

Fissha Seyoum Teshome

Spying Software Development in Google
Android

Subtitle

Helsinki Metropolia University of Applied Sciences
Bachelor of Engineering

Degree Programme in Information Technology
03 February 2011

 Abstract

Author
Title

Number of Pages
Date

Fissha Seyoum Teshome
Spying Software Development in Google Android

49
April 22, 2010

Degree Programme Information Technology

Degree Bachelor of Engineering

Supervisor Kari Salo, Principal Lecturer

The main purpose was to study the concept behind developing spying software. The
goal of this project was to develop a mobile phone tracking application for Google
Android phones. The application was expected to include the use of GPS and Cell-ID
to track The location of a mobile phone.

The Google Android SDK was used to develop the tracking software application. The
application was tested on a Google Android mobile phone.

The result showed that the development process of location and maps-based
applications was fast while using Google Android. This was because of two main
reasons. First, Google Android Provided APIs for location-based services such as GPS
and Cell-ID. Second, having Eclipse with ADT plug-in as the choice to develop the
application led to an easy means of debugging and testing.

The tracking application was found important to use since it will allow users to trace
lost phones or to locate lost people. The application can be developed further by
adding a number of features to it such as running in the background, SMS copying
and making a spy call.
Keywords Mobile Spying Software, Google Android, Tracking Software,

GPS, Cell-ID

CONTENTS

1 INTRODUCTION 1

2 SPYING SOFTWARE MARKET 2

2.1 Mobile Spying Software 2

2.2 Antispy Software 7

3 SOFTWARE DEVELOPMENT IN ANDROID 9

3.1 Google Android 9

3.2 Developing in Android Environment 14

4 DEVELOPING A TRACKER APPLICATION IN ANDROID ENVIRONMENT 16

4.1 Software Requirement Specifications 16

4.1.1 Product 16

4.1.2 Hardware and Software Requirements 18

4.1.3 Scenarios 19

4.2 Implementing an Android Location Application 23

4.3 Testing and Signing 36

5 DISCUSSION 41

5.1 Benefits 42

5.2 Drawbacks 42

5.3 Future Development 43

6 CONCLUSIONS 44

REFERENCES 45

1

1 Introduction

In today’s world the use of mobile phones has become a common custom and this has

resulted in a great demand of a mobile phone applications. Among the millions of

mobile phone applications one is spying software. Spying software is software mainly

developed to track the location of mobile phone, reading Short Message Service (SMS),

Email, and Call Logs secretly and making a spy call. The existence of spying software is

controversial. First, there are millions of phone users who are concerned about their

privacy. On the other hand there are millions who use spying software application for

good or bad reasons. Second, there are many companies who develop such

applications, while there are others who develop the security against such applications.

The purpose of this project is to study the concept behind developing spying software

for a mobile phone. The goal of this project is to develop a location tracker application

for a Google Android phone. However, the tracker application should take into

consideration Google Android mobile phones equipped with a Global Positioning

System (GPS) or those which do not have it or those who have it deactivated. In the

absence of a GPS for any reason, the use of Cell Identification (Cell-ID) will come into

use.

The scope of this project is limited to tracking the location of Google Android phones.

One reason is that adding other features such as a call interceptor or SMS coping

would make the application suspicious. Another reason is that Google does not support

the development of spying software because Google wants to keep the privacy of

Google Android phone users.

2

2 Spying Software Market

2.1 Mobile Spying Software

Mobile spying software is software that can be installed on a target phone for a

number of purposes. Services provided by such software based on a phone call include

Secretly Record Calls and Room Monitoring. Secretly Record Calls records all calls

made from or to specific numbers on the mobile phone. The secretly recorded calls are

then uploaded to an online account. Room Monitoring (Spy Call) remotely records

all conversations and sounds within a certain proximity of the target's mobile phone.

This is normally achieved by activating the auto-answer setting of the target's mobile

phone, which will then trigger the recording to start. Once complete, the recording will

be uploaded to an online account. [1; 2]

Other services of such software which are monitored by the server of the spying

software’s owner include GPS Tracking, Secretly Read Text Messages, Call History,

Browser History Bookmarks, Contact Details, and Secretly Retrieve Pictures &Videos.

GPS Tracking records GPS coordinates of the target’s cell, and uploads the data to an

online account. Secretly Read Text Messages secretly reads all text messages that

are sent and received from the target's mobile phone. Call History records all

incoming and outgoing call data and uploads it to an online account. Browser History

views the history of the phone's web browser. Bookmarks views all the web

bookmarks stored. Contact Details views contact details that are stored on the

phone. Secretly Retrieve Pictures &Videos secretly retrieves and views photos and

videos that are on the target's mobile phone. [1; 2]

Furthermore, there are services such as SIM Change Notification and Location

Information which are based on the SMS service and phone state change. SIM

Change Notification sends an SMS that contains the details of the new SIM card

including the new number of the target's mobile phone to the specified number.

Location Information obtains the current location of the target's mobile phone. This

is done by sending secretly a text message to the target's phone. [1; 3]

The features mentioned above are found almost in all mobile spying software. Different

venders have different policies about how to use their software. [1; 2]

3

Mobile spying software as a term is a general name given for all spying software

developed for different phone models. Different models mean mobile phone devices

running different mobile phone Operating Systems (OSes). The most commonly used

mobile spying software are discussed in the following.

Flexiyspy is spying software mainly developed for Symbian, Blackberry, and Windows

mobile OSes. It has different versions: Pro-X, Pro, Light, Bug, Record, and Shield. The

main features and summarized in table 1. [3]

Table 1. FlexiySpy different versions and their features. [3]

This product supports a number of OSes. The supported OSes by the different

FlexiySpy versions are summarized in table 2. [3]

Table 2. FlexiySpy different versions and supported OSes. [3]

 Flexispy’s Different versions

Features Pro-X Pro Light Bug Record Shiled

Remote listening yes yes yes yes

Control phone by SMS yes yes yes yes yes

SMS and email logging yes yes yes

Call history logging yes yes yes

Location Tracking yes yes yes

Call Interception yes yes

Gps Tracking yes

Shiled yes

Black and White list yes

Listen to recorded
conversation

 yes

GPRS capability required yes yes yes

SIM change notification yes yes yes

Blackberry messenger yes

 Flexiyspy different versions

Supported
OSes

Pro-X Pro Light Bug Record Shield

Symbian yes yes yes yes yes

Blackberry yes yes yes yes

Windows yes yes yes yes yes

4

FlexiySpy also provides web service for customers. The web services of FlexiySpy

have the following important features:

 The web account is protected using Secure Socket Layer (SSL) technology.

 Using the web account a customer can view all the location, SMS, email and phone

activity in an easy format.

 A customer can carry out searches for key words in email or SMS, phone numbers,

contact names over selectable periods in time.

 A customer can generate reports to download in PDF, CSV or RTF format for

evidence or backup. [3]

Mobile spy is spying software that also has a number features but while using this

software the target phone data will be recorded and uploaded on a web server. Many

of the services of this software are monitored by the company’s server. In other words,

every event of the target phone will be uploaded to the company’s server database.

The services include Call Log, SMS Log, Contacts, E-Mail Log, Calendar Events, URL

Log and Photo & Video Log. Call Log means that each incoming and outgoing number

is logged along with duration and time stamp. SMS Log means that every text

message is logged. The logging will have text data even if the phone's logs are

deleted. In Contacts every contact on the phone is logged. E-Mail Log records all

inbound and outbound email activity from the primary email account. Calendar

Events logs every calendar event in which date, time, and locations are recorded.

URL Log logs all URL website addresses visited using the phone's browser. Photo and

Video Log records all photos and videos taken by the phone. [1]

Other features such as GPS Locations and Cell ID Locations are based on the same

principle. The difference is they are used to trace the location of the target phone. In

GPS Locations Log GPS positions are uploaded every 30 minutes with a link to a

map. In Cell ID Locations ID information on all cell towers that the device enters is

recorded. [1]

5

In order to access all recorded activities the customer should log into an online account

created at the purchasing time. This software is mainly developed for Symbian,

Blackberry, Android, Widows, and iPhone mobile OSes. [1]

Neo call provides also unsusceptible mobile spying with a number of features as well.

Many of Neo call software services are based on the SMS service to the

PreDefinedNumber (PDN). These includes Multi Master control number, Status Report

by SMS, Remote Controlling and Configuration by SMS, International and Country

locked software version, Delivery by Download/SMS/Email/Memory card, Password

Protected Secret commands, Reboot (phone / software) remotely by SMS, and

Incoming/ outcoming SMS Forwarding. [4]

With the Multi Master Control Number a customer can set up a PDN and use it to

control one or more Neo call devices. Status Report by SMS means that the

customer can get real-time status directly to the PDN with an easy command request.

Remote Controlling and Configuration by SMS the customer can use NeoCall all

over the world if not bought country-locked version. Delivery by

Download/SMS/Email/Memory card the customer can get the file directly from a

web link sent using an SMS, email or by a memory card with a setup file. Password

Protected Secret Commands means that the customer can send commands by SMS

with a specific password. Reboot (phone / software) Remotely by SMS with this

the customer can reboot both the phone and software after changing setup by sending

specific SMS. Incoming/Outcoming SMS Forwarding means that the customer

can receive every SMS sent or received to the PDN in real-time. [4]

Other services are based on the SMS service, phone state change and phone calls.

These include Call List by SMS, Sim Change and Power-On Notification, Delivery SMS

and Call List by Bluetooth/Email, Environment Listening, and Call Intercept (Listen

conversation). Call List by SMS means that the customer can get all

missed/sent/incoming call list by SMS. With the Sim Change and Power-On

Notification the customer can get informed when a new SIM is inserted on the target

phone. Delivery SMS and Call List by Bluetooth/Email means that the customer

can receive SMS contents or Log directly to the mailbox. Environment Listening

means that after making a spy call the customer can here the surrounding

6

environment. Call Intercept (Listen conversation) with this the customer can hear

the conversation between two people after calling target phone with a hidden

conference call. [4]

Finally, location-based services such as Cell Base Location and GPS Information are

provided by this software. Cell Base Location means that data about the cell where

the target phone is connected to can be retrieved and this helps to get the geo

location of the target. GPS Information with this target position can be retrieved

using satellite data (i.e. Longitude and Latitude) and a high precision map can be

obtained. [4]

Neocall has different versions. The versions are different since not all have similar

features. These are Basic, Standard, Pro and Full package while Full package as the

name implies having all features described above. Further Neocall has a special version

called Windows mobile with the least number of features from those listed above.

Neocall has the list number of supported OSes. These are BlackBerry and Symbian

phones. [4]

NokiaSpyPhones can secretly record events that have happened on the target phone

and deliver the information to a mobile phone via SMS or to a secure Internet account,

where this information can be viewed from an Internet-enabled computer or mobile

phone. They have features such as Call Interception, Call History Recording,

Environment Listening, SMS Recording, Email Recording, GPS Tracking, Cell ID

Location, SIM Change Notification, and Web Support (i.e. viewing all records of the

target phone via a web account and downloading the information retrieved). This

software has different packages by considering a number of features supported.

Supported OSes include Symbian, Blackberry, and iPhone. [5]

E-stealth, or with a special product named Ultimate Mobile Phone Spy, runs on

mobile phones for similar spying purposes. This software is mainly dependent on

Bluetooth technology, in other words, the target phone Bluetooth should be used.

Features include performing blue bug attack, initiating voice call, retrieving numbers,

setting call forward, and retrieving SMS. This software was mainly developed for

Symbian phones but now the software supports iPhone and Blackberry. [6]

7

2.2 Antispy Software

Mobile spying software is considered to be spyware or even a Trojan by antivirus and

antispy software developer companies. Antispy Software developers have declared

such software as spyware, even if spying software developers claim that a typical

application for such tools is to keep track of one’s spouse, or to monitor one’s children,

or just to keep track of one’s own phone in use. Antispy software developers share

these reasons to declare mobile spying software as spyware. First, if victim have a

full featured spy application installed on their phone, they have no privacy, and the one

controlling the software has access to all of the information that the phone has.

Second, even if the spy software vendors state that their software should be used only

in accordance with local laws, the vendors take no responsibility for how their software

is actually used, and in many countries such monitoring is viewed as gross violation of

personal privacy and can end up in a jail sentence. Also these tools have darker uses

such as industrial espionage, identity theft, or stalking. [7] The main types of antispy

software are discussed below.

F-Secure Mobile Security is developed by F-Secure to protect mobile phones against

mobile spying software. The key features include complete security solution for smart

phones with automatic updates, safeguarding one’s personal and confidential data,

identifying dangerous websites and protecting one’s identity online, locating a lost or

stolen phone, or the person holding it, and protecting against viruses and other

malware. This software provides support for Symbian, iPhone and Blackberry currently.

[8]

Kaspersky Mobile Security 9 provides antispy defense with Internet threat

protection to ensure the safe use of mobile phones. The software aims at guarding

personal data in situations where a phone is lost or stolen, or is targeted while surfing

the Internet. Important features include disabling stolen phone even if the SIM card

has been replaced, providing Google Maps coordinates, blocking unwanted calls and

texts from specified or unknown numbers, providing real-time virus scanning and

advanced firewall for all time protection, and hiding designated contacts, calls, and

8

SMS texts with privacy mode. This software is mainly developed for Symbian, iPhone

and Windows. [9]

BullGuard Mobile Anti Virus provides a solution that protects mobile phones from

malicious programs that target mobile platforms, including Viruses, Worms and Trojans

which have speared to mobile phones. The AntiVirus software can scan all incoming

traffic such as SMS and MMS messages, Bluetooth, Emails and downloads of malicious

programs. If the software has been set to auto-scan, it will detect spying software.

This Software is developed only for Symbian and Windows Mobile at the moment. [10]

9

3 Software Development in Android

3.1 Google Android

“Android is a software stack for mobile devices that includes an operating system,

middleware and key applications. The Android Software Development Kit (SDK)

provides the tools and application Programming Interfaces (APIs) necessary to begin

developing applications on the Android platform using the Java programming

language.” [11; 22; 25]

Android is open-source OS that was released by Google with the Open Handset

Alliance (OHA) in November 2007, and this has decreased the barrier to application

development. [12; 28]

“The OHA is a group of 65 technology and mobile companies who have come together

to accelerate innovation in mobile and offer consumers a richer, less expensive, and

better mobile experience. Together we have developed Android™, the first complete,

open, and free mobile platform. We are committed to commercially deploy handsets

and services using the Android Platform.” [13]

T-Mobile G1 was the first Android mobile handset which was released in the United

States in October 2008 and in the United Kingdom in November 2008. Google Android

is designed to support both touch-screen phones and those without a touch-screen.

The Android timeline is shown in figure 1, showing the most important Android-related

events through the years. The timeline extends from 2001 until December 1010 while

most of the events have happened between the years 2007 and 2010. From the

timeline it is possible to see that more and more mobile phone software and device

manufacturing companies are getting interested to use Android. The timeline also

shows that more members have joined the OHA. [13; 14]

10

Figure 1: Android timeline from September 2001 to December 2010. Modified from Android Academy.

[29]

When discussing an Android OS, it is important to see the underlying architecture,

since the handset runs a Linux 2.6 kernel in which all applications run in their own

virtual machine. The Linux kernel handles all core systems and acts as a hardware

abstraction layer. It is designed to act as an abstraction layer between the physical

hardware of the handset and the Android software stack. [20, 23-25] The major

components of the Android OS are demonstrated in figure 2.

11

Figure 2: The major components of the Android OS. Reprinted from Android Developers. [30]

As seen from figure 2 above the architecture include different components from

Applications layer which is the top layer to Linux kernel. The components are described

briefly below.

Applications are a set of core applications including an email client, SMS program,

calendar, maps, browser, contacts, and others. These are written using the Java

programming language. [11; 20; 26]

Application Framework allows developers to take advantage of the device

hardware, access location information, run background services, set alarms, add

notifications to the status bar, and much more. Further, developers can have access to

the same framework APIs used by the core applications. This component of the

architecture is designed to reuse components; in other words, any application can

publish its capabilities and any other application may then make use of them. Many of

the sub-components of the Application Framework are discussed below.

Activity Manager and Windows Manager are responsible for managing activity and

managing the view respectively. Activity Manager manages activities as an activity

stack. Every activity has four states: Running (active), Paused, Stopped, and Killed.

Window Manager manages views by implementing ViewManager. The ViewManager

has three public abstract methods to be implemented: addView (View view,

12

ViewGroup.LayoutParamsparams),removeView (View view), and updateViewLayout

(View view, and ViewGroup.LayoutParamsparams).

Further, Content providers, Resource Manager and Notification Manager have their

own roles. Content providers are the only way to share data across applications

since there is no common storage area that all Android packages can access. Content

provider store and retrieve data in order to make it accessible by all applications.

Resource Manager provide access to non-code resources such as localized strings,

graphics, and layout files. Notification Manager enables all applications to display

user prompts in the status bar. [11; 20; 27]

Libraries are a set of C/C++ libraries used by various components of the Android

system. Through application Frameworks developers are able to access these

capabilities. [23] Some parts of the libraries are explained below.

The graphics and bitmap libraries include Scalable Graphics Library (SGL),

OpenGL|ES, and FreeType. SGL is the underlying 2D graphics engine used by Android.

OpenGL|ES contains 3D libraries which are implemented based on OpenGL ES 1.0

APIs. FreeType is part of the Android library used for bitmap and vector font

rendering. [11; 20]

Libraries such as System C library (libc) and Media Framework are huge in size and

used by the Android system. C library is a standard C system library specifically for

embedded Linux-based devices. Media Framework is a collection of libraries which

support playback and recording of many popular audio and video formats. [11; 20]

Finally, WebKit and SQLite are powerful engines used by the Android system. WebKit

is a web browser engine which powers both the Android browser and an embeddable

web view. SQLite is a lightweight Structured Query Language (SQL) database engine

available to all applications. [11; 20]

Android Runtime consists of the Core Libraries and the Dalvik Virtual Machine

(DalvikVM). Core Libraries contains a set of core libraries that provide most of the

functionality available in the core libraries of the Java programming language.

13

DalvikVM enables each Android application to run in a separate process, with its own

instance of the DalvikVM. The DalvikVM is optimized for mobile devices. Multiple

instances of DalvikVm can run concurrently since the DalvikVM executes file to

Dalvikexcutable format (.dex) which results in small memory footprints. It relies on the

Linux kernel for underlying functionalities such as threading and low-level memory

management. [11; 20; 24]

Linux Kernel is based on Linux version 2.6 which is the bases for Android software

stack. It provides core system services such as security, memory management, process

management, network stack, and driver model. It is also an abstraction layer between

the hardware of the handsets and the rest of the software stack. [11; 20]

Further, Google Android Provides a number of features which are responsible for the

competiveness of the OS. The current general features are summarized in table 3.

Table 3: Google Android Features. [11]

Feature Description

Application Framework Application framework enabling reuse and
replacement of components

Dalvik Virtual machine Dalvik virtual machine optimized for mobile
devices

Browser Integrated browser based on the open source
WebKit engine

Graphics Optimized graphics powered by a custom 2D
graphics library; 3D graphics based on the OpenGL
ES 1.0 specification (hardware acceleration
optional)

Data Storage SQLite for structured data storage

Media Media support for common audio, video, and still
image formats (MPEG4, H.264, MP3, AAC, AMR,
JPG, PNG, GIF)

Connectivity GSM Telephony, Bluetooth, EDGE, 3G, and WiFi
(hardware dependent).

Development environment Rich development environment including a device
emulator, tools for debugging, memory and
performance profiling, and a plugin for the Eclipse
IDE

Android Market Android Market is an online software store
developed by Google for Android devices. It is
used to browse and download applications
published by third-party developers.

Others Messaging, Camera, GPS, compass, and
accelerometer (hardware dependent).

14

Even though table 3 did not include Android Just-In-Time Compiler (JIT), it is

important to trace its impact. With Dalvik JIT at Android 2.2 the performance has a

speed of two to five times faster for CPU-heavy code over Android 2.1. [31]

3.2 Developing in Android Environment

Many mobile phone application developers have proved that they can develop any kind

of application using Android, which was possible also in other competitive OSes. This

approval of developers is backed up with the fact that Android has a simple and

powerful SDK, no licensing fees, excellent documentation, and a thriving developer

community. In addition to these reasons mentioned, Android is backed by 65 members

of OHA who are working hard for the success. Furthermore, with excellent features,

which are shown in table 3, Android has remarkable market growth.

Figure 3 shows that Android is liked by third-party developers and they are developing

several free applications. [13; 21]

Figure 3: Free VS Paid Applications comparison. Reprinted from Read Write Web. [32]

As figure 3 illustrates, Google Android market has the highest percentage of free

applications compared to other application stores. This can be considered a good sign

for Google Android application users but bad news for developers and further for

end-users.

The bad news for developers is that the Android marketplace takes paid applications

currently for a number of countries, namely Argentina, Australia, Austria, Belgium,

15

Brazil, Canada, Denmark, Finland, France, Germany, Hong Kong, Ireland, Israel, Italy,

Japan, Mexico, Netherlands, New Zealand, Norway, Portugal, Russia, Singapore, South

Korea, Spain, Sweden, Switzerland, Taiwan, United Kingdom, and United States. This

implies that other developers located other than the Countries listed above cannot sell

applications and make money. Another issue for developers is the billing system in

which Google has limited the billing system only by using Google Checkout. According

to a recent survey result, many developers feel that Google Checkout is responsible for

the low download volume of their applications. Many are convinced that if Google could

use other billing systems such as a carrier billing system, they would have made more

money than now. [15; 16; 17; 18]

There are also bad news for end-users. First, currently Android phone users can buy

paid applications only if they are located in the following countries: Argentina,

Australia, Austria, Belgium, Brazil, Canada, Czech Republic, Denmark, Finland , France,

Germany, Hong Kong, India, Ireland, Israel, Italy, Japan, Mexico, Netherlands, New

Zealand, Norway, Poland, Portugal, Russia, Singapore, Spain, Sweden Switzerland,

Taiwan, United Kingdom, and United States. Second, there is no certificate authority

when signing applications since it is completely allowed to use self-signed certificates.

The certificate private key is held by the application's developer and the developer can

digital sign it. This self-signed certification system is not good for end-users who would

download and install applications from Android Marketplace as if the software had

quality. In other words, this might also lead the developers not to consider the quality

of the software they developed and to be less motivated to put further work on the

software they developed. [15; 16; 17; 18; 19]

16

4 Developing a Tracker Application in Android Environment

4.1 Software Requirement Specifications

The following section will discuss the product requirement specifications named

Soft2050 briefly.

4.1.1 Product

The product is Tracking Software for a mobile phone named “Soft2050”. The software

is to be developed for Android mobile phone users who wish to track their mobile

phone. "Soft2050” Android application involved Android User interfaces, Location

Based Services, BroadcastReceiver, Notifications and Messaging.

Product Functions

The software provides the user with two options in order to track the target phone.

These are either using Cell-ID or by GPS. Only the user of the application or someone

who installed it will know the secret SMS to be sent to the target phone when there is

the need to track the target phone.

The software will respond according to the secret SMS type. If the SMS body contains

the correct string that matches that of the location by Cell-ID service, the application

sends back the location of the phone to be tracked. If the SMS body contains the

correct string that matches that of the GPS service provided that the use of the GPS is

enabled by the user of the target phone, the application sends back the location of the

target phone. If the user selected GPS and forgot to enable the GPS on the phone, the

application should at least send back the last known location of the device. In both

services the location information will include a link to the map, longitude and latitude,

street address, post code, and region name of the target phone location.

17

User Characteristics

User activities are illustrated in figure 4 which shows the Usecase diagram of the

application.

 Figure 4: The UseCase diagram for the tracking software application.

In figure 4, the user runs the application and chooses the service either Using GPS or

CellID and clicks Submit. When the user clicks Submit application goes to background

and listens for SMS. During the correct SMS arrival the application communicates with

the Google map server and retrieves the needed information.

General Constraints

The primary constraint for the software is security. The password confirmation is

considered as one security level to identify client with full access. The password

confirmation decreases the risk of insecure use of the software other than the software

owner.

18

Assumptions and dependencies

The main assumptions and dependencies are described as follows:

1. The application will be dependent on Google maps server. If the required service is

not offered by the Google maps server, then the application will not give expected

results.

2. GPS accuracy can be up to several meters depending on the device’s GPS signal

and connection. The device must support GPS and it should allow Google Maps

access to it.

3. The device must support Cell-ID location and the accuracy depends on cell tower

density and available data in Google's Cell-ID location database. Accuracy may be

approximated at distances up to several thousand meters since coverage for

Google's Cell-ID location databases varies by location and is not complete.

Usage Intensity

Usage Intensity means that how often the software will be used by the user. The

expected usage for the software will be 24 hours a day, 7 days a week. This also

depends on the user since the user can decide when to use it.

4.1.2 Hardware and Software Requirements

This section discusses hardware and software requirements and why Android was

chosen to be used in the implementation of the application.

The Programming Language, Android was chosen to implement the project due to

the following reasons.

1. No need for licensing, distribution, or development fees or release approval

processes required.

2. GSM(Global system for mobile communications), EDGE (Enhanced Data rates for

Global Evolution), and 3G(third generation) networks for telephony or data

transfer, enables to receive SMS and enables to send and retrieve data across

mobile networks

http://www.google.com/support/mobile/bin/answer.py?answer=81873

19

3. Provides Comprehensive APIs for location-based services such as GPS and Cell-ID.

4. Gives support for background processes like Service and BrodcastReceiver.

5. Gives full support for application that integrate and use Google’s map service.

The Platform used was Google map APIs 2.1-update1 together with Eclipse 3.5

Galileo IDE. The choice of Eclipse 3.5 Galileo was recommended by Google for Android

developers for this version of Android SDK.

The Hardware used was an Android device named HTC Hero brown. The device had

Firmware version of Android 2.1-update and Browser version of webkit 3.1.The

following figure 5 shows the software information.

Figure 5: Description of software information of the device used.

In figure 5 the Build number is an indicator of which numerical version of the current

overall system was built by developers for the device.

4.1.3 Scenarios

User activities includes Running Application, Choosing service, Using GPS, and Using

Cell-ID while receiving SMS and doing giving the expected service is for the application.

The scenarios bellow briefly explains the user activity together with application

responses.

20

Running Application is an activity happened when the user has the actor role in

which the user clicks it and runs it. Table 4 summarizes this activity.

Table 4: Running Application Scenario

As summarized in table 4, the user has to run the application to use the software. This

is important since the application uses Internet and SMS service which are not free of

charge.

Choosing Service is an activity in which the user selects either GPS or Cell-ID to

retrieve location information. Table 5 summarizes this activity.

Table 5: Choosing Service user Scenario

As summarized in table 5, the user must select the service type in order to use it.

Name: Running application

Summary: No summery available at the moment

Actors: The user

Frequency: At any time

Preconditions: •The user has active and valid access to the tracking
 application
•has mobile phone compatible to the application
•Knows how to use the Phone and the application and
 has the application installed

Descriptions: The user selects the application and runs it

Post conditions: No post conditions at the moment

Name: Choosing Service

Summary: No summery available at the moment

Actors: The user

Frequency: At any time

Preconditions: The application is active

Descriptions: User selects either use GPS or Use CellID

Post conditions: No post conditions at the moment

21

Using GPS is the activity where the user decides to use GPS as the location service

provider. Table 6 summarizes this activity.

 Table 6: Using GPS user Scenario

In table 5 the user must choose Use GPS in order to retrieve the location of the target

phone. At this point the application must save the state and remember which service

to use.

Using Cell-ID is the activity where the user chooses Cell-Id for retrieving location

information. Table 7 summarizes the activity.

 Table 7: Using Cell-ID user Scenario

As summarized in table 7, the user must choose Cell-ID as location service provider

and the application must save its state. During SMS arrival Cell-Id must be used by the

application.

Name: Using GPS

Summary: No summery available at the moment

Actors: User

Frequency: At any time

Preconditions: The application is active

Descriptions: User selects Use GPS at this time application saves the
state of service type

Post conditions: No post conditions at the moment

Name: Using CellID

Summary: No summery available at the moment

Actors: The user

Frequency: At any time

Preconditions: The application is active

Descriptions: The User selects Use CellID at this time application saves
the sate of service type

Post conditions: No post conditions at the moment

22

Submitting is the activity in which the user decides what to do with the software and

sends it to background. The summary of the activity is shown in table 8.

 Table 8: Submitting user Scenario

Table 8 summarizes the last activity performed when the user plays actor role. The

user must click Submit button for the application to go to background.

Receiving SMS is the final activity, and the actor in this case is the application itself.

Table 9 summarizes the activity

 Table 9: Application Receiving SMS Scenario

Even though it is not summarized in table 9, it is important to mention that the

application needs special permission to receive and send SMS.

Name: Choosing Service

Summary: No summery available at the moment

Actors: The user

Frequency: At any time

Preconditions: Application is active

Descriptions: The User selects either use GPS or Use CellID and
presses Submit

Post conditions: No post conditions at the moment

Name: Choosing Service

Summary: No summery available at the moment

Actors: Application

Frequency: At any time

Preconditions: The application is active

Descriptions: After the user selects either use GPS or Use CellID and
presses submit, the application goes to background and
initiates Service and Broadcast Receiver. At this point
the application is listening for SMS arrival and If the
request is to send location, it will send back location of
the phone to be SMS that contains link to the map
together with additional information including longitude
and latitude, street address, post code, and region name
of the target phone location.

Post conditions: No post conditions at the moment

23

4.2 Implementing an Android Location Application

The application has one main activity class, one service class and one receiver class.

The activity class named Soft2050.java defines the user interface and handles user

interactions. The Soft2050.java has been defined as the default activity of Soft2050

inside AndroidManifest.xml file. In there, if the user chooses use Cell-ID or Use GPS

then the class dispatches broadcast Intents events which are responsible for starting

for listening SMS arrival. This is performed by receiver class named

Soft2050Receiver.java. So during SMS arrival, if SMS body is “1234567”, the

application receiver class will start a service through the service class called

Soft2050Service.java, and if the SMS body is “2345678”, then the receiver class will

make Use of Google’s Cell-ID to retrieve location information. The service class is

responsible for retrieving location information using GPS.

Implementing the activity class called Soft2050.java, which displays the User interface

(UI) is shown in figure 6:

Figure 6: The User interface of Soft2050

The first point is to define the resource definition file for the UI. The file is buttons.xml

file which is described below.

The first step followed was to define the layout structure and hold all the elements that

appear to the user. The Layout is the architecture for the user interface in an Activity.

[25; 26]

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="fill_parent"

24

android:layout_height="fill_parent">

</LinearLayout>

Another LinearLayout to hold the RadioGroup is created but this time height set to

wrap_content. The RadioGroup will hold the two radio buttons. Grouping the two radio

buttons inside the RadioGroup makes sure that checking one radio button that belongs

to a radio group unchecks any previously checked radio button within the same group.

<LinearLayout

…

<LinearLayout

android:orientation="horizontal"

android:layout_width="fill_parent"

android:layout_height="wrap_content">

<RadioGroup

android:id="@+id/RadioGroup01"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

<RadioButton

android:id="@+id/RadioButton01"

…

android:text="Use Gps"></RadioButton>

<RadioButton

android:id="@+id/RadioButton02"

…

android:text="Use Cellid"></RadioButton>

</RadioGroup>

Inside the very same LinearLayout tag, another Linearlayout, containing TextView and

Button is created with the height and width being “wrap_content”.

<LinearLayout

…

<TextView

android:id="@+id/TextView01"

android:text="Choose 1"

</TextView>

<Button

25

android:id="@+id/Button01"

…

android:text="Clear Choice"></Button>

</LinearLayout>

</LinearLayout>

…

Finally, Inside the Main LinearLayout another LinearLayout defining resource definition

for another button with Text Submit is created.

<LinearLayout

 …

<LinearLayout

android:orientation="vertical"

…

android:gravity="bottom">

<Button

android:id="@+id/submit_demo"

…

android:text="Submit"

android:gravity="center" />

</LinearLayout>

</LinearLayout>

After defying the resource definition file, it is time to load buttons.xml in onCreate()

method event handler of the activity class. This is done by using the setContentView()

method. The code snippet below shows how it was done:

public class Soft2050 extends Activity {

…

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.buttons);…}

Once loading the UI using the activity class, the UI must interact with the user, which

is described below.

26

When the user clicks on the “submit” button, the application goes to background. This

is done by calling Soft2050.this. moveTaskToBack(true) inside OnClick(), as shown

below:

…

public void onClick(View v){

Soft2050.this. moveTaskToBack(true);}});

 …

In the following it is described how the onCheckChanged() method has been

implemented. The method uses instance of RadioButton to do the following.

If the user selects any of RadioButtons, first the method checks if the checkid is not

equal to -1, to check if any RadioButton is currently checked, if true, the method

creates instance of RadioButton and gets the text label of the RadioButton informing

the user which of the RadioButtons the user has chosen.

…

TextView tv = (TextView) findViewById(R.id.TextView01);

if (checkedId != -1) {

RadioButtonrb = (RadioButton) findViewById(checkedId);

if (rb != null) {

tv.setText("You chose: " + rb.getText());}}

else{

tv.setText("Choose 1");}

…

If the user selects checked Id for Use CellID or Use GPS, the method creates instance

of intent in which the intent dispatches a broadcast Intent through the class named

Soft2050Receiver. This class is discussed in the implementation of the receiver class

but the task of the class is to listen for SMS arrival.

…

if(checkedId == 1){

Intent intent = new Intent(Ctx,Soft2050Receiver.class);

Soft2050Receiver start = new Soft2050Receiver();

start.onReceive(Ctx, intent);}

27

else if(checkedId == 2){

Intent intent = new Intent(Ctx,Soft2050Receiver.class);

Soft2050Receiver start = new Soft2050Receiver();

start.onReceive(Ctx, intent);}}});

The implementation of the receiver class named Soft2050Receiver.java is described

below.

This Class is responsible for receiving SMS, and to do this, the class has registered a

BroadcastReceiver to listen to an Intent action associated with receiving an SMS.

…

<receiver android:name=".Soft2050Receiver" android:enabled="true">

<intent-filter>

<action android:name="android.provider.Telephony.SMS_RECEIVED" />

</intent-filter>

</receiver>…

The class should extend BroadcastReceiver (i.e base class code that will receive intents

sent by sendBroadcast().).

public class Soft2050Receiver extends BroadcastReceiver

…

The class has private method implementation called getMessagesFromIntent(), taking

an Intent as a parameter and returning the reference to one-dimensional array that

contains the received message. First, a static reMsgs variable is declared and then set

to null. Second, the message bundle is retrieved with a call to getExtras(). Third, with

in the try-catch block, the bundle is checked if an array of objects contains a PDU-data

(i.e. data format for wireless protocol.) and used the static variable retMsgs to retrieve

the PDU data. Fourth, in the for loop the message was created with a call to

SmsMessage.createFromPdu() from PDU data . It is good to have the try-catch. One

reason could be the bundle might not contain any data.

…

private SmsMessage[] getMessagesFromIntent(Intent intent){

28

SmsMessage retMsgs[] = null;

Bundle data = intent.getExtras();

try{

Object pdus[] = (Object [])data.get("pdus");

retMsgs = new SmsMessage[pdus.length];

for(int n=0; n <pdus.length; n++){

byte[] byteData = (byte[])pdus[n];

retMsgs[n] = SmsMessage.createFromPdu(byteData);

}}

catch(Exception e)

{Log.e(Soft2050.Soft_debug_tag, "fail to create return message!", e);}

return retMsgs;}

Another important point is that the class overrides the onReceive() method. This

method is to be called when BroadcastReceiver is receiving an Intent broadcast as

show in Soft2050.java class implementation.

@Override

public void onReceive(Context context, Intent intent) {

…

Inside the onReceive(), the method checks if the received intent is the telephony’s SMS

received, and if not, it does nothing.

if(!intent.getAction().equals("android.provider.Telephony.SMS_RECEIVED

")) {return;}

If the above condition is true, the getMessagesFromIntent() will be called and the

message will be retrieved to the variable msg. Inside the for loop, first, with a call to

getDisplayMessage(), the message body is retrieved to the variable message. Second,

within the if clause, the message has arrival checked, and received message checked if

it matches the password constant defined in Soft2050Contants.java class (i.e.

Soft2050Constants.PASSWORD = 1234567).Third, after checking the above condition,

a new intent is created to start Soft2050Service. Then, using the putExtra() method,

the phone number of the SMS sender was retrieved to be used by the

Soft2050Service.java class. Forth, with a call to the context.startService() method, the

29

service was started. The Soft2050Service class is responsible for retrieving the location

of the device by using the deivce’s GPS and Google maps.

…

SmsMessage msg[] = getMessagesFromIntent(intent);

for(int i=0; i <msg.length; i++){

String message = msg[i].getDisplayMessageBody();

if(message!=null&&message.length()>0

&&message.matches(Soft2050Constants.PASSWORD)){

Log.i(Soft2050.Soft_debug_tag, message);

Intent mIntent = new Intent(context, Soft2050Service.class);

mIntent.putExtra("dest", msg[i].getOriginatingAddress());

context.startService(mIntent);

}…

In the above code, the else if clause checks if the message is not equal to null, and

then checks if it matches it matches Soft2050Constants.PASSWORD2 (i.e. defined in

Soft2050Constants.java class as 2345678). If the condition is true, the device’s location

will be retrieved by using Google's Cell-ID.

else if (message != null &&message.length() > 0

&&message.matches(Soft2050Constants.PASSWORD2))

{…

To obtain the Cell-ID of a device, the GsmCellLocation class was used. Below the first

two lines show the declaration of the location and cellID and lac member variables

respectively.

…

GsmCellLocation location;

intcellID, lac;

The next step is creating an instance of the TelephonyManager class. The

TelephonyManager is used to obtain an instance of the GsmCellLocation class.

TelephonyManager tm=

(TelephonyManager)context.getSystemService(Context.TELEPHONY_SERVICE);

30

location = (GsmCellLocation) tm.getCellLocation();…

The next code snippet shows the GsmCellLocation class instance is used to obtain the

device's cell ID and Location Area Code (LAC) by a call to its getCid() and getLac()

methods respectively.

cellID = location.getCid();

lac = location.getLac();

…

However getting Cell-ID and LAC is not enough to get the location of the device. To

get the location of the device, these two values have to be resolved into latitude and

longitude. The following code shows how it is done.

First, an HTTP connection to the Google Maps API is opened.

…

String slocation = "";

try {

String urlString = "http://www.google.com/glm/mmap";

URL url = new URL(urlString);

URLConnection conn = url.openConnection();

HttpURLConnection httpConn = (HttpURLConnection) conn;

…

httpConn.connect();

Second, using the WriteData() method defined, a data containing cellID and lac values

is posted to the Google Map API to retrieve the corresponding latitude and longitude

values. Then the response is obtained by a call to the getInputStream() method.

…

OutputStream outputStream = httpConn.getOutputStream();

WriteData(outputStream, cellID, lac);

…

InputStream inputStream = httpConn.getInputStream();

DataInputStream dataInputStream = new DataInputStream(inputStream);

…

31

After getting the latitude and longitude values, the values concatenated together with

a link to Google Map to the static string variable named slocation. This was done to get

the corresponding Google Map link.

…

slocation += "\n" + String.format("http://maps.google.com/maps?q=%f",

lat) + "%20" + String.format("%f", lng) + "\n";

…

Third, the class Geocoder instance is being used to do reverse Geocoding, the process

of transforming latitude and longitude values into an address. So, first, an instance of

Geocoder class is constructed followed by addr variable.

Geocoder gc = new Geocoder(context, Locale.getDefault());

Address addr;

…

Fourth, inside the for loop, first by using the addr instance, a call to the togetLocality(),

getThoroughfare(), getFeatureName(), getAdminArea(), getSubAdminArea(), and

getPostalCode() was made. The above call will return thoroughfare, feature,

administration, sub-administration names of the address, and postal code of the

address respectively and it is important to note that some values cloud be null.

for(int j=0; j<myList.size(); j++){

addr = myList.get(i);

if(addr.getLocality()!= null)

slocation += addr.getLocality();

if(addr.getThoroughfare() != null)

slocation += "|" + addr.getThoroughfare();

if(addr.getFeatureName() != null)

slocation += "|" + addr.getFeatureName();

if(addr.getAdminArea() != null)

slocation += "|" + addr.getAdminArea();

if(addr.getSubAdminArea() != null)

slocation += "|" + addr.getSubAdminArea();

if(addr.getPostalCode() != null)

slocation += "|" + addr.getPostalCode();}}…

32

Finally, by getting an instance of an SMSManager using a call to the getDefault()

method, the Soft2050 application was able to send the retrieved location information.

After this a call to the sendTextMessage() made with parameters slocation (i.e. the

String variable containing the location information) and phone number of the SMS

sender.

SmsManager sms = SmsManager.getDefault();

…

sms.sendTextMessage(msg[i].getOriginatingAddress(), null, slocation,

null, null);}}}}

For the class to be able to send an SMS, access device location, and use the Internet,

the class needs to add permissions in the manifest file as follows:

…

<uses-permission android:name="android.permission.SEND_SMS" />

<uses-permission

android:name="android.permission.ACCESS_COARSE_LOCATION" />

<uses-permission android:name="android.permission.INTERNET" />

…

The implementation of the Service class named Soft2050Service.java is described as

below.

As stated above, in the implementation of Soft2050Receiver, the receiver class makes

use of the service class, when the users request to locate their device by GPS. Simply

calling the startService() method will do. In this project, it was important to recall that

inside the onReceive() method of the Soft2050Reciver class, for received message

types which matches “1234567”, the startService() method was called. Calling the

startService() method from another class, will result in the corresponding call to the

onStart() method of the service class. The service class must override the onStart.

This class must add a service block containing the Soft2050Service class inside it,

extend the Service class and override the onCreate(), onStart(), and onDestroy()

methods, as shown below:

…

33

<service android:name=".Soft2050Service"></service>

…

public class Soft2050Service extends Service {

private NotificationManager NM = null;

LocationManager locationManager = null;

…

@Override

public IBinder onBind(Intent arg0) {

return null;}

@Override

public void onCreate() {

NM = (NotificationManager)getSystemService(NOTIFICATION_SERVICE);

locationManager=

(LocationManager)getSystemService(Context.LOCATION_SERVICE); }

The service class makes use of the method getGPSStatus() which returns the name of

the GPS provider if any. First, the allowed Location Providers String will contain any

allowed location provider, if null should be initialized. Second, it returns

LocationManager.GPS_PROVIDER which is name of GPS provider if any.

private Boolean getGPSStatus(){

String allowedLocationProviders =

Settings.System.getString(getContentResolver(),

Settings.System.LOCATION_PROVIDERS_ALLOWED);

if (allowedLocationProviders == null) {

allowedLocationProviders = "";}

return

allowedLocationProviders.contains(LocationManager.GPS_PROVIDER)}

The class has overridden the onStart() method. As discussed in the beginning of this

section, the method should be called to start the service of this class. The call is not

direct. Instead a call to Context.startService() will result in a call to the onCreate()

method, then finally followed by a call to onStart() method.

public void onStart(final Intent intent, intstartId) {

super.onStart(intent, startId);

34

…

The Soft2050 should provide implementation of LocationListener. The object of

LocationListener consists of four methods; two tell the application if the provider has

been disabled or enabled, one tells the status of the provider, and the last one location

information. In this project the application was implemented only using the

onLocationChanged() method.

LocationListener locationListener = new LocationListener() {

…

Implementation of onLocationChanged() method, the method receives Location object

with most recent location information.

public void onLocationChanged(Location location) {

The class uses an SmsManager instance to send the recent location information. Inside

the sendTextMessage method, a call to intent.getExtracts() gets the originating SMS

sender phone number from the Soft2050Reciver class. The getAddr() method which is

described below, will take in location instance and from there will get latitude and

longitude and will do reverse Geocoding which was described earlier in receiver class

implementation section. Finally, the call to the removeUpdates() will remove current

registration for location update.

SmsManager.getDefault().sendTextMessage(intent.getExtras().getString("

dest"),null,getAddr(location,getApplicationContext()),deEvent,

deEvent);

locationManager.removeUpdates(this);}…}};

The class checks for location update using the LocationListener instance. Second, the

class creates instance of Location and uses it to get the last known location of the

device using GPS by calling getLastKnownLocation("gps"). Third, if the GPS location

result is not found, the Location instance is used to get the last known location using

another network provider by calling getLastKnownLocation("network"). Finally,

PendingIntent instance is created and used to send Broadcast with a call to the

getBroadcast() method.

35

locationManager.requestLocationUpdates(LocationManager.GPS_PROVIDER,0,

0, locationListener);

Location location = locationManager.getLastKnownLocation("gps");

if (location == null)

location = locationManager.getLastKnownLocation("network");

if (location != null){

PendingIntent

deEvent=PendingIntent.getBroadcast(this,0,new Intent("IGNORE"), 0);

…

In order to send the required location information, first, with a call to .getExtras(), the

String variable dest will retrieve the destination phone number from Soft2050Receiver

class. Second, with a call to getAddr() method the String variable sms will retrieve the

reverse Geocoding result of the method. Finally, onStart() method uses

SmsManger.getdefault to send an SMS to the specified destination with location

information of the target phone.

…

String dest = intent.getExtras().getString("dest");

String sms = getAddr(location, this);

SmsManager.getDefault().sendTextMessage(dest,null,sms,deEvent,deEvent)

;}}…

Finally, for the service class, permissions have to be added inside the Android manifest.

This is because the application needs permission to use location permission.

…

<uses-permission

android:name="android.permission.ACCESS_FINE_LOCATION" />

36

4.3 Testing and Signing

Testing

In this project, the black box testing system was chosen to run the test. The

application Soft2050 testing included UI and functionality testing.

User Interface testing was started by running the application, after running the

application, the UI which is defined in the requirement specifications of the project was

displayed. In order to run the Software on the device, the following procedure was

followed:

1. Inside the Manifest file the Debuggable attribute was set to true.

2. The HTC hero device was connected to the computer via USB.

3. Soft2050 < Run As < the device was selected and double clicked.

In order to see the application logcat file, the Dalvik Debug Monitor was started by

executing the “ddms” command inside tool folder of the Android SDK as follows:

1. C:\Program Files\Android\android-sdk-windows\tools\> ddms.

The expected UI was displayed, similar to that of figure 6. It has the two radio buttons

and the other buttons which were expected to show. UI functionality tests namely “Use

Gps”, “Use cellid”, “Clear choice”, and “Submit” were run. The results were obtained as

shown in figures 7, 8, and 9.

Figure 7: User selected “Use Gps”

Figure 8: User Selected “Use Cellid”

37

Figure 9: User Pressed “Clear Choice” Button.

Figure 10: User pressed “Submit” and application goes to background.

The result of the UI functionality test proved that UI reacts to user interactions

successfully. A summary of the UI functionality test is shown in table 10.

Table 10: User interface test for Soft2050

Test Case Expected Result Result(true/fal
se)

Evidence

User
Selected“Use
Gps” Radio
button.

Selected mode on “Use Gps”
radio button and “Choos 1” of
button “Clear Choice”should
changed to “You Choosed: Use
Gps”

True Figure 7

User Selected
“UseCellid” Radio
button.

Selected mode on “Use Cellid”
radio button and “Choos 1” of
button “Clear Choice” should
changed to “You Choosed: Use
Cellid”

True Figure 8

User pressed
Clear Chice

If there is any Radio button is in
Selected mode, It should change
to now selected mode.

True Figure 9
Note: User has already
pressed the button at
this moment.

User pressed
“Submit”

Application should go to
background and should be on All
programs window.

True Figure 10.

It is important to consider figure 10 which shows the program windows. The program

windows were visible after the user pressed the Submit button on the software.

38

Functionality Test

In this project, the purpose of the functionality test was to test if the software could

perform as the user expected. The selected locations for running the test were

Avaruuskatu 3, 02210 Espoo and Biskopsbron 11, 02230.The different test cases made

are described in the following.

1. The user selected “Use Cellid” and pressed “Submit”

Here the GPS status was considered when running the test. This is to check if the user

experience that using GPS while disabled will give only the last known location. The

following sub test cases namely “Phone in dual network mode and GPS disabled” and

“Phone in dual mode GPS enabled” were carried out.

a) Phone was in the dual network mode and the GPS was disabled.

The user sent an SMS with the message body “2345678”. The result is shown below in

the figure 11, for Avaruuskatu 3, and figure 12 for Biskopsbron 11.

Figure 11: User selected “Use Cellid” and phone dual mode.

Figure 12: User selected “Use Cellid” and phone dual mode.

39

b) Phone was in dual mode and GPS was enabled.

The user sent an SMS with message body “2345678”. The result was the same as case

(a) for both locations, which is shown in figures 11 and 12.

2. The user Selected “Use Gps” and Pressed “Submit”

This test was carried out by moving from one location to another location. This done to

make sure that the location information updates when moving from one location to

another. The following sub test cases namely “Phone in dual network mode and GPS

enabled” and “Phone in dual mode GPS disabled” were carried out.

a) Phone was in dual network mode and GPS was enabled.

The user sent an SMS with the message body “1234567”. The result is shown in

figures 13 and 14. The test was made both inside the building and outside the building

but no difference could be seen at the moment of the test.

Figure 13: User selected “Use GPS” and GPS was enabled.

Figure 14: User selected “Use GPS” and GPS was enabled.

b) Phone was in dual mode and GPS was disabled

This test case was executed first in Avaruuskatu 3 and then after moving to the second

test location Biskopsbron 11. So at the second location, the device’s GPS was disabled.

The user sent an SMS with the message body “1234567”. The result is shown in figure

14. It is the last known location.

40

Signing

Now that the application is functioning as expected, it is time to sign it. The Android

system requires that all installed applications to be digitally signed with a certificate

whose private key is held by the application's developer. [19]

Since the application is ready for end-users, it is time to sign the application with a

release mode. In order to do this, it must be signed with a suitable private key. The

following steps are taken to do so:

1. The first step is to generate a private key by executing a keytool command inside

 the Java Development Kit’s (JDK) bin directory, as show in figure 15.

Figure 15: Executing the Keytool command that generates a private key.

2. The last step is to sign the Soft2050.apk file by executing the jarsigner command

 and then verifying if it is signed correctly by executing the jarsigner –verify

 command as shown in figure 16.

 Figure 16: Executing Jarsigner to sign Soft2050 package.

41

5 Discussion

The application Soft2050 was fully developed fulfilling the requirement specifications

set at the beginning of this project. The application can send back location information

as seen in the figures 11, 12, 13 and 14.

It has been noticed from the figures that the actual locations of the test places were

some 100 meters away. As seen from figures 11 and 12, test case 1 when the user

selected “Use Cellid” and pressed “Submit”, the location information was not exact.

When checking on the Google map, the retrieved location Planeetankatu 1 was

serveral 100 meters away from test place 1 Avaruuskatu 3. The second result for the

second test place (i.e Länsiväylä) was even worse while the real location was

Biskopsbron 11. This problem in accuracy of location information was because the

coverage for Google's cell ID databases varies by location and is not complete. As seen

for Avaruuskatu 3 the corresponding retrieved location was better than the second test

location Biskopsbron 11.

The second test case, when GPS was enabled on the device, the retrieved location

information was better. For the first test location Avaruuskatu 3 the retrieved location

was Kuitinmäenraitti, Espoo which was very near to Avaruuskatu 3. When considering

the second test location, the retrieved location information was Biskopsbron 8, Ussimaa

the result was checked on Google map and it was almost exact. When considering

Biskopsbron 11 case the result was better than that of Avaruuskatu 3. This was

because GPS accuracy can be up to several meters depending on the device’s GPS

signal and connection.

As mentioned in sub test case (b) of 2, the test case where the device’s GPS was

disabled was executed first in Avruuskatu 3 and after that in the second test location,

which was Biskopsbron 11. The result was Biskospsbron 8 which was the last known

location. The result was as expected.

42

5.1 Benefits

As discussed above, the Soft2050 has benefits when using both Cell-ID and GPS as the

location retriever.

The advantages of using the Cell-ID over the GPS could be that, first, the user of

Soft2050 will get approximated location information in many places and second, the

user will not care if the GPS is enabled or disabled or the device could not have GPS at

all. Finally, while using GPS and since GPS has to be enabled all the time, the device

will consume battery faster.

There are advantages of using GPS over Cell-ID. First, the user of Soft2050 will get

almost exact information on the location of the device. Second, in some devices, the

manufacturer may not have enabled API to allow for Cell-ID and therefore not all

devices support Cell-ID.

5.2 Drawbacks

Based on the testing and the discussion above, using Soft2050 has drawbacks. In

many cases, the user of Soft2050 may suffer from high phone bills. This is because

when using GPS, every time the Soft2050Service class makes an update, it sends an

SMS and uses mobile network to download the link. The other problem is the user

does not get exact location in many cases.

It is important to consider battery consumption since mobile phones have limited

power source. As a result the user of the software should consider high battery

consumption while using GPS. Finally, the user should be aware of getting empty

messages from the software. This is caused when there is no Cell-ID database

coverage in the area.

43

5.3 Future Development

The software needs to be further developed. In other words, it will include a number of

functionalities. There are users who would like to have this application as a background

invisible application. As a result, the application will run in the background, which

means there will be an option for the user to run the application in the background, so

that the target phone user will not have any idea if the application exists or not. It is

not enough that the application runs in the background to be invisible. This is to

consider while sending an SMS request to the target. The target phone user will not

see the SMS notification for the secret SMS to be sent. This can be done by adding a

silent SMS functionality. The other important feature the application will have is SMS

copying. SMS copying means that the application will send copy of sent or received

messages from the target phone to the owner of the software at request.

Furthermore, the application will add a spy call functionality which will be used to listen

to a conversation between the target phone and any other call receiver or caller.

44

6 Conclusions

The goal of this project was to develop a mobile phone tracking application for Google

Android phones. The application was expected to include the use of GPS and Cell-ID to

track the location of the mobile phone. The tracking software named Soft2050 was

fully developed using Android.

During testing it was found out that it was possible to retrieve a location both by GPS

and Cell-ID while using Google Android. This was possible because Android gave

support for the background processes such as service and broadcast receiver. Using

the receiver, it was possible to listen to an SMS arrival and launch a service.

The development process was fast. This was possible for a number of reasons. First,

Android provided APIs for location-based services such as GPS and Cell-ID. Second,

having Eclipse with Application Development Kit Plug-in as a choice to develop the

application led to an easy means of debugging and testing. Especially the use of Dalvik

Debug Monitor Server was the reason for an efficient device testing.

This type of application could be categorized as spying software. However, the tracking

application was found important since it will allow users to trace lost phones or to

locate lost people. The application can be developed further by adding a number of

features such as running in the background, SMS copying and making a spy call. It is

recommended to avoid the misuse of such software.

45

References

1 Spy Mobile Phone [online], Mobile Spy; 21 January 1999

 URL: http://www.spy-mobile-phone.com

 Accessed: 12 March 2010

2 iPhone Spy Software [online], Applicationle iPhone Spy Software; 13

January 2010

 URL: http://www.iphone-spy-software.com.

 Accessed: 15 March 2010

3 FlexiSpy [online], FlexiySpy Software features; 13 January 2006

 URL: http://www.flexispy.com/spyphone-features-compare.htm#special.

 Accessed: 15 March 2010

4 What is NeoCall? [online], NeoCall; 31 August 2006

 URL: http://www.neo-call.com/en/price_features.php

 Accessed: 8 October 2010

5 Nokia spy software [online], NokiaSpyPhone; 12 August 2007

 URL: http://www.nokiaspyphones.com/comparespyphones.html

 Accessed: 11 October 2010

6 Ultimate Mobile Spy [online], E-stleath; 11 December 2008

 URL: http://www.e-stealth.com/Listening-Devices_c_582.html

 Accessed: 1 November 2010

7 Mobile Spy Tool [online], F-Secure; 31 August 2006

 URL: http://www.f-secure.com/weblog/archives/00000962.html

 Accessed: 19 March 2010

46

8 Mobile Security 6 [online], F-secure; 19 January 2010

URL:http://www.fsecure.com/system/fsgalleries/datasheets/

FSC_ms6_usa.pdf

Accessed: 20 March 2010

9 KasperSkyMobile Security [online], KasperSky; 23 June 1997

 URL: http://usa.kaspersky.com/products-services/

 -home-computer-security/mobile-security

 Accessed: 3 November 2010

10 BullGuard Internet Security [online], BullGaurd; 22 February 2001

 URL: http://www.bullguard.com/bullguard-security-center.aspx

 Accessed: 2 November 2010

11 What is Android? [online], Android Developers; 16 April 2007

 URL: http://developer.android.com/guide/basics/what-is-android.html

 Accessed: 22 March 2010

12 Jerome, Dimarzio. Android a Programmer’s Guide. United States of

 America: McGraw-Hill Companies; 2008

13 FAQ [online], Open Handset Alliance; 5 November 2007

 URL: http://www.openhandsetalliance.com/oha_faq.html

 Accessed: 23 March 2010

14 Android timeline [online], Android Academy; 4 October 2007

 URL: http://www.androidacademy.com/4-android-timeline

 Accessed: 8 November 2010

15 Android Market [online], Android Feeder; 16 December 2007

 URL: http://androidfeeder.com/

 Accessed: 10 November 2010

47

16 Paid Application Availability [online], Android Market; 16 April 2007

 URL: http://market.android.com/support/bin/answer.py?hl

=en&answer=143779

 Accessed: 11 November 2010

17 Application Developer not happy with Android [online], GigaOM; 4August

2008

 URL:

http://gigaom.com/2009/11/29/android-application-developers-not-

happy/

 Accessed: 12 November 2010

18 Sale with Google Checkout [online], Google Checkout; 16 December 2007

 URL: http://checkout.google.com/seller/sales.html

 Accessed: 12 November 2010

19 Signing Application [online], Android Developers; 16 December 2007

 URL:

http://developer.android.com/guide/publishing/application-signing.html

 Accessed: 12 November 2010

20 Shane Conder and Lauren Darcey. Android Wireless Application

Development.

 United States of America: Addison Wesley; 2010

21 The Truth about Mobile Application Stores [online], Read Write Web;

 20 April 2003

 URL:http://www.readwriteweb.com/archives/the_truth_about

_mobile_Application_stores.php

 Accessed: 30 04 2010

22 Mark L. Murphy Beginning Android.

 United States of America: Apress; 2009.

48

23 What is the Android NDK? [online], Android Developers; 16 April 2007

 URL: http://developer.android.com/sdk/ndk/index.html

 Accessed: 01 05 2010

24 Dalvik [online],Android Open Source Project; 5 November 2007

 URL: http://source.android.com/porting/dalvik.html

 Accessed: 10 05 2010

25 Ed Burnette Hello, Android.

United States of America: The Pragmatic Bookshelf; 2008.

26 Rick Rogers, John Lombardo, Zigurd Mednieks, and Blake Meike. Android

Application Development.

 United States of America: O’REILLY: 2009.

27 Retro Meier. Professional Android Application Development.

 United States of America: WILEY: 2009.

28 Android is now available as open source [online], Android Open Source

Project; 16 April 2007

 URL: http://source.android.com/posts/opensource

 Accessed: 17 05 2010

29 Timeline of Androids evolution [online], Android Academy

Project; 20 May 2008

 URL: http://www.androidacademy.com/4-android-timeline

 Accessed: 19 01 2011

30 Android Architecture [online], Android Developers

Project; 16 April 2007

 URL: http://developer.android.com/guide/basics/what-is-android.html

 Accessed: 20 05 2010

49

31 Android 2.2 Platform highlights [online], Android Developers

Project; 16 April 2007

 URL: http://developer.android.com/sdk/android-2.2-highlights.html

 Accessed: 19 05 2010

32 Free VS Paid Applications comparison [online], Read Write Web

Project; 14 May 2003

 URL:

http://www.readwriteweb.com/archives/the_truth_about_mobile_Applicat

ion_stores.php

 Accessed: 21 06 2010

