
Bachelor’s thesis

Information Technology

Digital Media

2019

Sami Kankaristo

DEVELOPMENT OF A SECURE
SENSOR SYSTEM FOR THE
INTERNET OF THINGS
– Gathering and visualizing data from IoT sensors

BACHELOR’S THESIS | ABSTRACT

TURKU UNIVERSITY OF APPLIED SCIENCES

Information Technology | Digital Media

2019 | 93 pages

Instructor: Principal Lecturer Mika Luimula, Adj.Prof.

Sami Kankaristo

DEVELOPING A SECURE SENSOR SYSTEM FOR
THE INTERNET OF THINGS
– Gathering and visualizing data from IoT sensors

This Bachelor’s thesis is about the development of an affordable, easy to use and secure IoT
system for monitoring and visualizing living conditions in homes, offices, and schools. The
system uses sensors to monitor temperature, humidity, ambient air pressure, ambient light
intensity, air quality, and carbon dioxide concentration in air. The purpose of the system is to
allow users to explore different ways of improving their living conditions.

The theoretical section explores various technologies used in the system, such as wireless
networks, HTTP, and the architecture of web APIs. All communication in the system must be
secure, since the data could, for example, be used to determine when a home is not occupied.
Due to this, the thesis also studies security in IoT systems.

The finished system uses the ESP32 microcontroller, which has an integrated Wi-Fi radio for
connecting to the Internet. The sensor data is sent to a server application, which stores the data
for later use. A client application can then retrieve and visualize the data for users.

This thesis covers the early development of the system, and focuses on the hardware, software
and security of the IoT device itself, although an early version of the visualization software is
also developed. Some small datasets are gathered, visualized, and analyzed for both home and
office environments. The completed prototype only gathers and visualizes sensor data, but can
be further developed to automatically control various things as well.

KEYWORDS:

Internet of Things, sensors, data visualization, wireless local area networks, data security

OPINNÄYTETYÖ (AMK) | TIIVISTELMÄ

TURUN AMMATTIKORKEAKOULU

Tietotekniikka | Mediatekniikka

2019 | 93 sivua

Ohjaaja: yliopettaja Mika Luimula, dos.

Sami Kankaristo

TIETOTURVALLISEN SENSORIJÄRJESTELMÄN
KEHITTÄMINEN ESINEIDEN INTERNETIIN
– Datan keräys ja visualisointi IoT-sensoreilta

Opinnäytetyön tavoitteena oli kehittää edullinen, helppokäyttöinen ja tietoturvallinen
sensorijärjestelmä esineiden Internetiin (englanniksi Internet of Things, IoT). Järjestelmää
käytetään elinolosuhteiden mittaamiseen ja visualisointiin kodeissa, toimistoissa, ja kouluissa.
Järjestelmä mittaa sensoreilla lämpötilaa, ilmankosteutta, ilmanpainetta, valaistusvoimakkuutta,
ilmanlaatua ja hiilidioksidipitoisuutta ilmassa. Tarkoituksena on antaa käyttäjien tutkia eri tapoja
parantaa elinolosuhteitaan.

Teoriaosuudessa tutustutaan järjestelmän käyttämiin keskeisiin teknologioihin, kuten
langattomiin lähiverkkoihin, HTTP-protokollaan, sekä verkkopalveluiden ohjelmointirajapintojen
arkkitehtuuriin. Kaikki järjestelmän kommunikaatio tulee olla tietoturvallista, koska dataa
voitaisiin käyttää esimerkiksi päättelemään, milloin käyttäjän koti on tyhjillään. Tämän vuoksi
opinnäytetyössä keskitytään myös IoT-järjestelmien tietoturvaan.

Valmistunut järjestelmä käyttää ESP32-mikro-ohjainta, jossa on integroitu Wi-Fi-radio
Internet-yhteyttä varten. Sensoreilta saatu data lähetetään palvelinsovellukselle, joka tallentaa
sen myöhempää käyttöä varten. Asiakassovellus hakee datan ja visualisoi sen käyttäjille.

Opinnäytetyö kattaa järjestelmän alkukehityksen ja keskittyy palvelinsovellukseen,
laiteohjelmistoon, laitteistoon ja tietoturvaan. Myös visualisointiohjelmistosta kehitettiin
varhainen versio. Joitakin pieniä tietoaineistoja kerättiin ja visualisoitiin sekä koti- että
toimistoympäristöissä. Järjestelmä mittaa, tallentaa ja visualisoi dataa, mutta sitä voidaan
kehittää myös automaattiohjaukseen.

ASIASANAT:

esineiden internet, sensorit, datan visualisointi, langattomat lähiverkot, tietoturva

CONTENTS

LIST OF ABBREVIATIONS...8

1 INTRODUCTION...10

2 THE INTERNET OF THINGS..12

2.1 The OSI model...12

2.2 Wi-Fi...13

2.3 URI and URL..14

2.4 HTTP and HTTPS..14

2.5 JSON...17

2.6 JWT..17

2.7 RESTful web APIs..17

3 CRYPTOGRAPHY AND INTERNET SECURITY...19

3.1 Cryptology..20

3.2 Confidentiality, authenticity & integrity..21

3.3 Hash functions...22

3.4 Ciphers...24

3.5 Random number generators (RNG)...26

3.6 Symmetric-key cryptography..27

3.7 Asymmetric-key cryptography..28

3.8 Protocols..33

3.9 Public-key infrastructure (PKI)..36

3.9.1 Certificates and certificate authorities (CAs)..36

3.9.2 Identity validation..37

3.9.3 Certificate chains...37

4 HARDWARE AND SOFTWARE RESEARCH..40

4.1 Arduino...42

4.1.1 Arduino hardware..42

4.1.2 The Arduino language...43

4.1.3 Arduino IDE...43

4.1.4 Arduino libraries, tools, and community...43

4.2 Espressif Systems..44

4.2.1 The inexpensive ESP8266..44

4.2.2 Improvements introduced with the ESP32...44

4.3 Connecting devices to a microcontroller...48

4.3.1 Power delivery and device voltages..48

4.3.2 Reading analog signals...49

4.3.3 Reading digital signals..49

4.3.4 I²C...49

4.3.5 SPI..50

4.3.6 Serial ports and UART..51

4.4 Choosing the sensors and other devices...51

4.4.1 Worldsemi WS2812B intelligent RGB LED..52

4.4.2 Bosch BME280 temperature, humidity, and ambient air pressure sensor...........53

4.4.3 AMS TSL2561 light intensity sensor..54

4.4.4 Winsen MQ-135 air quality sensor..55

4.4.5 Winsen MH-Z19B carbon dioxide sensor..56

5 DESIGN AND IMPLEMENTATION...58

5.1 Hardware prototyping...59

5.1.1 Breadboard prototype..59

5.1.2 Perfboard prototype..60

5.2 Espressif IoT Development Framework (ESP-IDF)..62

5.3 TaioDeviceFirmware..63

5.3.1 The ESP32 libraries..65

5.3.2 Other libraries..68

5.4 TaioDeviceClient..70

5.5 TaioServer...71

5.6 TaioClient...74

6 ANALYZING THE GATHERED DATA...76

6.1 Data from a home environment..80

6.2 Data from an office environment..82

7 CONCLUSION..85

7.1 Issues faced during the project..85

7.2 Choice of sensors..86

7.3 Future plans...86

REFERENCES..88

APPENDICES

Appendix 1. Temperature and humidity readings from a home office in the beginning
of August 2019
Appendix 2. Temperature and humidity readings from a bathroom in the beginning of
August 2019
Appendix 3. Temperature and humidity readings from a bathroom during all of August
2019
Appendix 4. Temperature and humidity readings from a home office during all of
August 2019
Appendix 5. CO readings from a home office during all of August 2019₂
Appendix 6. Light intensity readings from a home office during all of August 2019
Appendix 7. Light intensity minimum hourly readings from a home office during all of
August 2019
Appendix 8. Temperature and humidity readings from a living room during all of
August 2019
Appendix 9. Light and CO measurements from a conference room₂
Appendix 10. Light and CO measurements from a small office₂
Appendix 11. Temperature and humidity readings from a small office
Appendix 12. Light and CO measurements from a larger office₂

FIGURES

Figure 1. Overview of the field of cryptology (Paar & Pelzl 2010, 3).............................21

Figure 2. Main areas within cryptography (Paar & Pelzl 2010, 29)...............................24

Figure 3. Temperature and humidity readings from a home office in the beginning of

August 2019...1

Figure 4. Temperature and humidity readings from a bathroom during the beginning of

August 2019...2

Figure 5. Temperature and humidity readings from a bathroom during all of August

2019...3

Figure 6. Temperature and humidity readings from a home office during all of August

2019...4

Figure 7. CO readings from a home office during all of August 2019.₂5

Figure 8. Light intensity readings from a home office during all of August 2019.............6

Figure 9. Light intensity minimum hourly readings from a home office during all of

August 2019...7

Figure 10. Temperature and humidity readings from a living room during all of August

2019...8

Figure 11. Light and CO measurements from a conference room.₂9

Figure 12. Light and CO measurements from a small office.₂10

Figure 13. Temperature and humidity readings from a small office..............................11

Figure 14. Light and CO measurements from a larger office.₂12

PICTURES

Picture 1. Illustration of the idea of the Diffie-Hellman key exchange (Han Vinck 2011).

...31

Picture 2. Example of a self-signed certificate on the Ubiquiti EdgeRouter X, when

connecting with Google Chrome..38

Picture 3. Example of an unencrypted HTTP connection in Google Chrome...............39

Picture 4. Breadboard prototype of the device...59

Picture 5. Perfboard prototype of the device..61

Table 1. OSI model layers (Ristić 2017, 3; Fall & Stevens 2012, 9).............................13

Table 2. HTTP status code classes (Gourley & Totty 2002, 49; 2002, 59-67)..............16

Table 3. Comparison of hardware platforms (Arduino 2019h; Raspberry Pi Foundation

2019a; 2019b; 2019c; Espressif Systems 2019a; 2019f)...46

LIST OF ABBREVIATIONS

AP Access point, a device which serves as a central wireless
connection point for a Wi-Fi network (WireShark.com 2019)

API Application Programming Interface

BME280 The Bosch BME280 is a sensor that measures temperature,
humidity, and ambient air pressure (Bosch 2018)

CA Certificate Authority: an entity that issues certificates
(Ristić 2017, 63)

ESP32 The ESP32 is a microcontroller manufactured by Espressif
Systems. The ESP32 has integrated Wi-Fi and Bluetooth
radios (Espressif Systems 2019a)

HTTP Hypertext Transfer Protocol: the most common protocol for
communication on the Internet (Gourley & Totty 2002, 3)

HTTPS A secure version of HTTP, essentially HTTP over SSL
(deprecated) or HTTP over TLS (Ristić 2017, 1-4)

IC Integrated circuit

IoT Internet of Things: a term used to describe the extension of
the internet onto everyday devices (Burgess 2019)

JSON JavaScript Object Notation: a common way store and
transmit data (Bray 2014)

JWT JSON Web Token: a way to encode JSON so it can be used
as part of a URL, and so it can be signed and encrypted
(Jones, et al. 2015)

MH-Z19B The Winsen MH-Z19B is a sensor for measuring carbon
dioxide concentration in air (Winsen 2016)

MQ-135 The Winsen MQ-135 is an air quality / gas sensor
(Winsen 2015)

OSI model The OSI model splits computer networking into 7 individual
layers (Ristić 2017, 2-3)

PCB Printed Circuit Board

RESTful API Representational State Transfer API: the most popular
method of designing web APIs (Richardson & Amundsen
2013, xvii)

SPIFFS Serial Peripheral Interface Flash File System
(RandomNerdTutorials.com), a flash filesystem for the
ESP32 (Espressif Systems 2019k)

SSID Service set identifier, the name of a wireless network (Goggi
2014)

SSL Secure Sockets Layer: a now-deprecated predecessor to
TLS, but is often used interchangeably as a term
(Ristić 2017, 1-4)

TLS Transport Layer Security, a cryptographic protocol used to
provide security for communication in computer networks
(Ristić 2017, 1-4)

TSL2561 The AMS TSL2561 is a sensor that measures light intensity
and reports readings in the unit lux (AMS 2018)

UART Univeral asynchronous receiver-transmitter, a serial port
(Horowitz & Hill 2015, 873)

URL Uniform Resource Locator, the address of a resource on the
Internet (Berners-Lee et al. 1994)

Wi-Fi A family of radio technologies used for wireless local area
networks (Pogue 2012)

WLAN Wireless local area network

WS2812B The Worldsemi WS2812B is an intelligent RGB LED, which
has data in and data out ports, and has the ability to chain
multiple WS2812B RGB LEDs together (Worldsemi 2018)

10

1 INTRODUCTION

The Internet of Things (IoT) is one of the most talked about concepts in modern

computing, alongside artificial intelligence (AI), cloud computing and big data. These

emerging technologies are sometimes referred to as “the fourth industrial revolution”.

These things have the potential to transform people’s lives into something that used to

be subjects in science fiction, like the Internet or smart phones before they became an

everyday part of life. (Forbes 2018)

Microcontrollers and wireless technology are constantly evolving, and these days you

can quite easily create an Internet connected device for just a few euros. This has

caused an explosion in the amount of Internet connected devices, and many

companies have started developing their own IoT solutions.

One example of an ingenious IoT solution is that multiple companies have developed

devices, which are embedded inside concrete, where they monitor the hardening and

long-term strength of the concrete. This optimizes construction, and improves the

safety of the concrete structure. (Giatec Scientific Inc. 2018)

One very important aspect of IoT is data security, which has been notoriously bad in

the past, and is still in the news quite often. In a worst case scenario, just a single

compromised device in a wireless network can compromise the entire network. Not

only are most IoT devices wireless - which makes them inherently easier to hack than

wired devices - but they are also connected to the Internet, so they can become

compromised by a hacker across the globe. Because of this, data security has to be a

part of the discussion when talking about the Internet of Things. (Wallace 2019)

The objective of this thesis is to develop the first prototype of a secure, affordable, and

easy to use system for gathering and visualizing data from sensors, which are

connected to an IoT device. This first prototype will likely not be very easy to use or

perfectly secure, but these will be the main goals of the final system.

The sensors used in the prototype measure a wide variety of ambient variables, like

temperature and carbon dioxide concentration in air, with the aim of monitoring and

visualizing living conditions in homes, offices, or schools. The device will also use an

RGB LED as visual feedback for the user.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

11

The overall aim of the system goes further than just sensor measurements, and after

the current sensor system is working well, other sensors can be added, and the

devices can begin to control and automate things as well, in addition to making

measurements. The first prototype will be a rather typical IoT sensor network, but the

overall aim of the project beyond this thesis will be to provide the backbone of the

company’s IoT system, which can be used for various IoT products.

The IoT system is being developed by Indium Technology Ltd under the working title

“Taio”. Indium was established in 2014, originally as a game development company,

but has since focused more on software development subcontracting. Taio is currently

in early internal development, but if it proves to be viable, it may become the

company’s first commercial product. Subcontracting in the software industry pays well,

but is limited by the number of employees and their work hours, but a company with its

own products doesn’t have a similar limitations on earning potential. The project is also

a way to learn new technologies, even if it doesn’t ultimately result in a product.

Developing an IoT system has become relatively easy ever since the Espressif

ESP8266 was introduced. The ESP8266 is a 32-bit, 160 MHz microcontroller with an

integrated Wi-Fi radio and antenna (Espressif Systems 2018b). A ready-to-use

ESP8266 module can be bought for under 1.5 euros, shipping included (price checked

on 2.5.2019 from AliExpress). This thesis was the perfect opportunity to get started

with development on Espressif microcontrollers.

The data visualization part of the project was suggested by the thesis’ instructor Mika

Luimula, during the initial discussions about the thesis in January 2019. He also

suggested testing the product as part of “The Smart Learning Environments for the

Future”, which is a collaborative project between 6 Finnish cities, and is funded by the

European Regional Development Fund. The project provides companies with the

opportunity to develop their products in collaboration with teachers and students.

(Tulevaisuuden älykkäät oppimisympäristöt 2019)

However, due to the thesis’ time constraints, the system will initially be tested at the

author’s home, and at 2 offices and 1 conference room at the Hive: Turku Game Hub.

This is done for easier access while the system is in the prototyping phase. Once the

system has an enclosure, has been internally tested, and has a better user experience,

it can be tested with its first actual users as part of “The Smart Learning Environments

of the Future”.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

12

2 THE INTERNET OF THINGS

The Internet of Things is a concept, which means the extension of the Internet from

what are usually thought of as computers, into everyday “things”. In an exaggerated

form, the Internet of Things means that just about anything can be connected to the

Internet, and it can send data, make decisions, and be controlled via the Internet.

(Burgess 2018)

Security is a big concern on the Internet of Things (Wallace 2019), and IoT security is

discussed in Chapter 3. Before moving on to security, some basic Internet

technologies used in the system should be introduced.

2.1 The OSI model

The Open Systems Interconnection (OSI) model splits computer networking into 7

layers, each of which are, in theory, independent from each other (Fall & Stevens 2012,

8-9; Ristić 2017, 2-3). The lowest layer (layer 1, the physical layer) is the closest to the

hardware, and the higher layers have higher levels of abstraction (Ristić 2017, 2-3).

The OSI model was developed by the International Organization for Standardization

(ISO). During the 1970s, there was much debate about the benefits and deficiencies of

the OSI model and the ARPANET reference model that preceded it, which was

ultimately adopted by the TCP/IP suite. (Fall & Stevens 2012, 8-14)

OSI and TCP/IP were developed at roughly the same time, and were competing

protocols (Russell 2013). TCP/IP eventually “won”, but despite this, the OSI layering

model and numbering is still widely used, although the actual layering used on the

Internet (the TCP/IP suite) is simpler, and is normally divided into 5 layers. (Fall &

Stevens 2012, 8-14)

Russell (2013) divides TCP/IP into only 4 layers, but both he and Fall & Stevens (2012)

combine layers 5-7, which Ristić (2017, 2-3) also describes as “fuzzy”. The OSI model

and numbering is still in wide use today (Fall & Stevens 2012, 9), and was also taught

to the author at the Turku University of Applied Sciences. For the purposes of this

thesis, the OSI model will be used to describe how HTTP (layer 7) can be used with or

without SSL/TLS (layer 6), since the layers are independent of each other.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

13

Because the layers are independent of each other, the higher layers don’t need to

worry about which lower layer is being used. Layers can switch to a different protocol,

without needing to change any of the other layers, and some layers can be omitted. For

example, when encryption is not required, the layer that implements encryption can be

omitted, which also removes the overhead introduced by encryption. The OSI model

layers are shown in Table 1. (Ristić 2017, 2-3)

Table 1. OSI model layers (Ristić 2017, 3; Fall & Stevens 2012, 9).

OSI layer Description Example protocols

7 Application Application data HTTP, SMTP, IMAP
6 Presentation Data representation, conversion, encryption SSL/TLS
5 Session Management of multiple connections -
4 Transport Reliable delivery of packets and streams TCP, UDP
3 Network Routing and delivery of datagrams IP, IPSec
2 Data link Reliable local data connection (LAN) Ethernet
1 Physical Direct physical data connection (cables) Cat. 5

HTTP is one of the protocols used in the application layer (layer 7). Securing the HTTP

protocol (using HTTPS) doesn’t change anything in layer 7, but instead adds

encryption in layer 6 (the presentation layer). Because of this, HTTPS is sometimes

called HTTP over TLS, because the higher-level HTTP protocol is used on top of the

lower-level TLS protocol. (Ristić 2017, 3)

2.2 Wi-Fi

Most IoT devices are wirelessly connected to the Internet. While some have a ”direct”

connection via a cellular network, many IoT devices use Wi-Fi, and connect to the

Internet through a wireless access point (AP). (Wallace 2019)

Wi-Fi is the name for a family of wireless technologies ratified in a set of IEEE

standards that all begin with ”802.11”. Wi-Fi is not an abbreviation, although it is a pun

on ”hi-fi” (high fidelity). Essentially, Wi-Fi is a ”friendly” name for the IEEE 802.11 family

of standards. Some of these standards are for different versions of Wi-Fi (like 802.11n

and 802.11ac), while others are standards about Wi-Fi security (like 802.11i) or other

aspects of how Wi-Fi devices should work (like 802.11e and 802.11u). (Pogue 2012)

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

14

To help with the ”alphabet soup” that these standards have created on the market, the

Wi-Fi Alliance – the group responsible for Wi-Fi standards – have retroactively

introduced Wi-Fi version numbers. For example, instead of ”802.11ac” the name ”Wi-Fi

5” can be used. (Kastrenakes 2018)

Different versions of Wi-Fi have different maximum speeds, and operate in either the

2.4 GHz band or the 5 GHz band of radio frequencies. Some versions are ”dual-band”,

meaning they operate in both frequency bands. The 5 GHz band has less interference

from other devices, but the shorter wavelengths don’t penetrate walls as well, so the 5

GHz band usually has a shorter range. (Pogue 2012)

2.3 URI and URL

A URL or Uniform Resource Locator is the address of a resource on the Internet. URLs

are Uniform Resource Identifiers (URIs) on the World Wide Web, so they can be

thought of as a subset of URIs. Most people are familiar with URLs due to how

ubiquitous they are. (Berners-Lee et al. 1994)

A URL begins with a scheme, which is usually a protocol like HTTP, and usually written

in lowercase. After the scheme comes a colon, and the ”scheme specific part”. On the

Internet, there is very little variance on the syntax, and a common syntax of

<scheme>://<user>:<password>@<host>:<port>/<url-path> is used for most URLs.

Most parts of this common syntax can be excluded, often leaving something like

<scheme>://<host>/<url-path>. (Berners-Lee et al. 1994)

2.4 HTTP and HTTPS

The most common schemes in a URL are the protocols HTTP and HTTPS. HTTP is

short for Hypertext Transfer Protocol, and HTTPS is a secure version of HTTP, and is

essentially HTTP over a secure connection. HTTPS is studied more in Chapter 3, but

HTTPS doesn’t really change how HTTP works, since it is essentially just encrypted

HTTP. (Ristić 2017)

Understanding how HTTP works at a lower level is especially important when working

with a embedded device like an IoT device, although it is also useful when developing

applications on a higher level of abstraction. Being able understand the “bare” HTTP

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

15

messages being sent greatly helps when debugging problems in client-server

communication. In order to limit the scope of this thesis, things like HTTP methods and

HTTP status codes won’t be covered in great detail, but “HTTP - The Definitive Guide”

by David Gourley and Brian Totty is a great resource for learning more about the HTTP

protocol.

In order for a client to get a resource from a server, an HTTP transaction is performed.

The transaction consists of a request sent to the server, and a response sent back from

the server. (Gourley & Totty 2002, 8)

The request and response are HTTP messages, and each message has 3 parts: a

start line, headers, and a body. The start line and headers are always ASCII text, but

the body can be either text (usually UTF-8) or binary, and can be omitted entirely,

depending on the message. The start line is the first line of the message, followed by

the headers, one on each line. The headers are key-value pairs, separated by a colon.

The body is separated from the headers by an empty line. The exact syntax of the

message depends on whether the message is a request or a response, and on the

HTTP method being used. (Gourley & Totty 2002, 43-46)

The syntax of the request message is the following (Gourley & Totty 2002, 45):

<method> <request-URL> <version>

<headers>

<entity-body>

The method is one of the available HTTP methods, like GET, HEAD, or POST. The

request URL is the path to the resource being requested (domain name resolution, et

cetera, have already been done on the lower levels of the OSI model, so this URL does

not contain an IP address or domain name). The version is the version of the HTTP

protocol being used, e.g. “HTTP/1.1”. The headers can, for example, describe in which

formats the requested resource will be accepted by the client, and in case the body is

not omitted, the headers can also describe the format of the body. (Gourley & Totty

2002, 46-47)

The syntax of the response message is the following (Gourley & Totty 2002, 46):

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

16

<version> <status> <reason-phrase>

<headers>

<entity-body>

The version is the version of the HTTP protocol being used, like in the request

message. The status is an HTTP status code, which is a 3-digit number describing the

result of the request. The first digit describes the general “class” of the status code (e.g.

success or error). The reason phrase is meant only for human consumption, and only

the status code should be used by applications. (Gourley & Totty 2002, 46-47)

Like in the request, the headers can describe the format of the body, among other

things. The body contains the requested resource, or it can contain more information

about why a request failed (if the status code reports an error). Like in the request, the

body can also be omitted. For example, the HEAD method only gets the headers for a

resource, so the body is omitted in both the request and the response. (Gourley &

Totty 2002, 46-48)

An exhaustive list of the status codes and their uses can be found online in MDN (the

Mozilla Developer Network) or in “HTTP - The Definitive Guide”, which is cited as a

source in this thesis. However, Table 2 describes the status code classes and gives

some example status codes.

Table 2. HTTP status code classes (Gourley & Totty 2002, 49; 2002, 59-67).

Overall range Defined range Category Examples (code and reason phrase)

100-199 100-101 Informational 100 Continue
200-299 200-206 Successful 200 OK

201 Created
300-399 300-305 Redirection 301 Moved Permanently
400-499 400-415 Client error 400 Bad Request

401 Unauthorized

404 Not Found

405 Method Not Allowed
500-599 500-505 Server error 500 Internal Server Error

502 Bad Gateway

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

17

HTTP is also extensible, because a developer can define “extension headers”, which

are custom headers that are not explicitly defined in the HTTP specification. This

allows developers to define their own headers, and as long as both the server and the

client understand the headers, they can be useful. Extension methods can also be

used, although they are rarer. (Gourley & Totty 2002, 50-51)

2.5 JSON

JavaScript Object Notation (JSON) is a data syntax commonly used on the Internet.

JSON syntax is essentially the same as the syntax for defining objects in JavaScript,

with some exceptions, like not supporting JavaScript functions and undefined not being

an allowed value (although null is). (Bray 2014)

Despite this, JSON is widely supported in many other programming languages as well.

JSON is hierarchical, extensible, easy for programs to parse, and easy for humans to

read. Because of this, it is very commonly used in modern web APIs (application

programming interfaces). (Richardson & Amundsen 2013, 20)

2.6 JWT

JSON Web Tokens (JWTs) are a way to encode JSON into base64. One use of this is

that JSON can be included as part of URLs. JWT also supports encryption (JSON Web

Encryption), which is useful for ensuring that the data can be securely transmitted.

JWT also supports signing (JSON Web Signature), so even without encryption, the

data can be verified to not have been changed or sent by someone not intended to

be sending it. JWT is commonly used for authentication tokens. (Jones, et al. 2015)

2.7 RESTful web APIs

REST (Representational State Transfer) is “an architectural style for distributed

hypermedia systems” (Fielding 2000), which has a set of principles that are said to be

RESTful (RESTfulAPI.net 2017).

There used to be another popular method of designing web APIs called SOAP (Simple

Object Access Protocol), which used XML (Extensible Markup Language). But once

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

18

RESTful APIs “won the war” over SOAP APIs, JSON has become the de facto data

format to use with RESTful APIs (Richardson & Amundsen 2013, xvii). JSON has many

advantages over XML, which is considered to be too verbose by many developers

(Atwood 2008).

In essence, a RESTful web API manipulates resources (identified by URLs) with

common HTTP methods like GET, PUT, POST, and DELETE in a uniform way, so that

the same method always performs the same type of operation. The ”official definition”

of what REST means is Roy Fielding’s PhD dissertation from 2000, which had a

chapter about REST. However, a stricter set of rules and best practices has formed

around what most people mean by a RESTful API, and these rules should generally be

followed. (RESTfulAPI.net 2017)

As an example of these best practices, PUT should always be used to create a new

resource, while POST should only be used to modify or update a resource (Bondy

2010). Not all developers follow this practice and it the original description of REST by

Fielding does not go into these kinds of specifics.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

19

3 CRYPTOGRAPHY AND INTERNET SECURITY

Internet security is a vital part of modern society. Without proper security, many parts of

everyday life, like online banking, bank card payments, or secure messaging could not

function. In the early days of computer networking, security was not thought about very

much. The earliest computer networks were internal networks in places like

universities, where everyone using the network was “trusted”. (Ristić 2017, 1)

Because of this, many of the networking protocols that are still in use today are not

secure, and security has been added afterwards. For example, HTTP is inherently

insecure, and HTTPS is essentially HTTP with an additional secure layer called TLS

(Transport Layer Security). (Ristić 2017, 1-3)

Internet security is also a vital part of the Internet of Things, but many IoT devices have

bad security (Wallace 2019). This chapter studies some of the important concepts in

secure Internet communications, in order to avoid the common security pitfalls found in

IoT devices.

A note about the sources used in this chapter

This thesis uses 2 main sources in this chapter. The first is “Understanding

Cryptography” by Christof Paar & Jan Pelzl, which was released in 2010, and is a

respected book when it comes to teaching cryptography. However, it is almost 10 years

old as of writing. This is a long time in the IT world, but this source is mostly used to

explain the basics of cryptography itself, which changes slowly as a field. Some of the

most used cryptographic algorithms and protocols, that are still considered secure,

have been around since the late 1970s.

The second main source, “Bulletproof SSL and TLS” by Ivan Ristić, was published in

2017, and is kept updated online as new security exploits are introduced. This source

is used for more up-to-date security information.

Instead of focusing on specific algorithms and protocols, which may or may not

become insecure in the next decade, this chapter will focus on symmetric and

asymmetric cryptography, and the basics of Internet security, like the public-key

infrastructure (PKI). The focus of the chapter is less on what is considered secure as of

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

20

writing, and more on the basic principles that need to be grasped, in order to

understand cryptography and Internet security.

3.1 Cryptology

Most people associate cryptology with modern computing, but cryptology has a long

history, with early examples dating back to about 4,000 years ago, when “secret”

hieroglyphics were used in ancient Egypt. Cryptology has played an important part in

history, some well-known examples being the Caesar cipher used by Roman leaders,

and the Enigma machine from World War II. (Paar & Pelzl 2010, 2)

Cryptography and cryptanalysis

Paar & Pelzl (2010, 3) split cryptology into two main branches:

- Cryptography, or the “science of secret writing”, meaning the creation and use of

algorithms to write secret messages.

- Cryptanalysis, or the science of breaking cryptographic systems.

The cracking of the aforementioned Enigma machine by British mathematicians (most

famously by Alan Turing) played an important part in World War II (Paar & Pelzl 2010,

3-9). Cryptanalysis is a fascinating subject in itself, but it is a much too broad and

advanced topic for this thesis. Instead, we will trust expert consensus that the

cryptographic methods in use on the Internet today are secure, and this thesis will

simply focus on cryptography in computer systems (and only scratching the surface

there, too).

Cryptography

According to Paar & Pelzl (2010, 3), cryptography splits into three main parts (also

shown in Figure 1):

- Symmetric algorithms, where all parties have a shared (symmetric) secret key.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

21

- Asymmetric (or public-key) algorithms, where one party has a private key (similar

to symmetric cryptography), but all other parties are given a different public key.

- Cryptographic protocols, which is, roughly speaking, the application of the above

mentioned algorithms.

Figure 1. Overview of the field of cryptology (Paar & Pelzl 2010, 3).

Paar & Pelzl (2010, 4) also mention that hash functions would form a third class of

algorithms, but they share enough similarities with symmetric algorithms, that the

authors split cryptography in this way.

3.2 Confidentiality, authenticity & integrity

According to Ristić (2017, 4), the basic goal of cryptography is to achieve the three

core requirements of security:

- confidentiality (keeping secrets),

- authenticity (verifying identities), and

- integrity (ensuring that data does not change during transport).

Many people may only associate cryptography with confidentiality, or in other words,

encrypting data, so that outsiders cannot read it. Authenticity and integrity are equally

important. Authenticity means that other parties can be identified to be who they

purport to be, which is especially important in public-key cryptography. Integrity is

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

22

important, so that a man-in-the-middle attack cannot compromise an otherwise secure

communication channel.

Before moving on to all of the above, the following chapters explain some

cryptographic “primitives”, such as hash functions, random number generators, and

ciphers. These work as the basic building blocks for cryptography. (Ristić 2017, 5-14)

3.3 Hash functions

A hash function is an algorithm, which converts an input of arbitrary length (possibly

very long) into a small, fixed-size output, which is called a digest (or “hash value”, or

informally simply “hash”). Like was mentioned in Chapter 3.1, hash functions share

many similarities with symmetric algorithms, but unlike those, hash functions do not

use a key, and are not used for encryption. Instead, the most important use of hash

functions is to provide a “fingerprint” of the input message. (Paar & Pelzl 2010, 293)

Checksum functions vs. hash functions

A digest is sometimes called a “checksum”. This is not incorrect, but can be confusing,

because hash functions can be thought of as a subset of checksum functions. The

difference between what is normally meant by “checksum” and by “digest” (or “hash”,

or “cryptographic checksum”) should therefore be clarified.

In general usage, the term “checksum” refers to a checksum which is used to protect

from accidental changes to data, but it can be extremely easy to intentionally modify

the data so that it produces the same checksum. These checksums are used to protect

from the corruption of data on filesystems (e.g. CRCs or cyclic redundancy checks), or

to verify that a file has been downloaded without transmission errors (e.g. MD5).

(Atwood 2005)

The term “cryptographic checksum” is the only unambiguous way to refer to

checksums, which are cryptographically secure. In other words, they are meant to

protect from intentional changes to the data (although they also protect from accidental

changes). One example of a cryptographically secure hash function is SHA (Secure

Hash Algorithm). Cryptographic checksums are usually more costly to calculate, so

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

23

using them for something like a filesystem integrity could degrade performance.

(Atwood 2005)

In regards to performance, the ESP32 microcontroller used in this thesis has hardware

acceleration for the SHA-2 hash function (Espressif Systems 2019, 3-4).

The line between these is sometimes blurred, because some cryptographic hash

functions are no longer considered cryptographically secure, but are still useful as

general checksums. For example, MD5 is very widely used as a file checksum, but was

originally proposed in 1991 by Ronald Rivest (known as one of the original authors of

the RSA algorithm) to be a cryptographically secure hash function (Paar & Pelzl 2010,

304). Despite no longer being considered cryptographically secure in all aspects, these

hash functions can still be sufficient for many applications, even storage of password

hashes (Paar & Pelzl 2010, 304-305). This is because a hash function is not reversible,

so the password cannot be recovered from the hash; a hash is not encryption (Friedl

2005).

Perhaps to avoid this confusion, of the 2 main cryptography sources used in this thesis,

one does not contain the word “checksum” at all (“Bulletproof SSL and TLS” by Ivan

Ristić) and the other only has the word 10 times, despite being about 350 pages long

(“Understanding Cryptography” by Christof Paar & Jan Pelzl). In this thesis, the term

“checksum (function)” will be used to refer to any checksum (function), and all other

terms are to be understood as cryptographically secure.

Cryptographically secure hash functions

In order for a hash function to be useful for cryptographic purposes, it needs to have

the below additional properties when compared to an insecure checksum function.

(Ristić 2017, 9-10)

Preimage resistance: Given a hash, it is computationally infeasible to find the original

message that produces the hash. (Ristić 2017, 9-10; Friedl 2005)

Second preimage resistance: Given a message and its hash, it is computationally

infeasible to find another message with the same hash (e.g. to maliciously change the

message without changing the hash). (Ristić 2017, 9-10; Friedl 2005)

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

24

Collision resistance: It is computationally infeasible to find any 2 messages that have

the same hash (Ristić 2017, 9-10; Friedl 2005). This is sometimes incorrectly referred

to as the hash function producing “unique” hashes, although this is actually impossible,

since the digest is usually shorter than the message, so it is impossible to not have

collisions (Friedl 2005).

3.4 Ciphers

A cipher is a pair of cryptographic algorithms used for encryption or decryption. The

way a particular cipher works depends on the algorithm. (Lyons 2012)

An unencrypted message is called a plaintext (or cleartext). Once encrypted with a

cipher, the message is called a ciphertext. All ciphers use a key, which is a secret that

is used to run the encryption algorithm. (Paar & Pelzl 2010, 5; Lyons 2012)

As mentioned in Chapter 3.1, ciphers are also split into symmetric ciphers and

asymmetric ciphers, both of which are discussed later. Symmetric ciphers can be

further split into stream ciphers and block ciphers as shown in Figure 2. (Paar & Pelzl

2010, 29)

Figure 2. Main areas within cryptography (Paar & Pelzl 2010, 29).

Stream ciphers

Stream ciphers encrypt one bit at a time, which is achieved by adding a bit from a key

stream to a plaintext bit. Stream ciphers can be further split into synchronous stream

ciphers, where the key stream depends only on the key, and asynchronous stream

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

25

ciphers, where the key stream is also affected by the ciphertext. (Paar & Pelzl 2010,

30)

In addition to the key mentioned earlier, almost all modern stream ciphers also require

an IV (initialization vector), which should take a new value for every encryption session.

Unlike the key, the IV does not need to be kept secret, it just needs to change for every

session. (Paar & Pelzl 2010, 48)

Block ciphers

Block ciphers encrypt one block at a time. Each block is a certain number of plaintext

bits. This is called the block length, and is usually either 128 bits (16 bytes) or 64 bits (8

bytes). With block encryption, the encryption of any plaintext bit affects the encryption

of every other bit in the same block. (Paar & Pelzl 2010, 30-31)

In practice, block ciphers are naturally used to encrypt more than a single block. In

order to choose how to encrypt subsequent blocks, block ciphers have “modes of

operation” (Paar & Pelzl 2010, 124). This thesis will not go into the specifics of any

particular cipher, or the modes of operation for block ciphers.

Still, some noteworthy things about the modes of operation should be mentioned:

- Some modes of operation require that the length of the plaintext to be encrypted

needs to be a multiple of the block size. If it is not, padding needs to be added to the

plaintext (Paar & Pelzl 2010, 124).

- Some modes of operation, like CBC (Cipher Block Chaining mode) utilize an IV,

similar to stream ciphers (Paar & Pelzl 2010, 128).

Stream ciphers vs. block ciphers

On the Internet, block ciphers are used more often than stream ciphers. Stream ciphers

tend to be small and fast, which may be relevant for this thesis, since this has the

larger impact in embedded devices, like IoT devices. However, modern block ciphers,

such as AES, tend to have good performance as well. (Paar & Pelzl 2010, 31)

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

26

The ESP32 microcontroller used in this thesis has hardware acceleration for RSA and

AES (Espressif Systems 2019a, 3-4).

3.5 Random number generators (RNG)

In Chapter 3.3, it was mentioned that most stream ciphers and some modes of

operation for block ciphers use an IV, which is an important part of the encryption. The

IV is used as a randomizer, and it should be different for each session of encryption.

The IV’s purpose is to ensure that the key streams that are derived from the key are

always different, even though the key has not changed. Without this, if an attacker has

both the plaintext and the ciphertext from one encryption session, they can compute

the key stream. If the same key stream is used for another session, the attacker can

immediately decrypt the new encrypted message. Values like IVs are referred to as

nonces, short for “number used once”. (Paar & Pelzl 2010, 48)

For values like keys and nonces (including IVs) used in cryptographic functions,

randomness is of central importance (Paar & Pelzl 2010, 50). In cryptography, there

are 2 types of random number generators (RNG): true random number generators

(TRNG) and pseudorandom number generators (PRNG). True RNGs are characterized

by the fact that their output cannot be reproduced. A TRNG should be used to generate

all of the initial values used in a cipher (like keys and nonces). A PRNG can then use

these as seed values, which are used to generate pseudorandom values. (Paar & Pelzl

2010, 35; Ristić 2017, 14)

A pseudorandom generator generates a sequence of pseudorandom numbers from a

given seed value (Ristić 2017, 14). If given the same seed value (like an IV), the

pseudorandom numbers are always the same. The parties with access to all initial

values can generate the same pseudorandom values, which is necessary in order to

decrypt an encrypted message. (Paar & Pelzl 2010, 35)

A good PRNG has good statistical properties, meaning that the values it generates

approximate true random numbers. However, all good PRNGs are not acceptable for

cryptographic purposes (Paar & Pelzl 2010, 35-36; Ristić 2017, 14). For this, a

CSPRNG (cryptographically secure PRNG) is needed, which means a PRNG which is

unpredictable (Paar & Pelzl 2010, 35-36; Ristić 2017, 14). This means that even when

given some values from the PRNG, the next value is infeasible to compute.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

27

Unpredictability is of very little importance outside of cryptography, but in cryptography

it is essential. (Paar & Pelzl 2010, 35-36)

Any software RNG is a PRNG (Paar & Pelzl 2010, 35). For true randomness, a

physical process is required to collect entropy (Ristić 2017, 14). Flipping a coin or

throwing a die is truly random, but instead of a coin flipping robot, most computers use

something like semiconductor noise or the jitter of digital clock signals (Paar & Pelzl

2010, 35). This is a true RNG (TRNG) (Paar & Pelzl 2010, 35; Ristić 2017, 14).

The ESP32 has a hardware RNG, which uses radio noise from the environment, from

either the Wi-Fi or Bluetooth radio, depending on which of them is enabled. If either

one is enabled, the hardware RNG is a TRNG, but If neither radio is enabled, the

hardware RNG is a PRNG. (Espressif Systems 2018a, 544)

3.6 Symmetric-key cryptography

All early ciphers were symmetric ciphers. Symmetric ciphers require a symmetric key,

also called a pre-shared key, since it cannot be transmitted at the beginning of the

communication, but needs to be known by all parties in advance (hence, pre-shared).

(Paar & Pelzl 2010, 150-151)

A simple example: substitution ciphers

One symmetric cipher was already mentioned by name, the famous Caesar cipher,

which is said to have been used by Julius Caesar to communicate with his army. The

Caesar cipher (also known as shift cipher) is a substitution cipher, where each letter of

the alphabet is simply shifted a constant number of steps, to another letter. When the

end of the alphabet is reached, the shifting starts from the beginning of the alphabet.

(Paar & Pelzl 2010, 4-18)

All symmetric ciphers require both parties to have a pre-shared key. In the Caesar

cipher’s case, the key is the number of steps to shift the letters. In the case of more

complex substitution ciphers, it would be a “codebook”, which would tell which letter

should be substituted for which. Without knowing the key, the only option is to attempt

to break the encryption. (Paar & Pelzl 2010, 4-9)

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

28

Delving lightly onto the cryptanalysis side of things, it can be observed for substitution

ciphers that since every character of the ciphertext directly corresponds with a

character of the original message, the encryption can be quite easily broken. For

example, by looking for common short words like “is”, “and” or “the”, a simple

substitution cipher can be broken piece by piece, revealing the key. (Paar & Pelzl 2010,

4-9)

The problem with symmetric ciphers

Even the Enigma machine, once a marvel of cryptography, has very weak encryption

by today’s standards (Paar & Pelzl 2010, 57). All cryptography from ancient times until

1976 was symmetric (Paar & Pelzl 2010, 43). But by no means are symmetric ciphers

“outdated”, despite asymmetric ciphers being the “new kid on the block” after about

4000 years (Paar & Pelzl 2010, 2) of symmetric ciphers.

Most readers will recognize by name the AES (Advanced Encryption Standard)

algorithm. AES is a symmetric block cipher, and the most widely used symmetric cipher

in use today. AES is used in TLS, Wi-Fi encryption, SSH (Secure Shell), and in many

other security standards and products across the world. (Paar & Pelzl 2010, 87)

Symmetric ciphers, like AES, are also widely used in data encryption and the integrity

check of messages (Paar & Pelzl 2010, 3).

However, the fundamental problem with symmetric key algorithms is that the key needs

to be pre-shared. In many use cases, like all of the ones mentioned above, this is not

an issue. For example, it is expected for you to know the Wi-Fi passphrase in order to

connect, or the passphrase to access an encrypted storage medium. On the Internet,

however, a pre-shared key is often impossible, so asymmetric cryptography is needed.

3.7 Asymmetric-key cryptography

Asymmetric cryptography (synonymous with public-key cryptography) arrived in 1976,

when an entirely new type of cipher was introduced by Whitfield Diffie, Martin Hellman,

and Ralph Merkle. In addition to a secret key like the one which is used in symmetric

cryptography, the user of an asymmetric cipher also possesses a public key. In

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

29

asymmetric cryptography, the secret key is also called a private key. (Paar & Pelzl

2010, 3)

According to Paar & Pelzl (2010, 150), symmetric cryptography is symmetric in 2

respects:

1. The same secret key is used for encryption and decryption.

2. The encryption and decryption functions are very similar.

An analogy for this is a safe, and two parties have a copy of the same (secret) key.

One puts something in the safe and locks it (encryption). The other party uses a copy

of the same key to unlock the safe to retrieve the item (decryption). Locking and

unlocking are very similar operations. (Paar & Pelzl 2010, 150)

Modern symmetric algorithms such as AES are very secure, fast, and widely used

(Paar & Pelzl 2010, 150). However, symmetric-key algorithms have some serious

shortcomings, as listed by Paar & Pelzl (2010, 150-151), which become very apparent

on the Internet:

- Key distribution problem: The key must be agreed upon over a secure channel.

Without using asymmetric cryptography, this means the need for a pre-shared key.

- Number of keys: Even if the distribution problem is solved, each pair of users needs

a unique shared key. For 2000 users, this would mean securely storing over 4 million

keys (Paar & Pelzl 2010, 151).

- No protection against cheating: If 2 or more people possess the same secret key, it

cannot be determined who did the encryption (who locked the safe), and anyone with

the key can decrypt the data (unlock the safe).

Asymmetric cryptography solves these problems, because asymmetric ciphers do not

require that the encryption key (public key) and the decryption key (private key) are the

same. With asymmetric cryptography, the receiving party keeps the private key as a

secret, but shares the public key with any other party. The public key can only be used

to encrypt data, and the only way to decrypt the data is by using the private key. (Paar

& Pelzl 2010, 152)

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

30

The safe analogy still somewhat works with asymmetric cryptography, but becomes a

bit convoluted. Now everyone has an unlocked safe, which automatically locks when

the door is closed, without the needing a key (the safe is the public key). Only the

person with the private key can unlock the safes that have been locked.

The Diffie-Hellman key exchange

The original 1976 paper which introduced asymmetric cryptography was called “New

Directions in Cryptography” and was written by Whitfield Diffie and Martin Hellman.

Ralph Merkle is also often cited as one of the inventors of asymmetric cryptography,

because he invented it independently, but proposed an entirely different public-key

algorithm. (Paar & Pelzl 2010, 168) The Diffie-Hellman key exchange was the very first

asymmetric scheme, but it was also influenced by the work of Ralph Merkle (Paar &

Pelzl 2010, 206).

The Diffie-Hellman key exchange (DHKE) is still widely used today, among other things

in TLS and SSH (Paar & Pelzl 2010, 206). Without going into the specifics of the

algorithm, DHKE is often explained with an analogy of mixing colors as illustrated in

Picture 1.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

31

Picture 1. Illustration of the idea of the Diffie-Hellman key exchange (Han Vinck 2011).

In the color mixing analogy, the algorithm is the following:

- The 2 parties agree on a common public color (one party randomly selects a color

and sends it to the other party over a public channel).

- Each party mixes the common color with their own secret color, and sends the

resulting color mixture to the other party over a public channel (the “unmixing” of the

common and the secret color in the analogy is very expensive in the actual algorithm).

- Each party mixes their own secret color with the mixture they received from the other

party.

- The result is a shared secret, which has mixed the same 3 colors (the 2 secret colors

and the 1 public color).

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

32

In the actual algorithm, the common “color” is a large prime p and an integer α in the

range between 2 and p-2. Each party then chooses another “secret” integer, calculates

their own “mixed color”, sends it to the other party, and after another calculation, both

parties arrive at the shared secret. (Paar & Pelzl 2010, 206)

The DHKE algorithm has some problems, because an attacker could hijack the

communication after the original parties have agreed on a shared color, insert their own

secret color, and the attacker could pretend to be the other party. Because of this,

DHKE is commonly used with authentication provided by some other method. (Ristić

2017, 38-39) The 1976 paper by Diffie and Hellman opened a new branch of

cryptography, and a year later in 1977, Ronald Rivest, Adi Shamir and Leonard

Adleman proposed a scheme called RSA, which is the most widely used asymmetric

crypto scheme (Paar & Pelzl 2010, 173).

Symmetric cryptography vs. asymmetric cryptography

So, which is better, symmetric or asymmetric cryptography, RSA or AES? In the

majority of practical cryptographic systems, symmetric and asymmetric algorithms (and

often also hash functions) are all used to together. This is because each has their own

strengths and weaknesses. (Paar & Pelzl 2010, 4)

The weaknesses of symmetric cryptography have already been discussed, but it has a

distinct benefit over asymmetric key cryptography, because “an 80-bit symmetric key

provides roughly the same security as a 1024-bit RSA key”, RSA being a popular

asymmetric algorithm (Paar & Pelzl 2010, 12). Considering the “strength” of a particular

encryption algorithm usually involves considering the key size, so “bit-for-bit” symmetric

algorithms have stronger security, but there is probably little sense in comparing such

distinctly different algorithm families. This is why the combination of both symmetric

and asymmetric methods, also known as “hybrid schemes”, are often used (Paar &

Pelzl 2010, 4).

Public key cryptography (asymmetric cryptography) is also slower than symmetric

cryptography. This means that it is usually used where it is necessary, like

authentication and the negotiation of shared secrets (pre-shared keys). After this,

symmetric cryptography can be used. (Ristić 2017, 13)

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

33

3.8 Protocols

Let’s review the 3 core requirements of security from Chapter 3.2: confidentiality,

authenticity, and integrity. After all of these chapters, only confidentiality has been

properly explained. This chapter will explain authenticity and integrity. In order to do

this, we need to look into the protocols: the third and last part of cryptography as shown

in Figure 1.

The cryptographic algorithms that have been introduced in earlier chapters are seldom

used by themselves. In order to apply all of them, and to fulfill all 3 core requirements

of security, cryptographic protocols are needed. One example of such a protocol is

TLS, Transport Level Security. (Paar & Pelzl 2010, 3-4)

In order to maintain a reasonable scope, this thesis will not explain any particular

protocol (like TLS), so only the basic principles of secure communication will be

explained.

Message authentication codes (MACs)

In order to provide integrity, a hash function could be used on the data. However, an

attacker could modify both the data and the hash of the data, easily avoiding detection.

A message authentication code (MAC), also called a keyed-hash, can be used to

provide integrity. Only those who posses the hashing key can produce a valid MAC.

(Ristić 2017, 10)

MACs are commonly used alongside encryption, because encryption cannot provide

integrity by itself. Even if an attacker cannot decrypt the ciphertext, they can still modify

it. If they’re smart about how they do this, they can fool the receiver into accepting a

forged message as authentic. (Ristić 2017, 10)

However, if a MAC is used, an attacker cannot do this without knowing the hashing

key, and the parties in possession of the hashing key can be certain the message has

not been tampered with. Any hash function can be used to create a MAC. This is called

a hash-based MAC (HMAC), which works by interleaving the hashing key with the

message in a secure way. (Ristić 2017, 10)

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

34

Digital signatures

In asymmetric encryption, the private and public keys have a special mathematical

relationship between them. Anyone can use the public key to encrypt data, but only the

private key can be used to decrypt the data. This provides confidentiality (encryption).

(Ristić 2017, 12)

However, the same also works in reverse. Data can be encrypted with the private key,

and this encrypted data can then be decrypted with the public key. This may seem

useless at first glance, since the public key is meant to be public, so this cannot be

used to provide confidentiality. However, anyone with the public key can confirm that

the party who encrypted the data is the real owner of the private key. (Ristić 2017, 12)

This can be used for digital signatures, which provide authenticity, the third of our 3

core requirements of security. A digital signature allows the verification of the

authenticity of a digital message or document. (Ristić 2017, 12-13; 2017, 4)

MACs are a type of digital signature, but they require that the hashing key is shared

beforehand in a secure manner. This is still useful in certain situations, but has inherent

limitations, so other types of digital signatures are also needed. (Ristić 2017, 13)

The exact method used for digital signatures varies on the public key cryptosystem that

is used. Below is an example of how it can be done using RSA and SHA256 (Ristić

2017, 13-14):

1. Calculate the SHA256 hash of the document that should be signed. The output

of SHA256 is always 256 bits in length.

2. Encode the hash of the document, along with some additional metadata. For

example, the receiver will need to know the hash function that was used

(SHA256 in this case), in order to check the validity of the signature.

3. Encrypt the encoded hash using the private key; the result is the digital

signature, which is appended to the document as proof of the document’s

authenticity.

In order to verify the signature, the hash of the document is calculated by the receiver,

using the same algorithm that was used during signing. Then, the public key is used to

decrypt the signature. The decrypted signature should show the same hash and

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

35

hashing algorithm, if the signature is valid and the document has not been altered after

signing. The strength of the signature depends on the individual strengths of the

encryption, hashing, and encoding components that were used. (Ristić 2017, 13-14)

A communication example, and some common attacks

With everything that has been introduced so far, secure communication should finally

be possible. Let’s go through a short example of secure communication, which fulfills

all 3 core requirements. It is also assumed that there’s someone trying to attack the

communication.

For the bulk of the data to be transmitted, strong symmetric encryption should be used

(AES, for example). This will mean that the attacker cannot read the data. (Ristić 2017,

14-15)

However, they can still do other things, like modify the messages without being

detected. To prevent this, MACs will be used, and the hashing key will only be known

by the sender and receiver, not by the attacker. (Ristić 2017, 14-15)

Even while using MACs, the attacker could still be able to drop or repeat messages. To

prevent this, a sequence number should be added to the messages; ideally, to the

MACs. If a sequence number is repeated, the receiver will know that the message has

been repeated, which is also known as a replay attack. If an expected sequence

number is missing between messages, the receiver will know that a message has been

dropped. Now all the attacker can effectively do is to prevent communication, which

can’t really be helped. (Ristić 2017, 15)

The last thing that’s still needed, is to securely share the keys that are necessary for

the above: the encryption key and the hashing key. To do this, the first thing that’s

necessary is authentication, so that the people communicating can be sure that the

keys are really sent to the correct person, and not an attacker. One way to do this

would be to generate a (large) random number and ask the other party to sign it, and

then verify the signature. Authentication is achieved when this is done in both

directions. (Ristić 2017, 15)

With authentication done, the keys can be exchanged using a key-exchange scheme.

For example, RSA key exchange works by one party generating all of the keys,

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

36

encrypting them with the public key of the other party, and the other party decrypting

the keys with their private key. The Diffie-Hellman key exchange (DHKE) introduced

earlier in this chapter could also be used. DHKE is slower, but has better security.

(Ristić 2017, 15)

At a high level, the above example is similar to TLS (Ristić 2017, 15). For the purposes

of this thesis, this example is enough to explain secure communication, so TLS will not

be discussed in detail. However, public-key infrastructure (PKI), including how

SSL/TLS certificates are used, will be described next.

3.9 Public-key infrastructure (PKI)

Public-key cryptography allows secure communication with parties, whose public keys

are known. There are still a number of problems related to this, like how to

communicate with people whose public keys are not known beforehand, how to store

and revoke public keys, and how to do this for the millions of servers and billions of

devices online today. This chapter will explain how this is done, using public-key

infrastructure (PKI). (Ristić 2017, 63)

Technically, PKI is a much wider term, so either Internet PKI or Web PKI would be a

more accurate term (Ristić 2017, 63). In this thesis, the term PKI will be used to mean

Internet PKI, and to describe how PKI is used on the Internet.

3.9.1 Certificates and certificate authorities (CAs)

The goal of PKI is to allow communication between parties who do not know each

other beforehand. The model used to achieve this relies on trusted third parties, called

certificate authorities (CAs), sometimes also known as certification authorities. CAs are

unconditionally trusted by everyone, and are the root of PKI. (Ristić 2017, 63)

A certificate is a digital document, which contains a public key, some information about

the entity associated with the certificate (the certificate’s “owner”), and a digital

signature from the issuer of the certificate. A certificate allows the exchange, storing,

and use of public keys, and are the basic building block of PKI. (Ristić 2017, 66)

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

37

A root certificate is a certificate owned by a certificate authority themselves. Root

certificates are stored in a root trust store, which are maintained by the operating

system, a web browser, or some other program. This store is essentially a list of all

trusted CAs, and is included (and updated) along with the operating system or

program. (Ristić 2017, 64)

3.9.2 Identity validation

A server or other entity gets its certificate from a CA, which is trusted by everyone. The

certificate is signed by the CA, so the certificate can be verified without having to store

every single certificate, but just the root certificates. (Ristić 2017, 64)

Before issuing a certificate, the certificate authority will validate the identity of the entity

requesting the certificate. There are many methods for a CA to do this, which creates 3

different classes of certificates. These classes, in order of increasing complexity of the

validation are: domain validated (DV) certificates, organization validated (OV)

certificates, and extended validation (EV) certificates. (Ristić 2017, 74-75)

Domain validated certificates are the simplest of these, and are issues based on proof

of control over a domain name. In some cases, this means sending a confirmation

email to one of the approved email addresses for the domain. If the recipient follows a

link in the email, the certificate is issued. (Ristić 2017, 75)

Other methods of providing proof of control over a domain are by setting special DNS

records as requested by the CA, or by using a special protocol (e.g. the ACME

protocol) to access a server on the domain. These 2 methods are used by Let’s

Encrypt, the certificate authority used in the project. (Let’s Encrypt 2019e)

3.9.3 Certificate chains

For most cases, a single certificate is not sufficient for authenticity. In practice, a server

must provide a certificate chain, which leads to a trusted root certificate. Most

certificates are issued by an intermediate CA, whose certificate is issued (and signed)

by a root CA. A certificate chain can also be called a trust chain. (Ristić 2017, 71-72)

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

38

Each certificate in the chain is signed by the certificate that precedes it. Certificate

chains provide improved security, and are also used to protect root certificates, by not

commonly issuing certificates that are signed directly with the root certificate. (Ristić

2017, 71-72)

A server can also provide multiple certificate chains, which lead to multiple root CAs.

This is called cross-certification or cross-signing, and provides improved security.

Multiple certificate chains also protect PKI from situations where an intermediate or

even root certificate is compromised, and can no longer be trusted. Having multiple

certificate chains means that a certificate can still be trusted, while at least one of the

chains can be followed to be a trusted root certificate, although such certificates should

naturally be replaced. (Ristić 2017, 71-72)

This project uses certificates issues by a CA called Let’s Encrypt. They use

intermediate CAs, whose certificates are signed by both their own root CA, as well as

being cross-signed by another root CA called IdenTrust. (Let’s Encrypt 2019d)

The problem with certificates on embedded devices

In order for PKI to properly function, certificates are issued with an expiration date. This

is good for security, but is a problem on embedded devices, since they may act as

HTTPS servers, but may not have an Internet connection in order to renew certificates.

One example of this issue are routers, which are commonly configured using a web

browser, which connects to the router’s HTTPS server (Ristić 2017, 137-138). Picture 2

shows how Google Chrome shows this connection as “not secure”, because the

certificate is self-signed, in order to not expire.

Picture 2. Example of a self-signed certificate on the Ubiquiti EdgeRouter X, when
connecting with Google Chrome.

In the author’s opinion, this is a bad decision from Chrome’s developers, since the

connection is still encrypted, but the certificate authority is unknown, so it cannot be

trusted. This could be an attack, but since this is also a common situation on routers

(and other embedded devices), it could be shown in a better way for the user. An

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

39

encrypted connection with an unknown CA is still better than an unencrypted HTTP

connection, but Chrome shows those in a much less alerting manner, as shown in

Picture 3.

Picture 3. Example of an unencrypted HTTP connection in Google Chrome.

As far as I’m aware, there’s no existing solution for this. The only way to have a

certificate on an embedded device is to self-sign the certificate, which means that they

won’t be trusted by default.

Ivan Ristić (2017, 137-138), the author of “Bulletproof SSL and TLS”, acknowledges

the problem. He argues that Firefox’s method of requiring the user to add a per-

certificate exception is the best way to deal with this. Certificate exceptions allow the

use of self-signed certificates, on something like a router, while still protecting from

attackers who are trying to insert their own certificate.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

40

4 HARDWARE AND SOFTWARE RESEARCH

The purpose of the system under development is to gather sensor readings, and to

send them to a server on the Internet. In order to achieve this, the system naturally

needs sensors, and a microcontroller with an Internet connection. The microcontroller

reads the sensors, and sends the readings to the server.

There are many options out there for both the sensors and the microcontroller, and this

chapter will explain the reasoning behind the specific hardware that was chosen for this

project. The hardware choices were also heavily influenced by the libraries and

software tools available for the hardware; software and hardware choices were made,

and are now discussed, in tandem.

Datasheets

When trying to find parts for an electronics project, the definitive source of information

for a part is the datasheet. A datasheet is a document provided by the manufacturer,

which lists essential specifications about the part. These can include recommended,

minimum and maximum operating conditions (voltages, temperatures, and so on), the

part’s physical dimensions and pinout, functional block diagrams, example circuits, etc.

(Grusin 2010)

Sometimes the language in a datasheet can be fairly technical and rough for beginners

(Grusin 2010). This also makes them succinct and to the point, once you’re familiar

with the central terms and concepts. Datasheets are an essential resource when

designing a project like this.

Based on personal experience, the content of a datasheet varies wildly from

manufacturer to manufacturer. Some datasheets are a hundred pages long (e.g.

microcontroller datasheets), while others are only a few pages. Some datasheets are

very low quality, containing typos and other errors, and some are only partially

translated to English (if the manufacturer is Chinese, for example). This can make it

difficult to use the part, and lowers trust in the manufacturer.

Datasheets give measurable, objective values, which makes it easy to directly compare

alternative electronics parts. However, datasheets and the physical characteristics of a

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

41

part are only one factor for choosing a part. There are also practical things like price

and availability, the libraries or software development kits (SDKs) available, and so on,

so there’s not always a clear-cut “winner”.

Software libraries and software licenses

One factor in choosing the correct part for the project is the software available for the

part. It would be far too much work to write all of the software from scratch, since there

are usually high-quality libraries and SDKs available for free. These greatly reduce the

development time required for a project like this.

One issue to consider when researching the available software is the license that’s

used to distribute the software. For a personal project, this is of little consequence, but

the licenses can have implications for a project that might be commercialized at some

point.

Broadly speaking, open source licenses can be divided into 2 categories: permissive

licenses and copyleft licenses. Permissive licenses essentially mean “do whatever you

want, use at your own risk, acknowledge the authors”. Copyleft licenses, however,

often require that the derivative work must be distributed under the same license. In

practice, using such a license might lead to the authors seeking to recover damages for

copyright infringement, so it wouldn’t force you to disclose the project’s source code,

but should be avoided nonetheless. (Meeker 2017)

Most copyleft licenses do in fact allow use in proprietary/closed-source software, but

require dynamic linking of the licensed software (Meeker 2017), which can be

practically impossible to do for embedded software. Because of these factors, only

permissive licenses were considered for this project.

Counterfeit electronics and clones

Another factor to consider when researching parts for an electronic project is the

thriving counterfeit market, an estimated 100 billion dollar loss of global revenue for

electronics companies. It can be very difficult to tell the difference between the original

part, and a counterfeit part. (Pecht 2013, 12)

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

42

It can also be difficult to find out if a part is “generic” or a patented/trademarked part.

For example, if the original manufacturer is Chinese, there can be very little material

available in English. Buying the cheapest available part on an online marketplace may

mean buying a counterfeit. However, since this project is currently at the prototyping

phase, some counterfeit parts will be acceptable (although not intentional). If the

project is commercialized, the parts will be bought from a reputable dealer, and not an

online marketplace, which is a good way to avoid buying counterfeit parts (Pecht 2013,

12).

One important distinction is that a “clone” is not the same thing as a counterfeit. For

example, in the next chapter we’ll talk about Arduino, which is based on open-source

hardware (Arduino 2019a). An “Arduino-compatible” clone board can be perfectly legal,

as long as it doesn’t claim to be an Arduino, which is a trademarked name (Arduino

2019b).

4.1 Arduino

Arduino is an open-source electronics platform, consisting of both hardware and

software. Arduino is aimed at students and makers, and has gained a large community.

It’s widely used among electronics hobbyists and even professionals. Arduino is both a

collection of hardware devices (“boards”) and software, including a large collection of

libraries developed by the community and even its own IDE (integrated development

environment). (Arduino 2019a)

4.1.1 Arduino hardware

Arduino boards are an easy way to get started in electronics (Arduino 2019a), and an

Arduino board was the author’s first foray into embedded development. The official

Arduino boards are high-quality, but also relatively expensive, since they’re funding

Arduino development. Plenty of cheap clones also exist, since the Arduino hardware is

open-source (Arduino 2019a).

However, this project won’t be using an Arduino, since one of the most common ways

to connect an Arduino to the Internet is to use a module based on the ESP8266

(Sachleen 2014), which itself is a powerful microcontroller. It and its successor, the

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

43

ESP32, will be introduced in a later chapter. The community and the build tools on the

Arduino platform are still very helpful, so the Arduino platform as a whole is used by the

project, even though no actual Arduino hardware is used.

4.1.2 The Arduino language

Arduino has its own language, based on Wiring (Arduino 2019a). I would argue that it’s

not really a language, but an SDK, since the actual language is C++. In fact, even the

Arduino website’s Frequently Asked Questions say that “the Arduino language is

merely a set of C/C++ functions that can be called from your code” (Arduino 2019c). In

addition to this, there are also some preprocessor steps, after which the C++ code

compiled by avr-g++, a compiler for AVR microcontrollers (Arduino 2019c).

4.1.3 Arduino IDE

The Arduino IDE is the default development environment for the Arduino platform

(Arduino 2019a). The IDE is simple to use, and makes it very easy to configure and

flash the compiled software onto a device. But, it has been criticized fairly widely for

being a terrible IDE (Williams 2019).

Arduino also has an online IDE called Arduino Web Editor (Arduino 2019d), as well as

recently introducing an early version of the Arduino Pro IDE, which is a more advanced

version of their IDE, with many new features (Cipriani 2019). However, it’s possible to

use any other IDE by running some of the build process steps yourself (Arduino

2019e). This project was developed using VSCode and using the Arduino IDE only as

a build tool.

4.1.4 Arduino libraries, tools, and community

The community and all of the existing libraries are the real reason why this project uses

Arduino. The ESP32 has its own official development framework called ESP-IDF

(Espressif Systems 2019b), which might even be a better choice for development on

the ESP32.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

44

But the vast selection of libraries available on the Arduino platform means that most

sensors and other devices you may come across will probably already have a library

available. This saves a lot of development time. Luckily, Espressif also provides tools

for developing ESP32 software on the Arduino platform, called the “Arduino core for the

ESP32” (Espressif Systems 2019c), which is a perfect middle-ground.

4.2 Espressif Systems

Espressif Systems is a semiconductor company based in Shanghai. They are focused

on IoT solutions and are best known for their ESP8266 and ESP32 chips and modules.

(Espressif Systems 2019d)

4.2.1 The inexpensive ESP8266

The ESP8266 module is fairly popular in the maker community, because it offers an

easy way to add wireless Internet connectivity to an electronics project (Sachleen

2014). It has a microcontroller, an integrated Wi-Fi radio and antenna, flash memory,

and other circuitry, which makes it a complete IoT solution, needing a minimum of only

7 external components (Espressif Systems 2019e).

The ESP8266 is available in multiple official modules from Espressif Systems

(Espressif Systems 2019f), as well as modules offered by other companies. One of the

most popular ones, the ESP-12F, can be bought for a little over 1 euro, or as a ready-

to-use USB-powered development board for a little under 2 euros, including shipping

(prices checked on 17.11.2019 from AliExpress).

4.2.2 Improvements introduced with the ESP32

The ESP8266 has a much more powerful processor than the microprocessors used in

most Arduino devices. This, coupled with the how inexpensive it is, would make it an

ideal choice for the project. However, the ESP8266 lacks flash encryption and secure

boot (Espressif Systems 2019e), which means that one of the IoT devices could be

modified, in order to perform attacks on the server. The ESP8266’s successor, the

ESP32, adds these features. (Espressif Systems 2019a, 3)

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

45

The ESP32 has a more powerful, dual-core processor, which means that one of the

cores can be dedicated to maintaining an encrypted Wi-Fi connection, without slowing

down other functionality. The more powerful processor also allows for better security,

since it can run more complex cryptographic algorithms. The ESP32 also adds

Bluetooth connectivity, although it won’t be used for this thesis. (Espressif Systems

2019g)

The ESP32 is a bit more expensive than the ESP8266, but not significantly. The

ESP8266 may still be more popular, but this is largely due to lower price. All of the

extra features available in the ESP32 made it the obvious choice when thinking about

the future plans for this project.

The ESP32 is available in many different modules and development boards, with either

a single-core or dual-core processor, as well as different flash memory capacities and

antenna configurations. The module that was chosen for this project is the ESP32-

WROOM-32, with 4 megabytes of flash storage, and an integrated PCB antenna.

(Espressif Systems 2019f)

More specifically, the prototype system will use a development board based on that

module. The development board has all of the necessary circuitry to program the

module, and to power it with a USB power supply. It also has a power LED, and an

“activity” LED connected to one the digital pins.

Espressif IoT Development Framework (ESP-IDF)

The official development framework for the ESP32 is called ESP-IDF, short for

Espressif IoT Development Framework (Espressif Systems 2019b). This project will be

using the “Arduino core for the ESP32”, which allows using the ESP32 libraries straight

from the Arduino IDE (Espressif Systems 2019c), along with other Arduino libraries (the

benefits of which were discussed earlier).

Still, the ESP-IDF documentation will be referenced a lot during development, since the

features and functions are essentially the same. Among these features are over-the-air

(OTA) updates, running a file system, Wi-Fi connectivity, making HTTP requests,

running an HTTP server, and much more. (Espressif Systems 2019b)

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

46

Comparison of hardware platforms

Table 3 shows a comparison of some of the hardware platforms that were considered

for the system.

Table 3. Comparison of hardware platforms (Arduino 2019h; Raspberry Pi Foundation
2019a; 2019b; 2019c; Espressif Systems 2019a; 2019f).

Development

board

Arduino MKR1000 Raspberry Pi Zero

W

Espressif ESP32-

DevKitC (clone)

Module/SoC Atmel ATSAMW25 N/A ESP32-WROOM-32
Processor SAMD21

32-bit, single-core

48 MHz

BCM2835

64-bit, single-core

1 GHz

ESP32-D0WD

32-bit, dual-core

up to 240 MHz
Runtime memory 32 KB SRAM 512 MB RAM 520 KB SRAM
Persistent memory 256 KB (Flash) SD card, up to 256

GB

4 MB (Flash)

Wi-Fi 802.11 b/g/n 802.11 b/g/n 802.11 b/g/n
Bluetooth - Bluetooth 4.1, BLE Bluetooth 4.1, BLE
Logic voltage 3.3 V 3.3 V 3.3 V
Digital I/O 8 pins 28 pins 34 pins
Hardware PWM 12 pins 4 pins 16 pins
Analog input 7 pins

8/10/12-bit ADC

Not supported 18 pins

12-bit ADC
Analog output 1 pin

10-bit DAC

Not supported 2 pins

8-pit DAC
Hardware UART 1 channel 1 channel 3 channels
Hardware SPI 1 channel 2 channels 3 channels
Hardware I²C 1 channel 1 channel 2 channels
Approximate cost

(dev board)

31 € (price on

13.12.2019,

store.arduino.cc)

11,5 € (price on

13.12.2019,

ThePiHut.com)

9,0 € (price on

13.12.2019,

Mouser.fi)
Approximate cost

(module/SoC)

10,5 € (price on

13.12.2019,

Mouser.fi)

N/A 3,42 € (price on

13.12.2019,

Mouser.fi)

The table compares development boards, but a final device would likely use the

microcontrollers and SoCs (system on chip) that are used the development boards. In

addition to the hardware specifications, there are many other things to consider. Some

of the most important factors are the ease of interfacing with sensors and implementing

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

47

Internet connectivity, the available SDKs and libraries, and the cost of the hardware.

Since Internet connectivity is a core requirement, only platforms that have ready-to-use

Wi-Fi connectivity were considered for the comparison.

As of writing, over 20 different Arduino boards exist (Arduino 2019g). Out of these, the

Arduino MKR1000 and the Arduino Yún offer Wi-Fi connectivity (Arduino 2019h;

2019i). However, the Arduino Yún has been retired (Arduino 2019i), so it was left out of

the comparison. The MKR1000 is based on the Atmel ATSAMW25 SoC (system on

chip), which has a SAMD21 Cortex-M0+ 32-bit ARM microcontroller, a WINC1500 Wi-

Fi module, and an ECC508 cryptographic module (Arduino 2019h).

The MKR1000 and the ATSAMW25 SoC it uses are fine alternatives to the ESP32, but

when comparing the hardware specifications visible in Table 3, the ESP32 is more

powerful and has more features in most areas. When comparing online prices as of

writing, both the SAMW25 and the MKR1000 development board are almost twice as

expensive as the ESP32 equivalents. Atmel is a respected company, but the ESP8266

and ESP32 also seem to have a much larger online developer community than the

Arduino MKR1000.

For a project like this, the Raspberry Pi Zero W is the best suited out of the various

Raspberry Pi boards available, and is surprisingly low-cost as far as development

boards are concerned. When looking at the specs, the Raspberry Pi Zero W is the

most powerful out of all of the presented options. However, the Raspberry Pi runs a full

Linux operating system instead of an embedded program, so a direct performance

comparison is difficult to do. Unlike the other choices, the Raspberry Pi isn’t based on

a ready-to-use module, so it would require much more hardware development to create

a custom PCB for production, unless the board were used as-is.

The Raspberry Pi is also difficult to interface with sensors, since it has the worst GPIO

(general purpose input/output) features in the comparison, for example having the

fewest PWM outputs and having no analog inputs or outputs at all. Because of this,

perhaps the best way to interface with sensors would be a “hybrid” solution using an

external microcontroller. However, this would increase costs and system complexity.

The Raspberry Pi might the most flexible option out of the ones presented, since it runs

a full Linux operating system. However, it is also likely to be the most expensive and

would probably require the most development effort, since an external microcontroller

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

48

may also be necessary. For certain use cases, like computer vision, the Raspberry Pi

may be the best option.

4.3 Connecting devices to a microcontroller

In order to be able to get readings from the sensors, they will naturally need to be

connected to the microcontroller. This chapter will go through all of the things to

consider when doing this, like power delivery, and the various interfaces and protocols

to communicate with the sensors.

4.3.1 Power delivery and device voltages

One of the first things to consider when choosing a sensor, are its power delivery

requirements (current consumption), as well as the voltage ranges it works with. For

example, if the project is battery-powered, using a sensor with a high current

consumption may not make sense.

Similarly, using a sensor which has 3.3 volt logic with a 5 volt microcontroller will

require using a logic level converter. This doesn’t make using the sensor impossible by

any means, but if another sensor uses a compatible voltage for logic, it may be a better

fit for the project.

Some devices may use different voltages for power delivery and for logic. This is

because the same amount of power at a higher voltage will require less current. Higher

currents will require thicker wires and PCB traces. Then again, lower voltage

microcontrollers will generally be more power-efficient, and using multiple different

voltages will require extra circuitry in order to provide multiple well-regulated voltages.

Since the ESP32 has already been decided as the microcontroller, the logic level

voltage will be 3.3 volts (Espressif Systems 2019a). However, since USB power

supplies are a cheap and ubiquitous solution for power delivery, 5 volt power will also

be easily available. The development board used in the project requires a 5 volt power

supply, and has an integrated 3.3 volt voltage regulator, although this regulator cannot

deliver a huge amount of current. A similar power solution would likely be used for a

production PCB, which would no longer use the development board.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

49

4.3.2 Reading analog signals

One of the simplest ways to connect a sensor to a microcontroller is by reading an

analog voltage. This is simple, and won’t require a library. However, reading an analog

voltage requires an analog-to-digital converter (ADC), of which there will be a limited

number on any microcontroller. An ADC will also have a specific voltage range, and if

this doesn’t by coincidence match that of the sensor’s output voltages, some

supporting circuitry will also be needed.

Also, a sensor which provides only an analog voltage is likely to be a pretty “dumb”

sensor. For example, an NTC or PTC thermistor (short for negative and positive

temperature coefficient, respectively) can be used as a simple temperature sensor

(Omega Engineering Inc. 2018), but the values from such components will be rather

inaccurate without calibration. More advanced temperature sensors (like the one that

will be introduced later) will have supporting circuitry, in order to give more accurate

and reliable readings.

4.3.3 Reading digital signals

Another common method to read values from sensors is by reading a digital signal.

Some sensors will use a completely custom protocol, but there are a few common

standardized protocols, some of which will be introduced in the following chapters.

In general, one thing to note about reading digital signals is that they can be very time

sensitive. Especially if the sensor uses some custom protocol, this can make

development rather time consuming, if a good quality library isn’t available. So, when

researching possible sensors, it’s always a big bonus if the sensor uses a standard

protocol and/or if there’s a library available.

4.3.4 I²C

One standard protocol to communicate with sensors and other integrated circuits (IC) is

I²C. Short for Inter-Integrated Circuit, I²C is a synchronous, multi-master, multi-slave

protocol. It uses only 2 wires for communication, a clock line (SCL) and a data line

(SDA). (Horowitz & Hill 2015, 1034-1035)

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

50

The clock line is controlled by the master device, which sends a 7-bit address for the

slave, followed by a single bit specifying the direction of the data (to the slave or from

the slave). If the slave is sending data, it will control the data line, but will follow the

master’s clock. The SMBus protocol is closely related to I²C, but enforces stricter

standards. (Horowitz & Hill 2015, 1034-1035)

I²C has multiple benefits, like only requiring 2 wires for data, clock, and addressing, so

multiple devices can share the same 2 wires. Many other interfaces, like the SPI

interface introduced in the next chapter, may require more wires and may not have any

form of addressing, meaning that multiple devices may not be able to share the same

bus. (Horowitz & Hill 2015, 1034-1035)

However, I²C has a lower bandwidth than many other protocols, so some other protocol

may be preferred if a higher bandwidth is required. I²C also uses predefined 7-bit

addresses, and while some devices allow selecting an alternative address by dedicated

pins, this somewhat defeats the advantage of only requiring 2 wires. (Horowitz & Hill

2015, 1034-1035)

4.3.5 SPI

Another common protocol is the Serial Peripheral Interface (SPI). SPI uses 4 wires for

communication between ICs: SS (slave select), SCLK (serial clock), MOSI (master out,

slave in), and MISO (master in, slave out). Compared to I²C, SPI is a simpler protocol,

despite using more wires. SPI is simpler, but also less structured than I²C, so it can

potentially be a bit more difficult to work with, depending on the IC. (Horowitz & Hill

2015, 1032-1033)

SPI has higher bandwidth than I²C, which makes it common for ICs that require this

(like SD cards or LCD control chips). However, SPI doesn’t have any intrinsic

addressing, so the same bus can be shared by fewer ICs, and each additional slave IC

will require its own slave select wire. (Horowitz & Hill 2015, 1032-1033)

SPI is a bit “loosely” standardized, and sometimes the names SDI (serial data in) and

SDO (serial data out) are used instead of the more unambiguous MOSI and MISO. SPI

is usually full-duplex, meaning that it can send data in both directions simultaneously,

since it has dedicated data in and and data out pins. A half-duplex, 3-wire version of

SPI also exists, which uses just one pin for both incoming and outgoing data. This

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

51

saves on the number of pins used, but hurts bandwidth and is a bit more complex to

use. (Horowitz & Hill 2015, 1032-1033; 2015, 1082)

SPI isn’t used for the first prototype, although some of the sensors used in the project

do support it. SPI may be used for later additions, like an SD card or LCD screen.

4.3.6 Serial ports and UART

Another digital interface for communication between integrated circuits is called UART,

universal asynchronous receiver-transmitter (Horowitz & Hill 2015, 1039). Sometimes

this is referred to as a COM port or simply a “serial port” (Horowitz & Hill 2015, 873).

UART can use many different protocols, which can make communication difficult at

times. When using UART for communication, the device’s datasheet is the ultimate

source of information.

One advantage with UART is that it’s fairly easy to connect to a computer by using a

serial-to-USB converter, which allows you to plug in a USB host at one end, and

essentially gives you an RS-232 interface at the other end. Most microcontrollers

include one or more serial ports, and they are one of the most common ways of

programming them, including the ESP32. (Horowitz & Hill 2015, 873)

4.4 Choosing the sensors and other devices

Earlier in this chapter, some general principles were introduced, which should be kept

in mind when choosing parts for an electronics project. Among these have been power

requirements, logic level voltages, and the libraries available for the part (if libraries are

necessary).

Some other things to keep in mind are the price and availability of the part. An outdated

part which is no longer being manufactured may be much cheaper, and while choosing

such a part may make sense in the short term, it may add extra work if the part needs

to be replaced later on. The remaining stock of a deprecated part may also become

much more expensive, if demand is still high. How common a given part is can also be

visible in the amount of information that’s available online, since the more users a part

has, the more people will talk about it online.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

52

Different parts can also have very different features. The most commonly used parts

may have been in use for decades, and new technology may have come along, which

offers better features, accuracy, reliability, or cheaper prices. Choosing a part will often

involve compromises, and there is rarely a part which is objectively “best”.

Adafruit Industries

Adafruit Industries is a company based in New York City, and focuses on making

products for the maker community. The company employs over 100 people, and has

been listed as one of the top USA manufacturing companies. (Adafruit 2019a)

Among their products, Adafruit manufactures easy to use modules of popular ICs. Like

Arduino, Adafruit’s products are open-source hardware, and all of the software included

with the products is also open-source. (Adafruit 2019b)

This means that even though no Adafruit products were used, the project can still make

use of Adafruit’s libraries. The libraries are generally high-quality and fairly well

maintained, which greatly reduces this project’s workload.

4.4.1 Worldsemi WS2812B intelligent RGB LED

The WS2812B is an intelligent RGB LED, manufactured by Worldsemi. It is “intelligent”,

because multiple of these LEDs can be chained together, and they will be individually

addressable. This allows using multiple individually addressable RGB LEDs, while only

using a single digital pin on the microcontroller, as opposed to a minimum of 3 PWM

(pulse-width modulation) capable pins for a single regular RGB LED. (Worldsemi

2018)

Use in the project

Physically, the system will be pretty minimal, but some form of feedback for the user

was wanted. If there’s some problem in the system, like a lost Internet connection, it’s

important that the user has some way of noticing this, apart from noticing that the past

week’s sensor readings are missing. The activity LED on the ESP32 development

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

53

board used for the prototype could be used for this, but an RGB LED can provide a

wider range of feedback.

The WS2812B uses a custom control protocol, which has very strict timing

requirements in order to work properly (Burgess 2013). This project will be using one of

the many libraries developed by Adafruit, the Adafruit NeoPixel library (Adafruit 2019c).

The library was developed for use with the NeoPixel line of products from Adafruit,

which are based on the WS2812B (Burgess 2013).

4.4.2 Bosch BME280 temperature, humidity, and ambient air pressure sensor

The BME280 is a combined digital humidity, barometric pressure and temperature

sensor manufactured by Bosch. It can be used in a wide range of operating conditions,

and the internal temperature sensor provides compensation for the humidity and

pressure measurements. (Bosch 2018)

The sensor works with a range of supply and logic voltages (up to 3.6 volts). It has a

very low current consumption (under 4 µA when measuring humidity, pressure and

temperature at 1 Hz). The sensor package is also very small, measuring at just

2.5x2.5x0.93 millimeters, although an easy to solder module will naturally be larger.

(Bosch 2018)

Use in the project

The barometric pressure sensor won't really be used in this project, but the accurate

humidity and temperature measurements will be desirable. Bosch also manufactures

other similar sensors, including the more advanced BME680, which also includes

Volatile Organic Compound (VOC) measurement (Bosch 2019), but the BME280 is

cheaper, more readily available, and accurate enough for the project's purposes.

Temperature and humidity will be important measurements for the project. A store-

bought, cheap indoor temperature and humidity sensor will be used to compare

readings. Holding both sensors close to a heat source can be used to test different

temperature ranges, and simply breathing on the sensors should be enough to

dramatically raise humidity levels for a short time.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

54

The sensor will be useful when comparing room air temperature and humidity between

different seasons, as well as measuring humidity in a room like a bathroom, where

humidity will rise dramatically in a short period of time. The barometric pressure

readings will also be recorded, although they don’t have a particular use case at this

point.

The sensor has a range of supply and logic voltages, both up to 3.6 volts (Bosch 2019).

Since the ESP32 works at 3.3 volts, this is the voltage that will be used with the sensor

as well.

For digital interfaces, the sensor supports I²C, and both 4-wire and 3-wire SPI (Bosch

2019). This project will be using I²C, since another sensor also uses it, and the higher

bandwidth of SPI isn’t necessary. This sensor also has a high-quality library available,

made by Adafruit (Adafruit 2019d).

4.4.3 AMS TSL2561 light intensity sensor

The TSL2561 is light intensity sensor manufactured by AMS, although the

manufacturer calls it a “light-to-digital converter”. The TSL2561 is designed particularly

for measuring the lighting conditions when using a display panel, so the display’s

brightness can be adjusted to increase battery life. Despite this, the sensor can also be

used for general light sensing applications. (AMS 2018)

Unlike something like a photoresistor, the TSL2561 is automatically calibrated, and

gives accurate readings in lumens. The TSL2561 has 2 separate sensors, an infrared

light sensor and an infrared+visible light sensor, so it can be used to measure both of

these light spectra independently. The sensor has a high dynamic range (1 million to

1), so it can be used in both a dark room or in bright sunlight, and it automatically

rejects 50/60 Hz lighting ripple, which can be caused by some electric lights. (AMS

2018)

The sensor package measures only 2.6x3.8 millimeters, and consumes only 0.75 mW

when active (and less in sleep mode). The sensor supports a range of supply and logic

voltages (up to 3.6 volts), and has an I²C interface. (AMS 2018)

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

55

Use in the project

The project will use the sensor’s I²C interface, and will be used with a 3.3 volt supply

voltage, and the same logic voltage. Adafruit has a library for the sensor (Adafruit

2019e). In order to accurately measure light intensity, the sensor should have a direct

line-of-sight to the outside world, which should be taken into account when designing a

case. The first few prototypes won’t have a case at all, so this won’t be an issue during

the thesis.

Light sensing can be used as a roundabout way of sensing human presence in a room,

since the room lights will generally be on when a room is occupied. This isn’t an

accurate method, since the same light intensity may be caused by natural light, and the

room lights being on isn’t necessarily an indicator of room occupancy. However, light

intensity coupled with room temperature, humidity, and carbon dioxide increases could

be used to at least estimate occupancy, while crossing less privacy borders, like when

using computer vision to measure occupancy.

Another interesting use case is to sense natural light across seasons, and during the

course of a day, if the approximate layout of the rooms and the position of windows is

known. At least theoretically, it should be possible to measure how the easternmost

rooms see more natural light in the morning, the southernmost rooms during the day,

and the westernmost rooms in the evening. Couple this with a nice visualization, and it

might be quite eye-catching.

4.4.4 Winsen MQ-135 air quality sensor

The MQ-135 is an “air quality gas sensor” manufactured by Zhengzhou Winsen

Electronics Co., Ltd. The sensor works by measuring the conductivity of its tin-oxide

element, which has a higher resistance in clean air. The sensor has a high sensitivity to

ammonia gas, sulfide, benzene series steam, and can also monitor smoke and other

toxic gases. (Winsen 2015)

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

56

Use in the project

The sensor is sold as an air quality sensor, but since it mostly measures toxic gases

which are only common in some industrial/manufacturing applications, it may not be a

good fit for this project. Nevertheless, the sensor is cheap, and may produce interesting

results, so it was included in the lineup of sensors.

The sensor requires a supply voltage of 5 volts, because it has an internal heating

element, in order to provide a steady temperature to provide accurate measurements.

The sensor does not have a digital interface, and measurements are read by

measuring an analog output voltage, which is nominally between 2 and 4 volts.

(Winsen 2015)

4.4.5 Winsen MH-Z19B carbon dioxide sensor

Another sensor produced by Winsen, the MH-Z19B is a carbon dioxide (CO) sensor.₂

The sensor uses the NDIR (non-dispersive infrared) principle to measure CO₂

concentration. The sensor has an internal heating element to provide the steady

temperature required for accurate measurements. (Winsen 2016)

NDIR sensors

Normal CO concentrations in air are measured in parts per million (ppm), so a very₂

high-accuracy detection method is required (Edaphic Scientific 2019). One of these

methods is called NDIR, short for non-dispersive infrared (Edaphic Scientific 2019),

and it is used in sensors to detect various gases (Palidwar 2014).

An NDIR sensor shines an infrared light through a gas chamber, to an infrared

detector. Right before the detector, there is a light spectrum filter, which only lets a

specific wavelength of light through to the detector. (Palidwar 2014)

All elements and compounds absorb light at numerous wavelengths. Depending on the

wavelength selected for the light filter, the detector will only detect a specific

wavelength of light. If the wavelength is absorbed by a specific compound, and is not

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

57

absorbed very much by other compounds, the concentration of the compound can be

accurately measured up to a high accuracy. (Edaphic Scientific 2019)

For CO , the wavelength that’s commonly used is 4.26 μm (Palidwar 2014). The₂

datasheet for the MH-Z19B doesn’t specify the wavelength it uses, but it is likely to be

this wavelength.

Use in the project

The sensor has 3 ways of reading measurements: measuring an analog output voltage,

measuring the duty-cycle of a PWM signal, or by using the sensor’s UART interface

(Winsen 2016). The UART interface provides the most features and the best accuracy

out of these (Winsen 2016), so that will be used in the project. According to the

manufacturer’s datasheet (Winsen 2016), the UART interface seems to use a custom

protocol, and while a few libraries exist, none of them appear to be particularly high-

quality, so this sensor may require more custom code than the other parts in the

project.

Despite the MH-Z19B being by far the most expensive sensor used in the project, a

CO sensor was one of the first ones that was selected. Since the project will primarily₂

be used indoors, CO concentration was considered one of the most important₂

measurements to make, since CO concentration is an important factor for indoor air₂

quality (Lazović et al. 2015; Borino 2016). CO concentration is also unlikely to₂

fluctuate if a room is not occupied, so it can be used along with light sensing to tell if a

room has people in it.

In order to test the sensor, breathing on it should be enough to temporarily raise CO₂

levels. A mixture of vinegar and baking soda can also be used to make CO₂

(Helmenstine 2019), and is a common science experiment for kids, which can be used

to “magically” extinguish a candle (Craig 2018).

The absolute accuracy of the sensor will be very difficult to determine, but the CO₂

concentration in outdoor air should be fairly stable. With default settings, the MH-Z19B

performs a zero-point calibration to 400 ppm CO concentration every 24 hours₂

(Winsen 2016).

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

58

5 DESIGN AND IMPLEMENTATION

In Chapter 4, the hardware and software to be used for the system were chosen.

Based on those initial design decisions, this chapter will cover the internal design and

implementation of the system. Later, in Chapter 6, the data gathered by the completed

system will be inspected.

The basic idea of how the system will work has not changed since the beginning of the

project: the IoT device reads sensor data, and sends it to a server app. A client

application can then read and visualize the data from the server. The server app and

the client app can do all of the heavy operations, like storing the data, hosting the client

application for the users, and so on.

The IoT device will do the bare minimum it needs to do, which is essentially reading

sensor data. Since it is an embedded device, and doing something like hosting the

client application, or storing all of the gathered data would degrade performance or

increase costs.

Taio, the name chosen for the system

The system’s original name was “Domo”, from “majordomo”, meaning the head

steward of a household (Merriam-Webster dictionary). This was too widely used on the

Internet, so a new, unique name was needed. The name “Taio” was selected, from the

Finnish word “taikoa”, meaning “to do magic”.

In Finnish, the word “taio” is used as a third person command. For example, “taio

olohuoneen valot päälle” would essentially mean “conjure the living room lights off”. A

short name was wanted in case voice commands would be added in the future, and in

Finnish, this would make for natural feeling and short voice commands, as opposed to

something like “OK Google, turn the living room lights off”.

In English, “Taio” sounds like a name. Taio is pronounced almost the same in English

and in Finnish (in English, there’s an extra “u” sound at the end). So, the same name

would work globally as well. Taio is just a working title, but it’s helpful to have at least

an internal name for the project, instead of referring to it as “the IoT system” or “the IoT

project”.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

59

5.1 Hardware prototyping

Before writing the software can really be started, a hardware prototype must be built.

It’s impossible to write code for reading sensors, if the sensors are not attached to the

microcontroller.

5.1.1 Breadboard prototype

For very early development, a “breadboard” prototype is extremely useful. A

breadboard is a solderless prototyping board (Buckley 2018), which allows wiring up

components by just pushing them into the rows of sockets on the breadboard. This

way, the actual layout of the components doesn’t matter much, as long as the wiring is

correct. Picture 4 shows a breadboard prototype of the device.

Picture 4. Breadboard prototype of the device.

For some use cases however, the solderless connections and long wires can add

unwanted resistance, which can cause voltage drops and poor power delivery, which

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

60

can cause components to behave erratically. This caused some problems when

reading the analog voltages of the MQ-135 air quality sensor.

The breadboard also caused some power delivery problems for both the MQ-135 air

quality sensor and the MHZ19 carbon dioxide sensor, which both have an internal

heating element (Winsen 2015; Winsen 2016), and therefore draw much more power

than the other sensors. These problems were fixed by running shorter wires directly

from the power supply to the components, instead of using jump wires through the

breadboard’s power strips.

5.1.2 Perfboard prototype

A breadboard is useful for initial prototyping, when figuring out the wiring of the

components, but it can cause issues, like the inaccurate sensor readings and power

delivery issues mentioned earlier. Breadboard circuits also take up much more room

than a neatly organized circuit board, which is okay for one device, but becomes

difficult to maintain for multiple devices.

However, designing a custom PCB (printed circuit board) takes a lot of time, and so

does waiting for the PCBs to be manufactured (if you don’t acid etch them yourself). It

also may not make sense for prototyping, since a chosen sensor may still change, or

more parts may be added.

Perfboards, also called protoboards, and also sold under the brand name Veroboard

(Vero Technologies Ltd. 2019), are a perfect middle-ground. A perfboard (short for

perforated board) has pre-drilled holes for component leads and wires, and either

circular pads or rows of copper cladding for each row of holes. The kind with copper

rows is often called stripboard. (Bunker 2015)

A perfboard is a fast and inexpensive way to create a prototype circuit board, without

having to design and manufacture a custom PCB. Using a drill bit or sharp knife, it’s

easy to remove the copper cladding where needed, and you can make and solder a

prototype in a couple of hours.

For the later stage prototype, designing and ordering 30 pieces of a custom PCB is

much faster than cutting traces on 30 perfboards. But for now, for the first dozen

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

61

devices, perfboard is a great prototyping tool. Picture 5 shows a perfboard prototype of

the device.

Picture 5. Perfboard prototype of the device.

The ESP32 and all sensors are slotted onto female headers on the perfboard. This

makes it easy to swap faulty parts, and also to reuse the relatively expensive parts on

later iterations of the device.

On the left side of the above picture, there’s the ESP32. On the bottom right, the

WS2812B RGB LED module can be seen, soldered onto 90-degree male headers,

which slot into female headers on the PCB. The golden colored sensor above that is

the MH-Z19B CO sensor. Above that, there’s the MQ-135 air quality sensor. Not₂

visible in the picture, there’s a simple resistor voltage divider, in order to get the MQ-

135’s analog output voltage to fall into the ESP32’s ADC voltage range.

On the far right of the above picture, hanging off the side of the circuit board, is a male

header with the TSL2561 light sensor on top, and the BME280 on the same header.

This could be done, because they both use the same supply voltage of 3.3 volts, and

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

62

they both also use the I²C interface for communicating with the ESP32. The pin layout

of the modules happened to allow putting them on the same header, which made for a

neat and compact layout for the sensors. The light sensor is on top, since it would be

shadowed by the other module, hindering light sensing.

Later, 4 more copies of the perfboard prototype were made. Later still, a different clone

of the ESP32 development board was used, with a slightly different physical layout,

and 3 more perfboard devices were made, now totalling 8 devices. If more are needed,

a custom PCB should probably be designed, because cutting the traces on the

perfboard is a bit laborious.

Power supply issues

Initially, the cheapest possible USB power supplies were used, since they seemed to

meet the basic power requirements of the ESP32 and the sensors. However, it turned

out that the ESP32 and some of the sensors need a fair amount of power, quickly.

The cheap power supplies stated that they could provide 1 amp of current at 5 volts,

which is far above the current draw of the device. However, apparently these power

supplies couldn’t respond to fast changes in current draw.

The voltage provided by the power supply likely dropped too low when the ESP32 or

the sensors required more current. The power supply can probably provide the current

and voltage that the manufacturer promises, but the power supplies couldn’t handle the

fast fluctuations in current draw. This caused wireless connection issues, as well as

issues getting readings from the devices. Changing to a higher quality power supply

seemed to fix these issues.

5.2 Espressif IoT Development Framework (ESP-IDF)

After some closer design, the system will consist of 4 different codebases:

- TaioDeviceFirmware: the IoT device’s firmware. Its main job is to read the sensors,

and to send the data to the server. It will also host TaioDeviceClient.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

63

- TaioDeviceClient: a configuration app hosted by the firmware. This will be kept to the

bare minimum, essentially only for configuring the Wi-Fi network the device connects

to, and other necessary configuration.

- TaioServer: the server application, which will have an API for accepting data from the

devices, and for allowing TaioClient to retrieve the data. The server app will also host

TaioClient.

- TaioClient: the client application, which is used for all user interaction (after the initial

device config, which is in TaioDeviceClient). The main feature is the visualization of the

data retrieved from the server app.

In addition to the above, there will be some additional software on the server, for things

like managing HTTPS certificates, and so on. But these are similar for any web server,

and will not require any custom code, so they will not be discussed much.

5.3 TaioDeviceFirmware

The device’s firmware will be reading data from the sensors, which have been selected

for the system. As was described in Chapter 4, most of the sensors have existing

libraries available, so the firmware can focus on the things that are unique for this

system.

In addition to the sensor libraries, the firmware will be using many ESP32 libraries,

which were also mentioned in Chapter 4. These libraries will do most of the difficult

work when it comes to things like the Wi-Fi connection, checking HTTPS certificates,

encryption, and so on.

WLAN configuration

In addition to reading the sensors, the device will also need to connect to a WLAN. In

order to connect to the network, the device needs configuration for the network name

(SSID) and passphrase. For initial testing, just hardcoding the values is fine, but

eventually, the user will need some way to configure these, and since one of the values

is a secret passphrase, they also need to be stored securely.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

64

Thoughts about C++ on embedded devices

The firmware will be written in C++, although C++ on embedded devices is pretty close

to C, or “C with Classes” as C++ was originally named (Stroustrup 1997, 10). This is

because most embedded devices do not have enough memory or storage space to use

the C++ standard libraries, which are one of the biggest advantages of using C++.

Without the standard libraries, you revert back to things like “regular” C strings (arrays

of characters). I remember trying to learn C when I was first getting into programming

(over 15 years ago), and getting stuck when I had to concatenate 2 strings.

Concatenating strings is such a common thing, and really easy to do in most

languages, but in C it requires creating a new array for the new string, and doing array

copies. That’s the way all languages do it internally, but often it’s nice to not worry

about things like this, and focus on the “domain problem”, and let the compiler optimize

the low-level stuff. Luckily, among many other libraries, Arduino has its own string

library (Arduino 2019f), although it’s not nearly as nice as the C++ standard string.

Still, many useful features of C++, like classes, streams, and templates will be available

on embedded devices as well, as can be expected. For example, the project uses a

custom-made templated logging function, which employs streams to easily convert

sensor readings and other values into a printable format.

High-level description of the firmware’s functionality

The idea is to keep the device as “dumb” as possible, since an embedded device will

always have rather limited processing power. All of the heavy processing will be done

by TaioServer and TaioClient, so the device itself can just focus on reading the

sensors.

The device polls the sensors once every 10 seconds. The readings are stored in

runtime memory, and sent to the server once per minute. Originally, the sensors were

polled once every second, but this simply produced so much data, that the poll rate had

to be reduced. The data format, that the readings are stored in, was also made as

minimal as possible, so that even months of data wouldn’t take too much storage

space. The sensor readings are only sent once per minute, so that having many

devices won’t produce too much load on the server.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

65

In order to be able to connect to the server, the device needs to be able to connect to a

Wi-Fi access point, and the configuration for said AP will also need to be stored. Once

connected, the device will need to be able to make secure requests to the server, in

order to report sensor readings. The implementation of these will be explained along

with the libraries that were used.

5.3.1 The ESP32 libraries

ESP-IDF has a collection of classes/libraries which allow using its many features, like

the Wi-Fi radio, running a web server, using a file system on the flash memory, and so

on. The libraries are fairly high-level for embedded libraries, which makes them easy to

use. The libraries in this chapter are not an exhaustive list of all libraries that were

used, but introduces some of the central ESP32 libraries used in the project.

Non-volatile storage library (Preferences library)

The Preferences library is part of the Arduino core for the ESP32, and uses the

ESP32’s non-volatile storage (NVS) library (Espressif Systems 2019c). The ESP32’s

non-volatile storage can be used to store configuration, which will be stored across

reboots and power outages. The library creates a partition for this purpose on the

ESP32’s flash memory, and offers encryption as an optional feature. (Espressif

Systems 2019h)

The NVS library works best for storing small values; string values are limited to a

maximum of 4000 bytes, and the entire partition used by the NVS library is about 512

kilobytes in size (Espressif Systems 2019h). Larger values can use a filesystem library

like SPIFFS, which is introduced later.

In the project, the NVS library will be used to store configuration, like SSIDs and

passwords for access point configuration. The values are also kept stored when

flashing a new program onto the ESP32, which was only discovered when testing the

library. This is actually very useful, so that the SSID and password never need to be in

the program’s code, despite not losing them when flashing. This avoids having to

reconfigure the device after every flash.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

66

WiFi library

The WiFi library is used to control the ESP32’s Wi-Fi radio. The Wi-Fi radio can be

used in 1 of 3 different modes: STA (station), AP (soft access point), or AP-STA

(simultaneous station and soft access point). (Espressif Systems 2019i)

The “station” mode means that the device acts as client device for another AP. The AP

mode allows the ESP32 to act as a Wi-Fi access point, so it can accept connections

from other wireless devices. The third mode allows acting both as a station and an AP

at the same time. (Espressif Systems 2019i)

The term “soft” AP in the ESP-IDF documentation appears to refer to the fact that the

ESP32 often acts as a sort of “intermediate” AP, since it has to connect to some other

AP in order to offer any Internet connectivity to its own clients.

When running as an AP, the WiFi library is used to configure the SSID, password, and

other configuration of the AP that the ESP32 runs. When running as a station, the WiFi

library is used to set the similar configuration for the AP where the ESP32 connects to.

The library is also used to set the hostname of the ESP32, and various other

configuration relating to Wi-Fi connectivity, as well as scanning for available APs.

(Espressif Systems 2019i)

The Wi-Fi configuration (SSIDs, passwords, etc.) are stored using the non-volatile

storage library introduced earlier. The device’s user can set this configuration by

connecting to the device’s AP and using TaioDeviceClient, which will be introduced in a

later chapter.

WiFiClientSecure library

The WiFiClientSecure class implements support for secure connections using TLS.

The class inherits from WiFiClient, which implements the actual connections, which are

secured by WiFiClientSecure. (Espressif Systems 2019j)

The library allows a few different methods to establish a secure connection (Espressif

Systems 2019j), but the method this project will use is to use the root CA’s certificate.

The server will use a certificate issued by Let’s Encrypt, whose certificates are cross-

signed by IdenTrust, which allows them to be trusted by all major browsers (Let’s

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

67

Encrypt 2019d). This doesn’t really matter for the ESP32, since the root certificate will

have to be added on to the device anyway, but having the certificates be cross-signed

by a widely trusted CA allows most clients to automatically trust the server’s certificate.

WiFiClientSecure helps greatly with the rather complex TLS stuff, but the HTTP(S)

client itself is rather simple. The source code and examples from the Arduino core for

the ESP32 (Espressif Systems 2019j) show that the client opens a socket, and HTTP

requests are done as “raw” requests (printed line-by-line through the socket).

This is why Chapter 2 went into relatively high detail about how HTTP requests work at

a base level, because TaioDeviceFirmware does not use a high-level HTTP client

library, but instead has to manually build HTTP requests. Naturally, utility functions

were built for this purpose, so that there’s an extra level of abstraction to make

programming easier.

SPIFFS library

The Serial Peripheral Interface Flash File System (RandomNerdTutorials.com 2019), or

SPIFFS, is a filesystem for the flash memory on the ESP32. SPIFFS is a pretty simple

filesystem, and doesn’t have real directory support, for example. (Espressif Systems

2019k)

Nevertheless, being able to store files on the ESP32 is very useful. For example, it’s

much cleaner to use actual files rather than having very long strings in the code. One

common use case for SPIFFS is to store files, which a web server on the ESP32 can

host. This will be used to host TaioDeviceClient.

SPIFFS works by flashing a binary image onto a partition on the ESP32’s flash memory

(Espressif Systems 2019k). Espressif provides a Python script for doing this (Espressif

Systems 2019k), and a tool for the Arduino IDE also exists for creating the SPIFFS

image and flashing it (RandomNerdTutorials.com 2019).

SPIFFS can also be used to store configuration files (RandomNerdTutorials.com

2019), but the NVS system is better suited for this, since it stores values across device

flashes, whereas configuration stored in SPIFFS would be cleared if other files in the

filesystem are flashed on to the device.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

68

WebServer library

The WebServer library allows the device to act as an HTTP server. It can be used as a

file server, or to manually handle HTTP requests, in order to build something like a

REST API. (LastMinuteEngineers.com 2019)

The device will host the files for TaioDeviceClient. The web server will accept

connections from clients connected to the ESP32’s access point.

This is currently the least secure part of the system, since the WebServer library acts

as an HTTP server, and does not implement secure connections with TLS. Securing

the connections would also require a certificate to be stored on the device, which can

be problematic, as was discussed at the end of Chapter 3.

However, the web server will only be used to configure the device, and after

configuration, the web server should not be a security risk. At a later stage, the web

server may need to be re-implemented as an HTTPS server, or the configuration could

use some other form of encryption.

5.3.2 Other libraries

The other libraries used in the project were already discussed in Chapter 4, as part of

the hardware and software research for the project. This chapter will shortly discuss

how the libraries were used.

The Adafruit NeoPixel library (WS2812B RGB LED)

Adafruit sells a family of products called NeoPixel, which uses the WS2812B intelligent

RGB LED. The library works with any WS2812B LED, including modules used in this

project. (Burgess 2013)

The WS2812B’s DIN (data in) pin was connected to the GPIO15 pin of the ESP32.

When the device is operating normally, the RGB LED will “breath”, by choosing a

random color and slowly transitioning to it, and then repeating the same process.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

69

If there’s an issue, like a lost wireless connection, the RGB LED will be off, and the

activity LED will blink in a pattern depending on the issue. Slow blinking was used for a

lost connection, and fast blinking was used for other issues (like a sensor issue).

The Adafruit BME280 library

Readings from the Bosch BME280 sensor were read using Adafruit’s BME280 library.

The sensor and library support both I²C and SPI (Bosch 2018; Adafruit 2019d), but this

project will use I²C. This was done because I²C uses fewer wires, another sensor also

uses I²C, and the higher bandwidth of SPI was not necessary for the sensor. SPI may

be used later for other sensors, or for something like an SD card or LCD display.

Initially, the sensor seemed to report very high temperatures, which was thought to be

a software issue. It turned out that this was due to the sensor being close to the MH-

Z19B and MQ-135 sensors, which both have an internal heating element (Winsen

2015; Winsen 2016). So, the sensor was reporting correct temperature values, but was

too close to heat sources on the device. This was solved by using an approximately 15

cm long cable to place the BME280 further away from the heat sources.

The Adafruit TSL2561 library

Another Adafruit library was used to get readings from the TSL2561 sensor. Adafruit’s

modules seem to use a different I²C address, because the default address used in the

library was not connecting to the sensor. The library allowed setting the address to the

one that was used by the module used in the project, after which the sensor started

working.

The sensor was tested in different lighting conditions. This was initially done by simply

covering the sensor from light, and by shining a bright light onto it. The accuracy of the

actual lumen readings from the sensor were not tested, due to lack of access to a

suitable reference sensor. However, relative readings are enough for the project, so

accurate absolute lumen readings were not needed.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

70

Winsen MQ-135 sensor

As was discussed in Chapter 4, the MQ-135 works by outputting an analog voltage, so

it doesn’t require the use of a library. The output voltage range of the MQ-135 is 2-4

volts (Winsen 2015). A resistor voltage divider was used to divide the the sensor’s

output voltage into half, so that the maximum output voltage became 2 volts, which is

under the maximum of the ADC on the ESP32 (Espressif 2019a).

Winsen MH-Z19B sensor

A high-quality library, with a suitable open-source license, was not found for the MH-

Z19B. Because of this, a custom class was written to communicate with the MH-Z19B

sensor. Getting readings from this sensor was a bit arduous, when compared to the

other sensors, which worked almost immediately, thanks to the libraries that were

available.

Writing the custom interfacing code took some time, but was relatively simple, due to

the protocol being well explained in the datasheet (Winsen 2016). However, the

datasheet had some typographical errors, and low-quality English translations (for

example, using “pls” instead of “please”), making it a bit difficult to read (Winsen 2016).

Like was planned in Chapter 4, the sensor was tested by breathing on it, and even by

making a vinegar and baking soda mixture to create CO . This seemed to work well;₂

the CO from the vinegar and baking soda mixture easily got the sensor to report 5000₂

ppm, which is the maximum according to the datasheet (Winsen 2016).

5.4 TaioDeviceClient

TaioDeviceClient is a simple web app, written in AngularDart. AngularDart works with

HTML and CSS, and compiles the Dart code into JavaScript (Google 2019a). This

allows hosting it similar to a regular website, meaning that it can hosted on the ESP32,

without running a server-side language on the device.

As was explained earlier in this chapter, the ESP32’s web server hosts

TaioDeviceClient, and it can be accessed by connecting to the ESP32’s access point.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

71

The access point is secured with WPA2 and uses a password that’s stored in the

ESP32’s non-volatile memory. The access point’s default password is set by the code

of TaioDeviceFirmware, if a password is not found in memory. The password can be

changed inside TaioDeviceClient, since the default password is the same on all of the

devices.

TaioDeviceClient also has a basic username and password login, which is required

before allowing the user to change or see any configuration values. The login

username and password can also be changed once logged in.

These measures provide passable security for the device, when it is not being

configured (i.e. it’s not possible to see or change the configuration values without

having the correct credentials). However, if the device is being configured by an

authorized party, the traffic is potentially visible to a man-in-the-middle attack, since the

device runs an unsecure HTTP web server. This will need to be improved in the future,

but works well enough for the time being.

In addition to the other configuration values mentioned earlier, a client token for

sending data to TaioServer can also be set with TaioDeviceClient. In fact, setting the

token is necessary before the device will be able to send data to the server. In a future

version, this could be automated by connecting the device to the user’s account on the

server. This way, the user would be able to manage their devices from within

TaioClient, instead of having to individually connect to each device’s AP to configure it.

The actual application is rather simple. It starts with a login form, after which it presents

a form for changing configuration values. The existing passwords are not displayed in

the app, and are never sent across the network, but they can be changed by an

authenticated user, which means that they could be eavesdropped when setting the

passwords.

5.5 TaioServer

TaioServer, the server application, is responsible for receiving sensor readings from

the devices (from TaioDeviceFirmware) and storing them on the server. In addition to

receiving and storing the sensor data from the devices, the server app will also host

TaioClient, and provide it with the sensor data it needs for visualization.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

72

The server app was written in Dart, like TaioDeviceClient and TaioClient, but unlike

those apps, the server app is not compiled into JavaScript. Instead, Dart server apps

run on the Dart VM (virtual machine) (Google 2019b).

The devices authenticate with a client token, which the user sets by connecting to the

device’s AP and logging into TaioDeviceClient. Without the token, or with an invalid

token, the server app will ignore the data that was sent to the server.

The tokens are JWT strings, which were introduced in Chapter 2. Since the tokens use

JWT, the token itself can contain the permissions it has as JSON data, so the server

app doesn’t need to store a separate list of tokens and the permissions attached to

them.

The JWT is signed with a private key only known by the server app, so the token’s

validity can be checked, in order to ensure that it has not been tampered with. In

addition to checking the JWT signature, the server app has a list of all valid tokens.

This list is used so that a token can be invalidated without having to change the private

key, which would invalidate all of the tokens at once.

In the current version, the client tokens are manually generated, and added into the

server app and into the device with TaioDeviceClient. A future version of the system

would make this more automated by associating the devices and their tokens with the

user’s account, as was explained earlier.

Server hardware

TaioServer was run on a Raspberry Pi 2. This was chosen simply because there was a

spare one available. The server software could have also been run on a cloud service

like Amazon AWS or Microsoft Azure, and ESP-IDF even has libraries and examples

available for these platforms (Espressif Systems 2019l).

A number of different cloud servers were tested, but all of the free trial instances were

quite poor in performance. Where the backend runs has very little importance at this

point, so a readily available solution (the Raspberry Pi 2) was chosen, instead of

setting up and paying for a cloud server. After there are more than about a dozen or so

devices connecting to it, TaioServer may be moved to a cloud service, so that the

home network isn’t taxed too heavily.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

73

Nginx HTTPS proxy

The server app runs an HTTP server (not encrypted), but encryption can be added

separately, since it works on a separate layer of the OSI model, as was explained in

Chapter 2. This can be done with a proxy server, which listens for connections from

the outside network (the Internet) and forwards them to the server application (Nginx

Inc. 2019). Using a proxy server, we don’t have to rely on the server app to handle

encryption, so an industry-standard application like Apache or Nginx can be used

instead. This allows for more configuration and arguably better security.

Let’s Encrypt and Certbot

In order to have HTTPS connections, we need an SSL/TLS certificate, as was

explained in Chapter 3. In the same chapter, it was explained that the certificates are

issued by a certificate authority (CA), which is trusted by the clients connecting to the

server.

One way to obtain a certificate is by creating a “self-signed” certificate, by creating your

own internal CA. This is problematic, because an internal CA will not be trusted by a

client, unless you manually add it to the list of trusted authorities. (Nginx Inc. 2019)

Another common way is to purchase a certificate from a trusted certificate authority

(Nginx Inc. 2019), but these can be expensive. Fortunately, there are certificate

authorities, who offer free certificates. Among these is Let’s Encrypt, which is free and

automated, and is provided by the Internet Security Research Group (ISRG). (Let’s

Encrypt 2019a)

Let’s Encrypt recommends using Certbot, which uses the ACME protocol to automate

certificate issuance (Let’s Encrypt 2019b). Let’s Encrypt issues certificates with a 90-

day lifetime (Let’s Encrypt 2019c), and Certbot automatically renews certificates every

60 days (EFF 2019), so the certificate is always kept valid and up-to-date.

The IoT device only stores the root certificate’s signature, which it can use to validate

our server’s certificate. This way, the 90-day lifetime of the certificate doesn’t cause the

problems mentioned at the end of Chapter 3, without having to use a possibly insecure

self-signed certificate, since the root certificate never expires.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

74

5.6 TaioClient

TaioClient is the part of the system that the users will be interacting with the most.

TaioClient is responsible for visualizing the sensor data, which it retrieves from the

server app. Like TaioDeviceClient, this app is also written in AngularDart, which

compiles Dart code into JavaScript (Google 2019a).

The current version of TaioClient does not even feature user login, only a very bare-

bones visualization. The user interface and overall user experience will also require

some more work before it can be used by actual end users. Likewise, configuring the

devices must be made easier in a future version.

A future version of TaioClient will also be used for device configuration. This will allow

the user to manage all of their devices in one place, instead of having to connect to

each device individually. Naturally, Wi-Fi configuration will remain in TaioDeviceClient,

since the device cannot fetch configuration from the server app without being able to

connect to the Internet first.

Data visualization

TaioClient’s currently only feature is data visualization, which is also rather simple. The

app is written in AngularDart, and while Dart is growing in popularity, it is still relatively

little used when compared to JavaScript (Ramel 2019). However, Dart apps are able to

use JavaScript libraries (Google 2019c).

After researching a number of different JavaScript data visualization libraries, a library

called Chart.js was chosen for the project. Chart.js advertises itself as a simple yet

flexible JavaScript charting library. One of the main reasons it was chosen was

because it has beautiful animations and allows a high level of interaction with the

charts. It uses modern HTML5 technologies, including HTML5 canvas for rendering.

(Chart.js 2019a)

Among the top contenders was another library called D3.js, as well as a library called

C3.js, which is based on D3.js (Tanaka 2019). C3.js and D3.js seemed more flexible

and customizable, but Chart.js seemed to be more beginner-friendly, with easy to

follow examples in their documentation (Chart.js 2019b).

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

75

And since nothing forces the app to use just one of these libraries, a future version may

even use different libraries for different visualizations. The charts in the next chapter

were visualized using Chart.js.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

76

6 ANALYZING THE GATHERED DATA

Once the device and software were both fully functional, data could finally be gathered.

I wanted to make this it’s own chapter after the implementation, but I ran a bit short on

time for gathering and analyzing the data for the thesis, due to this project not being a

main focus in the company.

It would have been ideal to gather good quality data for 1-2 months, so changes in

weather could have been observed in indoor temperature and air quality. Data was

gathered for multiple months, but quality could be better. For now, the gathered data is

enough for a proof of concept, but it cannot be seriously analyzed.

The devices will be kept running indefinitely in the author’s home and office, and seeing

even seasonal changes will be interesting. Some outdoor sensors would have also

been interesting to get readings from, but there wasn’t time to make a weatherproof

case.

A weatherproof case would have needed ventilation holes for air circulation, and an

external temperature sensor, since some of the sensors have heating elements, so

temperature readings would have been wildly incorrect inside of the case. The light

sensor would have also needed a window on the case, which should be kept clear of

debris and snow.

There’s much more data to comb through, and this was only a small part of it. This

chapter presents some interesting findings from the data, although it is difficult to do

any analysis that goes more than skin-deep.

Missing data

Some of the devices have been running for as long as 7 months, some for a much

shorter time. Most of the devices have not had CO measurements, because it was the₂

most expensive out of all of the sensors, and wasn’t purchased for every device. The

CO sensors also had issues communicating with the microcontroller. The issues were₂

solved with a device reboot, but were left unnoticed, sometimes months at a time,

because the data gathering wasn’t closely monitored, and there was no automated

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

77

alert system. Because of this, a lot of the CO measurements are missing, ₂ even on the

devices where CO sensors were connected.₂

For some of the devices, the data has large gaps, because some devices had

connection issues, as described earlier. Likewise, the server was down from time to

time (quite rarely), and couldn’t receive measurements from the devices.

The devices can’t store more than about 150 datapoints (about 25 minutes of

measurements), so some of the data was simply lost, since the devices couldn’t store

the data if it wasn’t sent to the server in a timely manner. A later version of the device

could use an SD card or flash memory chip to store more data, to handle connection

issues and server outages.

The main reason why external storage was not done for the prototype device in this

thesis was the complexity of implementing such a system, since using external data

storage would have required encryption, in order to maintain the wanted security level

of the system. Using external storage would have also increased costs, and would

have required new parts and a new circuit board layout, which would have extended

the hardware development time, and pushed back the beginning of the data gathering.

Interesting and uninteresting data

The Winsen MQ-135 air quality sensor measurements were largely useless. Since the

sensor is designed to measure specific toxic gases as listed in the datasheet (Winsen

2015), it could not really be used to measure regular indoor air quality, as the readings

were too stable to do any interesting analysis. This was suspected in the beginning of

the project, but as was stated in Chapter 4, the sensor was cheap, so it was included

in the prototype in case it would have produced any interesting results.

Similarly, the barometric air pressure readings from the Bosch BME280 sensor were

simply too stable for indoor air to produce any interesting results. The issues for these

measurements were known since the beginning, but should be restated here, to

explain why they are not presented.

Therefore, the only sensor readings that are interesting enough to be analyzed for the

entire time the devices have been running, are temperature, humidity, and light

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

78

intensity. CO measurements, where they were available, also gave some results that₂

are interesting enough to analyze.

Even the usefulness of the light intensity measurements could be better. Because the

device didn’t have a case, the light sensor wasn’t pointed in any regular manner across

different devices. This would have been better, since the sensor is fairly directional.

Because of this, light intensity measurements across different devices probably cannot

be directly compared, but relative measurements during different time periods for the

same device can still be analyzed.

Most of the sensor choices made for the prototype were for cost reasons, and some of

the sensors that were chosen proved to be inappropriate for typical home and office

environments, where conditions are fairly stable. This thesis deals with these proof of

concept measurements, but the particular sensors chosen for the prototype weren’t of

much importance, since the main purpose of the prototype was to develop the

framework of the IoT system itself. With the system complete, it is easy to switch

sensors and add features to the next version of the device.

Big data

Each device reads its sensors once every 10 seconds. During the time they have been

running, the devices have gathered millions of data points, despite the data from some

of the devices having large sections missing.

Each data point has at least temperature, humidity and light intensity measurements.

Each data point is between 54-64 bytes (depending on which measurements were

included). Despite a single data point being so small, due to 8 devices collecting

millions of data points over the course of months, there is a total of about 400

megabytes of data.

Having such a large amount of data has its own challenges. Since the measurements

were taken once every 10 seconds, trying to view just a week’s worth of data from one

device becomes pretty resource intensive. The data also appears to be very noisy,

since there are natural outlier measurements in the physical world. For example,

calculating averages, minimums, and maximums over the period of 1 hour was much

more practical and useful, than viewing the “raw” data. This was done for all of the data

presented in this chapter.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

79

Understanding humidity measurements

Air humidity is most often reported as relative humidity, which is a percentage from 0 to

100 %. 0 % relative humidity means that the air that has no water vapour at all, which

is mostly impossible in regular conditions. 100 % relative humidity means that the air

has reached its saturation point, and water can no longer evaporate, causing any extra

water to remain as liquid. (Chandler 2001)

Relative humidity is a useful measurement, since it is impossible to have a relative

humidity below 0 % or above 100 %. According to Vaisala (2013), it is in fact

impossible to even reach 100 % in an unpressurized system. High in the atmosphere,

high humidity creates clouds and the possibility of rain. Humans are also sensitive to

relative humidity, because the higher the relative humidity, the less sweat can

evaporate from your skin into the air. This is why higher humidity will feel hotter and

more uncomfortable, because your body can’t keep cool as efficiently. (Chandler 2001)

However, relative humidity can also be problematic, since it depends on the

temperature of the gas, whose humidity is being measured. The warmer the air is, the

more water can evaporate. This means that the same absolute amount of water vapour

in air will translate to a lower relative humidity as temperature rises, since the

saturation point rises. (Vaisala 2013)

This can be confusing, because relative humidity falls as temperature rises, despite the

actual amount of water vapour in the air staying the same. In reality, the only thing

changing is the air temperature, which causes the maximum amount of water vapour

that the air can hold to also increase.

This is why morning dew exists; the colder air during the night causes water vapour to

condense from the air, which mostly evaporates back into the warmer air during the

day. This is also why indoor air heating “dries” the air; the absolute amount of water

vapour doesn’t necessarily change, but relative humidity becomes lower due to the

higher temperature. The cold air during the winter can hold less water vapour, so winter

air is drier than summer air, but indoor heating doesn’t really dry the air (unless the

heating system actually replaces indoor air with drier outdoor air).

Absolute humidity can be calculated from relative humidity and temperature. The

formulas are a bit too complex to properly explain given the scope of this thesis,

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

80

because they contain a lot of constants, like the “critical” temperature and pressure of

the gas in question (air, in this case). The formulas that were used for the calculation

were from a white paper by Vaisala, a Finnish sensor manufacturer. The unit for

absolute humidity is usually g/m³, since absolute humidity is measured as the amount

of water vapour (in grams) in 1 cubic metre of air. (Vaisala 2013)

6.1 Data from a home environment

The data in this subchapter are from some selected time periods from the author’s

home. The household has 2 adults, and 2 medium sized dogs (who also contribute to

the readings). The house was built in the 1940s, and is in a small wooded area, which

would have been interesting for an outdoor sensor, since there’s likely very little air

pollution from motor vehicles.

There were a total of 4 devices, but 2 of these were of particular interest, at least to test

the sensors:

- Monitoring the CO level and temperature in the office, because these factors are₂

believed to affect productivity. Too much CO or a high temperature can make you feel₂

uncomfortable or groggy.

- Monitoring moisture levels in the bathroom, mostly as a proof of concept for the

moisture sensor.

Monitoring the CO level and temperature was also planned for the bedroom, but ₂ this

device was right at the edge of the Wi-Fi network, causing it to work most of the time,

but sometimes losing the connection altogether.

Initially, this was thought to be another power supply problem, which was also seen

with the other devices, and was thought to be fixed, since the device began to

successfully send data to the server. The gaps in the data caused by the intermittent

connection losses was only noticed when data visualization was started, and the gaps

in the data made analysis too difficult. Still, this device provided interesting info for the

project, since it determined that a future version should include external storage to

cover intermittent connection losses.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

81

The fourth and final device was in the living room, which is a larger room, causing the

readings to be much more stable than the other rooms, and weren’t as interesting to

analyze.

Appendix 1 is a nice illustration of how relative humidity depends on temperature. The

readings are from the author’s home office from the first 4 days of August 2019. The

windows were kept open during the night to let cool outdoor air in, and were closed

during the day to keep cool indoor air in. This caused large fluctuations in temperature

(almost 10 degrees Celsius). The “raw” values were calculated into the hourly

averages, minimums, and maximums visible in the figure.

Appendix 1 shows how temperature falls during the nights, and rises during the days.

The relative humidity moves in the opposite direction, being highest during the nights

and lowest during the days. The purple lines at the bottom of the figure shows the

absolute humidity, which remains very stable, despite the large changes in temperature

and relative humidity.

Appendix 2 shows the same time period from the bathroom. Here, the absolute

humidity has clear spikes as well, since the actual amount of water vapour in the air

rises during showers. Relative humidity is also much higher. The temperature also

rises a small amount during showers. Appendix 3 shows all of August from the same

bathroom. There’s a conspicuous flat part in the readings, which is caused by the

house being unoccupied during that week.

Appendix 4 has a similar flat section. These readings are from the home office. The

difference is less noticeable, since there are no sharp humidity and temperature spikes,

which are caused by taking showers in Appendix 3. The room simply being

unoccupied shows a clear change in the temperature and humidity fluctuations. In

Appendix 4, it seems to take a longer time for the fluctuations to return back to their

previous levels.

Appendix 5 and Appendix 6 show the same time period as Appendix 3 and

Appendix 4, from the home office. Appendix 5 shows CO readings, where too, the₂

week that the house was unoccupied is clearly visible. The base CO levels are very₂

high, because the CO sensors were not properly calibrated. Calibration should have₂

been done before data collection, but the base CO levels can be assumed to be₂

around 400 ppm according the datasheet, and this is the default calibration level for the

sensor (Winsen 2016).

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

82

Appendix 6 shows light readings, but somewhat surprisingly, this figure doesn’t show

any clear difference between the house being occupied or unoccupied. It could be that

there was enough natural light, that the additional light from electric lights isn’t very

visible in the chart. Appendix 7 is similar to Appendix 6, but only shows the minimum

amount of light recorded every hour. This again, shows a clear difference during the

week that the house was unoccupied.

Light readings from the living room during the same time period do not show a similar

clear difference. This is most likely because the living room has more and larger

windows, which offer more natural light. The differences would likely be much more

visible during the winter, but unfortunately the house wasn’t empty for a week during

the winter to get comparable readings.

As one last example from a home environment is Appendix 8, which shows the same

time period as the previous figures, but from the living room. It is the largest room in the

house, so occupancy causes much smaller temperature and humidity fluctuations. Still,

the week that the house was unoccupied is visible in the figure, although much less

clearly as for the other rooms.

6.2 Data from an office environment

This data was gathered from offices at the Turku Game Hub (Hive). Devices were

placed into 3 rooms:

- Indium Technology’s office: a small, often over-occupied office, which can cause air

quality issues. However, the door is mostly kept open, so there’s relatively good air

circulation.

- Mitale’s office: a bigger office, but has more people. By average office standards,

may still be slightly over-occupied.

- Conference room: a small conference room. Unlike an office, a conference room is

mostly empty, and the air conditioning is usually set higher than in a regular office,

since when a conference room is occupied, it has more people than an office.

Offices are a good control group, since they’re usually empty during the weekends.

This allows for “base readings” without any people, so it is much easier to see how

much the readings change based on occupancy.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

83

Appendix 9 shows a week of light intensity and CO measurements from the₂

conference room. It can clearly be seen that every time the conference room is used,

the light intensity and CO readings display a sharp rise. Near the left side of the figure,₂

a small gap can be seen. This is due to missing data, which was likely caused by a lost

Internet connection.

The data starts on a Monday and ends on a Sunday, and the conference room doesn’t

appear to have been used during the weekend. Unfortunately, actual occupancy was

not logged during the same time period. It would have been nice to know if the room’s

occupancy was higher during Wednesday, which shows a clearly higher CO level than₂

the other days. However, without knowing the occupancy, it’s pure speculation to say if

this is the case, or if it’s due to poor sensor accuracy, or something else.

Appendix 10 shows the same week’s light intensity and CO levels in a small office.₂

Here too, light and CO measurements rise in tandem, and the weekend shows base₂

level readings. Interestingly, Friday seems to have been a slightly shorter work day.

The base levels of CO are clearly higher than in the conference room, but this is likely₂

due to the CO sensors not being calibrated. Despite this, there are clearly longer₂

periods of higher CO levels than in the conference room.₂

This office has south-facing windows, and seems to get a fair amount of natural light.

This is visible in the chart, because the amount of light increases during the day, as the

sun shines in more through the window. Eventually, there’s a sharp drop in the amount

of light, because the office’s window is near a wall which blocks sunlight later in the

day. If this is the correct explanation for the values seen here, it seems strange that the

weekend shows such low values, but the window blinds may have been left closed for

the weekend, and the electric lights don’t provide a base light level for natural light to

increase.

Appendix 11 shows the same week and same office, but shows temperature and

humidity readings. The office has air conditioning, which clearly causes much lower

humidity levels than in the home environment (without air conditioning) in the earlier

figures. Despite air conditioning, temperatures rise by a couple of degrees when the

room is occupied. During the weekend, the air conditioning appears to be turned off,

because humidity levels rise at the end of the chart.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

84

The larger office shows very similar measurements, but one thing of interest is that this

office has north-facing windows, and therefore much less natural light. This shows as a

clear difference in light levels in Appendix 12, although direct value comparisons

shouldn’t be made, since the light sensors weren’t strategically placed or aimed.

The difference in CO levels is interesting, when comparing Figure 14 and Figure 12.₂

Although the absolute CO level readings can’t be trusted, because the sensors weren’t₂

calibrated, it’s worth noting that the difference between the base and peak CO levels is₂

higher in the larger office than in the smaller office. This could be because the smaller

office’s door is usually kept open throughout the day, giving better air circulation in the

smaller office, even though the larger office has more air volume per occupant.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

85

7 CONCLUSION

Overall, I would consider the prototype developed in this thesis to be a success. This

system has been a personal “passion project”, and was often shadowed by customer

projects, which pay the bills in our company. This system may eventually become a

commercial product, but for the time being, our company has had to focus on where

the income comes from currently.

As was described in the introduction, this thesis only covers the initial prototype of the

IoT system, and gathering and analyzing sensor data was only a proof of concept for

the system. The ultimate goal is to develop a system which can be used to develop

various different IoT product ideas, and this sensor system was never intended to be

the final product, only a simple example of what such a system can be used for.

Therefore, most of the issues that were faced, like some of the sensors being bad

choices, don’t really matter, since this is only the first prototype. Issues were expected,

and will be fixed in future versions of the system.

7.1 Issues faced during the project

As can be expected for a prototype, not everything went as planned. This being a side

project instead of my (or our company’s) main focus meant that this project was often

not worked on for long periods of time. The project took much longer than was

estimated, despite the scope of the prototype staying roughly the same as it originally

was (and even reducing in scope a little).

There were various other issues as well, like wireless connection issues and power

delivery problems. I started out using the cheapest possible power sources, but had to

upgrade to better ones, because the wireless radio requires a steady supply of power,

in order to maintain a reliable connection. Even after upgrading the power supply, there

were still some connection issues on some the devices, but these were caused by my

home’s wireless network, which didn’t reach the whole house, causing connection

problems on my smartphone as well.

The spotty connections caused some large gaps in the gathered data for a few of the

devices, since the device has limited memory, and cannot store more than a few hours

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

86

of data. In a future version, this could be solved by adding some extra flash memory

onto the device, or maybe even an SD card, which are relatively simple to interface

with a microcontroller. In order to maintain the wanted security level, this would require

encryption of the external storage.

7.2 Choice of sensors

When it comes to the choice of sensors, most were a great fit for the project. The only

real exception was the Winsen MQ-135, which, despite being a decent and

inexpensive sensor, was a bad choice for this project, since it is better suited for

specific industrial/manufacturing applications. This was known since the beginning, but

the sensor was included with a “why not” mindframe.

A future version of the project may use the BME680, which measures VOC (volatile

organic compound) concentrations in air (Bosch 2019), instead of the toxic gases

detected by the MQ-135. The BME680 would also replace the BME280, and may give

more accurate temperature readings. However, the BME680 is quite a bit more

expensive and somewhat less common than the BME280, so it would raise the cost of

the device.

7.3 Future plans

Before user testing, the device will still need over-the-air updates, since “manually”

updating the devices would be too much additional work. This was initially planned to

be done during the thesis, but was dropped to save time.

Also, the software will still need additional development, especially when it comes to

the usability of the web application. The current app was used to make the diagrams

used in this thesis, but is lacking many features, and is not very user-friendly.

The system has a lot of potential, and the next features that will be developed are

going to relate to controlling things (lights, power outlets, etc.) in addition to just

measuring the environment. This will naturally require new hardware, like relays and

opto-isolators to control mains electricity. It will also require rather large changes on the

software side of the system, like implementing WebSocket or similar real-time

connections, so that the server app can send commands to the device.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

87

These “control” use cases are actually the original motivation behind the project. I was

not very interested in the actual measurements from the device, but more about

developing a platform for IoT development, which was definitely achieved. This is why

Chapter 6 is not very long, because the focus of the project was about the

development of the platform (Chapter 4 and Chapter 5), and the actual measurement

results were rather inconsequential.

Depending on how far the project will be developed, it may also require PCB design

and manufacturing, designing and manufacturing enclosures for the device, getting

electrical and safety certifications, and many other things. I’ve never done any of these,

but I’m looking forward to learning all of it. The project taught me a lot, and will continue

to do so in the future.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

88

REFERENCES

Adafruit 2019a. About Us. Referenced 18.11.2019 https://www.adafruit.com/about

Adafruit 2019b. Frequently Asked Questions. Referenced 18.11.2019
https://www.adafruit.com/faq

Adafruit 2019c. Adafruit NeoPixel Library. Referenced 03.05.2019
https://github.com/adafruit/Adafruit_NeoPixel

Adafruit 2019d. Adafruit BME280 Library. Referenced 03.05.2019
https://github.com/adafruit/Adafruit_BME280_Library

Adafruit 2019e. Adafruit TSL2561 Library. Referenced 03.05.2019
https://github.com/adafruit/TSL2561-Arduino-Library

AMS 2018. TSL2561 datasheet. Version 1-01. Referenced 03.05.2019
https://ams.com/documents/20143/36005/TSL2561_DS000110_3-00.pdf/18a41097-2035-4333-
c70e-bfa544c0a98b

Arduino 2019a. What is Arduino? Referenced 03.05.2019
https://www.arduino.cc/en/guide/introduction

Arduino 2019b. Trademarks and Copyright Notice. Referenced 03.05.2019
https://www.arduino.cc/en/Main/CopyrightNotice

Arduino 2019c. Frequently Asked Questions - Can I program the Arduino in C? Referenced
05.10.2019 https://www.arduino.cc/en/main/FAQ#toc13

Arduino 2019d. Getting Started with Arduino Web Editor on Various Platforms. Referenced
05.10.2019 https://create.arduino.cc/projecthub/Arduino_Genuino/getting-started-with-arduino-
web-editor-on-various-platforms-4b3e4a

Arduino 2019e. Frequently Asked Questions - Can I use a different IDE to program the Arduino
board? Referenced 05.10.2019 https://www.arduino.cc/en/main/FAQ#toc14

Arduino 2019f. String library. Refererenced 18.11.2019
https://www.arduino.cc/en/Reference/StringLibrary

Arduino 2019g. Compare board specs. Referenced 13.12.2019
https://www.arduino.cc/en/products/compare

Arduino 2019h. Arduino Yún. Referenced 13.12.2019 https://store.arduino.cc/arduino-yun

Arduino 2019i. Arduino MKR1000. Referenced 13.12.2019 https://store.arduino.cc/arduino-
mkr1000-wifi

Atwood, J. 2005. Checksums and Hashes. Referenced 16.06.2019
https://blog.codinghorror.com/checksums-and-hashes/

Atwood, J. 2008. XML: The Angle Bracket Tax. Referenced 03.05.2019
https://blog.codinghorror.com/xml-the-angle-bracket-tax/

Berners-Lee, T.; Masinter, L. & McCahill, M. 1994. RFC 1738 – Uniform Resource Locator
(URL). Referenced 02.05.2019 https://tools.ietf.org/html/rfc1738

Bondy, B.R. & community 2010. PUT vs. POST in REST. Stack Overflow. Referenced
13.06.2019 https://stackoverflow.com/questions/630453/put-vs-post-in-rest

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

https://stackoverflow.com/questions/630453/put-vs-post-in-rest
https://tools.ietf.org/html/rfc1738
https://blog.codinghorror.com/xml-the-angle-bracket-tax/
https://blog.codinghorror.com/checksums-and-hashes/
https://store.arduino.cc/arduino-mkr1000-wifi
https://store.arduino.cc/arduino-mkr1000-wifi
https://store.arduino.cc/arduino-yun
https://www.arduino.cc/en/products/compare
https://www.arduino.cc/en/Reference/StringLibrary
https://www.arduino.cc/en/main/FAQ#toc14
https://create.arduino.cc/projecthub/Arduino_Genuino/getting-started-with-arduino-web-editor-on-various-platforms-4b3e4a
https://create.arduino.cc/projecthub/Arduino_Genuino/getting-started-with-arduino-web-editor-on-various-platforms-4b3e4a
https://www.arduino.cc/en/main/FAQ#toc13
https://www.arduino.cc/en/Main/CopyrightNotice
https://www.arduino.cc/en/guide/introduction
https://ams.com/documents/20143/36005/TSL2561_DS000110_3-00.pdf/18a41097-2035-4333-c70e-bfa544c0a98b
https://ams.com/documents/20143/36005/TSL2561_DS000110_3-00.pdf/18a41097-2035-4333-c70e-bfa544c0a98b
https://github.com/adafruit/TSL2561-Arduino-Library
https://github.com/adafruit/Adafruit_BME280_Library
https://github.com/adafruit/Adafruit_NeoPixel
https://www.adafruit.com/faq
https://www.adafruit.com/about

89

Borino, S. 2016. Carbon Dioxide Detection and Indoor Air Quality Control. Referenced
18.11.2019 https://ohsonline.com/articles/2016/04/01/carbon-dioxide-detection-and-indoor-air-
quality-control.aspx

Bosch 2018. BME280 – Data sheet. Document revision 1.6. Referenced 03.05.2019 https://ae-
bst.resource.bosch.com/media/_tech/media/datasheets/BST-BME280-DS002.pdf

Bosch 2019. BME680. Referenced 18.11.2019
https://www.bosch-sensortec.com/bst/products/all_products/bme680

Bray, T. 2014. RFC 7159 – The JavaScript Object Notation (JSON) Data Interchange Format.
Referenced 02.05.2019 https://tools.ietf.org/html/rfc7159

Buckley, I. 2018. What Is a Breadboard and How Does It Work? A Quick Crash Course.
Referenced 18.11.2019 https://www.makeuseof.com/tag/what-is-breadboard/

Bunker, J. 2015. How and When to Use Protoboard. Referenced 18.11.2019
https://makezine.com/2015/10/15/how-and-when-to-use-protoboard/

Burgess, M. 2018. What is the Internet of Things? WIRED explains. WIRED. Referenced
02.05.2019 https://www.wired.co.uk/article/internet-of-things-what-is-explained-iot

Burgess, P. 2013. The Magic of NeoPixels. Referenced 17.11.2019
https://learn.adafruit.com/adafruit-neopixel-uberguide

Chandler, N. 2001. What Is Relative Humidity and How Does it Affect How I Feel Outside?
Referenced 27.11.2019 https://science.howstuffworks.com/nature/climate-weather/atmospheric/
question651.htm

Chart.js 2019. Chart.js. Referenced 21.11.2019 https://www.chartjs.org/

Cipriani, L. 2019. Arduino Pro IDE (alpha preview) with advanced features. Referenced
31.10.2019 https://blog.arduino.cc/2019/10/18/arduino-pro-ide-alpha-preview-with-advanced-
features/

Craig, A. 2018. How to Make Carbon Dioxide. Referenced 18.11.2019
https://sciencing.com/make-carbon-dioxide-6532065.html

Edaphic Scientific 2019. NDIR explained. Referenced 18.11.2019
https://www.edaphic.com.au/knowledge-base/articles/gas-articles/ndir-explained/

EFF 2019. About Certbot. Referenced 17.11.2019 https://certbot.eff.org/about/

Espressif Systems 2018a. ESP32 Technical Reference Manual. Version 4.0. Referenced
16.06.2019
https://www.espressif.com/sites/default/files/documentation/esp32_technical_reference_manual
_en.pdf

Espressif Systems 2018b. ESP8266EX Datasheet. Version 6.0. Referenced 02.05.2019 https://
www.espressif.com/sites/default/files/documentation/0a-esp8266ex_datasheet_en.pdf

Espressif Systems 2019a. ESP32 Series Datasheet. Version 3.0. Referenced 02.05.2019
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf

Espressif Systems 2019b. ESP-IDF Programming Guide. Referenced 17.11.2019
https://docs.espressif.com/projects/esp-idf/en/latest/

Espressif Systems 2019c. Arduino core for the ESP32. Referenced 03.05.2019
https://github.com/espressif/arduino-esp32

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

https://github.com/espressif/arduino-esp32
https://docs.espressif.com/projects/esp-idf/en/latest/
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/0a-esp8266ex_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/0a-esp8266ex_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_technical_reference_manual_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_technical_reference_manual_en.pdf
https://certbot.eff.org/about/
https://www.edaphic.com.au/knowledge-base/articles/gas-articles/ndir-explained/
https://sciencing.com/make-carbon-dioxide-6532065.html
https://blog.arduino.cc/2019/10/18/arduino-pro-ide-alpha-preview-with-advanced-features/
https://blog.arduino.cc/2019/10/18/arduino-pro-ide-alpha-preview-with-advanced-features/
https://www.chartjs.org/
https://science.howstuffworks.com/nature/climate-weather/atmospheric/question651.htm
https://science.howstuffworks.com/nature/climate-weather/atmospheric/question651.htm
https://learn.adafruit.com/adafruit-neopixel-uberguide
https://www.wired.co.uk/article/internet-of-things-what-is-explained-iot
https://makezine.com/2015/10/15/how-and-when-to-use-protoboard/
https://www.makeuseof.com/tag/what-is-breadboard/
https://tools.ietf.org/html/rfc7159
https://www.bosch-sensortec.com/bst/products/all_products/bme680
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BME280-DS002.pdf
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BME280-DS002.pdf
https://ohsonline.com/articles/2016/04/01/carbon-dioxide-detection-and-indoor-air-quality-control.aspx
https://ohsonline.com/articles/2016/04/01/carbon-dioxide-detection-and-indoor-air-quality-control.aspx

90

Espressif Systems 2019d. Who We Are. Referenced 16.11.2019 https://www.espressif.com/en/
company/about-us/who-we-are

Espressif Systems 2019e. ESP8266 Overview. Referenced 17.11.2019
https://www.espressif.com/en/products/hardware/esp8266ex/overview

Espressif Systems 2019f. Modules. Referenced 17.11.2019
https://www.espressif.com/en/products/hardware/modules

Espressif Systems 2019g. Espressif Announces the Launch of ESP32 Cloud on Chip and
Funding by Fosun Group. Referenced 17.11.2019
https://www.espressif.com/en/media_overview/news/espressif-announces-launch-esp32-cloud-
chip-and-funding-fosun-group

Espressif Systems 2019h. Non-volatile storage library. ESP-IDF Programming Guide.
Referenced 19.11.2019 https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/
storage/nvs_flash.html

Espressif Systems 2019i. Wi-Fi. ESP-IDF Programming Guide. Referenced 19.11.2019
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/network/esp_wifi.html

Espressif Systems 2019j. WiFiClientSecure. ESP-IDF Programming Guide. Referenced
19.11.2019 https://github.com/espressif/arduino-esp32/tree/master/libraries/WiFiClientSecure

Espressif Systems 2019k. SPIFFS Filesystem. ESP-IDF Programming Guide. Referenced
19.11.2019 https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/storage/spiffs.html

Espressif Systems 2019l. Cloud Frameworks. ESP-IDF Programming Guide. Referenced
19.11.2019 https://docs.espressif.com/projects/esp-idf/en/latest/libraries-and-frameworks/cloud-
frameworks.html

Fall, K.R. & Stevens, W.R. 2012. TCP/IP Illustrated, Volume 1 - The Protocols. Upper Saddle
River: Addison-Wesley.

Forbes 2018. The Next Industrial Revolution Is Rising In Japan. Referenced 22.5.2019
https://www.forbes.com/sites/japan/2018/05/21/the-next-industrial-revolution-is-rising-in-japan/

Friedl, S. 2005. An Illustrated Guide to Cryptographic Hashes. Referenced 15.12.2019
http://www.unixwiz.net/techtips/iguide-crypto-hashes.html

Giatec Scientific Inc. 2018. Monitor Your Concrete Slab with a Push of a Button. Referenced
22.5.2019 https://www.giatecscientific.com/education/want-to-check-on-that-concrete-slab-you-
just-poured-now-theres-a-smartphone-app/

Goggi, C. 2014. Wi-Fi glossary -71 terms you need to know. Referenced 19.11.2019
https://techtalk.gfi.com/wi-fi-glossary-71-terms-you-need-to-know/

Google 2019a. Deplyoment. AngularDart. Referenced 19.11.2019 https://angulardart.dev/guide/
deployment

Google 2019b. Write command-line apps. Dart. Referenced 21.11.2019
https://dart.dev/tutorials/server/cmdline

Google 2019c. JavaScript interoperability. Dart. Referenced 21.11.2019 https://dart.dev/web/js-
interop

Gourley, D. & Totty, B. 2002. HTTP: The Definitive Guide. Sebastopol: O’Reilly.

Grusin, M., 2010. How to Read a Datasheet. Referenced 14.09.2019 https://www.sparkfun.com/
tutorials/223

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

https://www.sparkfun.com/tutorials/223
https://www.sparkfun.com/tutorials/223
https://dart.dev/web/js-interop
https://dart.dev/web/js-interop
https://dart.dev/tutorials/server/cmdline
https://angulardart.dev/guide/deployment
https://angulardart.dev/guide/deployment
https://techtalk.gfi.com/wi-fi-glossary-71-terms-you-need-to-know/
https://www.giatecscientific.com/education/want-to-check-on-that-concrete-slab-you-just-poured-now-theres-a-smartphone-app/
https://www.giatecscientific.com/education/want-to-check-on-that-concrete-slab-you-just-poured-now-theres-a-smartphone-app/
http://www.unixwiz.net/techtips/iguide-crypto-hashes.html
https://www.forbes.com/sites/japan/2018/05/21/the-next-industrial-revolution-is-rising-in-japan/
https://docs.espressif.com/projects/esp-idf/en/latest/libraries-and-frameworks/cloud-frameworks.html
https://docs.espressif.com/projects/esp-idf/en/latest/libraries-and-frameworks/cloud-frameworks.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/storage/spiffs.html
https://github.com/espressif/arduino-esp32/tree/master/libraries/WiFiClientSecure
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/network/esp_wifi.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/storage/nvs_flash.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/storage/nvs_flash.html
https://www.espressif.com/en/media_overview/news/espressif-announces-launch-esp32-cloud-chip-and-funding-fosun-group
https://www.espressif.com/en/media_overview/news/espressif-announces-launch-esp32-cloud-chip-and-funding-fosun-group
https://www.espressif.com/en/products/hardware/modules
https://www.espressif.com/en/products/hardware/esp8266ex/overview
https://www.espressif.com/en/company/about-us/who-we-are
https://www.espressif.com/en/company/about-us/who-we-are

91

Han Vinck, A.J. 2011. Introduction to public key cryptography. Referenced 16.06.2019
https://en.wikipedia.org/wiki/File:Diffie-Hellman_Key_Exchange.svg

Hawkins, M. 2018. Raspberry Pi Power Consumption Data. Referenced 13.12.2019
https://www.raspberrypi-spy.co.uk/2018/11/raspberry-pi-power-consumption-data/

Helmenstine, A. M. 2019. Equation for the Reaction Between Baking Soda and Vinegar.
Referenced 18.11.2019 https://www.thoughtco.com/equation-for-the-reaction-of-baking-soda-
and-vinegar-604043

Horowitz, P. & Hill W. 2015. The Art of Electronics. 3rd Edition. Cambridge: Cambridge
University Press.

Jones, M.; Bradley, J. & Sakimura, N. 2015. RFC 7519 – JSON Web Token (JWT). Referenced
02.05.2019 https://tools.ietf.org/html/rfc7519

Kastrenakes, J. 2018. Wi-Fi now has version numbers, and Wi-Fi 6 comes out next year. The
Verge. Referenced 02.05.2019 https://www.theverge.com/2018/10/3/17926212/wifi-6-version-
numbers-announced

Kennedy, J.; Jacobs, M. & Satran, M. 2018. Cipher Suites in TLS/SSL. Referenced 16.06.2019
https://docs.microsoft.com/en-au/windows/desktop/SecAuthN/cipher-suites-in-schannel

LastMinuteEngineers.com 2019. Create A Simple ESP32 Web Server In Arduino IDE.
Referenced 19.11.2019 https://lastminuteengineers.com/creating-esp32-web-server-arduino-
ide/

Lazović, I. M.; Stevanović, Ź. M.; Jovaśević-Stojanović, M. V.; Źivković, M. M. & Banjac M. J.
2015. Impact of CO2 concentration on indoor air quality and correlation with relative humidity
and indoor air temperature in school buildings, Serbia. Referenced 18.11.2019
https://www.researchgate.net/publication/283526039_Impact_of_CO2_concentration_on_indoor
_air_quality_and_correlation_with_relative_humidity_and_indoor_air_temperature_in_school_b
uildings_Serbia

Let’s Encrypt 2019a. About Let’s Encrypt. Referenced 17.11.2019 https://letsencrypt.org/about/

Let’s Encrypt 2019b. Getting Started. Referenced 17.11.2019 https://letsencrypt.org/getting-
started/

Let’s Encrypt 2019c. Why ninety-day lifetimes for certificates?. Referenced 17.11.2019
https://letsencrypt.org/2015/11/09/why-90-days.html

Let’s Encrypt 2019d. Chain of Trust. Referenced 24.11.2019 https://letsencrypt.org/certificates/

Let’s Encrypt 2019e. How it Works. Referenced 24.11.2019 https://letsencrypt.org/how-it-works/

Lyons, J. 2012. Meet Cryptography. Referenced 15.11.2019 http://practicalcryptography.com/

Meeker, H. 2017. Open source licensing: What every technologist should know. Referenced
15.8.2019 https://opensource.com/article/17/9/open-source-licensing

Merriam-Webster dictionary. Definition of “majordomo”. Referenced 16.06.2019
https://www.merriam-webster.com/dictionary/majordomo

Nginx Inc. 2019. Securing HTTP Traffic to Upstream Servers. Referenced 17.11.2019
https://docs.nginx.com/nginx/admin-guide/security-controls/securing-http-traffic-upstream/

Omega Engineering Inc. 2018. What is a Thermistor and how does it work?. Referenced
17.11.2019 https://www.omega.com/en-us/resources/thermistor

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

https://www.omega.com/en-us/resources/thermistor
https://docs.nginx.com/nginx/admin-guide/security-controls/securing-http-traffic-upstream/
https://www.merriam-webster.com/dictionary/majordomo
https://opensource.com/article/17/9/open-source-licensing
http://practicalcryptography.com/
https://letsencrypt.org/how-it-works/
https://letsencrypt.org/certificates/
https://letsencrypt.org/2015/11/09/why-90-days.html
https://letsencrypt.org/getting-started/
https://letsencrypt.org/getting-started/
https://letsencrypt.org/about/
https://www.researchgate.net/publication/283526039_Impact_of_CO2_concentration_on_indoor_air_quality_and_correlation_with_relative_humidity_and_indoor_air_temperature_in_school_buildings_Serbia
https://www.researchgate.net/publication/283526039_Impact_of_CO2_concentration_on_indoor_air_quality_and_correlation_with_relative_humidity_and_indoor_air_temperature_in_school_buildings_Serbia
https://www.researchgate.net/publication/283526039_Impact_of_CO2_concentration_on_indoor_air_quality_and_correlation_with_relative_humidity_and_indoor_air_temperature_in_school_buildings_Serbia
https://lastminuteengineers.com/creating-esp32-web-server-arduino-ide/
https://lastminuteengineers.com/creating-esp32-web-server-arduino-ide/
https://docs.microsoft.com/en-au/windows/desktop/SecAuthN/cipher-suites-in-schannel
https://www.theverge.com/2018/10/3/17926212/wifi-6-version-numbers-announced
https://www.theverge.com/2018/10/3/17926212/wifi-6-version-numbers-announced
https://tools.ietf.org/html/rfc7519
https://www.thoughtco.com/equation-for-the-reaction-of-baking-soda-and-vinegar-604043
https://www.thoughtco.com/equation-for-the-reaction-of-baking-soda-and-vinegar-604043
https://www.raspberrypi-spy.co.uk/2018/11/raspberry-pi-power-consumption-data/
https://en.wikipedia.org/wiki/File:Diffie-Hellman_Key_Exchange.svg

92

Paar, C. & Pelzl, J. 2010. Understanding Cryptography – A Textbook for Students and
Practitioners. Berlin: Springer.

Palidwar, J. 2014. Optical Filters Open Up New Uses for MWIR, LWIR Systems. Referenced
18.11.2019 https://www.photonics.com/a56392

Pecht, M., 2013. The Counterfeit Electronics Problem. Referenced 14.09.2019
https://www.researchgate.net/publication/276494674_The_Counterfeit_Electronics_Problem

Pogue, D. 2012. What Wi-Fi Stands for – and Other Wireless Questions Answered. Scientific
American. Referenced: 02.05.2019 https://www.scientificamerican.com/article/pogue-what-wifi-
stands-for-other-wireless-questions-answered/

Ramel, D. 2019. Dart Cracks IEEE Spectrum Programming Language Popularity List. ADTmag.
Referenced 21.11.2019 https://adtmag.com/articles/2019/09/18/ieee-spectrum-ranking.aspx

RandomNerdTutorials.com 2019. Install ESP32 Filesystem Uploader in Arduino IDE.
Referenced 19.11.2019 https://randomnerdtutorials.com/install-esp32-filesystem-uploader-
arduino-ide/

Raspberry Pi Foundation 2019a. Raspberry Pi Zero W. Referenced 13.12.2019
https://www.raspberrypi.org/products/raspberry-pi-zero-w/

Raspberry Pi Foundation 2019b. BCM2835. Referenced 13.12.2019
https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2835/README.md

Raspberry Pi Foundation 2019c. SD cards. Referenced 13.12.2019 https://www.raspberrypi.org/
documentation/installation/sd-cards.md

RESTfulAPI.net 2017. What is REST. Referenced 03.05.2019 https://restfulapi.net/

Richardson, L. & Amundsen, M. 2013. RESTful Web APIs. Sebastopol: O’Reilly Media Inc.

Ristić, I. 2017. Bulletproof SSL and TLS. 2017 Revision. London: Feisty Duck Limited.

Russell, A.L. 2013. OSI: The Internet That Wasn’t. Referenced 14.12.2019
https://spectrum.ieee.org/tech-history/cyberspace/osi-the-internet-that-wasnt

Sachleen, S. 2014. Answer to “How can I connect to an Arduino using WiFi?”. Referenced
05.10.2019 https://arduino.stackexchange.com/a/436

Stroustrup, B. 1997. The C++ Programming Language. Third Edition. Reading: Addison-
Wesley.

Tanaka, M. 2019. C3.js | D3-based reusable chart library. Referended 21.11.2019
https://c3js.org/

Tulevaisuuden älykkäät oppimisympäristöt 2019. The New Era of Learning. Referenced
02.05.2019 https://www.oppimisenuusiaika.fi/the-new-era-of-learning/

Vaisala 2013. Humidity Conversion Formulas - Calculation formulas for humidity. Referenced
27.11.2019 https://www.hatchability.com/Vaisala.pdf

Vero Technologies Ltd. 2019. Veroboards. Referenced 18.11.2019
https://www.verotl.com/circuitboards/veroboards

Wallace, B. 2018. The Dangerous State of IoT security. Hacker Noon. Referenced 02.05.2019
https://hackernoon.com/the-dangerous-state-of-iot-security-e12d27552145

Williams, A. 2019. The Arduino IDE Finally Grows Up. Referenced 31.10.2019
https://hackaday.com/2019/10/21/the-arduino-ide-finally-grows-up/

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

https://hackaday.com/2019/10/21/the-arduino-ide-finally-grows-up/
https://hackernoon.com/the-dangerous-state-of-iot-security-e12d27552145
https://www.verotl.com/circuitboards/veroboards
https://www.hatchability.com/Vaisala.pdf
https://www.oppimisenuusiaika.fi/the-new-era-of-learning/
https://c3js.org/
https://arduino.stackexchange.com/a/436
https://spectrum.ieee.org/tech-history/cyberspace/osi-the-internet-that-wasnt
https://restfulapi.net/
https://www.raspberrypi.org/documentation/installation/sd-cards.md
https://www.raspberrypi.org/documentation/installation/sd-cards.md
https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2835/README.md
https://www.raspberrypi.org/products/raspberry-pi-zero-w/
https://randomnerdtutorials.com/install-esp32-filesystem-uploader-arduino-ide/
https://randomnerdtutorials.com/install-esp32-filesystem-uploader-arduino-ide/
https://adtmag.com/articles/2019/09/18/ieee-spectrum-ranking.aspx
https://www.scientificamerican.com/article/pogue-what-wifi-stands-for-other-wireless-questions-answered/
https://www.scientificamerican.com/article/pogue-what-wifi-stands-for-other-wireless-questions-answered/
https://www.researchgate.net/publication/276494674_The_Counterfeit_Electronics_Problem
https://www.photonics.com/a56392

93

Winsen 2015. MQ135 datasheet. Version 1.4. Referenced 03.05.2019 https://www.winsen-
sensor.com/d/files/PDF/Semiconductor%20Gas%20Sensor/MQ135%20(Ver1.4)%20-
%20Manual.pdf

Winsen 2016. MH-Z19B datasheet. Version 1.0. Referenced 03.05.2018 https://www.winsen-
sensor.com/d/files/infrared-gas-sensor/mh-z19b-co2-ver1_0.pdf

WireShark.com 2019. Online Network Glossary. Referenced 19.11.2019 https://wireshark.com/
wifi-terminology.html

Worldsemi 2018. WS2812B-V4 datasheet. Version 1.0. Referenced 03.05.2018
http://www.world-semi.com/Certifications/WS2812B.html

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

http://www.world-semi.com/Certifications/WS2812B.html
https://wireshark.com/wifi-terminology.html
https://wireshark.com/wifi-terminology.html
https://www.winsen-sensor.com/d/files/infrared-gas-sensor/mh-z19b-co2-ver1_0.pdf
https://www.winsen-sensor.com/d/files/infrared-gas-sensor/mh-z19b-co2-ver1_0.pdf
https://www.winsen-sensor.com/d/files/PDF/Semiconductor%20Gas%20Sensor/MQ135%20(Ver1.4)%20-%20Manual.pdf
https://www.winsen-sensor.com/d/files/PDF/Semiconductor%20Gas%20Sensor/MQ135%20(Ver1.4)%20-%20Manual.pdf
https://www.winsen-sensor.com/d/files/PDF/Semiconductor%20Gas%20Sensor/MQ135%20(Ver1.4)%20-%20Manual.pdf

Appendix 1

Temperature and humidity readings from a home office in the beginning of August 2019

Figure 3. Temperature and humidity readings from a home office in the beginning of August 2019.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

Appendix 2

Temperature and humidity readings from a bathroom in the beginning of August 2019

Figure 4. Temperature and humidity readings from a bathroom during the beginning of August 2019.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

Appendix 3

Temperature and humidity readings from a bathroom during all of August 2019

Figure 5. Temperature and humidity readings from a bathroom during all of August 2019.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

Appendix 4

Temperature and humidity readings from a home office during all of August 2019

Figure 6. Temperature and humidity readings from a home office during all of August 2019.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

Appendix 5

CO readings from a home office during all of August 2019₂

Figure 7. CO readings from a home office during all of August 2019.₂

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

Appendix 6

Light intensity readings from a home office during all of August 2019

Figure 8. Light intensity readings from a home office during all of August 2019.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

Appendix 7

Light intensity minimum hourly readings from a home office during all of August 2019

Figure 9. Light intensity minimum hourly readings from a home office during all of August 2019.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

Appendix 8

Temperature and humidity readings from a living room during all of August 2019

Figure 10. Temperature and humidity readings from a living room during all of August 2019.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

Appendix 9

Light and CO measurements from a conference room₂

Figure 11. Light and CO measurements from a conference room.₂

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

Appendix 10

Light and CO measurements from a small office₂

Figure 12. Light and CO measurements from a small office.₂

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

Appendix 11

Temperature and humidity readings from a small office

Figure 13. Temperature and humidity readings from a small office.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

Appendix 12

Light and CO measurements from a larger office₂

Figure 14. Light and CO measurements from a ₂ larger office.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sami Kankaristo

	List of Abbreviations
	1 Introduction
	2 The Internet of Things
	2.1 The OSI model
	2.2 Wi-Fi
	2.3 URI and URL
	2.4 HTTP and HTTPS
	2.5 JSON
	2.6 JWT
	2.7 RESTful web APIs

	3 Cryptography and Internet security
	3.1 Cryptology
	3.2 Confidentiality, authenticity & integrity
	3.3 Hash functions
	3.4 Ciphers
	3.5 Random number generators (RNG)
	3.6 Symmetric-key cryptography
	3.7 Asymmetric-key cryptography
	3.8 Protocols
	3.9 Public-key infrastructure (PKI)
	3.9.1 Certificates and certificate authorities (CAs)
	3.9.2 Identity validation
	3.9.3 Certificate chains

	4 Hardware and Software RESEARCH
	4.1 Arduino
	4.1.1 Arduino hardware
	4.1.2 The Arduino language
	4.1.3 Arduino IDE
	4.1.4 Arduino libraries, tools, and community
	4.2 Espressif Systems
	4.2.1 The inexpensive ESP8266
	4.2.2 Improvements introduced with the ESP32
	4.3 Connecting devices to a microcontroller
	4.3.1 Power delivery and device voltages
	4.3.2 Reading analog signals
	4.3.3 Reading digital signals
	4.3.4 I²C
	4.3.5 SPI
	4.3.6 Serial ports and UART
	4.4 Choosing the sensors and other devices
	4.4.1 Worldsemi WS2812B intelligent RGB LED
	4.4.2 Bosch BME280 temperature, humidity, and ambient air pressure sensor
	4.4.3 AMS TSL2561 light intensity sensor
	4.4.4 Winsen MQ-135 air quality sensor
	4.4.5 Winsen MH-Z19B carbon dioxide sensor

	5 Design and Implementation
	5.1 Hardware prototyping
	5.1.1 Breadboard prototype
	5.1.2 Perfboard prototype
	5.2 Espressif IoT Development Framework (ESP-IDF)
	5.3 TaioDeviceFirmware
	5.3.1 The ESP32 libraries
	5.3.2 Other libraries
	5.4 TaioDeviceClient
	5.5 TaioServer
	5.6 TaioClient

	6 ANALYZING the Gathered data
	6.1 Data from a home environment
	6.2 Data from an office environment

	7 cONCLUSION
	7.1 Issues faced during the project
	7.2 Choice of sensors
	7.3 Future plans

	references

