system that will verify the functionality of the

system components, as well as a limited small-scale test of the system func-

tionality in a real-world network gaming scenario.

1.1 Aims and method

The commissioner of the thesis is the ICTLAB of the South-Eastern Finland

University of Applied Sciences in Kotka, Finland. The institution is also known

by the abbreviation XAMK and was formed in 2017 by the merging of two

South-Eastern Finland Universities of Applied Sciences. At the Kotka campus

8

XAMK has two ICT degree programmes, one for game programming and one

for networking which is transitioning into network cybersecurity.

The purpose of this thesis is to design and implement a system to cause delib-

erate lag into the connection between a player and a game server, a so called

LaggingMeter. The LaggingMeter system was first proposed by principal lec-

turer Mr. Martti Kettunen of XAMK ICTLAB in 2012. The system contains a

component that will generate intentional lag to a player connection and will

also provide each player a button to press when they feel the connection is af-

fected by lag. The work will be limited to implementing the system and will not

include gameplay research with the system.

As there is a game programming degree programme at XAMK the Lagging-

Meter can be used to study the networking aspects of the games the game

programming students will create. LaggingMeter can provide important infor-

mation for the game creator on the quality of the network code of a game. This

information can be used to reduce possible lag by testing several different ver-

sions of network code with the LaggingMeter system and selecting one that is

most resistant to lag. Furthermore, the LaggingMeter can be utilized to test ex-

isting games made by game companies by studying what amount of lag is

enough for the player to detect it thus helping in quality control.

The implementation of the LaggingMeter will be based on modern PC hard-

ware. There are three main components in the LaggingMeter system. The first

component requires a per-user routing of network packets or frames. The sec-

ond component will gather the button presses of the users. The third compo-

nent will collect the data from the two previous components to enable data

analysis.

The research questions for this thesis are:

• What is required to implement the LaggingMeter system on a modern
PC system?

• How modern and efficient the PC hardware must be for the system to
work properly?

9

The LaggingMeter is designed to affect four network parameters: bandwidth,

latency, packet loss and jitter. These parameters are the same that network

Quality of Service (QoS) functionality is designed to work with. Both are work-

ing on the same parameters albeit in opposite directions. Therefore, QoS the-

ory will be covered in the theory section of the thesis.

When starting a new research one of the first things a researcher must decide

on is the research method. Sometimes the method can be more freely chosen

by the researcher while sometimes the nature of the research subject will de-

fine the method. Qualitative and quantitative methods are the most common

main classes of research. Whether a qualitative or a quantitative method is

used will be dictated by the nature of the phenomenon. (Kananen 2014, 51.)

Both research methods also have sub methods, or the researcher can com-

bine both methods in different portions in the research. Qualitative research,

however, forms the basis of all research as it has helped to create the under-

standing of real-life phenomena. (Kananen 2014, 52.) The research method

chosen for this thesis is design-based research which is a research method

developed by Finnish researchers (Kananen 2014, 58).

Design-based research is a combination of both qualitative and quantitative

methods and targets a change in the research subject which is usually a prod-

uct, method or organization. There has been wide debate whether design-

based research is scientific. Many companies carry out design changes in

their products constantly, but this is not design based research. What is re-

quired to make such a work a scientific research is the inclusion of a theory

section and a scientific take on the matters concerned. (Kananen 2017, 18.)

2 QOS THEORY

QoS is a way to describe and standardize the overall performance of a net-

work in terms of assurance and level of service. It requires a way for the net-

work to prioritize traffic depending on its urgency and guarantees a certain

level of performance for the traffic flow. These guarantees are important in

real-time applications. (Misra & Goswami 2017, 92.)

10

The need for QoS stems from the fact that the resources of any given network

are limited. In the presence of network congestion this leads into a situation

where the network traffic needs to be prioritized by certain quality of service

methods. Therefore, network congestion leads into delay and loss of network

packets. Data applications can usually deal with delay, but it is detrimental to

certain applications such as Voice over Internet (VoIP) where the Internet is

used for voice communication. (Saarelainen 2011, 222.)

Other applications where QoS is required are video transmission and indus-

trial control. Delay in robot arm control, for example, might lead it into crashing

into something. Delays and losses do not affect non-real time applications that

much as they can retransmit the data, but for real-time applications this is not

a viable solution. They need the data to be delivered on time. This is where

QoS steps in. (Peterson & Davie 2012, 530.)

2.1 QoS service levels

There are several service levels or schemes of QoS available such as best-

effort service, differentiated service and guaranteed service. Each network ap-

plication differs in their service and performance requirements and a suitable

service should be selected based on the application’s needs. (Vegesna 2001,

6.) For a network to be able to support QoS it needs to have the capability to

treat different packets differently (Misra & Goswami 2017, 92).

The service levels have mechanisms on both Layer 2 as well as Layer 3 that

need to be enabled in the network devices to effectively enable that service

level for the network. The Layer 2 mechanisms target the various link layer

technologies whereas Layer 3 mechanisms target the network layer which is

Internet Protocol (IP). (Vegesna 2001, 7.)

Service providers offer a certain level of service to the customer specified in a

service level agreement (SLA). The SLA uses several different metrics to de-

scribe the service level provided. The requirements of the desired applications

will be the basis of the SLA requirements. As the usage and importance of IP

11

based applications has risen the SLAs for IP performance have to be better

defined and have tighter requirements. (Evans & Filsfils 2007, 2.)

2.1.1 Best-effort service

The best-effort service level is the basic level that does not guarantee when a

packet is delivered to the destination or if it will reach the destination at all.

However, dropping a packet usually only occurs when the router input or out-

put buffers would overflow. As no guarantees for service or delivery are made

for packet forwarding in best-effort service the service cannot be thought as a

part of QoS. Best-effort service has previously been the only service offered

by the Internet. (Vegesna 2001, 6.)

Applications like FTP work properly with best-effort scheme, but do not have

the best performance. To work well, all applications should receive guaran-

teed resource allocation such as bandwidth, low delay and minimal packet

loss. (Vegesna 2001, 7.)

When best-effort service is used to transmit VoIP or video which are usually

transmitted over UDP, one solution to reduce packet loss would be to switch

the stream to TCP connection instead as TCP makes guarantees to deliver

the data to its destination error-free whereas UDP gives no such guarantees

(Kurose & Ross 2013, 639).

This would, however, introduce retransmissions to the stream when a packet

fails to reach its destination on the first try. And retransmissions on a real-time

application are usually not acceptable because of the increased end-to-end

delay that lead to degradation of the audio and video. Instead the encoding al-

gorithms try to conceal the loss of information by encoding the data so that the

disturbance will be minimal for the viewer. Forward error correction (FEC) can

be also used where the transmitted data includes redundant information to

help recover the lost data. (Kurose & Ross 2013, 639.)

2.1.2 Differentiated service

Differentiated service (DiffServ) groups traffic into several classes based on

their service requirements. The term Class of Service (CoS) is often used to

12

refer to this type of QoS scheme where each traffic class has its own QoS

mechanisms. Differentiated service does not give certain guarantees of ser-

vice, but only differentiates traffic by class and gives certain classes the privi-

lege over others. Thus, it is sometimes also called as soft QoS. (Vegesna

2001, 7.)

All traffic that enters the Diffserv domain needs to be classified to ensure the

per-class SLAs are met. This classification includes giving the traffic one of

the four defined Per-Hop Behaviors (PHB) that define how the traffic should

flow within the network at each hop. The PHBs are Expedited Forwarding

(EF), Assured Forwarding (AF), class selector PHB and default PHB. (Evans

& Filsfils 2007, 149–159.)

Expedited Forwarding tells the router that the packet should be routed with

minimal delay and loss. The router can only guarantee this if the arrival rate of

the packets is limited to the maximum speed of the router. A 100 Mbps router

is incapable of ensuring this for a 1 Gbps traffic stream. (Peterson & Davie

2012, 550–551.) This behavior is required in traffic such as VoIP (Evans &

Filsfils 2007, 155).

Assured Forwarding is used in data applications where a certain assured

bandwidth is required. There are four AF subclasses defined each with three

different levels of drop probability. The drop probability indicates the im-

portance of the packet and means that packets with higher drop probability

can be dropped in favor of more important packets. (Evans & Filsfils 2007,

156).

The reason for class selector PHB is to provide backwards compatibility with

the IP precedence field. In practice the IP precedence field has not been used

consistently and there has been little reason to deploy this type of PHB. De-

fault PHB is the behavior that should be used for all packets not specifically

marked by any other PHB. It has no committed resources bound to it. (Evans

& Filsfils 2007, 158–159).

For bandwidth-intensive applications the scheme of differentiated service

works well. To ensure basic network connectivity at all times it is important to

13

differentiate and prioritize the network control traffic from the data traffic into

its own high priority class. (Vegesna 2001, 7.)

2.1.3 Guaranteed service

This service level introduces the concept of network resource reservation

where each application is required to reserve the network resources it needs

in advance. This ensures that the network can meet the requirements of the

traffic flow. The scheme requires rigid guarantees from the network, and it is

therefore sometimes called as hard QoS. (Vegesna 2001, 7.)

Reserving a path for a single traffic flow does not scale well over the Internet

backbone which services a great number of flows at any given time. However,

using aggregate reservations is a scalable way to offer this service as they call

for only a minimum state of information in the Internet routers. (Vegesna 2001,

7.)

Integrated Services (IntServ) is one attempt to provide such a guaranteed

service. The goal of IntServ is to provide per-flow QoS guarantees for network

traffic. IntServ defines several new classes of service and lets applications to

choose a suitable class for their own use. An important component of IntServ

is the Resource Reservation Protocol (RSVP). (Jha & Hassan 2002, 107–

108.)

The IntServ framework classifies applications into three categories: elastic ap-

plications, tolerant real-time applications and intolerant real-time applications.

Elastic applications have no stringent QoS requirements and can operate with

any data rate or delay. Examples of this type of applications are web brows-

ing, telnet connections and file transfer. (Jha & Hassan 2002, 108.)

Real time applications such as audio conferences and video streaming have

very strict time bounds, they need to operate in meaning timeliness is para-

mount. Small packet loss, however, can be tolerated depending on the used

coding method or codec. Therefore, audio and video streaming are consid-

ered tolerant real-time applications. (Jha & Hassan 2002, 109.)

14

Demand for even more stringent QoS from the network comes from the intol-

erant real-time applications. They have very precise bandwidth, delay and jit-

ter requirements. If the requirements are not met their performance will de-

grade severely. An example of such application is VoIP which requires very

low end-to-end delay. (Jha & Hassan 2002, 109.)

For IntServ to work the applications need to communicate their needs for net-

work resources to the network elements along the path to the destination. For

this purpose, a signaling protocol is required. The RSVP has been built for this

purpose and it carries the requests for resource reservation and QoS specifi-

cations along the network as well as signals resource availability. (Jha & Has-

san 2002, 133.)

The original driver for RSVP design were multicasting applications. Many

streaming applications have more receivers than senders and therefore mul-

ticast, where one sender sends to many receivers, is used to deliver the

streams. RSVP also utilizes the existing robust connectionless model of the

Internet and does not mandate any new routing protocols. (Jha & Hassan

2002, 134.)

RSVP works so that first the sender sends a path message to the receiver.

When the message arrives at the receiver it then generates a reservation re-

quest that it sends back the same path. When an intermediate router receives

the request, it checks whether the needed resources can be allocated and if

not, it sends a reservation error message back to the receiver meaning the re-

quested level of QoS cannot be reached. (Misra & Goswami 2017, 102-103.)

If the requested resources are available, the router sends the reservation

message backwards to the next router and so forth until the reservation re-

quest is received by the sender. This notifies the sender that the resources

are available, and it can begin sending the actual data. (Misra & Goswami

2017, 102-103.)

Applications that require this level of service are typically audio and video

streams where even the slightest delay or packet loss would cause glitches in

15

the actual stream. For VoIP applications a maximum latency of 100 millisec-

onds is required whereas Internet telephony also has an additional bandwidth

requirement of 8 kbps. This level of latency is usually acceptable for other

multimedia applications as well. To guarantee these service requirements re-

source allocation is required from the network. (Vegesna 2001, 7.)

2.2 QoS performance metrics

Four metrics are commonly used in QoS to characterize the performance of a

connection. These metrics are delay, delay jitter, packet loss and bandwidth or

throughput. (Vegesna 2001, 9.) Sometimes delay is also called latency and it

is defined as the time a packet requires to travel from the source to the desti-

nation. A variation in this delay between consecutive packets is called jitter.

(Barreiros & Lundqvist 2016, 8.)

In addition to these it can be argued that per flow sequence preservation and

service availability are important aspects in QoS as well. All the metrics above

are used to define the basis of the SLA where the SLA is the contractual com-

mitment to provide certain level of quality or QoS for the client network con-

nection. (Evans & Filsfils 2007, 2.)

2.2.1 Network delay

The network delay requirements for time critical applications such as video

and VoIP are usually defined as one-way delay whereas the requirements for

adaptive applications such as those that use the Transport Control Protocol

(TCP) are defined as the round-trip delay (Evans & Filsfils 2007, 4). For VoIP

applications the maximum tolerable one-way delay is 150–200 ms. If the delay

is any longer the participants will speak on top of each other. (Saarelainen

2011, 221.)

One-way delay is the time difference between the time an IP packet enters the

network and comes out of the network. The round-trip delay is comprised of

the one-way delay times of a packet going towards the destination and the re-

ply packet returning from the destination excluding the end system processing

delays. The network delay can be divided into four separate parts regardless

of whether a one-way delay or a round trip is considered. These parts are the

16

propagation, switching, scheduling and serialization delays. (Evans & Filsfils

2007, 4.)

For real-time applications delay plays an important role as the packets are

only relevant to the destination if they arrive within a time period they are ex-

pected. If the packets arrive late, they become useless. And not only that but

they also become a burden for the destination as they still need to be handled

which increases load and delays the handling of the consecutive packets.

(Barreiros & Lundqvist 2016, 9.)

Propagation delay is the amount of time a single bit needs to reach the desti-

nation router from the source router. It is usually affected by the distance the

bit needs to travel as well as the physical media used. When calculating the

total propagation delay of a long route the individual links it consists of can be

summed together. (Evans & Filsfils 2007, 5.)

It should be noted that network links never go directly from A to B so calculat-

ing the route length is not easy. But the International Telecommunications Un-

ion (ITU) has a recommendation that can used to estimate the route lengths

from the direct distances. For distances less than 1000 km the route length

estimate is 1.5 times the direct distance. Distances between 1000 km and

1200 km are estimated as 1500 km route length. And for distances above

1200 km the route length is estimated as 1.25 times the distance. (Evans &

Filsfils 2007, 5.)

The propagation delay through a coaxial cable is roughly 4 ms per 1000 km

and through optical fiber around 5 ms per 1000km when repeaters are used.

Therefore, it is easy to see that on a long route the propagation delay is a

great contributor to the network delay. To reduce the propagation delay, the

network topology could be changed by adding a new direct link towards the

destination or the existing route could be optimized by rerouting it via a shorter

path. (Evans & Filsfils 2007, 5–6.)

Switching delay is made up of the time the packet spends inside a router or a

switch. The time begins when the packet comes to an incoming router inter-

face and ends when the packet is scheduled in the outbound interface. In

17

high-performance routers such as backbone routers the switching time can be

considered negligible as they typically implement the switching in hardware.

(Evans & Filsfils 2007, 6.)

The typical switching delay in such a router is in the order of 10–20 µs, but

even in a software-based router the switching delay is typically only 2–3 ms.

There is not much that can be done to change the switching delays other than

replacing the hardware or software. Fortunately, the switching delays are usu-

ally not a great concern when it comes to end-to-end delays, other delay types

typically make the most of the total delay. (Evans & Filsfils 2007, 6.)

Scheduling or queueing delay carries on from the previous switching delay

in that it is the time difference between the scheduling of the packet to the out-

bound interface and the start of clocking the packet out of the router to the

outbound link. Both the scheduling algorithm and the scheduler queue affect

the time as they are the function of the traffic load and queue capacity. To

control the scheduling delays traffic load management and scheduling mecha-

nism control is required. (Evans & Filsfils 2007, 6.)

Serialization delay is the time that is required to clock the packet onto a link.

Both the size of the packet and the link speed affect the time. Longer packets

increase the time and higher link speed decreases the time. When the link

speed is very high as in backbone links the serialization delay can be gener-

ally considered negligible. For low speed links the serialization delay is a more

significant component of network delay. As the serialization delay is a physical

constraint it can only be controlled by changing the link speed. (Evans &

Filsfils 2007, 6–7.)

2.2.2 Delay jitter

As packets travel through the network the delay is not constant which leads to

jitter in the delay. The term jitter in general means variation of a certain param-

eter. In this case the parameter is the network delay. Generally, delay jitter is

considered the variation of the one-way delay of two consecutive packets

though it could also indicate the variation of average or minimum delay. The

18

cause of the jitter are changes in the components of the network delay which

were explained in the previous section. (Evans & Filsfils 2007, 8.)

The way jitter is problematic is that it makes the delays of arriving packets in-

consistent. This means that the receiving application needs to continuously

adapt to new delay values which can be undesirable especially in real-time

applications. (Barreiros & Lundqvist 2016, 9.)

When the network topology changes for example due to a failed link it causes

a peak in the jitter due to changed propagation delay. Scheduling delay varia-

tion is caused when the scheduling queue of a network device changes be-

tween empty and full leading to a change in the wait time before the packet

can be sent. (Evans & Filsfils 2007, 8.)

Switching delay is usually relatively static especially in hardware-based rout-

ers but can vary in software-based routers as some packets may require more

processing than others due to packet length or type. Serialization delay stays

constant when a link of the same speed is used. However, if due to a topology

change the route changes to a link with a different speed the serialization de-

lay will change and contribute to the delay jitter. (Evans & Filsfils 2007, 8.)

The increase of bandwidth in networks has also meant that new more com-

plex queueing strategies are required to counter jitter. Therefore, when trans-

mission speed has been increased new queueing systems have been devel-

oped which are more efficient in handling different kinds of traffic. (White &

Banks 2018, 23.)

Jitter does not affect much in some applications such as those using TCP pro-

tocol. Applications such as video and audio that use streaming are more sus-

ceptible to jitter. (Evans & Filsfils 2007, 8.) Thus, they will use de-jitter buffers

to overcome the effects of the jitter. The buffers help remove the effects of the

delay variation and make the delays seem constant in the end-systems.

(Saarelainen 2011, 222.)

19

2.2.3 Packet loss

Dropped packets on a certain link are considered as packet loss. When a sent

packet does not arrive into its destination during a defined period it is consid-

ered lost. Packet loss is typically measured as one-way loss because the

route between two systems may be asymmetrical meaning that packets going

one way may travel a different route than the returning packets. Measuring the

loss of each path on its own can be used to estimate the total round-trip loss.

(Evans & Filsfils 2007, 9.)

For VoIP applications packet loss means degradation of sound quality and the

level of degradation is dependent on the used packing algorithm also known

as codec. A packet loss of 1% is still generally acceptable. This means, how-

ever, that as much as 99% of the packets still need to be delivered and deliv-

ered in time. (Saarelainen 2011, 222.)

The loss rate alone is not a key factor in some applications when performance

is considered. Also, the loss distribution needs to be considered. This can lead

to a situation that even though the loss rate would be the same the application

performance is different due to a different loss distribution. An example of this

would be when many consecutive packets are lost versus a lost packet every

few packets. (Evans & Filsfils 2007, 9.)

Loss distributions are described by the loss period and the loss distance. The

loss period defines the length of the loss and the distance defines the spacing

between each loss period. Packet loss is dependent on many factors such as

congestion, lower layer errors, network element failures and losses in the end-

system applications. (Evans & Filsfils 2007, 9–11.)

Congestion is caused by queues building up leading to dropped packets. To

control the losses the traffic load needs to be managed by applying appropri-

ate queuing and scheduling mechanisms. (Evans & Filsfils 2007, 9.) To avoid

congestion a simple solution would be to increase the bandwidth enough so

that the congestion would disappear. The network could deliver all traffic and

would have no need to prioritize one traffic type over another. (White & Banks

2018, 197.)

20

Sometimes this overprovisioning indeed can be the best solution and a way to

ensure QoS assurances are met. Usually this, however, is not possible due to

certain traffic patterns. For example, some applications will use all the band-

width that is available inevitably creating a congestion point somewhere in the

network. Others may transmit micro-bursts, short bursts of large amount of

data that will consume a lot of bandwidth, but only for a short time. Also, there

are protocols like TCP that will flood the network with a lot of data creating

congestion to find out the best rate for data transmission. (White & Banks

2018, 198.)

Lower layer errors are typically caused by physical layer bit errors. The

cause of these can be noise or attenuation in the transmission channel caus-

ing packets to be dropped. To counter these bit errors many link layer technol-

ogies and IP transport protocols such as the User Datagram Protocol (UDP)

implement cyclic redundancy check (CRC) algorithm or at least a parity check-

sum. Frames with changed bits and thus an invalid checksum will be dropped.

(Evans & Filsfils 2007, 10.)

Therefore, in networks that implement these types of technologies simple bit

errors will cause packet loss as packets either arrive correct or not at all. The

bit error rates (BER) vary by the used layer 1 or layer 2 technology where fiber

optic links are the most reliable and satellite links the most unreliable. (Evans

& Filsfils 2007, 10.)

Network element failures are caused by broken network infrastructure such

as broken devices. The failures can result in dropped packets until a new

route is found around the broken network element if such is available. The pe-

riod of the loss depends on the used network technologies. In a non-MPLS

environment the packet loss will continue until the interior gateway protocol

(IGP) converges even if there is an alternative path around the failure. If no al-

ternative path exists, the packet loss carries on for as long as the failure is re-

paired. The time for IGP convergence should be less than a few hundred milli-

seconds in a well-designed network. (Evans & Filsfils 2007, 10–11.)

21

In networks where there is an alternative path, available technologies such as

MPLS Traffic Engineering (TE) - Fast Reroute (FRR) or IP Fast Reroute (IP-

FRR) can be applied to significantly reduce the time of the failure. This allows

quick restoration of the failed link with a typical restoration time of 50 ms or

less. (Evans & Filsfils 2007, 11.)

Losses in end-system applications are usually due to receiving buffer over-

flows or underflows. When the buffer is full and a new packet arrives, an over-

flow occurs. Underflows are typically the problem in streaming real-time appli-

cations such as VoIP or video where the receiving codec needs data, but

none is available due to an empty buffer. With careful design of both the appli-

cation and the network the overflows and underflows can be prevented. (Ev-

ans & Filsfils 2007, 11.)

Methods to overcome packet loss include error correction, error concealment,

redundant transmission and retransmission. The method that is chosen is de-

pendent on the transport protocol and end application. (Evans & Filsfils 2007,

11.)

2.2.4 Bandwidth and throughput

When the service provider makes an SLA for the customer, they commonly

define the bandwidth or the layer 2 access link capacity that the customer is

offered. Bandwidth is usually an ambiguous term that can have multiple mean-

ings when link, network or service capacity is considered. (Evans & Filsfils

2007, 12.)

The link capacity is measured by the number of bits the link can transport in

a second. Both layer 2 and layer 3 need to be considered when defining this

value. The layer 2 capacity is defined by the used physical media i.e. layer 1

and usually remains constant, however, some media such as ADSL can have

adaptive bit rate. (Evans & Filsfils 2007, 12.)

On layer 3 the link capacity depends on the layer 2 capacity, layer 3 packet

sizes and the encapsulation the layer 2 requires transporting layer 3 traffic.

22

Therefore, the link capacity of IP layer 3 traffic can be derived from the capac-

ity of the underlying layer 2 technology. Sometimes link capacity is referred to

as the link bandwidth or the link speed. (Evans & Filsfils 2007, 12.)

When QoS is used to define several classes of traffic that are aggregated to-

gether as a traffic stream the traffic stream can be broken into separate clas-

ses. All the classes can have their own defined minimum bandwidth which is

referred to as the class capacity or the class bandwidth. The minimum link

bandwidth of a certain path between two network points is defined as the path

capacity or path bandwidth. (Evans & Filsfils 2007, 12–13.)

Bulk Transport Capacity (BTC) or throughput denotes the data throughput

the user can attain between a source and a destination. BTC is measured as

the long-term average data throughput rate that a transport layer connection

can achieve. The used transport layer technology should be adapting its rate

of sending to try to maximize the throughput. TCP sessions are an example of

such adaptive transport layer connections. (Evans & Filsfils 2007, 13.)

The maximum throughput is limited by the available link capacity but can be

significantly lower than the link capacity as it can be impacted by factors such

as packet loss and round-trip time. Therefore, it should be noted that the at-

tained throughput may not be the same as the contract defined bandwidth.

(Evans & Filsfils 2007, 13.)

2.2.5 Per flow sequence preservation

There is no guarantee in IP that the delivered packets arrive in the same order

they were sent. When the sequence number of an arriving packet is less than

that of the previous packet the packet is considered to have arrived out of or-

der or re-ordered. This re-ordering may have an adverse impact on some ap-

plications and thus any network should be designed to try to prevent packet

re-ordering within a traffic flow. (Evans & Filsfils 2007, 18–19.)

To prevent packet re-ordering two key design best practices do exist. The first

is to make sure that when IP load balancing is used it is performed on a per

flow level and not on a per packet level so that packets that belong to the

23

same flow will follow the same path. The Equal Cost Multipath (ECMP) algo-

rithms perform this kind of load balancing by using the source and destination

IP addresses as well as the source and destination ports and the used proto-

col as a 5-tuple to identify packets that belong to the same flow and routes

them via the same path. (Evans & Filsfils 2007, 19.)

The second-best practice is to make the QoS design such that the scheduling

algorithm will always service packets from the same flow in the same order

and from the same queue. This principle is fundamental to both the Integrated

Services (IntServ) and Differentiated Services (DiffServ) architectures that are

used with QoS. All in all, re-ordering packets is a bad practice and should be

avoided. (Evans & Filsfils 2007, 19.)

2.2.6 Availability

Availability for IP services can be considered as network availability that only

considers the availability of the network or as service availability that also con-

siders the provided service. Furthermore, availability can be thought of as uni-

directional or bidirectional where bidirectional applies to most IP applications

as many applications need the destination to send a response to the source

for proper functionality. (Evans & Filsfils 2007, 20.)

Network availability means the fraction of time that the network is available

for use between two certain points in the network. Things that affect the net-

work availability include planned and unplanned outages. An unplanned out-

age is the result of a broken network component such as a switch or a router

or the actual physical infrastructure that can for example be a cable or a fiber.

The availability of each individual network component can be used to estimate

the network availability. Usually the availability of the network is not enough,

however, as many applications have more stringent requirements in the form

of service availability. An application such as VoIP might have network con-

nectivity, but there may be such a long delay between packets that the speech

of the calling parties might be unintelligible. (Evans & Filsfils 2007, 20–21.)

Service availability is more than just network availability as it means the frac-

tion of time that a certain service is available between two network points with

24

SLA metrics such as delay, jitter and packet loss considered. Two ways to de-

fine service availability exist where the first definition takes network availability

into account and service availability only applies when certain network availa-

bility is reached. The second defines service availability independent of net-

work availability leading to the fact that service availability cannot exceed net-

work availability as without a network there cannot be a service. Furthermore,

service availability is not only affected by the network availability, but also the

application performance. (Evans & Filsfils 2007, 21.)

2.3 Quality of Experience

The performance metrics described above play an important part in defining

the characteristics of the network. However, also other metrics do exist that try

to quantify the performance that the user experiences using a certain network

application. The term Quality of Experience (QoE) is used for this user experi-

ence. (Evans & Filsfils 2007, 22.)

For VoIP and video applications the used metrics are not the basic ones de-

scribed in the previous chapter, but rather the quality of the used encoder and

decoder and the quality of service of the whole network connection. Together

these metrics form the QoE of the application and there usually is some QoE

target defined for the application that it tries to meet. (Evans & Filsfils 2007,

22.) One modern application that uses video and audio streaming is online

games hosted by a service provider where the game is run at the service pro-

vider servers and only the game video and audio is transferred to the end

user.

The QoE metrics can be either subjective or objective. Subjective metrics de-

pend on the user perception of the QoS that is given as a feedback by the

user. Objective metrics on the other hand use measurements of the transmit-

ted stream characteristics and try to infer the subjective quality that the user is

expected to have. (Evans & Filsfils 2007, 22.)

25

3 STUDIES ON NETWORK LAG

3.1 The perceived effect of network lag

Network lag has been the subject of several studies and three studies have

been selected for presentation here. The first is an Internet survey where the

researchers of Academia Sinica in Taipei have asked players how they per-

ceive lag, what they think the cause for lag is and how they react to lag (Tseng

et al. 2011, 1).

The phenomenon of lag is described to be when the game does not update

the screen or respond to the user commands in a timely fashion. The cause

for these is usually delay in the network or long processing delay in the user’s

computer. The lag is caused by the non-QoS guaranteed architecture of the

Internet. (Tseng et al. 2011, 1.)

The study found that 22.7% of players encounter lag frequently and a half or

50.7% encounter lag occasionally. 21% of the players consider the lag being

serious and 41.9% of the players consider it moderate. Most or one third of

the lag is found to be happening intermittently and lasting for a few seconds.

21.2% of the players attribute the lag being due to the access link bandwidth

of the game servers and 21% think it is caused by the server equipment itself.

19.2% think their own computer is the cause. (Tseng et al. 2011, 4.)

When players encounter lag, 64.6% suffer through it and 17.9% ignore it com-

pletely. 55.9% of the players who leave a game because of lag will try to re-

connect back to the game after a few minutes. 76% of the players will let their

friends know they are experiencing lag and 42.7% find moderately or strongly

that their friends experience lag at the same time. 45% feel that the effect of

the lag on their gameplay is moderate or strong, 34.1% feel it is weak and

21% feel it has no effect on their gameplay. (Tseng et al. 2011, 5.)

When asked whether the players report the lag, 34.9% say they will keep si-

lent and not report the lag in any way. 31.5% of the players will go to the Inter-

net forums and complain there. Only 16.4% report their findings to the game

company and 15.8% to their ISP. When players were asked how they try to

solve the lag problem, 23.6% said they will increase their network bandwidth

26

and 23% said they will upgrade their computers. 21.9% of the players will try

to detect the cause of the lag by the usage of network tools. A total of 86% of

the players claim that having lag during gameplay is really annoying. (Tseng

et al. 2011, 5.)

3.2 The effect of tick rate

Researchers of the Hong Kong Polytechnic University have researched the ef-

fect of tick rate and vertical synchronization (V-Sync) on a networked multi-

player FPS game. The game they used was Counter-Strike: Global Offensive.

The study found that increasing the used tick rate will significantly improve

player performance. It also found that V-Sync has no impact on player’s per-

formance. (Lee & Chang 2015, 1.)

Tick rate dictates how often the game can process information coming in from

the player computers, update the state of the game and send the updated in-

formation back to the clients. Each game has their own tick rate depending on

the game’s genre and complexity. An FPS game with a low tick rate has many

issues such as incorrect damage registration. (Lee & Chang 2015, 1.)

When the computer renders an image of the game world it will happen at a dy-

namic rate that varies depending on the complexity of the current view and the

capacity of the display adapter. Most monitors on the other hand have a fixed

refresh rate which can cause screen tearing or the display of different game

frames on the screen at the same time. (Lee & Chang 2015, 1.)

A solution for this is to use V-Sync that will synchronize the display of the

game frames by the monitor. If the computer has the next screen frame pre-

pared too early, it will wait for the monitor to finish the current screen draw cy-

cle. And if the frame rendering by the computer takes too much time the moni-

tor will display the last frame again waiting for a new frame from the computer

which introduces input lag. (Lee & Chang 2015, 1.)

The study presented six different scenarios where the ping, tick rate and V-

Sync settings were different. The used tick rates where 64 and 128, meaning

64 and 128 game updates per second respectively. Four different players took

27

part in the study and each player played under each of the six scenarios. The

study found that when a higher tick rate of 128 was used the mean accuracy

of the players improved by 4% due to improved damage registrations by the

game. The study did not find any significant difference in player accuracy

when V-Sync was on or off. (Lee & Chang 2015, 3.)

3.3 Jitter modeling

Oklahoma State University researchers have studied network jitter in their pa-

per. They state that packet jitter may be the result of packets traveling differ-

ent routes to the destination but is primarily caused by the varying queuing de-

lays in the network equipment. The researchers examine the characteristics of

delay jitter, develop a model for it and confirm the model by comparing it to

empirically collected jitter data. (Daniel et al. 2003, 1.)

Previous studies suggest that the probability density function of the network jit-

ter is Laplacian. Furthermore, when a packet is delayed by a great amount a

phenomenon of delay spikes or the arrival of multiple packets nearly simulta-

neously can be detected. The spikes are caused by the first packet having a

large delay and the packets following it being held in a buffer and then all be-

ing sent directly after each other in a quick burst. (Daniel et al. 2003, 2.)

For their jitter model the researchers end up in a three-component model that

uses Laplacian distribution for small time scale delays and white Gaussian

noise for large time scale delays added with delay spikes generated by an ex-

ponential decaying function (Daniel et al. 2003, 2).

For model verification the researchers first collect real world network packet

statistics using an application called NetPerf that was developed for that use.

Then they use the collected network statistical data to generate simulated jitter

delay values using their model and compare them to the real-world data.

(Daniel et al. 2003, 2.)

In their tests the real-world jitter data had a mean of 45 ms and a standard de-

viation of 5.59. The model generated jitter data also had a mean of 45 ms and

a standard deviation of 5.5 being very close to the standard deviation in the

28

real-world data. Both data also had similar bursts caused by the delay spikes.

The generated jitter model can be used for example to test adaptive jitter buff-

ering algorithms. (Daniel et al. 2003, 4–5.)

4 LAGGINGMETER DESIGN

In his project idea document Mr. Kettunen suggests that there are two main

sources of network gaming lag. The first one being the overload of the game

server and the other being the player’s connection which is not working well

enough for the game. Mr. Kettunen also mentions that the QoS of the broad-

band services players use, namely DSL, cable modems and 3G/4G-modems,

is not ideal. The main problems in the above services are delay, lost packets,

shortage of bandwidth and short blackouts. (Kettunen 2012, 1.)

Mr. Kettunen proposes the creation of a so called LaggingMeter that could be

used to measure the sensitivity of different game programs for the underlying

network connection. The disruption of the game network flow is experienced

by players as lag and the feeling of lag is a very person-dependent where one

person might feel the lag is very disruptive and another person would barely

notice it at all. (Kettunen 2012, 1.)

The LaggingMeter would be a black box between the game server and the

player. A test group would be made to play a game and lagging would be

measured as a statistical quantity over a long period. The black box would be

able to generate delay, packet loss, shortages and low bandwidth situations.

Each player would have their own button box with a button to press when they

experience lag. A diagram of the proposed system can be seen in figure 1.

(Kettunen 2012, 1.)

29

Game Station

Game Server

Management
Station

Lagging Meter

C
P

Push button

Game Station

Lagging Meter

C
P

Push button

Game Station

Lagging Meter

C
P

Push button

GiEth

GiEth

Feedback

GiEth

GiEth

GiEth

GiEth

Feedback

Feedback

2x GigaEth

Figure 1. LaggingMeter system (Kettunen 2012, 3)

Mr. Kettunen gives an example of the LaggingMeter operation. When opera-

tional, the LaggingMeter would start with no lag in the player’s connection.

Then over time the quality parameters would be randomly adjusted so that the

quality goes worse each time. The test group playing the game will not be

aware of the network connection quality. Players would be told to press the

lag button whenever they feel there is lag in their connection. The quality data

and button press data would be collected for analysis. As a result of the analy-

sis the average level of interference each quality parameter tolerates would be

revealed. (Kettunen 2012, 3.)

Sometimes test players can be impartial or objective in pushing the lag button.

Therefore, there would need to be times when the network connection would

not be interfered at all. If a test player would still press the lag button multiple

times when there is no lag present, the player’s results should be excluded.

As possible methods to implement a LaggingMeter, Mr. Kettunen suggests ei-

ther the use of programmable logic or a regular PC system with 2 separate

one gigabit Ethernet ports. (Kettunen 2012, 4.)

5 SYSTEM IMPLEMENTATION

For implementing the LaggingMeter system that was discussed in the previ-

ous chapter it was decided to use a regular PC system to act like a bridge be-

tween the client and server networks. Furthermore, it was decided to build two

30

separate programs, one for generating the actual interference and one for col-

lecting the button press data.

The interference generator would be named Source Router and would run on

a regular PC system running Fedora 30 Linux operating system. It would have

a user interface (UI) that would work via a web browser. The button press col-

lector on the other hand would run on a Raspberry Pi 3B miniature computer

with the default Raspbian Linux operating system and would send the button

data to the Source Router program for storage and further analysis. A logical

name for this Raspberry Pi program would be Button Press Collector.

5.1 Source Router software

The main operating principle of Source Router software is relatively simple.

The PC running the software has two dedicated network adapters, one for the

client side and one for the server side. On the arrival of an Ethernet frame on

one of the adapters it delivers it to the adapter on the other side by default

seemingly working as a network bridge. If the source or the destination of the

frame is detected to be one of the known clients, it will go for special treatment

instead.

The treatment will introduce delay, delay jitter, packet loss and bandwidth lim-

iting to the network frame. Each client can have their own interference set with

the above parameters separately for both transmission directions. The Source

Router interference parameters and their range can be seen in table 1.

Table 1. Source Router parameters

Parameter Unit Step Range

Delay µs 1 µs 0–30 seconds

Delay jitter µs 1 µs 0–30 seconds

Packet loss % 1 % 0–100 %

Bandwidth kbps 1 kbps 0–1000 Mbps

For network frame capture the Source Router software utilizes the Linux libp-

cap-library which is an open source C-compatible library that allows the user

to easily capture network frames as they arrive at a network adapter. The

31

availability of such a library and the relative easiness of programming on Linux

versus using a big and clunky Windows programming environment such as

Microsoft Visual Studio was a deciding factor on the usage of Linux as the tar-

get system for the software. The operational diagram of Source Router can be

seen in figure 2.

Figure 2. Source Router operational diagram

There is a total of four threads in the software were two of the threads will

handle the arriving frames on each network adapter respectively. One of the

threads will handle incoming button press data from the Button Press Collec-

tor software. The last or the main thread will handle the Web-based user inter-

face. A diagram showing the threads can be seen in figure 3.

Figure 3. Source Router threads

Each of the two frame handling threads are basically identical except that one

will try to detect packets coming in from a known client and the other will de-

32

tect packets that go out to clients instead. If the captured Ethernet frame con-

tains anything else than an IP version 4 (IPv4) packet it will be forwarded to

the opposite side network adapter and sent out as soon as it is received.

This assures that mechanisms like Address Resolution Protocol (ARP) will

function without problems or delay. However, it also means that the interfer-

ence operations the software carries out will only work for IPv4 packets and

not for IP version 6 (IPv6) packets. The type of the frame payload will be de-

tected from the EtherType field of the frame where 0x0800 means an IPv4

packet.

If the captured frame contains an IPv4 packet, the source or the destination IP

address of the packet, depending on the transmission direction, will be com-

pared to a list of client IP addresses. The software can be configured with up

to 16 client IP addresses for this inspection by the user. If the compared IP ad-

dress matches with a known client IP address the frame will be placed to a de-

lay buffer for that client.

If packet loss is in use the software will use a random generator to decide

whether the packet to be buffered is lost and if it is, it will be discarded in-

stead. By default, each client has a frame buffer of 8 megabytes each direc-

tion meaning the total buffer memory allocated by the software is 32 times 8

megabytes or 256 megabytes. The buffer size value can be defined by the

user.

When all the incoming frames on the adapter are processed the software will

check the frame buffer of each client whether there are any outgoing frames

due to be sent. If a buffer contains a frame whose send time is due the frame

will be sent out from the opposing network adapter it came in. Then the next

frame is checked, and this will be continued until all frames with a due time

have been sent. All the frames of the first client are processed first before

moving to the second client.

33

If bandwidth limiting is in use and the bandwidth cap has been reached, no

more packets will be sent even if their send time is due. The following chap-

ters will further discuss the operation of each of the various functions of the

software.

5.1.1 Web browser user interface

The web browser interface allows the system operator to control the Source

Router software remotely via a web browser. The user interface can be

opened in a web browser by connecting to port 26102 of the Source Router

computer. A screenshot of the browser user interface can be seen in figure 4.

The interface has the global server status table, the client settings table, the

client status table, client settings section and graphs of button presses, packet

loss and delay. The user interface uses the term packet to refer to all types of

frames passing through the system. JavaScript, jQuery and WebSocket tech-

nologies are used to implement the user interface.

Figure 4. Source Router browser user interface

For proper function of the browser user interface a WebSocket connection to

the Source Router software is required. The user interface web page tries to

automatically connect to the software when the web page is opened. When a

WebSocket connection is successfully established the Source Router Dash-

board text is displayed in green color. When there is no connection to the

34

Source Router software the text is displayed in red color instead. Figure 5

shows both statuses.

Figure 5. WebSocket connection status

The server status table shows global statistics of the system operation. The

receive and send speeds of the whole system can be seen in kilobits per sec-

ond and packets per second. It also shows the total amount of received and

sent packets by the system as well as how many of those packets have been

handled by the system and how many have gone straight-through the system

with no manipulation. Last the number of handled and straight-through bytes

can be seen.

The client settings table is where the currently used interference parameters

for each client can be seen. It shows the delay, delay jitter, packet loss and

bandwidth parameters for each client in both transmission directions. These

parameters stay in effect until they are changed by the user or the Source

Router software is restarted when all the parameters go to zero.

The client status table shows the per client status of the system. This in-

cludes the number of packets in delay buffers for the client and the current de-

lay jitter value for the client if jitter is enabled. It also shows the data speed in

kilobits per second for that client. The cell backgrounds of the speed fields are

color coded depending on the client bandwidth setting. When the client is us-

ing less than 50% of allocated bandwidth the cell background color is green.

The color is yellow when the bandwidth is between 50–80% and red when

more than 80% of bandwidth is used. This provides a quick way to see when a

client is using all bandwidth allocated to it.

35

The graph area shows a quick overview of three of the system functions. All

graphs are color coded so that each client has its own color in the graphs.

Black color in each graph always means client 1. The graphs show data for

the last 30 seconds and each graph is updated 4 times per second meaning

the step size of the graph is 0.25 seconds.

The button presses graph shows the lag indication button presses of all the

16 clients. Each client has its own row in the graph and the graph provides a

way for the system operator to see when a user has pressed their lag indica-

tion button. If a user is continuously pressing their button the operator can de-

cide whether they will disqualify the user from their game test.

The packet loss graph shows the amount of simulated packet loss. The num-

ber of lost packets for each client during the last step is shown in the graph.

The highest value means that 20 or more packets have been lost. The delay

graph shows the highest delay value for outgoing packets for each client dur-

ing the last step. A total of base delay and delay jitter is shown here. The high-

est value means a delay of 500 milliseconds or more.

The client settings area lets the system operator to manually manipulate the

interference values of each client in the system. First the desired client needs

to be selected from the drop list box which will update the text boxes with cur-

rent values for that client. Then the values can be changed and when the

Commit button is pressed the values are sent to the Source Router software.

Pressing enter in the text boxes will also commit the values. If the jitter set-

tings are the same for both the client and server send directions the random

delay jitter for both will be the same so that the jitter values move in tandem. A

value of 0 in the bandwidth fields means that bandwidth limiting is turned off

and the system operates at full available bandwidth.

The automation Start and Stop buttons will respectively start and stop the sys-

tem running a preconfigured automation sequence. Each client will step

through the same interference pattern, but the operator can select a time

range for each step in the script. The system will randomize the step lengths

36

using this time range so that each client will have their parameters changed at

a different time.

5.1.2 Delay buffer

Each client has two delay buffers allocated for it. The first buffer is for server

sent packets and the other buffer is for client sent packets. When a client

packet is received it is always buffered for that client’s own buffer even when

the delay settings are zero. When a delay buffer is full any new packets to be

buffered are discarded instead. After all incoming packets are handled, the

buffers are checked for any outgoing packets and all packets that are due to

leave are sent out.

Even though each packet is marked with an individual due time and a chang-

ing delay in the form of jitter may mean that the due time of a later packet is

coming earlier than the due time of a packet before it, the later packet is not

sent if the earlier packet is not due. In other words, packets that come first will

always leave first so that the packet sequence is preserved, no packet can

overtake another in this process. For some packets this means an increased

delay and packets that came in at different times may leave at the same time

in a burst.

5.1.3 Bandwidth limiting

Bandwidth limiting works as part of the delay buffer mechanism so that when

a packet is due to be sent the bandwidth limit of the client is checked and if

the packet would exceed the bandwidth limit it will not be sent, but is kept in

the buffer for a later time.

The operator gives the bandwidth limit on a kilobits per second basis. This set-

ting is then divided into 20 parts. Each of these parts give the maximum num-

ber of kilobits that can be sent in a 50-millisecond interval. When a new 50 ms

interval begins the counter that counts the number of kilobits sent is cleared

and new packets can be sent during that interval until the calculated limit is

reached when any sends are halted until a new 50 ms interval begins.

37

For the reason of efficiency, the total length of each frame is counted towards

the operator set bandwidth limit. So, not only the IPv4 payload, but also the

frame header is considered towards this limit. Therefore, the bandwidth limit is

a raw data limit and not an application data limit which means that a small dif-

ference in bandwidth may result if an application is desired to be limited to a

certain bandwidth.

5.1.4 Random number generation

The simplest and most commonly used random number generator for digital

applications is the linear feedback shift register (LFSR). It consists of a shift

register with a certain bit length (m) and an exclusive-OR (XOR) gate whose

output is fed back to the shift register input. The XOR inputs are the last bit

and nth bit of the shift register where n can be a user chosen value. Each time

a new random number is required to be generated the shift register is shifted

by one bit and a pseudo random number is generated in the shift register.

(Horowitz & Hill, 975.) Figure 6 shows the structure of the LFSR.

Figure 6. LFSR random number generator.

The LFSR will repeat itself after a certain number of cycles. For a shift register

with the length of n, the maximum number of values the shift register can go

through is 2n – 1 as there is one value the register can never reach. This value

is 0 which is an illegal value for an LFSR. A value of 0 would get the LFSR

stuck forever as the XOR would regenerate the value 0 as the next value for

the shift register. (Horowitz & Hill, 975.)

Not all LFSRs can, however, reach the maximal sequence length. But when

the length of the shift-register and the position of the other XOR input value

are chosen carefully the maximum length can be reached. It is also possible to

use a multi-input XOR gate where more than one middle value of the shift reg-

ister is used as the XOR input with the last bit. Each such combination will

38

generate their own individual sequence that differs from others. (Horowitz &

Hill, 975.)

The simplicity and speed of an LFSR make it the ideal choice for random

number generation in the Source Router software. Especially speed is of es-

sence here as the software is required to bridge Ethernet frames as fast as

possible. There are several subtypes of LFSRs all of which are based on shift

registers and XOR operations. The LFSR presented above is a classical Fibo-

nacci type LFSR.

Xorshift on the other hand is a more modern take on the LFSR and was pub-

lished in 2003 by mathematician and computer scientist George Marsaglia. It

is a simple and fast random number generator and can be easily implemented

in the C language (Marsaglia, 1). This is the same language Source Router

was implemented in.

The generation of a new 64-bit random number requires a total of three shifts

and three XORs. A total of 275 triples are given where each triple consists of

three different shift-register positions that are used as the inputs for the XORs.

Furthermore, there are 8 different ways given the triples can be shifted. In all

cases some of the shifts happen up and some happen down. The combination

of 8 ways and 275 triples gives a total of 2200 different Xorshift sequences for

64-bit use. (Marsaglia, 3.)

This means that even with the same random number seed each of these 2200

sequences would be independent from each other. As it was desired that the

random sequences for each of the 16 possible Source Router client systems

would be different and uncorrelated Xorshift was thought to be the ideal

choice for Source Router random number generation. Furthermore, the pro-

vided simple C source code could be easily implemented in the Source Router

software.

39

5.1.5 Packet loss and jitter generation

Both packet loss and jitter functions use an Xorshift random number genera-

tor. For packet loss each client has two different Xorshift functions, one for cli-

ent sent packets and another for server sent packets. Inside these functions

there are different Xorshift parameters and seed values for each client to keep

the correlation to minimum.

When a packet is about to be stored in the delay buffer the packet loss ran-

dom generator is used to generate a uniformly distributed random number be-

tween 0 and 99. This number is then compared to the client’s packet loss set-

ting. If the random value is higher than the packet loss setting, the packet is

not stored, but discarded instead to simulate packet loss.

The delay jitter functions similarly to the packet loss function so that each cli-

ent has two Xorshift functions, again for client and server sent packets. Also,

each function has different Xorshift parameters and seed values for every cli-

ent. However, instead of generating one uniformly distributed random number

at a time, four of such numbers are generated and added together for a

gaussian distribution.

Since the delay value cannot be negative, however, whenever the value is

negative its sign is inverted so that each time a positive value is generated.

This value will then be used as the current delay jitter value for the client. The

jitter value for each client is updated once a second. When the jitter setting is

100 ms the average jitter is 22.9 ms. The distribution of the jitter values can be

seen in figure 7.

40

Figure 7. Distribution of jitter values

5.1.6 Configuration and log files

Source Router can be configured with a configuration file called sorou.conf

which needs to be in the same folder than the Source Router executable when

the software is started. Figure 8 shows an example of the file. In the file the

operator can define the client-side and server-side network interfaces with the

CLIENTINTNAME and SERVERINTNAME keywords respectively. The opera-

tor can also define the amount of delay buffer memory that is allocated per di-

rection for each client with the DELAYMEMSIZE keyword. By default, this is 8

megabytes.

Lastly, the operator needs to define as many of the 16 client IPs as they de-

sire to use. These are defined by the CLIENTIPx keyword where x is the num-

ber of the client. The operator can either use numeric IP addresses or the

names of the client computers as the software is able to convert these to IP

addresses. Comments can be entered by starting a line with the # character.

41

Figure 8. Source Router configuration file

A log of the client settings is kept in a file called clientdata.txt which is updated

whenever the settings for any of the clients is changed either manually by the

operator or automatically by the software. The file is stored in the Source

Router directory. An example of the client settings log file can be seen in fig-

ure 9. If the file does not exist when Source Router is started a new file will be

generated. Each time the Source Router is run it adds a header that explains

the file contents.

Each line in the file describes the settings for one client at that point in time.

The time is recorded in microseconds since 1.1.1970 and is thus a long num-

ber. Next comes the client number that can be between 0–15 for clients 1–16

respectively. The client number is followed by settings for that client and in-

clude base delay, delay jitter, packet loss, bandwidth and actual total delay for

the client for both client and server send directions. The file is designed in

such way that it can be easily imported to Excel for further analysis.

Figure 9. Source Router client settings log

42

The button presses by the users are captured by the Button Press Collector

software and sent to the Source Router software via network for logging. The

log will be stored under the name buttondata.txt in the Source Router direc-

tory. An example of this file can be seen in figure 10.

Each line in the file has the time of the button presses in the same microsec-

ond format as the settings file. This is followed by a number where each client

has its own bit. When the number is 0, no buttons are being pressed. When

the number is non-zero, the bit position tells which clients have their button

pressed. The lowest bit or bit value 1 means client 1, bit value 2 means client

2 and so on up to 32768 which means client 16. Button presses and button re-

leases can be extracted from this data. The file can be imported to Excel for

further analysis.

Figure 10. Source Router button press log

To run automated sequences with the Source Router software a file called se-

quence.txt can be created. This file will be read by the Source Router when

the software is started and contains the steps of the sequence that can be run

using the user interface Start and Stop buttons. Each step of the sequence

needs to be on its own line.

The line starts with the minimum time in seconds the sequence step is to be

run and next comes the maximum step time setting. Source Router will ran-

domly choose a different step time for each client between the minimum and

43

maximum times to ensure that each client steps through the sequence at a dif-

ferent speed. The last eight values on each line are the setting values to be

applied at each step in the same order as in the client settings log. Figure 11

shows an example of such a sequence file.

Figure 11. Source Router sequence file

5.2 Button Press Collector software

The operation of the Button Press Collector software is simple. When started it

will try to connect to the Source Router software via network and if the con-

nection is successful the program will go into its main loop where it will poll the

I/O pins of the Raspberry Pi for button presses of the player lag indication but-

tons. To read the I/O pins the software uses the Wiring Pi library.

When a button press is detected the software will generate a 16-bit number

containing the status of each of the buttons in a one bit per button format

where a bit value of 1 means that the button of that player is currently being

pressed. The status of the first player lag detection button is in the lowest bit,

the status of the second player button is in the second lowest bit and so on.

The software also records the current time in microseconds from the start of

the year 1970 as a 64-bit number and sends the time and button press data to

the Source Router software which then shows and saves it for further analy-

sis. Port 26101 is used in the Source Router software for this connection. The

time format is the same as used by the Source Router software.

The software can be configured in a configuration file called precol.conf that

needs to be in the Button Press Collector folder when the software is started.

The configuration file works the same way as the Source Router configuration

file and contains only one keyword. This keyword is SOURCEROUTERIP

44

which defines the IP address of the Source Router software so that the button

presses can be sent to it. An example of the configuration file can be seen in

figure 12.

Figure 12. Button Press Collector configuration file

An add-on card was made for the Raspberry Pi 3B where button boxes can be

connected. Two button boxes were made to test the system with. The boxes

contain nothing more than a simple push button and two wires that connect to

the Raspberry I/O and GND pins. Internally the Raspberry Pi is configured to

pull the I/O pins high so that when the button is not pressed a bit value of one

is read from the I/O pins.

When the user presses the lag button its I/O pin will be pulled low via the but-

ton. The state of each I/O pin is reversed before sending the status to the

Source Router software so that a logical one means that a button is pressed

and a zero means it is not pressed. The only component that is connected to

the I/O pins via the connectors and wires is the button. The Button Press Col-

lector software polls the I/O pins once in every 500 microseconds. Several poll

intervals were tested and the selected one seems to be a good one to take

care of debouncing so that when the user presses the button there is just one

pulse detected from the button. A picture of the Raspberry Pi and a button box

can be seen in figure 13.

45

Figure 13. Raspberry Pi 3B with connector card and a button box

For the connections of the two button boxes to the Raspberry Pi two ground

pins and two general I/O pins were selected. The ground pins used are pins

14 and 34 in the I/O connector. These were selected because they are next to

the selected I/O pins which are pins 12 and 32 for GPIO18 and GPIO12 re-

spectively. GPIO18 is the pin for client 1 and GPIO12 is the pin for client 2. To

support more clients any of the GPIO pins can be used and the Button Collec-

tor Software can be modified. The connections can be seen in figure 14.

Figure 14. Button box connections to the Raspberry Pi I/O connector

6 SYSTEM TESTING

An important part of building the LaggingMeter system was system testing.

This included both testing of the Source Router software and the Button Press

46

Collector software. However, since the Button Press Collector software is a

simple program whose operation was quickly verified, the actual tests concen-

trated on testing the Source Router software that is the main component of the

system.

The bridging computer OS was Fedora 30 and it was equipped with two simi-

lar USB-to-Ethernet adapters. Each of these adapters would connect to a USB

2.0 port and add an extra 100 Mbps Ethernet connection to the computer. At

first only one of these 100 Mbps USB adapters was used in pair with the inter-

nal 1 Gbps network adapter of the computer. This resulted in a system with an

imbalance in the network connectivity and the 100 Mbps adapter became a

bottleneck. Running internet speed tests with such system proved to get the

tests stuck as only 10% of the packets to one direction would be delivered due

to buffering overflow.

Therefore, having two similar adapters was found to be a necessity and an-

other similar USB-to-Ethernet adapter was acquired. Using two of these USB

adapters in the bridging computer, one for server side and one for client side,

proved to fix this issue and the system operation was very reliable. The speed

tests would run with no issues and packets were not lost as they could be sent

out both directions at the same speed as they came in. These two USB adapt-

ers also allowed basically any computer with two USB ports, suitable drivers

and capability of running Linux operating system to work as the bridging com-

puter.

Several different tests were thought up to be made on the system to prove

that each of the features work on their own and that the whole system works

as planned. The next chapters will go through the tests and the test results.

6.1 TEST 1: Four different bridging computers

Source Router software was tested using four different computer systems and

the test results were compared between all these systems. The reason for this

test was to find out how modern and efficient the PC system needs to be for

47

the Source Router software to operate properly. Two different network envi-

ronments where used in the test. One PC system was tested in an office net-

work and three PC systems where tested in a home network.

Two of the PCs were no more than 2 years old and two were several years

old. One of the newer PCs was a modern laptop and the other was a desktop.

Similarly, the older systems had one laptop and one desktop. In the test re-

sults these four test systems will be called DNew, LNew, DOld and LOld. D

means desktop and L means laptop. The main specifications of each system

are displayed in table 2.

Table 2. Test system specifications

 DNew LNew DOld LOld

Purchased Dec 2017 Feb 2019 Apr 2012 Jul 2014

CPU i5-7500 Ryzen 5 2500U i3-2120 Pentium N3520

Cores / Threads 4 / 4 4 / 8 2 / 4 4 / 4

Memory 16GB DDR4 8GB DDR4 16GB DDR3 4GB DDR3

The DesktopNew test system was in an office network that had strict port se-

curity. For this reason, one of the office PCs was set up to share its internet

connection to other PCs via Windows Internet Connection Sharing feature.

This way the MAC addresses of other computers will not show up to the office

network switch, but it will only see the MAC address of the Internet Sharing

computer instead. The diagram for the office test system can be seen in figure

15.

The internet connection for the Internet Sharing computer was over 100 Mbps

both directions and was so able to handle the 100 Mbps connections of the

used USB-to-Ethernet adapters. So, the internet upload and the download

speed for the bridging computer and eventually for the client computers was

100 Mbps both directions. The Internet Sharing computer also acted as a

server for the iperf bandwidth tests.

48

Figure 15. Office network test system

The rest of the test systems were in a home network which had a cable mo-

dem connection to the internet. The internet download speed of this network

was 100 Mbps and the upload speed was 10 Mbps. However, on the LAN

level the client computers had a 100 Mbps connection both directions limited

only by the used 100 Mbps USB-to-Ethernet adapters. For iperf bandwidth

tests another PC was connected to the cable modem to act as an iperf server

for the tests. Figure 16 shows the diagram of the home network.

Figure 16. Home network test system

6.1.1 Bypass test

First, to establish a baseline for the home and office networks, simple tests

were carried out where the bridging computer running Source Router software

was completely bypassed and not included in the network at all. This reflects

the performance of the tested network on its own so that the effect of adding

the bridging computer in between the client and server computers can be

more clearly seen in the results of the next tests.

Packet loss was tested by running the ping command on the client computer

and the server was pinged 100 times. Neither network lost any packets in the

test as can be seen from the results in table 3.

Table 3. TEST 1, bypass test, packet loss

 Office network Home network

Packet loss 0% 0%

49

Delay was tested with the ping command pinging the server from the client

100 times. This gives the minimum, maximum and average delay values from

which also the LAN jitter can be seen. The minimum delay will be the base de-

lay or the lowest delay the network connection can achieve. The delay test re-

sults are presented in table 4.

Table 4. TEST 1, bypass test, delay

 Office network Home network

Delay, minimum 3 ms 0 ms

Delay, maximum 4 ms 4 ms

Delay, average 3 ms 0 ms

Bandwidth was tested with two internet speed test services, fast.com and

speedtest.net. With internet tests there is always the added uncertainty that

comes from the fact that the internet is a vast distributed system whose work-

ings cannot be clearly predicted. Therefore, the delay, the bandwidth and

packet transit in general can vary wildly from test to test.

The maximum theoretical bandwidth for the office network server send speed

was 100 Mbps and the client send speed was also 100 Mbps. The maximum

speeds for the home network were 100 Mbps and 10 Mbps. Usually server

send is called download and client send is called upload, but in these results

server and client send are used to signify which computer is sending packets

as the Source Router software will manipulate packets sent by either the

server or the client computer.

The results from the fast.com test service are presented in table 5. The test

was run three times and an average test bandwidth was calculated. It can be

seen in the office network test results that for some reason the client send or

upload direction was not functioning to its full capability of 100 Mbps during

the test. Also, the home network client send speeds were somewhat lower

than expected. Here the maximum would be 10 Mbps.

50

Table 5. TEST 1, bypass test, fast.com bandwidth

 Office network Home network

Server send Client send Server send Client send

BW, test run 1 94 Mbps 70 Mbps 95 Mbps 8.3 Mbps

BW, test run 2 93 Mbps 77 Mbps 96 Mbps 9.0 Mbps

BW, test run 3 93 Mbps 78 Mbps 91 Mbps 8.0 Mbps

BW, average 93 Mbps 75 Mbps 94 Mbps 8.4 Mbps

Table 6 shows the bandwidth measurements for the speedtest.net service.

The speed in both directions in the office network was on average the same or

90 Mbps. The speeds in the home network are near the maximum practical

speeds one can expect. Overall, the speedtest.net tests are more consistent.

However, since the tests are internet tests the general internet traffic can af-

fect the results.

Table 6. TEST 1, bypass test, speedtest.net bandwidth

 Office network Home network

Server send Client send Server send Client send

BW, test run 1 92.03 Mbps 88.25 Mbps 95.41 Mbps 9.85 Mbps

BW, test run 2 89.05 Mbps 91.94 Mbps 95.20 Mbps 9.83 Mbps

BW, test run 3 89.28 Mbps 88.58 Mbps 95.37 Mbps 9.81 Mbps

BW, average 90.12 Mbps 89.59 Mbps 95.33 Mbps 9.83 Mbps

6.1.2 Packet loss test

Packet loss test was the first Source Router enabled test and it was carried

out by two methods. The first method was to use the Windows built-in ping

command that will ping the device whose IP address is given and then waits

for a response from the device for a certain period and reports whether it re-

ceived a response from the other device or whether there was no response

which is assumed to be a lost packet.

The first ping test was carried out by using the built-in Windows ping com-

mand. All packet loss tests were carried out on the new PCs first and during

the tests it was decided that since iperf was a much quicker test and it gave

51

more consistent results the ping tests would not be carried out on the old com-

puters. The results of this test are presented in table 7.

The packet loss values from each test are mostly within few percentage points

of the set value. However, this ping test seemed to occasionally show very dif-

ferent values than expected. Each ping is sent just once a second so the exe-

cution time of the ping test can be several minutes. Therefore, a situation

where some other software is transferring data may happen to ruin the results

of the ping test. For that reason, this test was skipped for the old test systems.

This packet loss test was run with 100 pings from the client to the gateway us-

ing the following command:

• ping 192.168.0.1 -n 100

Table 7. TEST 1, packet loss, ping

DNew LNew

Server send Client send Server send Client send

No loss 0 % 0 % 0 % 0 %

25% loss 26 % 28 % 27 % 22 %

50% loss 53 % 53 % 52 % 50 %

70% loss 71 % 77 % 74 % 69 %

90% loss 93 % 91 % 85 % 90 %

The second packet loss test method was to use an external tool called iperf

which can carry out connectivity tests between a server and a client and will

report data like bandwidth and packet loss when the test is finished. This test

completes in a matter of seconds meaning that a chance for other software ru-

ining the results is much lower. Results for this test can be seen in table 8 and

are very consistent between each test system. The commands that were used

are listed below:

• server command: iperf-2.0.14a-win.exe -s -u -i 1

• client command: iperf-2.0.14a-win.exe -c 192.168.0.16 -u -d

52

Table 8. TEST 1, packet loss, iperf

 DNew LNew DOld LOld

Server

send

Client

send

Server

send

Client

send

Server

send

Client

send

Server

send

Client

send

No loss 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 %

25% loss 25 % 24 % 25 % 26 % 24 % 26 % 25 % 26 %

50% loss 51 % 49 % 48 % 51 % 51 % 51 % 52 % 49 %

70% loss 69 % 70 % 71 % 70 % 71 % 70 % 71 % 70 %

85% loss 85 % 84 % 83 % 85 % 86 % 84 % 84 % 84 %

6.1.3 Base delay test

The base delay test was carried out by using the ping command running 30

pings to the gateway. The raw values for minimum, maximum and average

ping are presented in table 9. The command used to run this test is listed be-

low:

• ping 192.168.0.1 -n 30

Table 9. TEST 1, base delay

 DNew LNew DOld LOld

Server send Server send Server send Server send

Min Max Avg Min Max Avg Min Max Avg Min Max Avg

0 ms 1 6 2 2 7 3 2 6 3 2 4 2

10 ms 11 15 12 12 14 12 11 15 13 11 14 12

50 ms 52 54 53 52 54 53 51 54 52 51 55 52

100 ms 101 105 102 102 104 102 101 105 103 101 105 102

300 ms 301 305 302 302 304 302 302 306 303 301 304 302

 Client send Client send Client send Client send

Min Max Avg Min Max Avg Min Max Avg Min Max Avg

0 ms 1 4 2 2 5 2 1 5 2 1 4 2

10 ms 11 15 12 12 14 12 11 15 13 11 14 12

50 ms 51 55 52 51 57 52 51 55 53 51 55 52

100 ms 101 104 102 101 104 102 101 107 103 101 104 102

300 ms 301 304 302 301 304 302 301 309 303 301 304 302

53

The delays in the previous table show the total delay between the client and

the server. To extract the Source Router generated delay from these results a

new table was generated. The table shows just the average delays and has

the 0 ms delay subtracted from them. This removes the effect of random net-

work delays and shows the effect of the Source Router to the delays. As can

be seen in table 10 the Source Router delays are very accurate on each test

system.

Table 10. TEST 1, base delay, relative average values

 DNew LNew DOld LOld

Server

send

Client

send

Server

send

Client

send

Server

send

Client

send

Server

send

Client

send

10 ms 10 10 9 10 10 11 10 10

50 ms 51 50 50 50 49 51 50 50

100 ms 100 100 99 100 100 101 100 100

300 ms 300 300 299 300 300 301 300 300

6.1.4 Jitter test

To do the jitter test the ping command was once again utilized. Similarly, as in

the previous test the minimum, maximum and average delays in each test

were recorded. However, unlike in the previous test, the number of pings was

raised to 100 to better catch the changes in the jitter values. Table 11 shows

the raw measurements. The following command was used in the test:

• ping 192.168.0.1 -n 100

Table 11. TEST 1, delay jitter

 DNew LNew DOld LOld

Server send Server send Server send Server send

Min Max Avg Min Max Avg Min Max Avg Min Max Avg

0 ms 1 5 2 1 5 2 1 6 3 1 5 2

10 ms 1 11 4 1 10 4 3 12 5 1 10 4

50 ms 2 40 14 2 43 14 3 42 14 2 41 13

100 ms 2 76 26 1 74 23 1 78 24 2 75 25

300 ms 2 268 79 5 232 75 7 232 77 2 267 78

54

 Client send Client send Client send Client send

Min Max Avg Min Max Avg Min Max Avg Min Max Avg

0 ms 1 6 2 1 4 2 1 5 3 1 5 2

10 ms 2 10 5 2 10 4 3 10 5 2 12 4

50 ms 1 41 14 2 45 13 3 46 14 2 47 15

100 ms 4 90 28 2 90 27 1 90 27 3 78 38

300 ms 3 221 78 2 218 75 6 222 82 6 207 71

Again, to extract the effect of the Source Router to the delay values, the aver-

age delay values had the average delay of 0 ms jitter subtracted and a new ta-

ble was generated. These results can be seen in table 12. Once again, each

test system shows very similar values for each delay jitter value.

Table 12. TEST 1, delay jitter, relative average values

 DNew LNew DOld LOld

Server

send

Client

send

Server

send

Client

send

Server

send

Client

send

Server

send

Client

send

10 ms 2 3 2 2 2 2 2 2

50 ms 12 12 12 11 11 11 11 13

100 ms 24 26 21 25 21 24 23 36

300 ms 77 76 73 73 74 79 76 69

6.1.5 Bandwidth test

Bandwidth test was carried out in three parts by using web services and local

area network measurement. The first part was made using the fast.com web-

site that gives a quick bandwidth result. These measurements can be seen in

table 13.

The tests were first carried out on the new PC systems. Since the fast.com

test was found to be least consistent it was not used with the old PC systems

since the two other tests provide enough results to determine the LAN and the

Internet speeds for each system. As can be seen from the test results both

DNew and LNew systems showed similar results when bandwidth limiting was

activated.

55

Since DNew was in office network with 100M/100M bandwidth and LNew was

in the home network with 100M/10M bandwidth, the full speed client send

speed of LNew was only 10Mbps. Also, for an unknown reason the full speed

test results of DNew for both directions were not very close to the 100Mbps as

would be expected. Though, this test was an internet test and internet traffic

might have affected the test results.

Table 13. TEST 1, bandwidth, fast.com

 DNew LNew

Server send Server send

Mbps Test 1 Test 2 Test 3 Avg Test 1 Test 2 Test 3 Avg

Full 90 90 87 89 94 94 94 94

70 67 67 67 67 67 68 67 67.3

50 48 48 48 48 48 45 48 47

20 19 19 19 19 19 19 19 19

5 4.7 4.8 4.8 4.8 4.8 4.2 4.8 4.6

1 0.93 0.88 0.95 0.92 0.88 0.92 0.86 0.89

 Client send Client send

Mbps Test 1 Test 2 Test 3 Avg Test 1 Test 2 Test 3 Avg

Full 76 67 73 72 8.0 8.8 8.3 8.4

10 8.5 8.7 8.2 8.5 7.2 9.2 7.6 8.0

7 5.5 6.6 5.9 6.0 5.6 6.0 5.9 5.8

5 4.7 5.1 4.8 4.9 4.9 4.1 4.5 4.5

2 2.2 2.2 2.5 2.3 2.3 2.1 2.2 2.2

1 1.2 1.5 1.1 1.3 1.4 1.2 1.0 1.2

The second part was made using speedtest.net website that offers a similar

service. The results of these tests are more consistent between each test sys-

tem than the previous results from fast.com. The results can be seen in table

14 for new test systems and in table 15 for old test systems.

56

Table 14. TEST 1, bandwidth, speedtest.net, new systems

 DNew LNew

Server send Server send

Mbps Test 1 Test 2 Test 3 Avg Test 1 Test 2 Test 3 Avg

Full 88.91 89.08 88.64 88.88 92.30 89.30 91.91 91.17

70 66.89 67.29 66.65 66.94 67.44 67.39 67.44 67.42

50 46.76 48.79 47.94 47.83 48.11 47.16 48.13 47.80

20 19.17 19.20 19.17 19.18 19.24 19.24 19.30 19.26

5 4.78 4.78 4.80 4.79 4.80 4.80 4.82 4.81

1 0.83 0.95 0.94 0.91 0.94 0.95 0.95 0.95

 Client send Client send

Mbps Test 1 Test 2 Test 3 Avg Test 1 Test 2 Test 3 Avg

Full 91.68 91.47 90.31 91.15 9.84 9.75 9.84 9.81

10 9.53 9.70 9.57 9.60 9.56 9.65 9.53 9.58

7 6.68 6.65 6.68 6.67 6.66 6.68 6.69 6.68

5 4.75 4.75 4.74 4.75 4.69 4.73 4.74 4.72

2 1.85 1.87 1.87 1.86 1.87 1.87 1.84 1.86

1 0.92 0.93 0.94 0.93 0.91 0.88 0.92 0.90

Table 15. TEST 1, bandwidth, speedtest.net, old systems

 DOld LOld

Server send Server send

Mbps Test 1 Test 2 Test 3 Avg Test 1 Test 2 Test 3 Avg

Full 93.71 90.49 93.42 92.54 92.90 92.55 92.49 92.65

70 67.42 67.44 67.39 67.42 67.40 67.25 67.34 67.33

50 48.11 48.15 48.13 48.13 48.14 48.09 48.17 48.13

20 19.29 19.24 19.25 19.26 19.27 19.25 19.27 19.26

5 4.81 4.81 4.83 4.82 4.83 4.80 4.81 4.81

1 0.95 0.95 0.97 0.96 0.96 0.95 0.91 0.94

 Client send Client send

Mbps Test 1 Test 2 Test 3 Avg Test 1 Test 2 Test 3 Avg

Full 10.00 10.08 10.04 10.04 10.11 9.94 10.08 10.04

10 9.64 9.65 9.65 9.65 9.56 9.63 9.57 9.59

7 6.74 6.70 6.71 6.72 6.75 6.63 6.69 6.69

5 4.81 4.82 4.84 4.82 4.81 4.67 4.84 4.77

2 1.93 1.93 1.91 1.92 1.82 1.94 1.86 1.87

1 0.96 0.95 0.94 0.95 0.97 0.92 0.96 0.95

57

Lastly, a LAN based test software called iperf was used to measure the band-

width in LAN environment only. This type of bandwidth test provided the most

consistent test results between each test system and would be the preferred

test method if any further testing on the whole system was to be made. Once

again only the full 100 Mbps speed results show some difference. This is

when the bandwidth limiting is turned off in the system. The results can be

seen in table 16 for new test systems and in table 17 for old test systems. The

commands used in the test, where BW means the bandwidth to be tested,

were:

• server command: iperf-2.0.14a-win.exe -s -u -i 1

• client command: iperf-2.0.14a-win.exe -c 192.168.0.16 -u -d -b BW

Table 16. TEST 1, bandwidth test, iperf, new systems

 DNew LNew

Server send Server send

Mbps Test 1 Test 2 Test 3 Avg Test 1 Test 2 Test 3 Avg

Full 95.0 95.0 95.1 95.0 93.6 93.6 93.6 93.6

70 68.1 68.1 68.1 68.1 68.1 68.1 68.1 68.1

50 48.7 48.7 48.7 48.7 48.6 48.7 48.7 48.7

20 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5

5 4.87 4.88 4.89 4.88 4.88 4.89 4.89 4.89

1 0.98 0.98 0.98 0.98 0.99 1.00 0.99 0.99

 Client send Client send

Mbps Test 1 Test 2 Test 3 Avg Test 1 Test 2 Test 3 Avg

Full 95.2 95.2 95.3 95.2 93.8 93.9 93.9 93.9

70 68.1 68.1 68.2 68.1 68.1 68.1 68.0 68.1

50 48.7 48.7 48.6 48.7 48.6 48.6 48.7 48.6

20 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5

5 4.88 4.88 4.88 4.88 4.87 4.90 4.90 4.89

1 0.98 0.99 0.99 0.99 0.97 1.00 0.99 0.98

The measurements in the iperf software provided results that were so con-

sistent between runs so that the iperf tests for the old systems were run only

twice. A major factor contributing in this consistency may be the fact that this

test was run in a LAN environment.

58

Table 17. TEST 1, bandwidth test, iperf, old systems

 DOld LOld

Server send Server send

Mbps Test 1 Test 2 Avg Test 1 Test 2 Avg

Full 94.5 94.9 94.7 95.1 95.0 95.1

70 68.2 68.2 68.2 68.1 68.1 68.1

50 48.6 48.7 48.7 48.6 48.6 48.6

20 19.5 19.5 19.5 19.5 19.5 19.5

5 4.88 4.88 4.88 4.86 4.85 4.86

1 0.99 0.98 0.98 0.96 0.96 0.96

 Client send Client send

Mbps Test 1 Test 2 Avg Test 1 Test 2 Avg

Full 89.9 89.5 89.7 95.4 95.4 95.4

70 68.0 68.2 68.1 68.1 68.0 68.1

50 48.7 48.6 48.7 48.6 48.7 48.7

20 19.5 19.5 19.5 19.5 19.5 19.5

5 4.88 4.88 4.88 4.89 4.83 4.86

1 0.99 0.98 0.99 0.97 0.97 0.97

6.1.6 CPU usage test

The CPU usage was measured by running the Linux utility called top that dis-

plays statistics over various processes. Each PC system was measured when

the Source Router software was idle with no traffic. The results are presented

in table 18. Another set of measurements was made where a client computer

was running a full speed download test from speedtest.net downloading nearly

100 Mbps. The results of these measurements are shown in table 19.

Table 18. TEST 1, CPU usage when idle

 DNew LNew DOld LOld

Meas. 1 18.6% 9.0% 13.0% 31.1%

Meas. 2 18.9% 8.6% 13.9% 30.4%

Meas. 3 18.9% 9.0% 12.6% 31.1%

Meas. 4 19.3% 9.6% 13.3% 30.8%

Meas. 5 18.6% 9.3% 12.6% 30.5%

Average 18.9% 9.1% 13.1% 30.8%

59

Each measurement was made by hand by taking five different measurements

at different times from the display of the top program. For an unknown reason

the new desktop system had lower CPU usage when the Source Router was

working at full speed than what it had when idle. A possible reason for this is

that the CPU is running at a lower speed when the traffic is idle, and its speed

is boosted when there is full traffic.

This renders the results of the CPU usage test in case of DNew incomparable

between idle and full speed. A better way to test would have been to put a

high enough load on the computer using other software in the background so

that the CPU would have been near full load in both idle and full speed tests.

Table 19. TEST 1, CPU usage at full traffic

 DNew LNew DOld LOld

Meas. 1 7.7% 15.0% 18.9% 43.7%

Meas. 2 8.0% 15.2% 19.3% 44.4%

Meas. 3 8.3% 14.6% 18.9% 44.0%

Meas. 4 7.3% 14.3% 17.9% 44.2%

Meas. 5 7.6% 15.0% 19.2% 44.4%

Average 7.8% 14.8% 18.8% 44.1%

6.2 TEST 2: More thorough feature testing

It was deemed unnecessary to test all client slots thoroughly as the software

will function the same for any of the 16 clients. The only difference between

clients is the initial IP address comparison which will determine which client

number or slot in the table is to be used.

When the client number is found out from the IP address table all the same

programs functions are run with a different table index, so that if everything

works for client 1, everything works for any other client as well. Therefore, the

thorough feature testing was only carried out for client slot 1. The functioning

of all the other client slots was verified by only a brief test with no recorded re-

sults.

60

6.2.1 Packet loss test

For packet loss testing the better method from the previous tests was used.

This was to use the iperf software which by default sends roughly 900 packets

each way between the server and client in a 10 second interval to perform the

test and records the number of lost packets to provide the packet loss meas-

urement. The test results for the test are presented in table 20 and show that

the results are within 2 percentage points of the setting value. The commands

used in the test are below:

• server command: iperf-2.0.14a-win.exe -s -u -i 1

• client command: iperf-2.0.14a-win.exe -c 192.168.0.16 -u -d

Table 20. TEST 2, packet loss

 Server send Client send

No loss 0.0% 0.0%

1% loss 1.2% 1.0%

2% loss 2.1% 2.6%

3% loss 3.0% 3.2%

4% loss 4.4% 3.5%

5% loss 5.6% 4.5%

6% loss 5.7% 6.6%

8% loss 8.8% 8.7%

10% loss 10% 10%

15% loss 15% 16%

20% loss 21% 19%

25% loss 25% 23%

30% loss 28% 29%

35% loss 34% 34%

40% loss 40% 42%

45% loss 45% 45%

50% loss 49% 50%

60% loss 61% 59%

70% loss 70% 71%

80% loss 78% 80%

61

6.2.2 Base delay test

The base delay test was carried out by the ping command. This time to estab-

lish a more robust set of measurements 60 pings were sent between the client

and the server and the minimum, maximum and average results were rec-

orded. The measurements can be seen in table 21. The results for very low

delay values are inaccurate as the method shows the total delay between cli-

ent and server with other network components adding a small random delay in

the results. But other than that, the delay values are very much as expected.

The command used in the test was:

• ping 192.168.0.1 -n 60

Table 21. TEST 2, base delay

 Server send Client send

Min Max Avg Min Max Avg

0 ms 1 7 1 1 7 1

1 ms 2 7 2 3 5 3

2 ms 3 5 3 3 5 3

3 ms 4 6 5 5 7 5

4 ms 5 7 5 5 11 5

5 ms 6 12 6 6 9 7

10 ms 11 17 12 11 18 12

20 ms 21 23 21 22 24 22

30 ms 31 34 32 31 41 32

40 ms 42 50 42 41 47 42

50 ms 52 56 52 51 57 52

100 ms 101 105 102 101 104 102

200 ms 202 204 202 201 209 202

300 ms 302 305 302 301 304 302

400 ms 401 404 402 400 404 402

500 ms 501 507 502 501 504 502

750 ms 751 754 751 751 754 752

1000 ms 1001 1003 1001 1001 1004 1002

62

6.2.3 Jitter test

The jitter test was made the same way than the base delay test above except

this time 100 pings were used to better include the changing jitter values in the

results. The results are shown in table 22. Even longer tests might have given

even more consistent values as in the highest jitter values a difference be-

tween the results can be seen. In the lower jitter values the consistency of the

results is much higher which shows that the jitter feature is working as ex-

pected. The lowest values show almost no difference due to the same reason

as in the base delay test where the varying delays in other network equipment

adds noise in the values. The command used in the test was:

• ping 192.168.0.1 -n 100

Table 22. TEST 2, delay jitter

 Server send Client send

Min Max Avg Min Max Avg

0 ms 1 4 2 1 4 2

1 ms 1 6 2 2 5 2

2 ms 1 5 2 1 9 3

3 ms 1 7 2 2 6 3

4 ms 2 8 3 2 7 3

5 ms 2 10 4 1 7 3

10 ms 2 11 5 1 10 4

20 ms 1 22 6 1 17 7

30 ms 1 29 9 1 23 9

40 ms 2 33 11 1 29 12

50 ms 2 36 13 1 41 14

100 ms 1 68 26 1 66 26

200 ms 2 169 50 3 138 46

300 ms 3 193 68 2 256 70

400 ms 5 283 93 4 338 94

500 ms 4 354 108 3 294 128

750 ms 8 652 181 9 553 176

1000 ms 7 721 274 4 750 235

63

6.2.4 Bandwidth test

The bandwidth test was made with the most consistent bandwidth test from

the four-computer test which was to use the iperf software in LAN. The results

are very consistent between the server and client send sides and are shown in

table 23. There is a small difference between the bandwidth setting and the

actual result. This is likely caused by the fact that the bandwidth setting means

the raw data speed including the network frame headers whereas the results

only show the payload data speed and exclude the frame headers. The follow-

ing commands were used in the test, where BW means the tested bandwidth:

• server command: iperf-2.0.14a-win.exe -s -u -i 1

• client command: iperf-2.0.14a-win.exe -c 192.168.0.16 -u -d -b BW

Table 23. TEST 2, bandwidth

 Server send Client send

0.1 Mbps 0.104 Mbps 0.098 Mbps

0.2 Mbps 0.197 Mbps 0.201 Mbps

0.5 Mbps 0.491 Mbps 0.492 Mbps

1 Mbps 0.964 Mbps 0.939 Mbps

2 Mbps 1.96 Mbps 1.97 Mbps

4 Mbps 3.91 Mbps 3.91 Mbps

6 Mbps 5.84 Mbps 5.87 Mbps

8 Mbps 7.79 Mbps 7.75 Mbps

10 Mbps 9.74 Mbps 9.79 Mbps

15 Mbps 14.6 Mbps 14.6 Mbps

20 Mbps 19.5 Mbps 19.5 Mbps

25 Mbps 24.4 Mbps 24.4 Mbps

30 Mbps 29.3 Mbps 29.3 Mbps

40 Mbps 38.9 Mbps 38.9 Mbps

50 Mbps 48.7 Mbps 48.7 Mbps

60 Mbps 58.4 Mbps 58.4 Mbps

70 Mbps 68.0 Mbps 68.1 Mbps

80 Mbps 77.8 Mbps 77.8 Mbps

90 Mbps 87.5 Mbps 87.5 Mbps

100 Mbps 87.1 Mbps 93.7 Mbps

64

6.3 TEST 3: Online gaming test

A brief one-hour test was made where two players were playing the Fortnite

battle royale FPS game through the created Source Router software and dur-

ing the gaming the individual features of the software were tested to see their

effect on the gameplay. The subjective view of the two players was that they

could not recognize whether the Source Router was used to bridge the game

network connection or not when all Source Router interference was turned off.

During the gameplay the gaming computers were also individually subjected

to various lag situations manually controlled from the Source Router web UI.

Fortnite has a built-in network monitor mode that shows the delay, packet loss

and amount of transferred data separately for incoming and outgoing traffic.

When the delay, jitter and packet loss were changed from the Source Router

software the display of the built-in statistics did change accordingly. Limiting

the game bandwidth did make the game lag, but only when the bandwidth was

limited to less than 300 kbps both ways.

No accurate measurements were being able to be carried out since the net-

work statistics are only shown on the screen and not logged by the game, but

it can be estimated that the accuracy of delay was in the range of few millisec-

onds and packet loss within 1–3%. While the results of this gaming test are

not statistically enough to make big conclusions, they at least point into the di-

rection that the Source Router software would not appear to affect the game-

play detrimentally when the game connection passes through it and interfer-

ence is not enabled. Furthermore, when interference is enabled, the results

appear to be as expected.

7 CONCLUSIONS

This thesis was designed to find out how a LaggingMeter system could be im-

plemented on a modern PC system and how modern and efficient such a PC

system would need to be. As a result, a working LaggingMeter system was

successfully implemented by using modern PC hardware. The system can be

used to make lagging tests as proposed by Mr. Kettunen in his paper. The

LaggingMeter was implemented mostly in software with only the lag presence

65

input from clients requiring hardware in the form of a standard push button.

This push button is to be connected to a standard Raspberry Pi miniature

computer.

However, no special hardware is required to implement the system. Therefore,

it has been shown that when a modern PC hardware is used, the introduction

of specific lag to a client’s network connection can be completely achieved by

a software only system which can be used to manipulate four Quality of Ser-

vice parameters independently in both data transfer directions.

The created system allows the manipulation of four important network param-

eters: delay, delay jitter, packet loss and bandwidth. Each of these parameters

were tested separately to find out that they work in the implemented system

as expected. The functioning of these parameters was also verified in a small-

scale gaming test.

The reliability of the test results from the parameter tests is not perfect, partly

due to the used test methods and partly because there were other network de-

vices in the network causing variation in the measured parameters. However,

the measured parameters are very close to their setting values in all the tests.

Also, because the system relies on software to do the packet bridging, a situa-

tion may arise where the PC is starved of resources and this might influence

the working of the system. No such situation was, however, experienced dur-

ing the creating and testing of the system.

Four different PC systems were tested with the implemented LaggingMeter.

What comes to the hardware requirements of the used PC system the mini-

mum requirements for running the system were not able to be established in

the tests. The system test results show that even the older PC systems that

were used in testing the LaggingMeter were able to complete the tests with

equal results to the newer PC hardware when the connection speed was 100

Mbps. However, it was established that even a 5-year-old medium range PC

system is likely to run the LaggingMeter system without a problem.

The setting accuracy of the delays in the microsecond level is more than

enough as many networks measure delays in the range of milliseconds. Also,

66

the accuracy of 1 kbps for the bandwidth is very accurate when most networks

work in the Gbps range. However, since even a small packet loss can be very

detrimental to online gaming, the accuracy of the packet loss parameter could

have been at least ten times more accurate to better differentiate different

amounts of packet loss.

The LaggingMeter uses a web browser user interface for parameter entry and

status display. Creating the user interface with JavaScript and WebSocket

technologies was a learning experience and provided an insight into how bidi-

rectional data traffic can be implemented with modern web browser so that the

user can both input data from the browser as well as see the system status in-

formation in return.

While the implemented LaggingMeter system is fully functional its usage relies

mostly in manual operation. It is possible to run the system with automatic se-

quences where the interference parameters change on each client in the

same way, but at different points in time. This type of automation is, however,

somewhat limited. As a further development of the system, a more advanced

automation system could be created, possibly by the usage of a scripting lan-

guage that would allow each client to run different kind of interference.

Another development idea would be to try to model the jitter functionality in a

more realistic way. The study on jitter modeling presented in the thesis could

serve as a starting point in this work. On the other hand, it may be questioned

whether this is necessary as the implemented jitter model may be enough to

the purposes of the system. A jitter study could be carried out using the jitter

of the LaggingMeter system and comparing it to the jitter generated by a real

Internet game server.

Even though there is no hard limit in the system to prevent 1 Gbps operation,

since the acquired USB network adapters supported only 100 Mbps speed, no

real-life tests with 1 Gbps speed were made. Therefore, testing the system

with 1 Gbps speed would give information how well it can cope at that speed

and whether the system can even reach full 1 Gbps speed with the imple-

67

mented Source Router software. Also, making such tests with multiple differ-

ent PC systems running the Source Router software would reveal whether

older systems can support such a fast network speed.

The LaggingMeter system appears to run fine on older PC systems that have

less processing power and utilizes a Raspberry Pi miniature computer for lag

indication collection. This brings up the question whether a Raspberry Pi could

be used for both tasks. This would be another way to further develop the sys-

tem allowing everything to be put on one Raspberry that could be used as a

portable LaggingMeter system that would be easy to install anywhere.

Even as is, the system can perform the task it was built for, namely creating

individual lag per player and getting the feedback from the players via a push

button. Every system can and should, however, be constantly improved.

Therefore, it is advised to run the system as implemented while studying its

behavior and finding out what works and what could be improved. With the

new findings about the system and the suggestions above the system can be

improved further.

In conclusion, it was verified that a working LaggingMeter system can be built

using one modern PC system with two network adapters and a dedicated

bridging software. To collect the lag experience data from the users, an exter-

nal Raspberry Pi system can be used. The used PC system can be a few

years old mid-range system when a connection speed of 100 Mbps is used.

68

REFERENCES

Barreiros, M. & Lundqvist, P. 2016. QOS-Enabled Networks. 2nd edition.
Chichester: John Wiley & Sons, Ltd.

Daniel, E., White, C. & Teague, K. 2003. An interarrival delay jitter model us-
ing multistructure network delay characteristics for packet networks. Available:
https://www.researchgate.net/publication/4071919_An_interarrival_delay_jit-
ter_model_using_multistructure_network_delay_characteris-
tics_for_packet_networks [referenced 22.10.2019].

Evans, J. & Filsfils, C. 2007. Deploying IP and MPLS QOS for Multiservice
Networks. San Francisco: Morgan Kaufmann.

Horowitz, P. & Hill, W. 2015. The Art of Electronics. 3rd edition. Cambridge:
Cambridge University Press.

Jha, S. & Hassan, M. 2002. Engineering Internet QoS. Norwood: Artech
House Inc.

Kananen, J. 2014. Verkkotutkimus opinnäytetyönä. Jyväskylä: JAMK Univer-
sity of Applied Sciences.

Kananen, J. 2017. Kehittämistutkimus interventiotutkimuksen muotona.
Jyväskylä: JAMK University of Applied Sciences.

Kettunen, M. 2012. LaggingMeter. PDF-document. Kotka: Kymenlaakso Uni-
versity of Applied Sciences.

Kurose, J. & Ross, K. 2013. Computer Networking. 6th edition. London: Pear-
son Education Ltd.

Lee, W-K. & Chang, R. 2015. Evaluation of Lag-Related Configurations in
First-Person Shooter Games. PDF-document. Available: https://www.re-
searchgate.net/publication/304293798_Evaluation_of_lag-related_configura-
tions_in_first-person_shooter_games [referenced: 22.10.2019].

Marsaglia, G. 2003. Xorshift RNGs. PDF-document. Available: https://www.jst-
atsoft.org/index.php/jss/article/view/v008i14/xorshift.pdf [referenced
13.9.2019].

Misra, S. & Goswami, S. 2017. Network Routing. Chichester: John Wiley &
Sons, Ltd.

Peterson, L. & Davie, B. 2012. Computer Networks. Burlington: Morgan Kauf-
mann.

Saarelainen, K. 2011. IP-puhe. Helsinki: Readme.fi.

Tseng, P-H., Wang, N-C., Lin, R-M. & Chen, K-T. 2011. On the Battle Be-
tween Lag And Online Gamers. PDF-document. Available: https://www.re-
searchgate.net/publication/224255033_On_the_battle_be-
tween_lag_and_online_gamers [referenced: 22.10.2019].

https://www.researchgate.net/publication/4071919_An_interarrival_delay_jitter_model_using_multistructure_network_delay_characteristics_for_packet_networks
https://www.researchgate.net/publication/4071919_An_interarrival_delay_jitter_model_using_multistructure_network_delay_characteristics_for_packet_networks
https://www.researchgate.net/publication/4071919_An_interarrival_delay_jitter_model_using_multistructure_network_delay_characteristics_for_packet_networks
https://www.researchgate.net/publication/304293798_Evaluation_of_lag-related_configurations_in_first-person_shooter_games
https://www.researchgate.net/publication/304293798_Evaluation_of_lag-related_configurations_in_first-person_shooter_games
https://www.researchgate.net/publication/304293798_Evaluation_of_lag-related_configurations_in_first-person_shooter_games
https://www.jstatsoft.org/index.php/jss/article/view/v008i14/xorshift.pdf
https://www.jstatsoft.org/index.php/jss/article/view/v008i14/xorshift.pdf
https://www.researchgate.net/publication/224255033_On_the_battle_between_lag_and_online_gamers
https://www.researchgate.net/publication/224255033_On_the_battle_between_lag_and_online_gamers
https://www.researchgate.net/publication/224255033_On_the_battle_between_lag_and_online_gamers

69

Vegesna, S. 2001. IP Quality of Service. Indianapolis: Cisco Press.

White, R. & Banks, E. 2018. Computer Networking Problems and Solutions.
Boston: Addison-Wesley.

70

LIST OF FIGURES

Figure 1. LaggingMeter system (Kettunen 2012, 3) 29

Figure 2. Source Router operational diagram ... 31

Figure 3. Source Router threads .. 31

Figure 4. Source Router browser user interface ... 33

Figure 5. WebSocket connection status ... 34

Figure 6. LFSR random number generator... 37

Figure 7. Distribution of jitter values ... 40

Figure 8. Source Router configuration file .. 41

Figure 9. Source Router client settings log ... 41

Figure 10. Source Router button press log ... 42

Figure 11. Source Router sequence file ... 43

Figure 12. Button Press Collector configuration file .. 44

Figure 13. Raspberry Pi 3B with connector card and a button box 45

Figure 14. Button box connections to the Raspberry Pi I/O connector 45

Figure 15. Office network test system .. 48

Figure 16. Home network test system .. 48

71

LIST OF TABLES

Table 1. Source Router parameters ... 30

Table 2. Test system specifications .. 47

Table 3. TEST 1, bypass test, packet loss ... 48

Table 4. TEST 1, bypass test, delay ... 49

Table 5. TEST 1, bypass test, fast.com bandwidth .. 50

Table 6. TEST 1, bypass test, speedtest.net bandwidth 50

Table 7. TEST 1, packet loss, ping ... 51

Table 8. TEST 1, packet loss, iperf .. 52

Table 9. TEST 1, base delay .. 52

Table 10. TEST 1, base delay, relative average values 53

Table 11. TEST 1, delay jitter ... 53

Table 12. TEST 1, delay jitter, relative average values 54

Table 13. TEST 1, bandwidth, fast.com ... 55

Table 14. TEST 1, bandwidth, speedtest.net, new systems 56

Table 15. TEST 1, bandwidth, speedtest.net, old systems 56

Table 16. TEST 1, bandwidth test, iperf, new systems 57

Table 17. TEST 1, bandwidth test, iperf, old systems 58

Table 18. TEST 1, CPU usage when idle ... 58

Table 19. TEST 1, CPU usage at full traffic .. 59

Table 20. TEST 2, packet loss ... 60

Table 21. TEST 2, base delay .. 61

Table 22. TEST 2, delay jitter ... 62

Table 23. TEST 2, bandwidth ... 63

