
Bachelor’s thesis

Information Technology

2019

Aaro Salonen

USER EXPERIENCE TESTING
OF VISUAL SCRIPTING

– Using Blueprints and PlayMaker

BACHELOR’S THESIS | ABSTRACT

TURKU UNIVERSITY OF APPLIED SCIENCES

Information Technology

Completion year of the thesis 2019 | 39 pages

Aaro Salonen

USER EXPERIENCE TESTING OF VISUAL
SCRIPTING

Using Blueprints and PlayMaker

The objective of this thesis work was to provide a statistical and practical evaluation to visual
scripting tools with user experience test providing the viewpoint of a target user, and compare two
different tools on two separate game development engines.

This thesis was commissioned by Turku Game Lab and is based on the request of the
commissioner to look into the visual scripting tools found in Unreal Engine and on Unity.

The goal was to study Unreal Engine 4 and its internal visual scripting tool, Blueprints, in direct
comparison to Unity’s plugin, PlayMaker. The author outlined definitions for tasks and attempted
to complete similar projects on both engines utilizing only the visual scripting tools while
contrasting user story method with the data.

The focus of the thesis remained on the comparison between the two visual scripting languages
and on the data collected through task completion success rates. Both game engines and
scripting languages are similar to one another but the languages had different approaches to
problem solving, such as variable and node connection counts. Additionally, the thesis shows
how inexperience with programming can be one of the greatest difficulties for a beginning
developer faces and provides statistical analysis on these claims.

KEYWORDS:

Visual Scripting Language, Visual Programming, Unity, PlayMaker, Unreal Engine, Blueprints,
User Experience, User Story

OPINNÄYTETYÖ (AMK) | TIIVISTELMÄ

TURUN AMMATTIKORKEAKOULU

Informaatio Teknologia

Opinnäytetyön valmistumisajankohta 2019 | 39 sivua

Aaro Salonen

VISUAALISEN SKRIPTAUKSEN
KÄYTTÄJÄKOKEMUSTESTAUSTA

 Käyttäen Blueprinttejä ja PlayMakeria

Tämän opinnäytetyön tavoiteena oli antaa tilastollinen ja käytännöllinen arvio visuaalisille
skriptityökaluille käyttäjäkokemustestauksella kohdekäyttäjän näkökulmasta ja vertailla kahta eri
työkalua kahdella erillisellä pelikehitysmoottorilla.

Opinnäytetyön tilasti Turku Game Lab ja se perustuu tilaajan pyyntöön tutkia Unreal Enginestä ja
Unitystä löytyviä visuaalisia skriptityökaluja.

Tavoitteena oli tutkia Unreal Engine 4 sisäistä visuaalista skriptityökalua nimeltä Blueprints ja
verrata sitä suoraan Unityn ladattavaan lisäosaan nimeltä PlayMaker. Kirjoittaja määritteli
mahdollisimman samanlaiset tehtävät ja yritti suoriutua niistä käyttäen ainoastaan molempien
pelimoottoreiden skriptityökaluja, luoden käyttäjätarinan analysoitavaksi tuloksien rinnalle.

Opinnäytetyön painopiste keskittyi kahden visuaalisen skriptikielen vertailuun ja asetettujen
tehtävien onnistuneesti suoriutumisista kerättyyn tietoon. Molemmat moottorit ja kielet olivat hyvin
saman tyyliset, mutta muuttujien ja graafisten noodien määrät vaihtelivat samojen ongelmien
ratkaisuissa. Tutkimus osoittaa, mitkä voivat olla suurimpia vaikeuksia aloittavalla pelikehittäjälle
ja tarjoaa tilastollisen analyysin osoittamaan niitä.

ASIASANAT:

Visuaalinen skriptauskieli, visuaalinen ohjelmointi, Unity, PlayMaker, Unreal Engine, Blueprints,
Käyttäjätarina, Käyttäjäkokemus

CONTENTS

LIST OF ABBREVIATIONS 6

1 INTRODUCTION 6

2 KEY CONCEPTS 8

2.1 Game engines 8

2.2 Visual scripting 9

2.3 Programming and scripting 10

2.4 Topic selection 12

3 PRACTICAL APPROACH 13

3.1 Evaluation and metrics 13

3.1.1 Game definitions 13

3.1.2 Game object definitions 13

3.1.3 Project sequence 15

3.2 Evaluation 16

4 PARALLEL COMPARISONS 19

5 PLAYMAKER PROCESS 22

5.1 Confined space 23

5.2 Controllable object 23

5.3 Avoidable object 24

5.4 Optional object 24

5.5 Required object 25

5.6 Desired object 25

5.7 Extra constraint 25

5.8 Additional notes 26

6 BLUEPRINTS PROCESS 27

6.1 Confined space 29

6.2 Controllable object 29

6.3 Avoidable object 30

6.4 Optional object 30

6.5 Required object 31

6.6 Desired object 31

6.7 Extra constraint 31

7 DATA REFLECTION 32

8 PROJECT REFLECTION 35

9 CONCLUSION 37

REFERENCES 38

FIGURES

Figure 1. Microsoft visual programming language flow graph. (Microsoft, 2012) 8
Figure 2. Node based VSL in comparison to nativized code in UE. (Unreal Engine,
2019) 10
Figure 3. The workflow of the project tasks. 17
Figure 4. Object creation. 20
Figure 5. Detail editor. 20
Figure 6. Lists of game objects and their visual scripting representations. 21
Figure 7. Project view on Unity. 22
Figure 8. Project view on UE. 27
Figure 9. Blueprints UI. 28
Figure 10. Success rates of each FSM for Unity project and its components. 32
Figure 11. Success rates of each Blueprint for Unreal Engine project and its
components. 32
Figure 12. PlayMaker variable count by game object. 34
Figure 13. Blueprints variable count by game object. 34

LIST OF ABBREVIATIONS

2D Two-dimensional

3D Three-dimensional

FSM Finite-state machine

UE Unreal Engine, game engine

UI User interface

Unity Game engine

UX User experience

VPL Visual programming language

VPT Visual programming tool

VSL Visual scripting language

VST Visual scripting tool

6

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Aaro Salonen

1 INTRODUCTION

This thesis provides a point of view to the visual scripting tools from a non-coder by

creating a set of game elements with two methods on separate game development

engines. The goal was to understand why game engines are so popular and show what

was successfully created without external help and what was not. The tasks in the thesis

were not part of any official project and will not become published.

This topic was chosen because game development has been the field of interest for the

author for years, and because the game industry has managed to stay relevant in the

entertainment industry long enough to start providing development applications to the

consumers. This thesis was commissioned by Turku Game Lab and is based on the

request of Taisto Suominen to look into the visual scripting tools found in Unreal Engine

and on PlayMaker plug-in for Unity.

As both engines have much in common, the thesis helps explain the differences between

them and runs a test on the two visual scripting additions, evaluating success rates of

the tasks and providing user stories on each task to help understand the experience and

thought processes. The purpose of these tools is to provide an easier path to game

development industry for those who have no experience or knowledge on how to

program. This thesis provides examples and issues found in the tools from the

perspective of the author, who has a very basic understanding on programming and

gaming logics but has never created a running program outside the basic programming

courses on C# provided by the school.

There are multiple other published works and projects that utilize some form of visually

aided programming, such as Collaboration Between C++ and Blueprint in Unreal Game

Engine, or Linnea Torn World game demo production, but they are usually used as a

platform to develop something, rather than examine the platform itself. (Salminen, 2019;

Tiilikainen, 2014) In this thesis, the author defines a basic game concept outlines and

creates a game scheme while providing the success rates of each task on the engines,

showing how much inexperienced coder can achieve with the internal visual tools and

how often he needs to rely on the external community’s help.

7

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Aaro Salonen

The thesis goes through the background of game development engines, what visual

scripting is, and how it differs from visual programming. It also explains how

programming and visual scripting interact inside the provided engines.

The thesis was a single person project and the author is responsible for all the work

conducted in the thesis.

8

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Aaro Salonen

2 KEY CONCEPTS

2.1 Game engines

It is often debatable when, where, and how the video game industry started, but the core

principles have not changed. The concept is business combined with games, and both

have been around for a long time. What makes a game a video game can have varying

definitions but ultimately, it is the transition into the newest medium of our time; the virtual

medium. All games need a platform to be developed on, and eventually they moved from

pen and paper to virtual environments in research labs of scientists. (History.com Editors,

2017) Video games became such a large market that companies strived to make them

faster and cheaper. This naturally led to an environment that could be used to develop

games. By the time most households had a computer, the game industry had grown into

such a large scale that it found its way to most household through them. When this

happened, companies started to provide tools for the masses to develop games by

providing a tool accessible for as many as possible. The easier it is for beginners to start

learning, developing, and eventually publishing their own games, the more they could

profit from them. (Chikhani, 2015)

Because there were not any game engines in the beginning, developers had to make

their own. Subsequently, when a game proves successful, the format is repeated. By

creating their own engines, the developers guarantee that their engines will do exactly

what they want them to do, optimizing the performance by letting them focus on the

essentials. Unlike them, the modern game engine is for everyone. At least it tries to be

available for as broad audience as possible. The modern game engines are designed to

offer as much flexibility in terms of development so that users can use the same engine

for as many projects as possible. The key is finding a balance between flexibility and

beginner friendliness. (Brodkin, 2015)

9

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Aaro Salonen

2.2 Visual scripting

Visual scripting stems from visual programming, which was originally an idea to make a

text-based system easier to understand. Canfield-Smith published a thesis in 1975 that

proposed that part of the complexity of programming is mentally constructing a model of

a program state in your head, and he wanted to be able to show all the states on-screen,

so that it could be observed all at once. This was because people simply cannot handle

big capacities of complex info as computers do. This lack of capacity leads to

unanticipated errors.

Because visual processing is much more effective than abstract structure thinking, our

world is filled with icons and shapes to help us process things faster. This is all applied

to coding in visual programming, often to help beginners understand how coding works,

or to make things easier for unprofessional programmers. (Canfield-Smith, 1975) VPLs

use graphical elements to display the flow of the code so that working with the whole

system is displayed clearly, and they are often represented in block-based or flow-based

systems. Most notable example of a block-based VPL is Scratch, which is a visual

programming language. Flow-based diagrams can represent multiple different flows, like

state or logic flows, and are often visual scripting languages. See Figure 1 for an early

VPL example.

Figure 1. Microsoft visual programming language flow graph (Microsoft, 2012)

10

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Aaro Salonen

2.3 Programming and scripting

Visual scripting languages are not to be confused with visual programming languages

even though they are both graphical programming environments and often share similar

flow chart-like diagramming structure. VSLs are a subcategory for programming

languages and the key difference between the two is that programming requires a

compiler and scripting requires an interpreter. If a piece of code needs to be expressed

in a VSL tool, a programmer would need to compile the code first, for example with

Microsoft Visual Studio, and then import the compiled script. (Geeks For Geeks)

Most of the confusion between VSL and VPL stems from situations where people

intermix classifications and call scripting languages programming languages. They are

not wrong because scripting is coding, but the fact that scripting has different

functionalities than regular programming, it creates confusion. All scripting is

programming, but not all programming is scripting.

While Playmaker cannot directly convert scripts into C#, the user can import your C#

scripts into PlayMaker. This essentially allows users to keep using PlayMaker visual FSM

editor and simultaneously create their own actions to do anything the editor doesn’t

provide. Unreal Engine (UE) can provide similar co-creation in Blueprints, but the

language used is C++. What Blueprints can do that PlayMaker doesn’t, is a feature called

code nativizing. This allows the developer to convert their Blueprints into native C++

code. See Figure 2 for a comparison example. This generated code becomes very hard

to read due to its unfriendly format because it needs to translate the nodes run in the

virtual machine into C++ code, resulting in extra dependencies, machine instructions,

and metadata that needs to get complied. This needs to be accounted for as it can

decrease the performance of the game.

11

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Aaro Salonen

Figure 2. VSL above, nativized code below. (Unreal Engine, 2019)

This thesis does not include a nativized example from the project files due its

unnecessary nature on the project. Even though it is possible to write code and compile

them into usable scripts in the engines used in this thesis, this thesis doesn’t include any

custom C# or C++ scrips because this thesis does not test the tester’s skills in that area,

nor is the tester that fluent in programming.

A game developer will generally need to learn a coding language. Realistically, often

multiple languages if they want to be professional coders in the industry. Visual scripting

languages provide an easy way for developers to start working on their programs with

the intuitive user interfaces and preset narrowed down tools, but they are limited.

Because programming is not limited, it drives developers out from the limited

environment because they want to create something more complex that the VSL cannot

provide, or to create shortcuts that the VSL tools limit. Sometimes, the dependence of a

developer on a public game engine’s most recent update can create issues.

The aim of VSLs is not to help developers publish games, but to lower the threshold for

beginners to start their own project, and through that, learn the logic behind it. By making

coding visual, the game engine developers increase the number of game developers.

Many of those stick to the programs they learned it with. (Mazaika)

12

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Aaro Salonen

2.4 Topic selection

Visual Scripting tools are usually promoted towards certain types of target audiences;

beginning developers with an idea but no assets or coding experience to make it

concrete, people with assets they have made themselves and want to prototype but have

no coding experience, or people who have coding experience and want to automate

parts of their code. The forums and the online communities of these tools also provide

either free or purchasable content, such as pieces of code made by professional

programmers, game assets such as art or animations, to those who rely on placeholders

due to their lack of visual experience, or even tutorials on how to do all that from scratch.

(Unreal Engine, 2019)

Because the tester fit into most of these categories, he was considered the target

audience for these video game engine developers. The tester has a long history of

traditional arts, so he was often tasked with the visual aspects in the projects he took

part in. In addition, an equally long history of playing games has given him an urge to

develop a game himself. Due to the testers lack of programming experience, he fit the

described target audience for game engines visual scripting tools. This intended

targeting led the author to take a practical approach towards the tools and see how far

comprehending basic concepts can take a user.

13

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Aaro Salonen

3 PRACTICAL APPROACH

3.1 Evaluation and metrics

The tester has no proper experience developing games with a game engine. In the past,

the tester has created a few different scenes with Unreal Engine with plain object meshes

and tried importing a sprite sheet to create a sprite animation with Unity. But the visual

scripting languages are new to him. The tester has a basic idea of what the visual

scripting tool looks like in Unreal Engine but has never used it.

3.1.1 Game definitions

Deriving a large inspiration from The Art of Game Design, a game is meant to provide

entertainment, and that a game can be won or lost. This means that a game needs to

have a goal which defines how you win, and rules that define how you lose. Based on

the suggestions found in The Art of Game Design, the different objects are labelled as

different objectives based on relatively wide variety of game types. (Schell, 2008)

3.1.2 Game object definitions

Because the concepts of gameplay mechanics vary immensely depending on the type

and target audience, intended platform, and intended time consumption, the gameplay

elements were narrowed into distinctly different ones based on some of the most popular

games currently available.

The first two object types were labelled as primaries. Without them the game could easily

not work or would be so limited not to provide enough gameplay.

A1) Controllable object, the player

The object the player directly has control over. These were considered to be the car in a

racing game, or an avatar on a board game like a pawn in chess.

A2) Desired object, the goal

14

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Aaro Salonen

First of the few object types that really define the game itself. It can be a score, a

destination, or making everyone else lose first, in which the goal is technically the player.

The second three object types were labelled as secondaries because they bring extra

elements into the game such as difficulty and chance through obstacles and additional

rules.

B1) Required object, the key

This object type is limited only by the imagination of the designer but usually derives from

the gameplay and goal type. If the goal is a destination, the required object could be a

door key or a vehicle that will grant access to otherwise inaccessible goal. The nature of

this object makes the game more puzzle oriented but can easily be mixed with the goal,

if acquiring the required object leads directly to the goal.

B2) Environmental object, the constraint

This object type increases the difficulty through more abstract natured gameplay element

choices, such as having a limit like time, health or space, or by introducing an enemy.

Environmental hazard could be managed by a random number generator introducing

chance, like having randomized effects take place such as weather in open field action

adventure games or having randomly generated traffic in a racing game. These all limit

the actions the player can make and introduce the possibility for risk and reward.

B3) Optional object, the aid

Similar to the required object, the optional object often heavily depends on the goal and

gameplay. If the goal is destination, the optional object could be a speed boost, the player

can avoid possible non-player character racers or time limits, or it can be an extra life in

case you fall into a bottomless pit and have to start over on a side scrolling platformer.

But because of the helpful nature of the object, it is often behind environmental or

avoidable objects, away from the goal.

15

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Aaro Salonen

From the categories above the final list of tasks is as follows:

1. Create the confined space that operates as the scene’s spatial restrictions (B2.1)

2. Create the player as a controllable object (A1)

3. Create the goal as a winning condition upon reaching or finding it (A2)

4. Create the key, so that the goal is not reachable from the start (B1)

5. Add time limit (B2.2)

6. Create an enemy as another spatial restriction that tries to find the player (B2.3)

7. Create the aid that removes the enemy (B3)

The game prototype needs to provide the following conditions and objects to qualify.

Some games don’t have all of these and some might not even have most of these, but

with the tester’s personal level of gaming experience, the author can acknowledge these

as something that repeat in most games in some form or another.

Some games consider environmental objects and avoidable objects as the same thing.

For example, in virtual chess, all pieces the player controls could be considered optional,

environmental, and controllable objects, except the King, which would be a required

object. And the enemy pieces the enemy controls could be considered avoidable,

environmental, and optional objects, except the King, which would be a desired object.

Regardless of how these objects could be classified, these were the object types used

in the thesis.

3.1.3 Project sequence

Once the main components had been decided, the task sequence for the project was

planned. The tester was adviced that learning how to do one thing could help complete

another, so the object creation sequence was designed in such a way that it could help

the tester as much as possible. If the author wanted to see how difficult certain tasks

were from the beginning, the tasks would each need to be first attempts, but with one

test that is not possible. Therefore, all previous attempts were expected tp aid the tester

as much as possible by using what he would learn on the preceding tasks.

16

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Aaro Salonen

The results show how the sequence flow was affected by the success rates of the tasks,

and how multiple objects ended up sharing variables, linking them together.

3.2 Evaluation

Conducting usability metrics can be fairly difficult to measure, as they can have a wide

variety of requirements, dependencies, and be affected by intuitiveness. What gives the

best results, are statistics, but they are hard to get because they require a lot of data

from many comparable viewpoints to prove valuable. And that kind of data requires a lot

of time and money. Because this work is not host a sponsored or professionally approved

wide workshop, the test focused on the user experience story.

Because usability can be tested in so many ways, the metrics are narrowed down into

two categories that are kept track of, and reflect on the reasons why something was or

was not successful:

1. Success rate, whether the tester had to look it up

2. Error rate, how many times the tester tried and failed

Many other metrics could be considered, such as time in relation to errors, or how optimal

the choices were, but these would be much more valuable if the author coult test people

with categorized backgrounds and similar levels of experience to create a comparison

between the results. For final progression flow, see Figure 3.

Using time as one of the main metrics was considered but because the focus was on

seeing whether the job can be completed without assistance or not, it would create

uneven results as some of them can take a lot longer time than others through sheer

amount of clicks required to complete them. Furthermore, speed is not a performance

specification that VST counters. They provide as low and as informative learning curve

as possible while making the tool itself as flexible as possible, rendering time relatively

useless in terms of usability design.

Usability metrics for satisfaction, whether it was task or engine specific, could been

evaluated if the VSTs were large in numbers and they had to compete for the same user

space on the market. Additionally, that kind of test would require a fair number of users.

17

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Aaro Salonen

Instead of using completion rate and effectiveness through time spent on individual

tasks, it was chosen to see if the tasks were completed with or without online help, and

how many errors were made. As the correct solution can be achieved in different ways

and can vary depending on my basic concepts of coding and game logic, and how the

correct solution is not known in advance, the ratio between number of steps completed

successfully from the total number of steps undertaken can’t be determined. However,

the number of key functionalities each task contained, was compared.

Results explain the thought process behind the choices, as the previous successes

enhanced the success rate of the tasks that followed. Additionally, a closer inspection on

project definitions can be found in the reflection chapter.

18

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Aaro Salonen

Figure 3. The workflow of the project tasks.

19

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Aaro Salonen

4 PARALLEL COMPARISONS

The purpose was to examine the reasoning behind choices and discoveries, so that the

same task setting can be duplicated and directly compared to this thesis. All quotations

in this thesis are thoughts of the tester.

I found that one of the main features in both Unity, and the Unreal Engine game

engines, was how most assets could be placed into the scene as placeholders with

no scripting required. And testing out different options in the inspector tab that

appear when clicking on the objects, providing massive amount of adjustable

details. On one hand, this Unreal Engine’s user experience felt very welcoming

due to its toybox feel, where one could pick up and place wide selection of objects

in to the scene I wanted, but on the other hand, the amount of info previewed on

the inspector/details tabs and the provided selections in action and component

tabs felt extremely overwhelming. Unity was more beginner friendly, as it didn’t

include all variations of information, only the bare essentials.

See Figure 4 for engine object creation comparisons and Figure 5 for detail editor

comparisons.

By following the principle of visual scripting, I attempted to place all objects into the

scene at once so that I could visualize the project better and preview as many

objects in the project as possible. I added a placeholder for all required objects,

except the timer, because it needed to be built separately as it was an abstract

object in the scene that was not a singular game object, but rather tied to the

canvas. The canvas is considered what the main camera can see and depending

on the location and settings of the camera, the timer can easily end up lost in the

scene view.

I renamed all my objects to represent the what they will be. What I found most

useful about these objects, was that they had a lot of components by default, like

colliders, which are required on all objects that can affect each other through

normal collision. Browsing through the component lists, I found a lot of different

colliders but going through them all individually was not necessary, due to these

provided default colliders. Developer could easily swap out the default one and

replace it with their preferred collider type.

20

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Aaro Salonen

Figure 4. Object creation. Unity on the left, UE on the right.

Figure 5. Detail editor. Unity on the left, UE on the right

21

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Aaro Salonen

By adding an FSM to the game object, the engine provides a start and state 1 in

the FSM editor, where the logic flows instantly when the game starts. They light up

to help guide the flow of the logic, making it very easy to understand. Renaming

and commenting on the states makes it even more easy. When a game object is

given a finite-state machine (FSM) component, it is visible on the scene’s object

list and indicated by a small red icon. The icon is also visible on all game objects

in the scene itself. Unreal Engie informs of added blueprints on game objects by

turning them into highlighted links.

See Figure 6 for comparisons between game object lists.

Figure 6. Lists of game objects and their visual scripting representations. Unity on the

left, UE on the right.

Since the Blueprints are not a separate plugin, there is no need to install anything.

And in direct comparison to Unity, UE has a library of game assets for different

game types that can be selected depending on the game type. This alone makes

UE more attractive for beginners. But these assets are not used in this project.

Additionally, UE provides categorized internal tutorials that the user can utilize

instead of looking information online.

22

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Aaro Salonen

5 PLAYMAKER PROCESS

The test started with Unity because the tester had less experience using it.

Because my initial component placements did not to help me achieve complete

game objects, I started adding components from the inspector tab. And once the

PlayMaker plugin was installed to the project, I was able to add it to the project

view and find the associated components in the provided list. Once an FSM was

added as a component to a game object, the editor would automatically set up a

default state which executes as the game begins to run.

See Figure 7 for project layout in Unity. PlayMaker workspace can be placed in any

location.

Figure 7. Project view on Unity.The box on the bottom-left is the PlayMaker workspace.

23

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Aaro Salonen

5.1 Confined space

Create the confined space that operates as the scene’s spatial restrictions (B2.1).

The plane was easier to place in the scene than assumed. It was found in the

default list of objects and was easily manipulated. Right clicking the hierarchy

window felt like the intended UX but the same list is found in the toolbar. To add

functionality to the confined space in order to tie the visual scripting to it, I had the

space separated into two separate areas, of which the latter has the goal, and

which could only be accessed by jumping on the required object. Once the space

was laid out, it was time to add scripts and more components to the objects.

The task was considered a success.

5.2 Controllable object

Create the player as a controllable object (A1).

Scripting could be done in two ways; by creating a new C# script for the project

and adding those scripts as components to the objects, or by adding finite-state

machines directly to the objects with PlayMaker plugin. This project does not create

any new scripts with C#, so the only options are FSMs and components.

Initially, I attempted to create mouse-based movement scheme for the player

object. The mouse-based navigation was easier to make due to having less

variables. But as the other game objects ended up requiring the use of mouse, I

switched to using arrow key based navigation system. I was not able to make the

logic work without online help.

The tutorial revealed that setting global variables first is required, which then are

found by set actions, and translate that info. This could be done in few simple ways,

for example through button clicks that set X and Z axis values, or by setting

properties to 3D vector values that follow mouse clicks.

I also attempted to create an FSM that would indicate the enemy collision,

effectively creating a health bar for the player, or indicating that the player is hit

and therefore, has lost the game. I was able to set the player as a global variable

24

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Aaro Salonen

for the other game objects to refer to but was not able to make create the logic flow

from the player object to the enemy object and vice versa.

The task was considered as two successes and two failures.

5.3 Avoidable object

Create an enemy as another spatial restriction that tries to find the player (B2.3).

I was not able to make the enemy object seek out the player object from the get-

go. After consulting an online tutorial, I was able to make a finite-state finite-state

machine called findObject that could locate objects on the scene. But once I

understood how the mechanic behind it worked, I was able to make identifyObect

FSM to tell the player object apart from the other objects in the scene. Enemy

object ended up having two extra game objects, labelled as Radar and Detect.

Both FSMs are children to the enemy parent class, and the both had different

variables.

The task was considered as one success and one failure.

5.4 Optional object

Create the aid that removes the enemy (B3).

This game object was one of the tasks that were simple to make due to their lack

of variable usage. When selecting the starting state for the FSM, the plugin

provides a default list as a quick selection of common transitions between states.

That list was very easy to understand and the events simple to label. Once I

learned how this game function was achieved, I was able to use it to complete

other tasks. The aid has to be clicked, and that input leads to an event that destroys

the enemy object.

The task was considered as a success.

25

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Aaro Salonen

5.5 Required object

Create the key, so that the goal is not reachable from the start (B1).

The key was one of the other two objects that shared the structure style with the

aid, in such way that the aid was waiting for a mouse input that would transition

into a state that destroys a game object. This time, the game object of choice was

an additional piece of terrain, that blocked the player from reaching the goal directly

from the start.

This part enhances the previous design of the first task. I found a tab labelled

Navigation where I was able to utilize a tool called Bake, which defined a

navigational mesh for selected object, effectively not letting the player walk off the

game space or around the wall that was placed into the scene. This wall blocked

the player view from the goal and prevented the player from interacting with it in

any way, providing more freedom to make the goal. The player would need mouse

input on the aid object, triggering another destroy object command, this time

targeting the wall.

The task was considered as a success.

5.6 Desired object

Create the goal as a winning condition upon reaching or finding it (A2).

The goal was the third object that followed the same logic as the aid and the key

but instead of destroying a game object, it activated a new one. The transition state

of the FSM would reveal an invisible text object in the scene stating that the game

has been won.

The task was considered as a success.

5.7 Extra constraint

Add time limit (B2.2).

26

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Aaro Salonen

I was able to create a timer that counted time, but not a countdown that would

indicate when the game was lost. The timer functioned with a few state actions that

used defined time variables and converted them into strings that were placed into

the UI as text. The counter manager required an action that compared integers

and a separate property setting action that I was not able to come up with. Once

the countdown reached 0, the game scene background turns red, indicating defeat.

The task was considered as one success and one failure.

5.8 Additional notes

The total amount of attempts for each task varies so much that they could not be counted.

A large amount of time twas consumed rying to figure out how to make the enemy find

the player, but extremely little time creating the goal due to learning to replicate a FSM

style on multiple game objects to meet thr needs. Because the number of FSMs, states,

events, and variables could be counted, they are compared with the results from

blueprints.

27

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Aaro Salonen

6 BLUEPRINTS PROCESS

The tester has had previous experiences constructing a scene with the Unreal Game

editor. Additionally, the experiences gained during the first part of testing enabled the

tester to have a efficient start. See Figure 8 for the project layout in UE, and Figure 9 for

the Blueprints window layout.

Since the Blueprints are not a separate plugin, there was no need to install

anything. I created a new project with no started content and once I found my

project content browser below, I added a folder labelled as Blueprints. The editor

had all the same elements as Unity, including game scene, game object list, object

creation list, and the component information. The only clear difference was UE

replacing the visual scripting editor with content browser, as UE handled the VSL

in a separate space.

Figure 8. Project view on UE.

The Blueprints opened in a separate window and allows the user to add all

Blueprints as separate tabs in that window. With two monitors, having a separate

workspace for this was very efficient, leaving more space for the UEs larger user

interface. And arranging the nodes was very simple, allowing me to keep the graph

neat and easy to read.

28

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Aaro Salonen

Figure 9. Blueprints UI.

29

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Aaro Salonen

6.1 Confined space

Create the confined space that operates as the scene’s spatial restrictions (B2.1).

Creating the space was even faster than on Unity, as the game objects were

presented on the default engine view. And with the base knowledge to seek out

some level of navigation system, I was able to find a game object labelled as

NavMeshBoundsVolume. At this stage, I did not know that it allowed certain types

of object classes to have enabled pathfinding, but I figured it would work in a similar

fashion.

I followed the same principle of blocking the goal with a wall, that would get

targeted by the key object’s Blueprint. I was also required to add an external

camera to the scene where the game view would lock because the default playtest

kept initiating a run based on where the view on the scene was at any given time,

effectively not letting me work outside the plane or it would drop the player object

instantly off the scene. But by adding an extra camera object to the scene, and

later figuring out a trigger box object functions, I was able to instantly move the

camera view to the added camera by placing the trigger box directly under the

player object in the scene. This allowed me to create the same view as in the Unity

project.

This task was considered a success.

6.2 Controllable object

Create the player as a controllable object (A1).

From the knowledge gained from Unity, I was doubtful of successfully creating the

player object. Especially, since the previous experiences with UE has contained

the started materials which include a playable first-person view game object that

allows you to test the environment. Surprisingly, the set-up was very easy to make

with the previous information. I knew to add components for axis inputs, one that

allowed movement forward with a positive or negative value, and another allowing

movement to the right and left respectively. Additionally, I found that I can set these

30

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Aaro Salonen

values in the project settings, that allowed me to set input from a wide variety of

game controller selections.

This task was considered a success.

6.3 Avoidable object

Create an enemy as another spatial restriction that tries to find the player (B2.3).

The enemy was divided into two separate Blueprints; the one that moves the

object, and the one that hits the player. In contrast to PlayMaker, Blueprints

allowed me to pick a direct game object in the scene to use as a reference point

for the enemy object to move towards. And the details allowed me directly to set

the speed of the action. It was all very simple.

I was not able to create the Blueprint that detected a hit on the player object. With

online tutorial help, this script had a node called Sequence, that allows the

developer to divide the event flow with conditions, and these conditions were hard

to make. The sequence ended up containing an on-hit condition that destroyed the

enemy object, turning it into a visible animation indicating player’s defeat.

The task was considered as one success and one failure.

6.4 Optional object

Create the aid that removes the enemy (B3).

The aid followed a similar path with the key and the goal, as they did on Unity.

Except that on UE they had a trigger boxes placed on them, indicating a collision

with the player object instead of using a mouse input detection. This is a key game

play element difference between the two projects, indicating that the project can

be approached from different angles. Once the player object enters the trigger box

placed on the aid, it destroys the enemy component from the scene.

The task was considered a success.

31

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Aaro Salonen

6.5 Required object

Create the key, so that the goal is not reachable from the start (B1).

The key functioned exactly like the aid and destroyed the wall component from the

scene. No major difficulties.

The task was considered a success.

6.6 Desired object

Create the goal as a winning condition upon reaching or finding it (A2).

The goal functioned exactly like the key and the aid, except that used a similar

animation to indicate collision between its trigger box and the player object.

The task was considered a success.

6.7 Extra constraint

Add time limit (B2.2).

The timer proved to be the most difficult part of the UE project. I was only able to

add a timer widget to the scene but not create a Blueprint for it. The widget was

easy to add through the Event BeginPlay suggestions, but I had to look online for

a tutorial to create the event tick that counted and defined minutes and seconds

for the timer. And because the timer already had used its Event BeginPlay, I did

not know how to add another one. Tutorial showed me a way to do this through

editing the level Blueprint itself, which I did not know existed. Though there, I was

able to set the timer on a separate text block that was visible in the game view,

similarly to the Unity project.

This task was considered as one success and two failures.

32

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Aaro Salonen

7 DATA REFLECTION

Even though both engines provided a different approach to visual scripting, they both

provided comparable statistics. Unity had state actions and events, and UE had graphs

and functions, and both used variables. The parts that functioned similarly on both

engines were taken into consideration and compared the numbers with each other,

resulting in very clear difficulty curve. See Figures 10 and 11 for the statistics.

Figure 10. Success rates of each FSM for Unity project and its components.

Figure 11. Success rates of each Blueprint for Unreal Engine project and its components.

33

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Aaro Salonen

These numbers clearly indicate that it was difficult for the test person to complete a task

if it had multiple variables in it, and that translates directly into the inexperience of

programming. In both projects, There were more successes than failures, but in terms of

variable use, the statistics are close to even. Figures 12 and 13 show the sum of

variables by game object and it is clear that each task containing at least one failure are

the game objects that have higher count of variables. It can be seen on both figures how

there were problems with the enemy and timer objects. Oddly enough, only the

PlayMaker player object proved difficult despite its lack of variables in comparison to

Blueprints.

Another fact proven by the statistics, is that it was possible to create over half of the

intended tasks with ease on both engines. This is very good result when compared to

traditional programming, which the tester had very little experience of.

34

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Aaro Salonen

Figure 12. PlayMaker variable count by game object.

Figure 13. Blueprints variable count by game object.

35

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Aaro Salonen

8 PROJECT REFLECTION

Through this demonstration, it is evident that the issue was in the inexperience of

programming. As the number of variables went higher, the number of successes went

down. Variables are what hold the values which the events use. If the user doesn’t have

the required programming logic necessary to create a working program flow, it can turn

into an insurmountable problem. But with the help of tutorials provided by the online

community it can be done. But following tutorials won’t help if the user doesn’t

understand the core concepts. Following a tutorial will be difficult without having an idea

of what the tutorials are saying.

I would not recommend visual scripting to a person who has no prior knowledge on

programming. But only if they wanted to develop a game only using a VSL. The logic is

too complex without basic concepts. On the contrast, an artist who wants to test out a

game asset they’ve made can very neatly execute it in this kind of environment. Adding

an animation to a single object does not interact with multiple other events in the scene

and remains a very simple test.

If a professional programmer using either of these tools wants to offload their work to the

other members of the game development team, it is much faster to connect nodes

together than it is to write code. Keeping the node flow clean is also much easier by

quickly arranging them around, in comparison to writing clean code, which can be very

difficult for an outsider to look at.

The experience with tutorials was overwhelmingly positive. It is not hard to imagine why

these engines are so popular as they really help users test their imagination and the

limits of the tools. Even though it is clear that my experience level does not match the

amount required to develop a game, it certainly has advertently increased my interest in

the field. As one of the target audience type for these VSL tools was a developer who

wants to learn to use an engine, it is very easy to get involved through provided online

tutorials and the flexible, yet slightly daunting UI.

My definitions for game objects can be considered rather limited as games can work in

so many ways. As an example, one of the biggest names that used PlayMaker in its

development is Hearthstone, a card game. And a card game that contains a deck with

wide selection of cards is essentially a game based on luck and tactics. In that game,

36

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Aaro Salonen

the goal would be getting enemy player’s health to 0 before they do the same to you, but

the entire concept of having an aid or a key object is entirely lost. There isn’t even a

proper player object. Games like that differ from the majority of game concepts and didn’t

mix well with the other game object types.

Another PlayMaker example is an indie success called Hollow Knight. That game did

provide all the elements I covered in my concepts. The only major difference was

dimensions, as Hollow Knight is a 2D side scroller. This wouldn’t have changed anything

else, except the camera placement.

There isn’t a very large selection of hit games developed with UE Blueprints. I think this

is partly because the developers of UE, Epic Games, has focused on presenting the

Blueprints as a supportive tool for the engine, not used exclusively. It’s hard to say why

but I think it feels more like an educational tool for those who want to learn how to code,

as advertised. Some sources had found the tool too limiting or slow to use professionally.

37

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Aaro Salonen

9 CONCLUSION

This thesis attempted to find out why the two chosen game engines offer a popular

development environment using their visual scripting language tools and the results offer

a very clear message. They significantly increase the possible progression when

compared to traditional programming. Even though the author did not provide any related

statistics, he stated that without VSL the tester would have instantly had to resort to

online tutorials. As a result of using a VSL on either game engine, the tester successfully

managed to create over half of the desired tasks without any external help. Considering

how easy it was to consult online tutorials through the engines themselves, it is a very

plausible claim that the tools help developers get into the field and learn coding.

If this project would develop further, it would most likely require a workshop set up with

a range of skill and experience levels going though comparable tasks because the

greatest short coming of this thesis is the data of one user. Equally important would be

to add more variation to task evaluation, like time or user experience rating. There aren’t

enough observations to study the results in a significant scope in this thesis, but it could

provide the push needed for someone considering the option. Regardless of how crucial

understanding programming logic is from a game development standpoint, it is vital to

have a drive to test things and learn in the process. Providing an environment for that is

what these engines succeed at.

38

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Aaro Salonen

REFERENCES

Brodkin, J. (2015) Should Developers Still Pay for Game Engines

https://insights.dice.com/2015/05/01/should-developers-still-pay-for-game-engines/

[Last Access 4.12.2019]

Canfield-Smith, D. (1975) PYGMALLION: A Creative Programming Environment.

Stanford University.

Chikhani, R. (2015) The History Of Gaming: An Evolving Community

https://techcrunch.com/2015/10/31/the-history-of-gaming-an-evolving-community/ [Last

Access 4.12.2019]

GeeksforGeeks documentation (n.d.) What's the difference between Scripting and

Programming Languages?

https://www.geeksforgeeks.org/whats-the-difference-between-scripting-and-

programming-languages/ [Last Access 4.12.2019]

Godot Engine documentation (2014-2019) What is Visual Scripting

https://docs.godotengine.org/en/3.1/getting_started/scripting/visual_script/what_is_visu

al_scripting.html [Last Access 4.12.2019]

History.com Editors (2017) Video Game History

https://www.history.com/topics/inventions/history-of-video-games [Last Access

4.12.2019]

Mazaika, K. (n.d.) Why You Should Learn Multiple Programming Languages

http://blog.thefirehoseproject.com/posts/2-1-learn-multiple-programming-languages/

[Last Access 4.12.2019]

Microsoft documentation (2012) VPL Introduction

https://docs.microsoft.com/en-us/previous-versions/microsoft-

robotics/bb483088(v=msdn.10)?redirectedfrom=MSDN [Last Access 4.12.2019]

Salminen, M. (2019) C++:n ja Blueprintin yhteiskäytäntö Unreal-pelimoottorissa

Schell, J. (2008) The Art of Game Design. USA: Elsevier.

39

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Aaro Salonen

Tiilikainen, V. (2014) Linnea Torn World -pelidemon tuotanto

Unreal Engine documentation (2019) Blueprints Visual Scripting

https://docs.unrealengine.com/en-US/Engine/Blueprints/index.html [Last Access

4.12.2019]

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Aaro Salonen

