
Bachelor’s thesis

Information and Communications Technology

2019

Miikka Lukumies

QT FRAMEWORK IN MODERN
EMBEDDED USER INTERFACE
DEVELOPMENT

BACHELOR’S THESIS | ABSTRACT

TURKU UNIVERSITY OF APPLIED SCIENCES

Information and Communications Technology

2019 | 47 pages, 2 pages in appendices

Miikka Lukumies

QT FRAMEWORK IN MODERN EMBEDDED USER
INTERFACE DEVELOPMENT

Graphical user interfaces are becoming a more prominent feature in the development of new
machines and devices. As the cost of performance is decreasing, an increasing amount of new
systems are manufactured with the capability of providing an approachable window into the
underlying data. The wider variety of environments and an expanding selection of connectivity
options generate more demanding requirements for the modern user interfaces, especially in the
embedded environment, where the resources may be limited.

The Qt Framework is a cross-platform software development framework for embedded and
desktop environments. It enables creating user interfaces and applications for a wide range of
devices and platforms using the C++ programming language for application logic, complemented
by its custom markup language along with JavaScript for the creation of dynamic user interfaces.

The objective of this thesis was to assess the Qt Framework’s suitability for the development of
modern user interfaces in embedded Linux and Android mobile environments. To provide a
comprehensive, all-round analysis of the capabilities of the framework, a fully functioning
automotive in-vehicle infotainment system and a mobile companion application were created, with
an extensive set of features that could appear in a modern embedded user interface.

A list of requirements gathered at the beginning of the projects alongside a testing plan was used
as a performance metric for assessing the framework. The various useful features the framework
provided enabled the creation of highly modular user interfaces for both platforms, which greatly
increased code re-use and maintainability. The framework's capability of functioning as the sole
development kit for the entire project proved the maturity of the toolkit the framework provided.

KEYWORDS:

C++, Qt Framework, embedded user interface, agile software development

OPINNÄYTETYÖ (AMK) | TIIVISTELMÄ

TURUN AMMATTIKORKEAKOULU

Tieto- ja viestintätekniikka

2019 | 47 sivua, 2 liitesivua

Miikka Lukumies

QT FRAMEWORK MODERNIEN SULAUTETTUJEN
KÄYTTÖLIITTYMIEN KEHITTÄMISESSÄ

Graafisista käyttöliittymistä on tullut huomattavan yleinen ominaisuus uusien koneiden ja
laitteiden kehityksessä. Suorituskykykustannuksien laskiessa yhä useampi uusi laite päätyy
markkinoille mukanaan jonkinlainen näyttöpääte, joka auttaa tarjoamaan käyttäjälle helpommin
lähestyttävän ikkunan alla olevaan informaatiotulvaan. Erilaisten
asennusympäristömahdollisuuksien ja yhteystapavaihtoehtojen lisääntyminen tuo mukanaan yhä
vaativampia edellytyksiä moderneille käyttöliittymille, varsinkin sulautetuissa järjestelmissä,
joissa resurssit saattavat olla muutoinkin rajoitetut.

Qt Framework on laitteistoriippumaton sovelluskehitysalusta sekä sulautettuihin, että
työpöytäympäristöihin. Se mahdollistaa käyttöliittymien sekä sovellusten kehittämisen laajalle
valikoimalle laitteita ja alustoja, hyödyntäen C++ ohjelmointikieltä ohjelmistologiikan
toteuttamiseen, sekä kehitysalustan omaa kuvauskieltä täydennettynä JavaScript-
ohjelmakoodilla dynaamisten käyttöliittymien toteuttamiseen.

Tämän opinnäytetyön päämääränä oli arvioida Qt Frameworkin soveltuvuutta modernien
käyttöliittymien kehittämisessä käyttäen kohdealustana sulautettua Linux-käyttöjärjestelmää,
sekä Android-pohjaista mobiilialustaa. Kattavan analyysin suorittamiseksi toteutettiin
sovelluskehitysprojekti, jonka tavoitteena oli luoda täysin käyttökelpoinen ajoneuvon info- ja
viihdejärjestelmä, sekä täydentävä mobiilisovellus. Järjestelmää kehitettäessä mukaan
sisällytettiin mahdollisimman suuri määrä erilaisia toimintoja, joita nykypäivän käyttöliittymissä
voisi esiintyä.

Ennen järjestelmän kehityksen aloittamista projektille pyrittiin keräämään kattava lista
vaatimuksia sekä testaussuunnitelma, joita voitiin käyttää sovelluskehitysalustan ja -ympäristön
soveltuvuuden ja suorituskyvyn mittaamiseen. Opinnäytetyön tuloksena huomattiin Qt
Frameworkin olevan hyvin kypsä ja suorituskykyinen työkalupaketti laitteistoriippumattomien
modulaaristen nykyaikaisten käyttöliittymien kehittämisessä. Lukuisat kehitysalustan tarjoamat
hyödylliset ominaisuuden mahdollistivat sen käyttämisen ainoana työkaluna jopa laajamittaisien
järjestelmien luomisessa.

ASIASANAT:

C++, Qt Framework, sulautettu käyttöliittymä, ketterä sovelluskehitys

CONTENTS

LIST OF ABBREVIATIONS 7

1 INTRODUCTION 6

2 SOFTWARE DEVELOPMENT WITH QT 7

2.1 Development methods 7

2.2 Cross-platform Development 8

2.3 Useful features 8

2.3.1 The Qt Resource System 8

2.3.2 Property bindings 8

2.3.3 Signal handling 9

2.3.4 Yocto support 10

3 THE YOCTO PROJECT 11

3.1 About the Yocto Project 11

3.2 Yocto development and architecture 11

4 BLUETOOTH TECHNOLOGIES 14

4.1 Introduction to Bluetooth 14

4.2 Media playback 15

4.2.1 A/V remote control profile 15

4.2.2 Handsfree profile 16

4.2.3 Pulseaudio software 16

4.3 Object Exchange profile 16

4.4 Serial communication profiles 17

4.5 BlueZ Bluetooth protocol stack 17

5 DEVELOPMENT ENVIRONMENT 18

5.1 Cross-Compilation Build System 18

6 SOFTWARE DESIGN 21

6.1 User Stories and Requirements 22

6.2 System architecture 23

6.3 User Interface 27

7 IMPLEMENTATION 33

7.1 Operating System Configuration 33

7.2 UI design 34

7.3 Resources 34

7.4 Project Management 35

8 RESULTS 36

8.1 Requirements fulfilment 36

9 TESTING 40

10 CONCLUSIONS AND FUTURE WORK 42

REFERENCES 44

APPENDICES

Appendix 1. User stories and requirements

FIGURES

Figure 1. Abstract connections (https://doc.qt.io/qt-5/signalsandslots.html). 10
Figure 2. Yocto Layered model example. 12
Figure 3. OpenEmbedded Architecture Workflow (https://yoctoproject.org). 13
Figure 4. Bluetooth Host and Controller combinations [25]. 15
Figure 5. Cross-development toolchain generation [28]. 19
Figure 6. Example Layered Software Architecture 21
Figure 7. System architecture overview. 24
Figure 8. Layered Software Architecture 25
Figure 9. Application architecture. 26
Figure 10. Center console home view layout. 28
Figure 11. Center console navigation. 29
Figure 12. Instrument Cluster layout. 30
Figure 13. Remote control application layout. 31
Figure 14. User interface architecture. 32

TABLES

Table 1. User stories regarding architecture. 36
Table 2. User stories regarding user interface. 37
Table 3. User stories regarding connectivity. 39
Table 4. Example test cases 40

LIST OF ABBREVIATIONS

Abbreviation Explanation of abbreviation

ALSA Advanced Linux Sound Architecture

API Application Programming Interface

CSS Cascading Style Sheets

GHz Gigahertz

IVI In-Vehicle Infotainment

JSON JavaScript Object Notation

LPGL GNU Lesser General Public License

QML Qt Modeling Language

SDK Software Development Kit

UI User Interface

6

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Miikka Lukumies

1 INTRODUCTION

Lately the most prominent new feature in the development of human operable machines

and devices has been the graphical user interfaces, which are being embedded into an

increasing number of newly developed systems. The purpose of these improved

interfaces is to provide a much more approachable window into the underlying mountains

of data from different origins, not to mention possible entertainment capabilities.

The wide variety of models and variants of machines and devices targeted creates a set

of performance and flexibility requirements for the toolchains used in creating such

interfaces, the main focus being on targeting as many different platforms as possible

while keeping the cost and effort at a minimum. The customizable sizes, features, and

flavors in which these systems are manufactured create endless possible configurations,

requiring powerful build systems and flexible development toolkits to be able to adjust to

the different configurations and the individual needs of the end-users.

This thesis takes a closer look into a set of commonly used tools to assess their suitability

in creating modern embedded user interfaces, using the automotive world as an example

environment. A list of requirements for the project is devised by creating user stories and

used alongside a functional testing plan as a performance metric for the assessment.

The selected technologies, The Qt Framework for software development, running on

both, a custom embedded Linux distribution, and the Android mobile platform, are used

to create a demonstrative automotive in-vehicle infotainment system with an extensive

set of features to conduct a comprehensive analysis of the performance of the

framework.

7

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Miikka Lukumies

2 SOFTWARE DEVELOPMENT WITH QT

Qt is a framework for creating native cross-platform software for a multitude of supported

platforms. The main feature of the framework is its preprocessor, capable of turning the

projects created with Qt into native C++ software code, which can be compiled for the

target devices using any supported build system. The Qt Framework includes also its

own build system, qmake, which can be used to create the application binaries. [1]

2.1 Development methods

The Qt Framework provides two methods for creating applications; the Qt Quick, and Qt

Widgets modules. Both modules can be used to create desktop applications, however,

they have some differences in supported features and the way they can be developed

with. [2]

Qt Widgets

The Qt widgets module provides the developer with components needed to build

classical-looking desktop style applications, mainly for PC environments, where the

navigation and interaction happen using a keyboard and a mouse [2]. The Widgets

module is especially useful when creating data-driven applications using the model/view

user interface architecture, where the user interface implements only a view of the

underlying data model, often supplied from elsewhere [3] [4]. The Widgets module does

not support touch screens, and animation support is limited [2].

Qt Quick

The Qt Quick module is the Qt Framework standard for creating modern and smooth

graphical user interfaces with support for touch input and complex animations [2]. Qt

Quick applications are mainly developed using the declarative QML language,

reminiscent of JSON and CSS, which is rendered to the user using the QML engine [5].

The easily readable QML code can be extended with imperative inline JavaScript

expressions [6] and C++ plugins [7].

8

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Miikka Lukumies

2.2 Cross-platform Development

The qmake build system included in the Qt Framework enables application development

for multiple different target platforms with few, if any, changes to the project [8]. The

project files that are created as an instruction set for the build system provide support for

straightforward simple projects for a single platform, as well as complex collections of

software code supporting multiple platforms, that require intricate control over the build

process.

2.3 Useful features

The following sections list a collection of useful features of the Qt Framework, which

make it particularly useful in modern user interface-oriented application development,

especially for different embedded environments, and led to choosing the framework as

a base for the project described in this thesis.

2.3.1 The Qt Resource System

The Qt Resource System is a method for storing application-related data in binary format

inside the application executable [9]. The Qt resource compiler, rcc, creates a C++

source file containing static arrays of raw, compressed data, from which the application

can load its resources, such as icons and images, during runtime. This possibility is

particularly useful on platforms, which do not support application resource management

natively. A good example of this kind of platform is the Embedded Linux environment.

As of the time of writing this thesis, the application resources are by default embedded

into the executable using the resource system. The process is highly configurable, and

parameters such as compression rate and method can be customized for each resource.

[9]

2.3.2 Property bindings

The Qt Markup Language has built-in support for dynamic object behavior, which can be

utilized by using property bindings. Property bindings are a way to create relationships

9

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Miikka Lukumies

between the different components of the user interface. This can be leveraged to instruct

the GUI to react dynamically to interaction, such as a touch event.

The property bindings can consist of anything simple algebraic relations to complex

JavaScript expressions, of which the QML engine keeps track and updates the

corresponding elements when a change is detected.

2.3.3 Signal handling

To react properly and immediately to user input, the graphical user interface must be

able to create events. Additionally, in the embedded environment, hardware may contain

components that might require immediate attention at any given point of time, especially

if there is a need to communicate with systems constrained with real-time requirements.

The Qt Framework provides a powerful signaling system for both the user interface and

the supporting backend. It is possible for the two layers to send signals to each other

[10]. The Qt Company also provides proprietary modules, such as the Qt Safe Renderer,

for applications having to meet functional safety requirements [11], however, including

these modules fell outside the scope of this thesis.

The user interface run by the Qt QML engine handles different events created by the

user or the interface components with the framework’s Signal and Handler Event System

[10]. The signals, bound to a certain property of a component, when triggered, invoke an

assigned signal handler containing JavaScript code to be executed in the event of the

corresponding change in the state of the application. The signal handlers may change

the properties of other components, such as width and height, or trigger other signals

based on a variety of configurable conditions.

The user interface signals can also trigger events in the backend. Along with signals

created by hardware or for example timing functions, these signals are handled in the

C++ backend libraries by the Signal & Slot system, powered by the Qt meta-object

system [12] [13]. The Qt Framework’s meta-object compiler creates accompanying C++

code to the different objects derived from the framework’s base object class to implement

a signaling system between the various objects. It is possible to create many-to-many

relationships between the signals (senders) and slots (receivers) to create one or two-

way signaling pathways to react to changes in the application state. Figure 1 visualizes

the possible connections between the signals and slots of separate objects.

10

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Miikka Lukumies

Figure 1. Abstract connections (https://doc.qt.io/qt-5/signalsandslots.html).

2.3.4 Yocto support

The Qt Framework provides well-documented support for integration in the Yocto

Project-based embedded Linux distribution creation [14]. The Qt Company maintains

and updates a Git repository for its Yocto Project recipe layer, meta-qt5, for an easy and

up-to-date starting point for using the framework in embedded device creation [15]. The

following chapter concentrates on introducing The Yocto Project.

11

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Miikka Lukumies

3 THE YOCTO PROJECT

The Yocto Project is an open-source, collaboratively designed tool for creating custom

embedded Linux distributions. Its architecture and hardware independency are the key

elements that have fueled its adoption as a standard for creating custom Linux-based

systems for any platform. It has become widely adopted across the industry, especially

the automotive industry has grown interested in the project as a base for device creation.

[16] [17] [18]

3.1 About the Yocto Project

The Yocto Project was first released in 2010 by the Linux Foundation. Upon the project’s

first major release 1.0, the previously separated OpenEmbedded Linux build framework

joined the collaboration and shared their OpenEmbedded-Core set of metadata, which

is nowadays responsible for the core functionality of the project [19]. In addition to the

OpenEmbedded-Core, the second main component of the project is the BitBake task

execution engine, which handles most of the tasks required for building embedded

operating system images.

3.2 Yocto development and architecture

A typical Yocto Linux distribution build project consists of a customizable collection of

layers, sets of recipes containing instructions for the BitBake build system on how to

compile and assemble an operating system. The layers are usually divided into logical

parts of the final system, such as hardware layer, graphics layer, and an application

layer. This division, visualized in Figure 2, makes it possible to separate the machine

and application specific features and configuration into smaller parts, which can be -

quickly and easily swapped to produce a different system, to target a wider variety of

platforms and applications, while maintaining the state of the core components.

12

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Miikka Lukumies

Figure 2. Yocto Layered model example.

Most of the layers needed to create a functioning system can usually be found from the

OpenEmbedded Layer index, thus the designers’ responsibilities are often limited to

determining the correct set of recipes for the targeted system, and to tweaking the

configuration parameters of those recipes. Silicon manufacturers that support the Yocto

project usually supply their own BSPs (Board Support Package) for all supported

architectures, and the Poky reference distribution provides a comprehensive starting

point for creating the rest of the system. This means that it is often only the application

layer and supporting libraries that need configuration, and unless custom software is

included in the final product, creating own recipes is often unnecessary. [19]

The development process may be divided into a series of steps, many of which enable

customization. Figure 3 gives an overview of the whole process of creating an operating

system, and an accompanying software development kit. The main build system is barely

a task execution engine, capable of fetching resources and compiling them into

distribution-specific package formats and eventually into the operating system image and

SDK.

13

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Miikka Lukumies

Figure 3. OpenEmbedded Architecture Workflow (https://yoctoproject.org).

The recipes, delivered in layers or separately, enable the users to create policies,

patches and configuration details, which determine the properties of the created

operating system. These recipes can also be used to define separate software

resources, that should be included in the final image. These resources can be configured

to be fetched from many different sources, such as Git, or local repositories. [19]

14

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Miikka Lukumies

4 BLUETOOTH TECHNOLOGIES

Bluetooth is a short-range communication protocol, used nowadays in many different

applications, where low cost and energy consumption are of the essence. The protocol

was originally developed by Ericsson in 1994, and in 1998 a Special Interest Group

(Bluetooth SIG) was formed to continue governing the development of the protocol,

promote its usage and protect the trademark itself [20]. In 2018, the Bluetooth SIG had

nearly 35,000 members, and 3.7 billion new devices were shipped with Bluetooth support

[21].

4.1 Introduction to Bluetooth

The Bluetooth technology utilizes the license-free frequency band of 2,4GHz, used also

in many other applications such as wireless hotspots to access the Internet. This

frequency band provides decent transmission rates and ranges up to 100m. [22]

The Bluetooth standard specifies a wide variety of protocols and profiles for

communication between different devices and variable types of information [23] [24]. The

communication protocols are responsible for specifying the means for communication on

the wireless media, and the profiles are specifications used to identify the capabilities of

the various kinds of devices.

The Bluetooth protocols are usually divided into two categories; the controller and the

host stack [23]. The controller stack is responsible for the low-level link and timing-

oriented communication between the microchips responsible for the radio transmission.

The host stack protocols, on the other hand, comprise of more higher-level, controller-

agnostic protocols usually implemented in software. Figure 4 visualizes the possible host

and controller combinations. The Bluetooth protocol includes both connectionless and

connection-oriented protocols, to fit a maximum amount of use cases.

15

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Miikka Lukumies

Figure 4. Bluetooth Host and Controller combinations [25].

The almost forty different profiles specified in the Bluetooth standard make it possible for

various kinds of devices, such as printers, cameras, headphones, and other wearables

to correctly communicate with each other [24]. By registering a subset of these profiles,

a Bluetooth device can accurately describe and broadcast its properties to be discovered

by and connected with desired endpoints. The following subchapters introduce a subset

of these profiles and corresponding software, relevant to the features implemented as a

result of this thesis.

4.2 Media playback

The Advanced Audio Distribution Profile (A2DP) specifies a format over which audio can

be streamed using Bluetooth between devices [24]. The communication profile is

implemented as a strictly unidirectional master-slave system, where the Source device

establishes a synchronous, connection-oriented link to feed audio stream to the Sink, a

destination device [26]. This profile is often implemented together with Headset and/or

Handsfree profiles.

4.2.1 A/V remote control profile

To control the playback of media, usually music or video, the devices can implement a

profile called Audio/Video Remote Control Profile (AVRCP). This protocol enables

controlling the data streams by stopping or starting the stream, as well as changing

tracks. Additionally, custom metadata, such as artist and song name, and media source

status can be sent over to the target device [24].

16

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Miikka Lukumies

4.2.2 Handsfree profile

While the A2DP and AVRCP profiles provide the means to stream music and control its

playback, the Hands-Free Profile (HFP) enables handling voice calls. The hands-free

profile defines a protocol to create a bidirectional, one-channel audio link to transfer voice

call audio between the devices, and also some control, such as initiating or answering to

calls [24]. The hands-free profile defines two roles in the communication; an Audio

Gateway, and a Hands-Free Unit, where the gateway is normally a mobile phone as

source of the voice data, and the hands-free unit is usually the remote device, such as

car audio kit, with optional controls [26].

4.2.3 Pulseaudio software

To access, mix, control and reroute audio streams to and from multiple sources

effectively, a sound server can be installed on the system to provide an abstraction layer,

and to automate management. PulseAudio is an LGPL 2.1+ licensed open source sound

server, which has wide support over multiple operating systems and is available for many

Linux distributions. Its features include software mixing and routing audio streams, which

can be utilized to route Bluetooth audio streams to hardware speakers. [27]

4.3 Object Exchange profile

In addition to providing an audio link for voice calls, another important profile to

implement for voice call functionality is the exchange of contact information. The OBject

EXchange (OBEX) profile is a protocol defined initially for infrared data transmission,

later adopted into Bluetooth, to exchange any forms of binary data in the form of objects

[28].

The Phonebook Access Profile (PBAP) is built on the OBEX profile and can be used to

allow the car kit to see the contact information of an incoming caller and even for

downloading the phonebook of the connected mobile phone [24].

17

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Miikka Lukumies

4.4 Serial communication profiles

In some cases, it is necessary to define a custom profile to exchange arbitrary data

between the devices, to create own protocols and to enable finer control over the

communication. The Serial Port Profile (SPP), based on the RFCOMM protocol, is a

profile which enables the creation of virtual serial ports, and thus application-defined two-

way communication [24] [26].

4.5 BlueZ Bluetooth protocol stack

To effectively manage and control the underlying Bluetooth hardware as well as to

manage different connection lifecycles, additional software can be installed on the device

to provide an additional layer of abstraction. The Official Linux Bluetooth protocol stack,

BlueZ, is an awarded collection of many layers of software, from kernel drivers to testing

and configuration software, which supports many Linux distributions and processor

architectures. The protocol stack provides real hardware abstraction, as well as support

for multiple Bluetooth devices and an interface to all the different Bluetooth stack layers.

[29]

18

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Miikka Lukumies

5 DEVELOPMENT ENVIRONMENT

Application development for a remote host such as the embedded Yocto Project Linux

distribution is quite different from developing desktop applications. The most significant

difference is that the developed software cannot be run on the host machine, instead, a

target-machine-specific build system must be installed on the host computer to develop

for different hardware. In the next chapters, the steps required to develop for the target

hardware and to build and configure the operating system itself are introduced.

5.1 Cross-Compilation Build System

Unlike in the desktop computer environment, an embedded operating system rarely

comes equipped with a compiler, needed to produce software to run on specific

hardware. An embedded system often lacks a graphical user interface and developing

on such system would be rather unpleasant.

What is cross-compilation?

To produce software for a specific hardware and system architecture, a system-specific

version of a piece of software called a compiler must be used. A compiler is a program

that takes human-readable program code as an input, and together with a linker

produces software for the target device. This process sometimes includes libraries built

for the target device, which, if used in the program, must be obtained and deployed to

the target device as well.

The compiler, the linker, and associated software and libraries are very important parts

of a functioning computer system; therefore, it might not be a good idea to make

modifications to them. Instead of altering the working configuration, it is common to use

virtualization to create a separate environment for cross-compilation.

The Yocto Project build system also relies heavily on cross-compilation. The build

system configures a cross-compiler and associated libraries for each target machine to

produce the target operating system image. The same configuration can also be

19

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Miikka Lukumies

packaged in an SDK to create software for the target platform from any host machine.

This process is visualized in Figure 5. [28]

Figure 5. Cross-development toolchain generation [30].

Introducing the PELUX platform

PELUX is an open-source reference platform for automotive Linux-based systems [31].

It can be used to configure the Yocto build system to create an operating system image

with example software that can be used out-of-the-box as a reference for creating

informative software components for the automotive environment. The creation of a fully

custom Yocto-based Linux distribution would not have been possible to include in the

20

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Miikka Lukumies

scope of this thesis, therefore the PELUX Yocto image is used as a base platform on top

of which the system is built.

With the PELUX base platform also comes a cross-compilation SDK for software

development for the target embedded Linux platform [32]. The SDK takes advantage of

virtualization, and uses Vagrant, a virtual machine development environment manager

[33], to create and maintain a fully configured, Ubuntu-based virtual machine for

effortless software development.

21

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Miikka Lukumies

6 SOFTWARE DESIGN

At the beginning of a software development process, attention should be paid to the

scalability and modularity of a selected design. The various components that go in an

application should be identified and visualized at an early stage, to make sure they

integrate as expected. An effective way to treat the individual components is to separate

them into layers, based on their position in the underlying data flow pipeline found in

some form in every application or system.

Figure 6 shows an example of a layered software architecture, where each layer has a

role in the underlying flow of data, either by gathering, manipulating, storing, or

presenting the data. The layered model encourages defining flexible interfaces between

the components even before the development process has begun, which can make

integration easier, and enable modularity.

Figure 6. Example Layered Software Architecture

22

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Miikka Lukumies

6.1 User Stories and Requirements

One of the first steps in a software development project is determining what to do.

Finishing a project is not possible if there is no consensus of the desired outcome,

therefore, a list of goals, or, as they’re usually called in the software development

industry, requirements, must be devised. These specifications provide the base for the

software design process and help to refine the expected features of the individual

components of the device or system.

Despite its demonstrative nature, the project described in this thesis was carried out as

much as possible as any real project. Proper project management processes were

established and followed along with agile development methods. One well-known

method for gathering requirements in agile development paradigm is to produce user

stories [34]. This method was also adopted in the design phase of this project. The basic

form of a user story follows this pattern:

As a <user role> I want to <goal> [so that <benefit>].

The main purpose of writing user stories to gather requirements is to approach the

problem of figuring out the exact needs of the customer in a more natural way, by

examining the expected outcome from different perspectives, and writing short

descriptions of the outcome from that perspective [35]. This utilization of natural

language, breaking down the problem, and its inspection from a higher level can be a

powerful tool in initial system design and assessing the outcome of the project, therefore

it was applied in this project as well. A full list of requirements for this project can be

found in Appendix 1.

If the given resources for a project are limited, it may in some cases be necessary to

prioritize the requirements based on their importance for the outcome of the project and

specific customer needs. One method for categorizing the requirements is the MoSCoW

method, in which the requirements are given labels, such as Must have, Should have,

Could have and Won’t have. This verbal method can improve the understanding between

the parties involved in the development process. [36]

23

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Miikka Lukumies

6.2 System architecture

Based on the requirements inferred from the user stories an architecture was designed

for the project. The main goal of architecture development was to follow good

programming practices to create a fully functioning and maintainable system. These

practices include code modularity for easier reuse of components and the establishment

of a proper hierarchy between the components. A well-defined hierarchy results in a

more rigid architecture, which is easily maintained.

High level overview

The system consists of three individual components, as depicted in Figure 7. Each

component has its own role in the system, with the car system performing a major part

of the overall functionality. It provides all the necessary Bluetooth interfaces to which the

two other components, the remote-control application, and a mobile phone, can connect

to exchange information.

24

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Miikka Lukumies

Figure 7. System architecture overview.

The data backend is a singleton class, which means there can only exist one copy of it

at any given time. This ensures that each component has a reference to the same version

of the class, and thus share the state of the system. The data class consists of a list of

member variables that represent the current state of the system. It is wrapped with

interface classes that provide getters and setters that can distinguish the sender of the

data update signal, and therefore act accordingly depending on who accesses or

modifies the data.

The remote-control node shown in Figure 7 is a mobile application that provides a remote

viewport to the system status and provides some soft controls for changing the state of

predefined components, such as climate settings. The application is also developed

using the Qt Framework but runs on an Android device. This further demonstrates the

25

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Miikka Lukumies

cross-platform development capabilities of the framework. The application

communicates with the car system using a Bluetooth serial-like connection profile,

RFCOMM, introduced in Chapter 4.4.

The mobile node, on the other hand, represents any modern smartphone with basic

Bluetooth voice and media functionalities. It can be connected with the car system using

platform-independent and widely implemented Bluetooth features, which enable

common functionalities, such as media playback and voice call forwarding.

Both the car system and the remote-control application were designed in such a way,

that identifying the different software layers introduced in Figure 6 was trivial. Figure 8

shows how the layered model can be applied to both applications. The modularity of the

layered model enabled a high level of code reuse between the two applications, it was

only necessary to modify the lower level platform-specific service interfaces, and to scale

down the user interface for the mobile application, rest of the components could be

shared between the applications.

Figure 8. Layered Software Architecture

26

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Miikka Lukumies

Car System

The car system consists of two physical screens, both connected to the same computing

unit. The instrument cluster screen acts merely as an informative display intended to

replace classic analog dashboards, while the center console implements touch control

for easy interaction with the system. Both views are rendered by the same application,

using OpenGL ES graphics. Specifically, the backend used is EGLFS, a Qt Framework’s

full-screen version of the popular EGL rendering interface, which enables presenting full-

fledged graphics components without the need for a windowing system. This makes it

particularly suitable for embedded systems, which seldom implement graphics

windowing.

On the application level, the system is separated into two major parts, as seen in Figure

9. The application node depicts the user interface and its logic and includes also the

main entry point for the software. The plugins, on the other hand, are shared libraries

(.so) that provide the necessary backend functionalities for the application. This

separation greatly increases component reuse, since the user interface rarely needs to

be adapted for different hardware. The library plugins handle most of the communication

with the hardware and in consequence, are subject to modifications when moving onto

different platforms.

Figure 9. Application architecture.

27

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Miikka Lukumies

6.3 User Interface

The final graphical design for the user interface was provided by a professional UI

designer, however, the implementation of the graphical and logical components, as well

as the functionality and underlying architecture of the user interface did fall within the

scope of the project. The following subchapters will introduce the layout and logical

architecture of the user interface.

User interface layout

When designing the user interface layout and navigation through it, a great deal of

thought was put into ensuring a fluid user experience and maximum usability. The need

for ease of use of the system was further amplified by the targeted automotive

environment, where interaction with the system should not compromise the safe

operation of the vehicle. In other words, using the system should be as intuitive as

possible to require a minimal amount of concentration.

In its default state, at the home view, the center console view is designed to give an

overview of the state of the system. The homepage, illustrated in Figure 10, consists of

several widgets, which are essentially smaller sized views of the full-screen views found

on other pages. The widgets provide minimal or no controls compared to their full-screen

counterparts, instead, they aim to provide a quick overview with a minimal set of

components. The widgets are designed to match the full-screen views in terms of

graphical design, to enable maximum component reuse and interface uniformity. When

a widget is clicked, the user interface transitions to the corresponding view.

28

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Miikka Lukumies

Figure 10. Center console home view layout.

The navigation through the user interface happens either with swiping gestures, or by

clicking the navigation bar on top of the screen, as illustrated by Figure 11.

29

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Miikka Lukumies

Figure 11. Center console navigation.

The Instrument Cluster view, as illustrated in Figure 12, is a purely informative display

mimicking a classical dashboard found in modern cars. Even though the display is not

interactive, that is, it cannot be controlled by touch like the Center Console, it consists of

multiple active components providing the driver relevant information on the status of the

vehicle. The two dials can visualize the current speed and power output of the vehicle,

the warning indicators inform the driver of abnormal situations, and the top panel can

show the name of the currently playing music track or a caller’s name.

30

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Miikka Lukumies

Figure 12. Instrument Cluster layout.

The Application View residing on the background of the instrument cluster is a child of

one of the views on the Center Console, providing a widget-like window to the main view.

For the purposes of this demonstration, only the navigation widget is viewable on the

Instrument Cluster. The following subchapter attempts to shed light on the

interconnection of these major components, including the Application View.

The Remote Control Application user interface appearance and layout are designed to

match the Center Console user interface as closely as possible. The navigation happens

through swiping left or right, or by using the navigation bar on the bottom of the screen,

as shown in Figure 13. These unified design and navigation methods ease the use of

the different parts of the system since it is necessary to learn only one of the components

to use the other. To emphasize the uniform design, the different views on the software

are arranged in the same order, apart from the Remote Control application not

implementing all the views.

31

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Miikka Lukumies

Figure 13. Remote control application layout.

User Interface architecture

Since a great deal of the application logic was implemented on the front-end, a proper

architecture had to be designed to ensure maintainability, code reuse, and modularity.

The Qt QML language provides a way to nest individual components inside each other

to form hierarchies between them in a tree-like structure, with a single root element

followed by all of its children. The components can be loaded in or created and added to

the tree dynamically, which allows starting up the application rapidly with only a few

necessary components.

The main, or application root element, is the most important element of the user interface

hierarchy. It acts as a parent for all the other components and has references to all the

needed external components, such as the data backend, which it can then pass by

reference to all of its children. This hierarchy is visualized in Figure 14. The application

root element has a reference to or “owns” both screen elements, the Instrument Cluster

and the Center Console, which both in turn have references to their child components,

which can also have any number of children.

32

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Miikka Lukumies

Figure 14. User interface architecture.

33

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Miikka Lukumies

7 IMPLEMENTATION

After the software design phase, the realization, also known as the implementation

phase, was carried out. This chapter discusses the implementation experience and

difficulties faced during the process.

7.1 Operating System Configuration

The first step in creating a working system is the configuration of the platform on which

the software will run on. Since the PELUX Yocto operating system image is intended for

reference only, it provides no software for playing audio, and the BlueZ Bluetooth

protocol stack included in the image is misconfigured for audio playback. This means

that a fair amount of research and configuration was needed to play music from the

device speakers.

Audio software

In order to play sound from the speakers installed to the system, an audio driver is

required. ALSA (Advanced Linux Sound Architecture) is a Linux kernel software

framework that provides a generalized API to the different audio drivers used on different

hardware [37]. This module, called alsa-lib had to be integrated into the operating system

image to enable communication with the system audio card.

Bluetooth Audio

The installed BlueZ Bluetooth protocol stack did not, by default, provide Bluetooth audio

functionality, instead it had to be configured and built with audio profile support to be able

to provide an audio stream to a sound server.

34

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Miikka Lukumies

Sound server

In addition to the changes to the BlueZ Bluetooth protocol stack and the introduction of

an audio driver, a sound server was required to provide a level of abstraction between

the two, for them to communicate with each other. Pulseaudio is well supported with

BlueZ and was chosen to act as a sound server in this configuration.

The Pulseaudio sound server default configuration was incapable of handling Bluetooth-

based audio streams and had to be reconfigured through a configuration file. The

Bluetooth audio functionalities were enabled by including BlueZ device and discovery

modules into the configuration, as well as a loopback module, which enabled routing the

audio stream to the physical speakers.

7.2 UI design

The user interface appearance, and most of the layout were designed by a professional

UI/UX designer. The design process, however, entailed two-way communication

between the designer and the development team to properly visualize the possible

features, layout, and functionalities of the infotainment system. The user interface

designer took part into multiple weekly meetings, and several different drafts and designs

were exchanged between the two parties. As the implementation of the user interface

carried on, the designer was shown snapshots of the status of the projects, and the fine-

tuning of the user interface could continue until the end of the realization phase.

7.3 Resources

After the implementation of the core functionalities of the system and the user interface,

as well as the general layout thereof, two software developer interns took part in the

project. They were guided to take part in the implementation of the individual graphical

components of the user interface. Their guidance brought along some overhead in terms

of time needed in guidance and additional project management tasks, however, it proved

to be a valuable learning experience in addition to the skills gained during the actual

programming and configuration.

35

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Miikka Lukumies

7.4 Project Management

The project’s management followed established agile development guidelines, or

paradigms, to ensure overall quality of the project, and to help defining the scope of the

project. The early adoptation of a Kanban board as the task management tool and the

clear list of requirements gathered from user stories were especially helpful when more

developers joined the project.

36

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Miikka Lukumies

8 RESULTS

The purpose of the project described in this thesis was to create a fully functioning

system resembling an automotive infotainment system to assess the suitability of the Qt

Framework in modern embedded user interface development on a custom embedded

Linux platform. In the beginning of the project, a set of requirements, introduced in

Chapter 6 and listed in Appendix 1, were devised to create a clear plan of the scope of

the project and to eventually evaluate the result of the project. This chapter aims to

evaluate the result of the project based on those requirements, as well as summarize

the overall experience from the point of view of the author.

8.1 Requirements fulfilment

System architecture and overview

The user stories listed in Table 1 and the requirements inferred from them imposed the

physical structure of the system, consisting of three separate screens, working as two

separate systems.

Table 1. User stories regarding architecture.

User story no. As a <type of user / persona> I want to <goal / objective>

7 Driver See vehicle diagnostics information

on the center console

3 Driver See the instrument cluster

6 Passenger or vehicle owner See basic vehicle information on my

phone

These two components were the car system, and the mobile application, which were

both successfully created during the project using the Qt Framework. The car application

ran on the targeted Embedded Linux platform as a full-screen application on two

physically separate screens, without the need for a windowing system often not found in

embedded systems. The system was able to independently boot up and start the

37

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Miikka Lukumies

application automatically without the need for user interaction. This was made possible

with a valid operating system configuration when building the operating system image

based on the PELUX platform, built with the Yocto Project.

User interface

The user stories listed in Table 2, in the previous sections, and requirements thereof

state the desired properties of the user interface. Additionally, the fluidity, smoothness

and user-friendliness were assessed based on feedback from individuals outside the

project.

Table 2. User stories regarding user interface.

User story no. As a <type of user / persona> I want to <goal / objective>

1 Driver Call a person listed as a contact in my

mobile phone using the infotainment

system

2 Passenger Change navigation destination and

find places nearby with my phone

4 Driver Answer calls to my phone using the

infotainment system.

5 Driver Navigate to a certain place

6 Passenger or vehicle owner See basic vehicle information on my

phone

7 Driver See vehicle diagnostics information

on the center console

8 Passenger Control the vehicle music player with

my phone

10 Driver Adjust the climate control

11 Passenger Adjust the climate control with my

phone

The requirements inferred from the user stories in Table 2 describe a system with two

separate components, the vehicle unit, and the controlling mobile application, both

38

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Miikka Lukumies

equipped with several different views for showing the information in smaller partitions,

and both having nearly the same functionality, with the mobile application having soft

control over the vehicle system.

The vehicle system included views for diagnostics, climate controls, and media, with

simple user control using icons as buttons, and a few sliders. The navigation view was a

rather complex combination of an online map with 3D rendering of buildings, and a

search and history view capable of changing the destination of the navigation simulation.

The two views changed their respective size ratios on the screen with relatively smooth

transition animations to react to user interaction, such as expanding the search view.

The navigation view simulated navigating to a user-selected destination by artificially

creating and following coordinates along a route and updating the map according to the

coordinate information.

The mobile application recreated most of the views seen on the vehicle system in a

mobile-friendly manner. During development, it was possible to reuse the majority of the

program code used in the vehicle system, especially in individual components, to create

the mobile application. Some internal layout changes were vital for maintaining the

readability of the user interface on the smaller mobile screen, but the visual uniformity of

the user interfaces was preserved. As in the vehicle unit, the mobile application had a

fluent look and feel, with smooth transitions between the views. Low mobile network

bandwidth created notable latency on map tiles loading on the navigation view, however,

the perceived refresh rate did not suffer, but the missing tiles appeared white.

The user interface also received positive feedback from outside individuals who

interacted with the system.

Connectivity

The user stories listed in Table 3 and requirements inferred from them specify the

different connectivity aspects of the system. These requirements describe a system with

four communication methods; Bluetooth serial connectivity, Bluetooth media playback

and control, Bluetooth voice call and contacts profile connection, and Internet

connectivity. Of these four methods, the Internet connection is platform-specific and

needed no configuration in this project. The Bluetooth connectivity did require changes

to the operating system configuration, described in Chapter 7. However, the final vehicle

39

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Miikka Lukumies

unit was able to successfully communicate with the mobile phone and the application

running on it using the three aforementioned communication methods or forms.

Table 3. User stories regarding connectivity.

User story no. As a <type of user / persona> I want to <goal / objective>

1 Driver Call a person listed as a contact in my

mobile phone using the infotainment

system

2 Passenger Change the destination and find

places nearby with my phone

4 Driver Answer calls to my phone using the

infotainment system

6 Passenger or vehicle owner See basic vehicle information on my

phone

8 Passenger Control the music player with my

phone

9 Driver Play music from my mobile phone

11 Passenger Adjust the climate control with my

mobile phone

The climate, media, and navigation view controls, as well as the diagnostics information

shown on the companion application were conveyed using the Bluetooth Serial Port

Profile with no notable latency or errors. It was possible to separate the serial connection

from the media and voice call ones, enabling the use of a separate mobile phone, or

multiple, for viewing the diagnostics data and controlling the vehicle unit.

The media and voice call profiles provided no direct control over the system other than

providing the contact information and the voice call and music player audio. The user

interface was able to respond to changes in the connection of these profiles by

dynamically creating or destroying the corresponding views. More precisely, the media

and voice call views were dynamically removed or added to the grid of widgets on the

homepage and were inaccessible through swipe gestures when no connection was

established.

40

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Miikka Lukumies

9 TESTING

To verify the correct functionality and integration of all the components, a testing plan

was created for the project. The testing plan concentrated on the interoperability and

integration of the various features, especially regarding connectivity, where multiple

devices might or might not be connected to the system at the same time via separate

Bluetooth profiles.

The testing plan consisted of uniquely labelled test cases, like those shown in Table 4,

giving information on the prerequisites for the test, how to execute the test, and the

expected outcome. In addition, the unique labelling of the test cases allowed defining

dependencies between the tests, which made fulfilling the test prerequisites and finding

the root cause for a possible problem easier.

Table 4. Example test cases

Test id View Scenario Precondition Steps Expectation Result

PHONE-
CONN-1

Home Connecting a
media device
should show
media and
phone widgets
on primary
screen Home
view

- 1. Bluetooth icon
pressed on home
screen
2. Device selected
from the list of
available devices
3. User accepts
pairing on device

1. List of available devices
shown properly
2. Devices connect
successfully
3. Phone and media widgets
shown on Home view

OK

PHONE-
WIDG-3

Home User should be
able to call a
number from
phone widget

PHONE-
CONN-1

1. Number grid
icon pressed on
phone widget
2. Phone number
selected by
pressing numbers
3. Call button
pressed
4. Disconnect
button pressed or
call ended by
recipient

1. Number grid shown
properly
2. Typed phone number
shown correctly
3. Call started on connected
device
4. Call disconnects properly
5. Number and call duration
added to history

OK

The role of the testing plan during the development was to function as a checklist when

assessing the effect of a change in the software, to make sure everything was still

functioning properly. This manual sorting through the test plan and determining which, if

41

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Miikka Lukumies

not every, test to execute after each minor change was cumbersome, and therefore

implementing test automation was considered.

In addition to the need for a test automation pipeline, no systematic method for testing

the user interface was implemented in the development process. Based on purely visual

inspection, making changes to the user interface took a lot more resources than what an

automated routine would have enabled.

42

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Miikka Lukumies

10 CONCLUSIONS AND FUTURE WORK

The purpose of this thesis was to create a demonstrative automotive In-Vehicle

Infotainment (IVI) system from a gathered set of requirements to assess the suitability of

the Qt Framework in the creation of modern embedded user interfaces, using a custom

embedded Linux distribution as a platform. Proper project management methods were

used to replicate real-world development processes to increase the accuracy of the

assessment.

The collection of requirements was fulfilled completely with only minor negative notions

found through testing. The Qt Framework’s capability to act as a sole development toolkit

for a project of this scope proves great maturity and flexibility of the framework and

makes it a good option for embedded and mobile user interface development. The cross-

platform and especially embedded Linux support further increase its usefulness in the

described environment.

From the developer’s point of view, the Qt Framework enabled effortless development

even in the lower level, hardware-oriented tasks by providing a suitable level of

abstraction, while providing full control over the underlying system. Learning to use the

framework was straightforward, and even the more complex, powerful features it

provides were within the reach of a developer with no prior experience with the

technology.

Although the purpose was to create a fully functioning system for demonstration

purposes, several features remain to be implemented to bring the system’s level of

completeness on par with its real-world counterparts. The Qt Company offers a selection

of proprietary modules, which could enable taking into account some more stringent

requirements for the system such as functional safety, by using modules such as Qt Safe

Renderer. The operating system configuration itself would also need support for over-

the-air updates and booting directly into the infotainment environment.

Chapter 9 also introduced some considerations for improving the development process,

especially testing. The implementation of a fully automated build and testing pipeline fell

out of the scope of this project; however, such configuration would possibly have enabled

shorter delays from a code change to a new, tested feature by automating and integrating

43

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Miikka Lukumies

the building and testing routines. Such frameworks exist already and should be

implemented in a production-grade system.

44

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Miikka Lukumies

REFERENCES

[1] Qt Wiki Contributors, “About Qt - Qt Wiki,” 26 4 2019. [Online]. Available:

https://wiki.qt.io/About_Qt. [Accessed 16 06 2019].

[2] The Qt Company Ltd., “User Interfaces,” 2019. [Online]. Available:

https://doc.qt.io/qt-5/topics-ui.html. [Accessed 16 6 2019].

[3] The Qt Company Ltd., “Qt Widgets,” 2019. [Online]. Available: https://doc.qt.io/qt-

5/qtwidgets-index.html. [Accessed 16 6 2019].

[4] The Qt Company Ltd., “Model/View Programming,” 2019. [Online]. Available:

https://doc.qt.io/qt-5/model-view-programming.html. [Accessed 16 6 2019].

[5] The Qt Company Ltd., “Qt Quick,” 2019. [Online]. Available: https://doc.qt.io/qt-

5/qtquick-index.html. [Accessed 16 6 2019].

[6] The Qt Company Ltd., “QML Applications,” 2019. [Online]. Available:

https://doc.qt.io/qt-5/qmlapplications.html. [Accessed 16 6 2019].

[7] The Qt Company Ltd., “Overview - QML and C++ integration,” 2019. [Online].

Available: https://doc.qt.io/qt-5/qtqml-cppintegration-overview.html. [Accessed 16 6

2019].

[8] The Qt Company Ltd., “qmake Manual,” 25 06 2019. [Online]. Available:

https://doc.qt.io/qt-5/qmake-manual.html. [Accessed 25 06 2019].

[9] The Qt Company Ltd., “The Qt Resource System,” 25 06 2019. [Online]. Available:

https://doc.qt.io/qt-5/resources.html. [Accessed 25 06 2019].

[10] The Qt Company Ltd., “Signal and Handler Event System,” 25 06 2019. [Online].

Available: https://doc.qt.io/qt-5/qtqml-syntax-signals.html. [Accessed 25 06 2019].

[11] The Qt Company Ltd, “Qt Safe Renderer Overview,” [Online]. Available:

https://doc.qt.io/QtSafeRenderer/qtsr-overview.html. [Accessed 23 10 2019].

45

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Miikka Lukumies

[12] The Qt Company Ltd., “Signals & Slots,” 25 06 2019. [Online]. Available:

https://doc.qt.io/qt-5/signalsandslots.html. [Accessed 25 06 2019].

[13] The Qt Company Ltd., “The Meta-Object System,” 26 06 2019. [Online]. Available:

https://doc.qt.io/qt-5/metaobjects.html. [Accessed 26 06 2019].

[14] The Qt Company Ltd., “Using meta-qt5,” 26 06 2019. [Online]. Available:

https://doc.qt.io/QtForDeviceCreation/qtee-meta-qt5.html. [Accessed 26 06 2019].

[15] The Qt Company, “GitHub - meta-qt5,” 26 06 2019. [Online]. Available:

https://github.com/meta-qt5/meta-qt5. [Accessed 26 06 2019].

[16] The Linux Foundation, “Automotive Grade Linux Releases Open Infotainment

Platform Built by Automakers and Suppliers,” 28 12 2016. [Online]. Available:

https://www.automotivelinux.org/announcements/2016/12/28/automotive-grade-

linux-releases-open-infotainment-platform-built-by-automakers-and-suppliers.

[Accessed 24 04 2019].

[17] Linux Foundation, “Industry Momentum for Automotive Grade Linux Continues to

Grow with Five New Members,” 17 12 2018. [Online]. Available:

https://www.linuxfoundation.org/press-release/2018/12/industry-momentum-for-

automotive-grade-linux-continues-to-grow-with-five-new-members/. [Accessed 24

04 2019].

[18] Linux Foundation, “Is Yocto Project for you,” 2018. [Online]. Available:

https://www.yoctoproject.org/is-yocto-project-for-you/. [Accessed 24 04 2019].

[19] Linux Foundation, “Yocto Project Overview and Concepts Manual,” 2019. [Online].

Available: https://www.yoctoproject.org/docs/2.6.2/overview-manual/overview-

manual.html. [Accessed 24 04 2019].

[20] I. Poole, “What is Bluetooth Technology: basics & overview,” Electronics Notes,

[Online]. Available: https://www.electronics-

notes.com/articles/connectivity/bluetooth/what-is-bluetooth-technology-basics-

summary.php. [Accessed 09 09 2019].

46

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Miikka Lukumies

[21] Bluetooth SIG, “Bluetooth Market Update 2019,” 04 2018. [Online]. Available:

www.bluetooth.com. [Accessed 10 11 2019].

[22] I. Poole, “Bluetooth radio interface, modulation, & channels,” Electronics Notes,

[Online]. Available: https://www.electronics-

notes.com/articles/connectivity/bluetooth/radio-interface-modulation-

channels.php. [Accessed 2019 09 09].

[23] Wikipedia Contributors, “List of Bluetooth protocols,” 01 08 2019. [Online].

Available: https://en.wikipedia.org/wiki/List_of_Bluetooth_protocols. [Accessed

2019 09 09].

[24] Wikipedia Contributors, “List of Bluetooth profiles,” 01 08 2019. [Online]. Available:

https://en.wikipedia.org/wiki/List_of_Bluetooth_profiles. [Accessed 2019 09 09].

[25] Bluetooth SIG, Inc., “Bluetooth Core Specification v5.1,” 21 January 2019. [Online].

Available: https://www.bluetooth.com/specifications/bluetooth-core-specification/.

[Accessed 10 11 2019].

[26] I. Poole, “Bluetooth profiles,” [Online]. Available: https://www.electronics-

notes.com/articles/connectivity/bluetooth/profiles.php. [Accessed 2019 09 09].

[27] freedesktop.org, “About PuldeAudio,” 29 12 2014. [Online]. Available:

https://www.freedesktop.org/wiki/Software/PulseAudio/About/. [Accessed 16 11

2019].

[28] Wikipedia Contributors, “OBject EXchange,” 05 04 2019. [Online]. Available:

https://en.wikipedia.org/wiki/OBject_EXchange. [Accessed 2019 09 14].

[29] BlueZ Project, “BlueZ - About,” 2016. [Online]. Available:

http://www.bluez.org/about/. [Accessed 16 11 2019].

[30] Linux Foundation, “Yocto Project Mega Manual,” 10 2019. [Online]. Available:

https://www.yoctoproject.org/docs/3.0/mega-manual/mega-manual.html.

[Accessed 10 11 2019].

47

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Miikka Lukumies

[31] Luxoft Sweden AB, “PELUX,” [Online]. Available: https://pelux.io. [Accessed 21 04

2019].

[32] Luxoft Sweden AB, “PELUX Development Handbook,” 18 04 2019. [Online].

Available: https://pelux.io/software-factory/master/. [Accessed 21 04 2019].

[33] HashiCorp, “Introduction to Vagrant,” [Online]. Available:

https://www.vagrantup.com/intro/index.html. [Accessed 10 11 2019].

[34] R. Alt-Simmons, “Gathering Analytic User Stories,” in Agile by Design: A Project

Manager's Guide to Analytic Lifecycle Management, John Wiley & Sons,

Incorporated, 2015, pp. 90-98.

[35] Wikipedia contributors, “User Story,” Wikipedia, The Free Encyclopedia, 2 5 2019.

[Online]. Available: https://en.wikipedia.org/wiki/User_story. [Accessed 6 5 2019].

[36] Wikipedia Contributors, “MoSCoW method,” Wikimedia Foundation, Inc., 3 11

2019. [Online]. Available: https://en.wikipedia.org/wiki/MoSCoW_method.

[Accessed 23 11 2019].

[37] ALSA Team, “Advanced Linux Sound Architecture (ALSA) project homepage,” 30

10 2013. [Online]. Available: https://www.alsa-project.org/wiki/Main_Page.

[Accessed 21 04 2019].

[38] The Qt Company Ltd., “Property Binding,” 25 06 2019. [Online]. Available:

https://doc.qt.io/qt-5/qtqml-syntax-propertybinding.html. [Accessed 25 06 2019].

[39] L. R. Albert Huang, “Bluetooth for Programmers,” 2005. [Online]. Available:

http://people.csail.mit.edu/rudolph/Teaching/Articles/BTBook.pdf. [Accessed 27

August 2019].

Appendix 1

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Miikka Lukumies

User stories and requirements

Below is a list of all the user stories and the gathered requirements.

As driver I want to be able to call a person listed as contact in my mobile phone

using the infotainment system.

• Get phonebook from a mobile phone connected via Bluetooth

• Create user interface for voice call control

• Implement voice call functionality

As a passenger I want to be able to change navigation destination and find places

nearby with my phone.

• Implement serial connection between phone and car systems

• Implement mobile navigation view with place search functionality

• Update navigation status to mobile phone

As driver I want to see the instrument cluster.

• Create a separate view on a separate screen for the instrument cluster

As driver I want to be able to answer calls to my phone using the infotainment

system.

• Inform the driver of incoming calls on instrument cluster

• Inform the driver of incoming calls on the center console

• Implement voice call functionality

• Implement controls for answering a phone call

As driver I want to navigate to a certain place.

• Create a navigation view for the center console

• Create a navigation view for the instrument cluster

• Implement navigation functionality

• Implement place search functionality

Appendix 1

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Miikka Lukumies

As a passenger or a vehicle owner I want to be able to see basic vehicle

information on my phone.

• Implement serial connection between phone and car systems

• Implement mobile diagnostics view

As driver I want to see vehicle diagnostics information on the center console.

• Create a vehicle diagnostic view for the center console

• Implement diagnostics data backend

As a passenger I want to be able to control the music player with my phone.

• Create a media view for the center console

• Implement serial connection between phone and car systems

• Implement mobile media view

• Implement media playback functionality

As driver I want to play music from my phone.

• Implement media playback functionality

• Create a media view for the center console

• Create a media view for the instrument cluster

As a driver I want to adjust the climate control.

• Create a climate control view for the center console

• Implement climate control data backend

As a passenger I want to be able to adjust the climate control with my phone.

• Implement climate control data backend

• Implement serial connection between phone and car systems

