VERKKOLIIKENTEEN RIVERBED STEELHEAD - OPTIMOINTI

Tiedonsiirto simuloidussa laajaverkossa

Teemu Sujamo

Opinnäytetyö
Huhtikuu 2011
Tietojenkäsittely
Tietoverkkopalvelut
Tampereen ammattikorkeakoulu

TAMPEREEN AMMATTIKORKEAKOULU
Tampere University of Applied Sciences
TIIVISTELMÄ

Tampereen ammattikorkeakoulu
Tietojenkäsittely, Tietoverkkopalveluiden suuntautumisvaihtoehto

SUJAMO, TEEMU: Verkkoliikenteen Riverbed Steelhead -optimointi
Tiedonsiirto simuloidussa laajaverkossa

Opinnäytetyö 56 s., liitteet 28 s.
Huhtikuu 2011

Työn teoriaosuudessa esitellään yleisellä tasolla optimoinnin tarkoitus ja optimointimenetelmiä sekä työn suorittamisessa käytetty teknikat. Taustateoria painottuu Riverbedin laite- ja käyttömanuaaleihin, sekä verkkotekniikoita käsittelevään kirjallisuuteen ja verkkolähteisiin. Työn käytännön osuudessa esitellään ja suoritetaan tarvittavat mittaukset. Mittausten avulla saadaan tutkimuskysymyksen kannalta oleellinen aineisto, jonka perusteella laitteiden optimointikykyä tutkitaan.

Tutkimus tehdään suorittamalla mittaussarjoja simuloidussa laajaverkossa jonka metriikoita muutetaan sarjojen välissä. Mitausten kautta on tarkoitus selvittää kuinka tehokkaasti Steelheadit optimoivat liikennettä ja miten laajaverkon linjanopeus, vasteaika, ja siirrettävän tiedoston tyyppi vaikuttavat optimointitehoon.

Saaduista tuloksista havaitaan, että Steelheadien käyttöönottamisen verkossa tehostaa tiedonsiirtoa. Tiedonsiirron optimoinnin laskee siirtoaikoja sekä tehostaa kaistankäyttöä vähentämällä verkon yli kulkevan tiedon määrää. Laitteiston toimintarajojen sisällä optimointi tehostaa tiedonsiirtoa huomattavasti. Suuremmilla linjanopeuksilla tulokset eivät ole täysin vertailukelpoisia, mutta nekin tukevat havaittuja ilmiöitä vasteajan ja tiedostotyyppin vaikutuksesta siirtoihin.

Avainsanat: Laajaverkko, Optimointi, Kiihdytys, Tiedonsiirto, Steelhead
ABSTRACT

Tampereen ammattikorkeakoulu
Tampere University of Applied Sciences Degree Programme in Information Technolo-
gies, Specialisation of Computer Networks

SUJAMO TEEMU: Network Traffic Optimization with Riverbed Steelhead
File Transfer in Simulated Wide Area Network

Bachelor’s thesis 56 pages, appendices 28 pages
April 2011

The purpose of this thesis was to research the optimization capability of Riverbed Steel-
heds in wide area network file transfers. Steelheads are networking optimization
equipment developed to accelerate the network traffic and applications by improving
the use of network resources. WAN optimization is a viable option to solve issues with
network performance caused by low bandwidth and high latencies. The thesis was made
for Fujitsu Services Oy.

Optimization as concept and standard optimization techniques as well as the technolo-
gies used in this research are introduced in theoretic part of the thesis. The theoretic part
is based on Riverbed manuals as well as technical documents and literature about net-
working techniques. Research methods are introduced and carried out in the practical
part of the thesis. The use of proper research methods was important in order to collect
relevant data for this thesis.

The research was conducted using a series of measurements in a simulated WAN envi-
ronment where network metrics were changed. The purpose of the measurements was to
obtain data about how effectively Steelheads optimize traffic and how changing the
network bandwidth, latency and type of transferred file affects optimization.

The collected data suggests that file transfers are improved over unoptimized, regular
file transfers with the introduction of Steelhead in the network. File transfer speed im-
proves and the bandwidth usage is lowered when traffic is optimized. Within the band-
width range of Steelheads, the file transfers are accelerated at a very high rate. Data ob-
tained from the higher bandwidth transfers is not fully compatible but the results sup-
port the observations about the effect of latency and type of transferred file have on op-
timization rates.

Keywords: Wide Area Network, Optimization, Acceleration, File Transfer, Steelhead
1 JOHDANTO

Työ tehtiin Fujitsu Services Oy:n toimeksiantona. Fujitsu Services Oy tarjoaa asiakasyrityksille monimuotoisia verkkopalveluita, joihin kuuluvat myös Riverbed-ratkaisut asiakasyritysten verkkoliikenteen tehostamisessa. Riverbed Steelheadista on tehty vertailevaa tutkimusta muiden verkkoliikenteen kiihdytystekniikoiden kanssa, mutta tutkimusta verkkoliikenteen tyyppin sekä verkon ominaisuuksien vaikutuksesta Steelheadien optimointitehoa ei ole tehty.

Työ tehtiin kvantitatiivisena tapaustutkimuksena. Benchmarking soveltui parhaiten tutkimusmenetelmäksi, sillä työn tavoitteena oli tuottaa tuloksia joiden perusteella pystyttäisiin arvioimaan Steelheadien optimointitehoa ja optimointitohon muuttumista verkon ominaisuuksia mutettaessa. Tämän lisäksi mittauksen kautta saatavia tuloksia täytyi pystyä vertailemaan keskenään.

Tutkimus suoritettiin simuloidussa laajaverkossa todellisen yritysverkon sijaan. Näin toimittiin, koska tietoturvasyistä johtuen toimeksiantaja ei voinut tarjota pääsyä omaan verkkoonsa mittaukseen tekemistä varten. Tämän lisäksi tarkoitus oli tutkia optimointitehon muuttumista muuttuvissa olosuhteissa, joten parhaiten verkon parametrien muuttaminen onnistui yksinkertaistetussa verkossa, johon voitiin nopeasti simuloida parametreja. Työssä tutkittava liikenteen tyyppi rajattiin tiedostonsiirtoihin, sillä tutkittavien asioiden lisääminen olisi laajentanut työtä liikaa.
2 VERKKOLIIKENTEEN OPTIMOIMINEN

2.1 Mitä on laajaverkko liikenteen optimoininen?

Laajaverkko liikenteen optimoinisella tai kiihdyttämisellä tarkoitetaan keinoja, joiden avulla vastataan laajaverkon hitauteen tai riittämättömyyteen. Tavallisimmata syyt verkon hitauteen ovat verkon korkeat vasteajat ja rajallinen kaistanleveys. Syinä näihin voivat olla esimerkiksi riittämättömät välitysmediat, pitkät välimatkat, sekä puheliat protokollat jotka luovat paljon edestakaisia pyyntöjä, vieden kaistaa ollena uuteen liikenteeltä.

Yritysliikenteen kannalta ongelmana on se, että toiminnalle kriittinen liikenne joutuu kilpailemaan muun liikenteen kanssa verkon resurseista. Verkon kapasiteetin eli kaistan lisääminen on tavallisesti yksinkertaisimmanlasku ratkaisu laajaverkon tukkeutumisesta johtuvaan lähetyksen ja vastaanottoneuvoiskykseen sekä verkkosovellusten toiminnan hidastumiseen.

Verkkoliikenteen optimoinnin vastaa laajavkon ongelmiin parantamalla käytössä olevan verkon suorituskykyä ilman, että verkon nopeutta joudutaan kasvattamaan. Optimoinnin avulla vähennetään verkon yli siirtyvän tiedon määrää, vähennetään tarvittavien TCP-yhteyksien määrää, tehostetaan sovellusten toimintaa, sekä virtaviivaistetaan tiedon siirtymistä. (WAN Optimization.org 1)

2.2 Kiihdyttämistekniikat

Verkkoliikenteen kiihdyttämiseen on useita keinoja. Ne vastaavat verkkoliikenteen ongelmiin ja paranavat suorituskykyä muun muassa vähentämällä ylimääräisiä lähetyksiä, tehostamalla kaistankäyttöä ja pienentämällä verkkoviiveen vaikutusta. Näitä keinoja ovat muun muassa deduplikointi, tiedon pakkaaminen, välimuistin hyödyntäminen, tiedon priorisoiminen, protokollien virtaviivaistaminen ja tekniikat kuten Wide Area File Services (WAFS).

Kiihdyttämiseen kehitetyt tekniikat eivät välttämättä rajoitu yhden osa-alueen parantamiseen ja eri keinot vastaavat samaan ongelmaan eri tavoin. Tekniikat, joilla saavutetaan tehostettua kaistankäyttöä saattavat myös parantaa verkkoviiveongelmia. Esimerkiksi välimuistien hyödyntäminen vähentää kuormaa kaistankäytössä, sillä ne tuovat palvelut lähemmäksi käyttäjää ja tämä näkyy lyhentyneinä vastaikoina. Toiset ratkaisumallit saattavat soveltaa yhden yrityksen tarpeisiin paremmin kuin toisen, sillä samoihin ongelmiin kehitetyt optimointiteinot toimivat eri tavoin. (WAN Optimization.org 2)
2.2.1 Deduplikointi

2.2.2 Pakkaaminen

Tiedon pakkaaminen on tyypillinen menetelmä verkkoliikenteen optimoimisessa. Sen avulla säästetään levytilaa ja nopeutetaan siirtoja. Pakkaamiselle on useita keinoja ja toteutusalgoritmeja. Yhteistä pakkaamismenetelmille on se, että toistuvat merkkisarjat ja -kuviot korvataan lähetettäessä merkinnöillä, jotka voidaan esittää tehokkaammin. (WAN Optimization.org 4)

Tiedon pakkaaminen kohdistetaan tiedon sisällölle tai koko siirtoyksikölle ja sitä hyödynnetään erityisesti tietoa käsitlevien sovellusten toiminnassa, sillä ne vaativat tavallisesti huomattavat määrät levytilaa. Tiedostojen sisällön pakkaamisessa esimerkiksi kaikki välilyönnit poistetaan ja toistuvat merkkisarjat korvataan yksittäisellä merkillä. Tämän avulla tiedostojen kokoa pystytään pienentämään huomattavasti alkuperäisestä. Tieto palautetaan vastaanottopäällä alkuperäiseen muotoon purkukaavan avulla. Pakkaamisella pienennetään lähettettävien tietokehysten kokoa, jolloin myös siirtoajat ly-
Pakkaaminen voi olla häviöllistä tai häviötöntä. Häviöllisessä pakkaamisessa osa tiedoston sisällöstä katoaa. Tämä on tavallista valokuvatiedostojen pakkaamisessa. Häviötömässä pakkaamisessa alkuperäinen tieto palautetaan tarkalleen ilman tiedon katoamista. Verkkolaitteiden käyttämä liikenteen pakkaaminen ja esimerkiksi tiedon tallentaminen perustuvat häviötömään pakkaamiseen. (WAN Optimization.org 4)

2.2.3 Välimuisti

Selainmuisti, väiltyyspalvelimet ja gateway-muistit ovat eräitä välimuistityypejä. Selainmuisti ottaa talteen selattujen sivujen sisältöä ja palauttaa ne muististaan, kun sivuilla vieraillaan uudelleen. Tämä nopeuttaa huomattavasti tutuille sivuille tapahtuvaa toistuvaa liikennöintiä. Väiltyyspalvelimet toimivat samalla periaatteella kuin selainmuistit, mutta ne palvelevat suurempaa joukkoa käyttäjiä samaan aikaan, sillä ne ovat julkisesti jaettuja. (WAN Optimization.org 5)

Gateway-muistit tai käännetiset väiltyyspalvelimet ovat usein verkkosivustojen ylläpitäjien ja palveluntarjoajien käyttöönottamia väiltyyspalvelimia, jotka toimivat asiakkaan ja verkkosivun välissä. Toisin kuin perinteiset väiltyyspalvelimet ne sijoittetaan mahdollisimman lähelle haettavaa materiaalia. Niiden tarkoitus on parantaa sivuston toimivuutta ja luotettavuutta. (Barish, Obrazcka, 2)
2.2.4 Palvelunlaatu

2.2.5 Protokollan väärentäminen

Protokollan väärentäminen (protocol spoofing) on menetelmä, jolla parannetaan tietyjen verkkoprotokollien suorituskykyä. Sillä vastataan protokollien ongelmiin kuten korkeisiin virhetaajuksiin ja pitkiin viiveisiin. Lähettävä tieto väärennetään siten, että se näyttää olevan jonkin toisen, soveltuvamman, protokollan lähetyks. Väärentäminen tappahtuu useimmiten lähettävällä laitteella, kuten reitittimellä, joka väärentää keskustelu-
Protokollan soveltuvammaksi, ja jonka vastaanottava laite muuttaa takaisin alkuperäiseen muotoon.

Protokollan väärentämistä käytetään muun muassa parantamaan TCP-yhteyksiä, joka kärsii muun muassa hitaan käynnistymisen vaiheesta. Tämän lisäksi sitä hyödynnetään tiedonsiirtoprotokolissa ja RIP-reitittämisessä. (WAN Optimization.org 6)

2.2.6 Wide Area File Services

Wide Area File Services on tiedon säilytystekniikka joka perustuu useisiin optimointitekniikoihin. Sen avulla saavutetaan lähiverkkotasoa palvelua käsiteltäessä laajaverkon takana sijaitsevia palvelimia. Sen avulla saavutetaan myös korkeampaa tietoturvaa, parempaa tiedon saatavuutta, ja nopeampaa palautumista verkon häiriöistä. WAFS-tekniikkaa hyödynnetään useiden valmistajien optimointiratkaisuissa. (Cisco 4)

WAFS perustuu laajaverkon optimoinmiseen ja sovellusten kiihdyttämiseen. WAFS hyödyntää toiminnossaan useita eri optimointitekniikoita, muun muassa välimumustin käyttöä verkkoyhteysissä, jopa suojuatuissa yhteyksissä, tiedon pakkaamista ja protokollan optimoimista. (WAN Optimization.org 7)

2.3 Laajaverkkokiihdyttimet

Laajaverkkokiihdyttimet ovat verkkolaitteita, joilla optimoidaan käytössä olevaa verkkoa kiihdyttämällä liikennettä eri tekniikoin. Laajaverkkokiihdyttimet asennetaan verkon molempia päitä, jolloin kaikkea niiden välistä IP-liikennettä voidaan optimoida. Laajaverkkokiihdyttimiä kehitettiin erä valmistajat. Tunnetuihin ratkaisuihin kuuluvat Ciscon WAAS, Blue Coatin SG, Riverbed Steelhead, ja Silver Peak Systemsin NX. (WAN Optimization.org 8)

Eri valmistajien verkkokiihdyttimien ominaisuuksissa ja toiminnassa on eroja. Syy tähän on se, että laitteiden käyttämät protokollat ja algoritmit, jotka ovat usein valmistajakohtaisia, eroavat toisistaan. Tämän lisäksi eri valmistajien laitteet eivät välttämättä
3 KÄYTETYT TEKNIIKAT

3.1 Riverbed Steelhead

Tutkimuksen keskeisenä tekniikkana toimi Riverbed Steelhead, joka on Riverbedin laajaverkkoliikenteen optimoimiseen kehittämä verkkolaite. Sen avulla voidaan muun muassa kiihdyttää tiedonsiirtoa ja sovellusten toimintaa laajaverkkojen yli, jolloin verkossa saavutetaan korkeampaa suorituskykyä kuin mitä verkon kaistanleveys ja verkkoviive sallivat normaalisti.

Steelheadista on useita malleja, jotka on suunniteltu erisuuruuisiin tarpeisiin niin verkon nopeuden ja optimoitavien TCP-yhteyksien suhteen. Kevyimmän luokan Steelheadit ovat ulkoisilta mitoiltaan perinteisten kytkimien kokoisia ja ne on tarkoitettu enintään muutamien Megabittien verkkoihin ja enintään muutamille sadoille TCP-yhteyksille. Tehokkaimmat mallit ovat fyysiseltä kooltaan suurempia ja pystyvät optimoimaan kymmeniä tuhansia tai jopa miljoonaa TCP-yhteyttä Gigabit-verkoissa. Eri kokoluokkien mallit takaavat sen, että yritysten on mahdollista ottaa käyttöönsä omaan tarpeeseen parhaiten soveltuvat Steelhead-mallit. (Riverbed 1, 2009)

Steelheadista on myös tarjolla mobiiliversio, Steelhead Mobile Client (SMC). Ero rautapohjaisiin Stealhead-malleihin on siinä, että SMC on työasemalle asennettava ohjelmisto. SMC:n sisältävän koneen ottaessa yhteyden tuttuun verkkoon, jossa suoritetaan optimointia Steelheadilla, laitteet löytävät toisensa.

Steelheadit hyödyntävät Riverbedin auto discovery -protokollaa löytämään automaattisesti verkkoon lisättävät uudet Steelhead-laitteet, myös mobiiliversiot. Tämä mahdollistaa esimerkiksi kannettavalla tietokoneella yrityksen pääverkkoon otetun etäyhteyden optimoinnin ilman, että etäyhteyden ottajan tarvitsee olla fyysisen Steelheadin takana. (Riverbed 2, 2008, 21)
3.2 Steelheadin sijoittaminen verkkoon

3.2.1 Fyysinen in-path

Fyysisessä in-path -asennuksessa Steelheadin lähiverkkoliitäntä (LAN) yhdistetään lähiverkon puoleiseen laitteeseen, yleensä kytkimeen, ja laajaverkkoliitäntä (WAN) yhdistetään reitittävään laitteeseen (kuva 1). Tällä tavalla asennettuna Steelheadin läpi kulkee kaikki verkon liikenne ja siihen on suoraviivaista kohdistaa haluttuja optimointitoimenpiteitä. Asiakkaat ja palvelimet näkevät edelleen asiakas- ja palvelin-osoitteet ja Steelhead siltaa liikenteen LAN- ja WAN-liitäntöjen kautta. Tämä on tavanomainen ja helppoin tapa asentaa laite, sillä se ei vaadi konfigurointia esimerkiksi uudelleenohjausmenetelmien osalta.

Kuva 1. Asentaminen fyysinen in-pathiin

3.2.2 Virtuaalinen in-path

3.2.3 Out-of-path

Out-of-path -asennuksessa Steelhead asetetaan palvelinpuolen läähkerraltaan, siten ettei se ole suoraan verkon läpi kulkevan liikenteen väylällä (kuva 4). Out-of-pathissa oleva Steelhead kytetään verkoon primääri-liitännänä ja se toimii välityspalvelimena ver-
kossa. Liikenne ohjautuu tällä tavalla asennettuun Steelheadiin asiakasverkon puolen Steelheadille annetun fixed-target in-path -säännön avulla, joka osoittaa palvelinpuolen Steelheadin primääristä nän IP-osoitteeseen. (Riverbed 4, 2008, 16)

Kuva 4. Asentaminen out-of-pathiin

3.3 Optimointisäännöt

Steelheadit suorittavat optimointia niille annettujen optimointisääntöjen mukaan. Nämä säännöt ovat in-path- ja peering-sääntöjä, joiden mukaan Steelheadit käsittellevät niiden läpi kulkevat paketit. Kaikkea liikennettä ei automaattisesti optimoida. Sen lisäksi, että liikennettä voidaan optimoida, voidaan sitä myös päästä verkon läpi kohdistamatta sii-

3.3.1 In-path -säännöt

Optimointisääntöjä tarkastellaan Steelheadien vastaanottamien synkronointipakettien (TCP SYN) perusteella. TCP SYN on asiakkaan Steelheadille lähetämä paketti, kun asiakas muodostaa uuden yhteyden. In-path -sääntöjä tarkastellaan vain kun laite saa TCP SYN -paketin, joka saapuu lähiverkkoliitännästä laitteen ollessa asennettuna fyysisesti in-pathiin, tai kun TCP SYN -paketti saapuu WAN-liitännästä laitteen ollessa asennettuna virtuaalisesti in-pathissa. (Riverbed 2, 2008, 25)

3.3.2 Peering-säännöt

3.4 Riverbed Optimization System

Steelheadit kiihdyttävät verkkoiliikennettä Riverbedin kehitämällä ohjelmistolla, Riverbed Optimization Systemillä (RiOS). RiOS on Steelheadien optimointitoiminnan ydin, sillä se vastaa verkkoiliikennettä hidastaviin ilmiöihin, kuten riittämättömään laajavertaan ja tehottomiin kuljeto- ja sovellusprotokolliin korkean verkkoviiveen ympäristöissä.

3.4.1 Tiedon virtaviivaistaminen

Steelheadin suorittama tiedon virtaviivaistaminen vähentää laajaverkon yli kulkeutuvan tiedon määrää, vähentäen kaistan käyttöä tiedon kuljettamisessa. Tiedon virtaviivaistaminen tapahtuu neljän menetelmän avulla. Nämä ovat skaalautuvaa tietoon viittaaminen, kaksisuuntainen synkronoitu tietovarasto, yhtenäinen tietovarasto sekä palvelunlaatu.

Kaksisuuntainen synkronisoitua tietovarasto mahdollistaa sen, että viitemerkinnät tallennetaan kullekin RiOS-laitteelle tietovarastoon, jotka säilyvät uudelleenkäynnistysten ja päivittämisten yli. Tämän lisäksi Steelhead-laiteparit säilyttävät tietovarastonsa täysin synkronisoituna kaksisuuntaiseksi koko ajan. Tämän avulla on viitemerkintöjen hyödyntäminen edelleen mahdollista verkossa, eikä näin jo aiemmin lähetettyjä tietolohkoja tarvitse lähetettää verkon yli mikäli toisessa Steelheadissa tapahtuu häiriö.

Yhtenäinen tietovarasto toimii siten, että kun tietoloho on tallennettu Steelheadin viittemuistiin, voidaan sitä hyödyntää minkä tahansa verkossa olevan Steelheadin kanssa,
kaikilla kiihdytetävillä sovelluksilla. Tämä vuoksi tietoa ei tarvitse monistaa tietovarastosta sisällä, jotta sitä voidaan käyttää muiden sovellusten toimesta, lähetettäessä tietoa toiseen suuntaan tai kokonaan uusille laitteille. (Riverbed 2, 2008, 16-17)

3.4.2 Lähetyksen virtaviivaistaminen

RiOS peilaa lähiverkkojen palvelunlaadun merkintöjä Steelheadien välisiin laajaverkkoyhteyksiin. Tämä mahdollistaa verkossa olemassa olevien palvelunlaatujärjestelmien hyödyntämisen liikenteen priorisoimisessa myös Steelheadin käyttöönoton jälkeen. Näin Steelheadien asentaminen ei häiritse verkossa ja käytössä olevaa palvelunlaatua.

(Riverbed 2, 2008, 17-18)
3.4.3 Sovellusten virtaviivaistaminen

3.4.4 Hallinnan virtaviivaistaminen

Auto-discovery on Riverbedin kehitettävä protokolla, jonka avulla Steelheadit automaattisesti löytävät muita Steelheadereja verkosta. Tämä mahdollistaa liikenteen optimoinnisen verkon vanhojen ja uusien laitteiden välillä ilman, että ylläpitäjän tarvitsee manuaalises-ti huolehtia laitteiden välisen yhteyden luomisesta. Tämä vähentää käsin tehtävää konfigurointia, sallii järjestelmänhallitsijan hallita ja varmistaa laitteiden välisiä yhteyksiä, sekä määritellä mitä liikennettä ja minkä laitteiden kanssa optimointia suoritetaan. (Riverbed 2, 2008, 21)

Keskitetyn hallintakonsolin avulla voidaan uusia Steelheadereja automaattisesti konfiguroida ja valvoa verkon yli. Tämän lisäksi se antaa yleiskuvan Steelheadin tuomasta hyödystä verkkojärjestelmässä sekä verkon tilasta. SMC on ohjelma kannettavien Steelhead-sovellusten hallintaan. Sen avulla voidaan seurata yksittäisten mobiiliasiakkaiden tilaa ja tilastoja, sekä suorittaa tukitoimintoja etäyhteyksien avulla. (Riverbed 4, 2008, 28)
3.5 Network Nightmare gigEnn

Steelheadien lisäksi tutkimuksessa käytettiin laajaverkkoemulaattoria. GigEnn on Network Nightmaren kehitettämä verkkolaite, jolla emuloidaan laajaverkkoyhteyksiä. Laajaverkon emuloinnin pääasiallinen tarkoitus on arvioida verkon suorituskykyä, selvittää miten verkon ominaisuuksien muuttaminen vaikuttaa verkkoliikenteeseen, tai selvittää verkkoliikenteen ominaisuuksia, jotta siihen voidaan kohdistaa soveltuvia optimointimenetelmiä. (Squidoo, 2011)

Kuva 6. GigEnn hallintakonsolin pääsivu

Kuva 7. Järjestelmän konfigurointi-ikkuna

GigEnnistä löytyy useita verkkoliikenteen seuraamiseen tarkoitettuja työkaluja. Laitteen läpi kulkevaa verkkoliikennettä voidaan seurata sekä hallintakonsolin että verkkokäyttöliittymän kautta kaistankäytön, verkkoliikenteen, verkkoliitäntöjen ja yleisten tilastojen osalta. Laitteen läpi kulkevasta liikenteestä voidaan myös muodostaa lokitiedostoja liikenteen seuraamiseksi. (Network Nightmare 2, 2007)
4 TUTKIMUS JA MITTAUKSET

4.1 Tutkimusmenetelmät

Tutkimuksen tavoitteena oli selvittää toimeksiantajalle, kuinka tehokkaasti Riverbed Steelheadit pystyvät optimoimaan verkkoliikennettä tiedonsiirron osalta sekä miten laitteiden optimointiteho muuttuu verkon määreitä muuttettaessa. Tutkimuksen aineistoa ja havaintoja käytettiäisiin Fujitsu Service Oy:n omissa toiminnoissa.

Työ tehtiin kvantitatiivisena tapaustutkimuksena. Kvantitatiivisessa eli määällisessä tutkimuksessa tutkimuskysymykseen haetaan vastausta käyttämällä täsmällisiä ja tilastollisia menetelmiä. Tapaustutkimuksen pohjana oli toimeksiantajan asettamien tutkimustavoitteiden saavuttaminen ja sitä kautta mahdollistaa toimeksiantajan toimintojen kehittäminen.

Työn tavoitteen kannalta oleellinen tieto saatiin kerättyä suorittamalla tutkimuskohteesta mitattua. Vastausta tutkimuskysymykseen haettavat vastaustulosten keskenään vertailun ja tulkitsemisen avulla. Benchmarking-menetelmä muodostui käytökelpoisimmaaksi menetelmäksi, sillä siinä mitattaisista saatua aineistoa verrattiin perustilana pidettävään aineistoon ja tätä kautta pystyttiin esittämään havaintoja tutkimuksen kannalta oleellisista ilmiöistä.

4.2 Testiverkon ja mitattusta valmistelu

Mittauksia varten luotiin testiverkko, jossa tiedostojen siirrot suoritettiin. Vaikka yritysverkkojen topologia ja speksit ovat usein huomattavasti monimuistikaisempia kuin testiverkossa, erityisesti yrityksissä jotka koostuvat pää- ja haarakonttooreista, niin yksinkertaistetut testiverkko oli riittävä mittausten tavoitteen kannalta. Työssä demonstroitiin alla olevan kuvan mukaista yritysverkkoa (kuva 8).

4.2.2 Kytkennät

Kuva 9. Testiverkon fyysiset kytkennät

Testiverkossa ei ollut muita verkkolaitteita eikä niiden olemassaolo ollut mittausten kannalta oleellista, sillä mittausten tarkoitus ei ollut demonstroida täysin aitoa yritysverkkoa.

4.2.3 Mittaustiedostot

Mittauksia varten luotiin verkon yli siirrettävä materiaalia. Toimeksiantajan toiveiden mukaisesti tiedostotyypeiksi valittiin DOC, JPG, PDF, PPT, WMV, XLS ja ZIP. Kyseiset tiedostotyypit valittiin sillä perusteella, että ne ovat yleisiä tiedostotyyppejä ja niitä käytetään yleisesti yrityksissä.

Mittauksia varten luotiin perustiedostot, jotka olivat kooltaan noin 5 megatavua. Poikkeuksena oli pakattu tiedosto, josta tehtiin 20 megatavun kokoinen. Pakattua tiedostoa lukuun ottamatta muiden tiedostojen yhtenäinen 5Mb koko valittiin sillä perusteella, että näin tiedostoista saatiin vertailukelpoisia keskenään. Tämän lisäksi 5Mb tiedostot
olivat kooltaan sopivan pieniä, jotta mekaaniseen mittausten toistoon ei kulunut liian pitkää aikaa – mittauslaitteisto oli käytössä vain rajoitetun ajan – mutta kuitenkin sen verran suuria, että mahdolliset muutokset siirtonopeuksissa olisivat selkeästi havaittavissa. Suuremman pakatun tiedoston tarkoitus oli simuloida sitä, kuinka pakatut tiedostot usein ovat muita tiedostoja suurempia, sekä tutkia mahdollista tiedoston koon vaikutusta Steelheadien optimointitehoin.

Perustiedostojen lisäksi luotiin 10% muutetut tiedostot kustakin perustiedostosta. 10% muutetut tiedostot luotiin kustakin alkuperäisestä tiedostosta lisäämällä niihin sisältöä noin 10%.

4.2.4 Verkon asetukset mittauksissa

Kaikki mittaukset suoritettiin useilla eri verkkoviiveillä ja linjanopeuksilla. Tarkoituksena oli saada tietoa siitä miten tiedonsiirto optimoituu verkoissa joissa linjanopeutta ja verkkoviivettä muutetaan. Mittaukset tehtiin 20, 40, 60, 80, 100, 150 ja 200 millisekunnin verkkoviiveillä, ja linjanopeuksina käytetään 1, 2, 4 ja 10 Mbps. Verkkoviiveet ja linjanopeudet asetettiin verkkoon gigE:n avulla.

Mittauksia varten verkolle annettiin seuraavat oletukset. Pakettihäviöksi asetettiin 0% ja tiedostot siirrettiin 1500 tavun paketeissa (MTU 1500). Poistamalla pakettihäviö simuloitiin ideaalia tilannetta, tosin käytännössä tämä ei vastaa tarkalleen aitoa verkon liikennettä. Koska tarkoitus oli selvittää Steelheadien teoreettista optimointikykyä tiedostonsiirrossa, kelpasi ns. ideaaltilanne verkossa. TCP-siirroissa tavallinen tiedoston-siirtoyksikkö on 1500 tavua, mistä syystä tämä annettiin myös testiverkon arvoksi.

Verkon asetusten lisäksi täytyi mittauksissa hyödyntää Steelheadien in-path- ja peering-sääntöjä. Testiverkossa ja mittauksissa ei käsitelty optimointisääntöjä syvällisesti, sillä niiden monimuutkainen hyödyntäminen mittausten puitteissa ei ollut tarpeellista. Mittauksissa käytettiin molemilla Steelheadeilla kahta optimointisääntöä hyväksyi. Näiden sääntöjen mukaan kaiken liikenteen, joka kohdistui vastakkaisen Steelheadin takana olevan työaseman optimoimattomalle liikenteelle tarkoitetun verkkokansioon, sallittiin läpäistä verkko, kohdistamatta liikenteeseen optimointia. Puolestaan kaikki liikenne,
joka kohdistui vastakkaisen Steelheadin takana olevan työaseman optimoitavalle liikenteelle tarkoitettuun verkkokansioon, optimoitiin.

4.3 Testiverkon käyttö

4.3.1 Graafinen käyttöliittymä

![Kuva 10. Näkymä Steelheadin graafisesta käyttöliittymästä](image-url)
Steelheadin graafisessa käyttöliittymässä oli mahdollisuus konfiguroida optimointisääntöjen osalta sekä seurata laitteen läpi kulkevaa liikennettä parin sekunnin välillä päivityvältä graafiselta kuvajalta tiedostonsiirron aikana tapahtuvasta kaistanleveyden optimoinnista laajaverkon ja lähiverkon välillä. Tästä kautta saatin kerätä tarvittavat mitattavat mittautulokset (kuva 11).

Kuva 11. Kaistan optimoinnin valvontaikkuna

4.3.2 WAN-emulaattori

4.3.3 Tiedostojen siirtäminen

4.4 Mittaukset

Mitattavia määreitä olivat tiedoston siirtoaika optimoimattomista ja optimoiduista mittauksista, sekä optimoiduissa mittauksissa optimointisuhte. Siirtoaika on aika, joka kulun tiedostonsiirtoon. Optimointisuhte (data reduction) ilmaisee kuinka tehokkaasti Steelheadit optimoivat laitteiden välillä kulkevaa liikennettä. Se kertoo kuinka monta prosenttia vähemmän tietoa siirtyy laajaverkon yli suhteessa lähiverkossa siirtyvään tiedon määrään siirron aikana. Mitä suuremman arvon optimointisuhte saa, sitä tehokkaammin Steelheadit optimoivat verkon yli siirtyvää liikennettä ja vähentävät siirron käyttämää laajaverkon kapasiteettia.

4.4.1 Optimoimattomat siirrot

Optimoimattomissa siirroissa Steelheadit eivät suorittaneet optimointia verkon yli kulkevalle liikenteelle. Tämä tapahtui siten, että Branch-työasemalta siirrettiin tiedostoja DC-työaseman jaettuun verkkokansioon, jonka siirrettävää liikenteeseen ei kohdistettu optimointia optimointisääntöjen mukaisesti.
Optimoimattoman liikenteen nopeutta tutkittiin vain normaalina tiedostonsiirtona tiedostojen siirtoaikaan osalta, sillä toisin kuin optimoiduissa siirroissa, CIFS- protokolla itsessään ei hyödynnä jo aiemmin siirrettyä tietoa, joten saman tiedon siirtäminen verkon yli useamman kerran ei vaikuta millään tavalla myöhempien siirtojen nopeuteen. Optimoimattomien siirtojen tarkoitus oli saada tietoa tavanomaisen tiedostonsiirron siirtoajoista, johon optimoitujen siirtojen tuloksia verrattiin.

4.4.2 Optimoidut siirrot

Optimoiduissa mittausissa Steelheadit optimoivat verkon yli, laitteiden välillä, kulkevaa liikennettä. Tiedostoja siirrettiin Branch-työaseman ja DC-työaseman jaetujen, optimointiin tarkoitettujen verkkokansioiden välillä. Siirtojen aikana Steelheadien graaffiselta käyttöliittymän otettiin ylös mittaus tuloksia siirtoajoista sekä kaistankäytön muutumisesta WAN- ja LAN-verkkojen välillä.

Optimoidut siirrot tehtiin niin sanottuna kylmä-, lämmin- ja 10%-siirtoina. Kylmäsirroissa verkon yli lähetettiin täysin uutta tietoa, josta Steelheadilla ei ollut entuudestaan viitautusmerkintöjä muistissa. Lämminsirroissa siirrettiin jo aiemmin verkon yli siirrettyä tietoa uudelleen ilman, että sitä oli muutettu siirtojen välillä. Kylmä- ja lämminsirroissa verkon yli lähetettiin 5Mb ja 20Mb kokoisista perustiedosta. 10%-siirroissa siirrettiin tiedostoja, joiden sisältö oli muuttunut noin 10% edellisen siirron jälkeen, eli perustiedostoista luotuja 10% muokattuja tiedostoja. Siirroissa mitattiin tiedostonsiirron nopeutta sekä kuinka tehokkaasti Steelheadit vähentävät laajaverkon yli kulkeutuvaa liikennettä optimoinnin aikana lähiverkossa kulkevaan dataan verrattuna.

Kylmäsirtomittausten tarkoitus oli selvittää kuinka nopeasti tiedosto siirtyy työasemalta toiselle siinä tapauksessa, kun Steelhead ei vielä pysty hyödyntämään muistissa olevia viittaustiedoja siirrettävän tiedon optimoimiseen. Tällä simuloitiin sitä kuinka nopeasti täysin uutta tietoa sisältävän tiedosto siirtyy verkon yli.

Lämminsirtomittausten avulla oli tarkoitus selvittää, kuinka tehokkaasti Steelhead pystyi nopeuttamaan ja vähentämään laajaverkon yli siirryvän liikenteen määrää sellaisen...
liikenteen osalta, josta sillä oli jo muistissa viittauslohkoja ja joihin Steelhead pystyi viittaamaan suorittaessaan tutun aineiston siirtoa laitteiden välillä.

10%-siirtojen mittauksissa siirrettiin sellaisia tiedostoja verkon yli, jotka oli jo siirretty aikaisemmin, mutta joiden sisältö oli siirtojen välillä muuttunut noin 10%. Näin ollen Steelheadella oli käytettävissään muistissa olevat viitaukset alkuperäisestä tiedostosta kylmäsiirtojen aikana luotuihin viitementäkönä, mutta ei tiedostojen muuttuneisiin osioihin. Näidenkin siirtojen tarkoitus oli selvittää Steelheadien kykyä nopeuttaa tiedonsiirtoja ja vähentää laitteiden välillä siirtyvää tiedonmäärää siirtojen aikana.

4.4.3 Tiedostonsiirtojen suorittaminen

Siirtojen jälkeen Steelheadien viittausmuisti tyhjennettiin uudelleen jonka jälkeen suoritettiin samat siirrot seuraavalla tiedostotyyppillä. Tämä toistettiin kaikkien tiedostotyyppien osalta, kunnes kaikki mittaukset olivat tehdyt linjanopeus/verkkoviive -yhdistelmällä,
jonka jälkeen näitä arvoja muutettiin. Kaikki mittaukset, niin optimoimattomat kuin optimoidut, suoritettiin 1, 2, 4 ja 10Mbit/s linjanopeuksilla sekä 20, 40, 60, 80, 100, 150 ja 200ms verkkoviiveillä.

4.5 Mittausten tavoite

Mittausten tavoite oli selvittää kuinka tehokkaasti tiedonsiirto optimoituu Steelheadella, missä määrin optimointiteho muutuu verkon linjanopeuksia ja vasteaikoja muutettaessa sekä millainen vaikutus tiedostotyyppillä on optimointiin. Tulosten teoreettisen arvon lisäksi näiden selvittäminen oli toivottua, sillä kun tiedetään mitattavien määrien vaikutus optimointiin, voidaan paremmin arvioida Steelheadeihin siirtymisen hyödyllisyttä.
5 MITTAUSTULOKSET

5.1 Yleisiä havaintoja

Tehdyistä mittauksista oli havaitavissa muutamia seikoja. Optimoimattomissa siirroissa 20ms vasteajan siirrot 1Mbit/s linjanopeudella olivat hitaampia kuin seuraavien vasteaikojen siirrot aina noin 80-100ms siirtoihin. Tämä ilmiö toistui kaikilla tiedostotyyppillä, mutta vain 1Mbit/s linjanopeudella, ja oli täysin toistettavissa.

Huomioitavaa viitearvoksi otetuissa optimoimattomissa siirroissa oli myös, että siirtoajoihin tehdyt kuvaajat muodostivat kaikilla tiedostotyyppillä samanlaisen käyrän, vaikka siirtoajoissa oli huomattavasti eroa 5Mb tiedostojen ja 20Mb kokoisen pakatun tiedoston välillä. Kuvaajia luettaessa on huomattava, että kuvaajat eivät oletusarvoisesti muodostaa tasaisia kuvaajia x-akselin eli vasteajan suhteen, sillä viisi ensimmäistä arvoa ovat 20ms vähin, kun taas kaksi viimeistä arvoa ovat 50ms vähin.

Testimittauksen alussa mittaukset toistettiin niissä sarjoissa, joissa huomattavaa varianssia tapahtui, Steelheadin viitattavasti välissä tyhjentäen, mutta koska poikkeamat toistuivat huomattavasti useammillaan kuin normalisoituivat, oli luonnollisista säilyttää alkuperäiset mittaukelokset kaikilta osin voimassa ja hyväksyvä mittauksissa havaitut poikkeamat.
5.2 Havainnot optimoiduista siirroista

Optimoitujen siirtojen mittautuloksien kautta tutkittiin linjanopeuden, vasteajan ja tiedostotyyppin vaikutusta optimointiin ja siirtoaikoihin. Tämän lisäksi tiedonsiirron optimoitumisen kannalta oli oleellista selvittää, miten eri siirtotyypit vaikuttavat optimointiin.

5.2.1 Siirtotyyppin vaikutus optimointiin

Kylmäsiirtojen mittautuloksista havaittiin, että 1Mbit/s linjalla optimoimattomaan tiedostonsiirtoon verrattuna kylmäsiirrot olivat kaikilla tiedostotyyypeillä nopeampia, tosin eron suuruus optimoihengin ja optimoimattomien siirtoaikojen välillä hieman vaihteli tiedostotyyppin mukaan. Tulokset osoittivat myös, että kun kylmäsiirroissa linjanopeutta kasvatettiin aina 10Mbit/s saakka, ei siirtoajoissa tai optimointitehoissa tapahtunut käytännössä ollenkaan muutosta 1Mbit/s kylmäsiirtoihin siirtoihin verrattuna, mikäli mittautuloksissa esiintyi variansseja ei huomioitu.

Vasteajalla oli vaikutusta kylmäsiirtoaikoihin, mutta vaikutus ei ollut läheskään samaa tasoa verrattuna optimoimattomiin siirtoihin ja niissä havaittuun vasteajan vaikutukseen. Vasteajan vaikutus kylmäsiirtoihin oli - linjanopeudesta ja tiedostotyyppistä riippumatta ja mikäli mittausuksissa esiintyneitä poikkeamia ei oteta huomioon - noin 5-20% luokkaa siirtoaikojen kasvussa kun verrattiin 20ms ja 200ms vasteaikojen siirtoja keskenään. Oheisesta kuvasta nähdään miten tiedostojen kylmäsiirtoajat kehittyivät verkon vasteajan kasvaessa (Kuva 12).
Kuva 12. Kaikkien tiedostojen kylmäsiirtoajat 1Mbit/s linjalla

Lämminsirtojen mittautulosten perusteella havaittiin, että linjanopeus ei juuri vaikuttaan siirtonopeuksiin näissä käytössä siirroissa. Tulosten perusteella lämminsirtojen siirtaaikoihin vaikutti selvästi enemmän vasteaika, tosin vastaatjakin vaikutus on suhteellisen vähäistä kokonaissiirtoajoissa.

Tiedostotyyppin vaikutus lämminsirtoihin ei korostunut. Kaikki 5Mb kokoiset tiedostot siirtyivät noin 0,5-2,5 sekunnissa 20ms vasteajan kasvaessa 200ms:n, vaikka pientä varianssia oli havaittavissa joissakin sarjoissa, mikä hieman vääristää tuloksia. Samalla vasteaikavälillä neljä kertaa suurempana pakattu tiedosto siirtyi noin 2-5 sekunnissa. Merkittävää on huomata, että kaikkien tiedostojen lämminsirtojen kasvoivat vastaan edellä kymmenkertaistuessaan vain noin 2-2,5 sekuntia, tosin prosentuaalisesti tämä merkitsi kuitenkin jopa noin 400% kasvu (kuva 13).
Kuva 13. Kaikkien tiedostojen lämminsiirtoajat 1Mbit/s linjalla

10%-siirtojen siirtoajat olivat kauettaaltaan nopeampia kuin kylmäsiirrot ja hitaampia kuin lämminsiirrot, mutta mitatut siirtoajat vaihtelivat tiedostojen kesken. Näissä siirroissa Steelheadilla oli käytössään tiedostoista viittausmerkintöjä, mutta koska sisältö oli muuttunut, ei muistissa olevia viittausmerkintöjä voitu hyödyntää kokonaisuudessaan. Tämä heijastui 10%-siirtojen siirtoaikoihin.

Hitaimpia 10%-siirtoja olivat valokuvan siirrot, jotka olivat keskimäärin vain 2 sekuntia nopeampia kuin vastaavat valokuvan kylmäsiirrot, jotka puolestaan olivat vain muuta-mia sekunteja optimoimattomia siirtoja nopeampia. Muiden tiedostojen 10%-siirroissa siirtoajat olivat lähempänä lämminsiirtoaikoja, tiedostojen siirtyessä verkon yli noin 5-10 sekunnissa riippuen tiedostotyyppistä. Huomioitavaa on, että 20M b kokoinen pakattu tiedosto siirtyi näissä siirroissa nopeammin kuin 5Mb kokoinen valokuvatiedosto.

Kuva 14. Kaikkien tiedostojen 10%-siirtoajat 1Mbit/s linjalla

Siirtotyyppi vaikutti selvästi myös optimointisuhteeseen. Kylmäsiirroissa siirrot eivät optimoitu ennen tehokkaasti ja optimointisuhteet olivat keskimäärin noin 20-30%, tosin Excel-tiedosto muodostaa tässä poikkeuksen, optimoitain yli 70% tehokkuudella kylmäsiirroissa. Varianssia kylmäsiirtojen optimointisuhteissa oli melko paljon (kuva 15). Syynä varianssille ei ole tiedossa, mutta alhainen optimointisuhde selittyy samalla tavalla kuin siirtotyypin siirtoaika, eli siirron aikana käytössä olevalla viitelohkojen hyödyntämiselä; kylmäsiirtojen tapauksessa sillä, että viitelohkoja ei vielä ollut muodostettu Steelheadille.

Kuva 15. Kylmäsiirtojen optimointisuhteet 1Mbit/s linjanopeudella
Lämminsirrot olivat selkeästi tehokkaimpia myös optimointisuhtedetta tarkasteltaessa ja käytännössä kaikissa tapauksissa, varianssia lukuun ottamatta, siirrot optimoituivat 98-99 prosenttisesti. 10%-siirrot optimoituivat myös tehokkaasti, tosin valokuvatiedoston siirto oli tässä suhteessa poikkeus, optimoituen vain noin 10% tehokkuudella, muiden tiedostojen optimoituuessa 80-95% (kuva 16, 17)

Kuva 16. Lämminsirtojen optimointisuhteet 1Mbit/s linjanopeudella

Kuva 17. 10%-siirtojen optimointisuhteet 1Mbit/s linjanopeudella
5.2.2 Linjanopeuden vaikutus optimointiin

Tarkasteltaessa tiedostonsiirron optimointisuhteita laajaverkon ja lähiverkon läpi menevän liikenteen osalta havaittiin, että linjanopeuksen muuttaminen ei vaikuttanut optimointiin. Poikkeavia tuloksia, varianssia, yleisestä optimointisuhteetrendistä tapahtui mittauksarjoissa, mutta tämän liittyminen linjanopeuteen ei vaikuttanut todennäköltä. Varianssi tuntui olevan satunnaista, joskin tietyissä tapauksissa toistuvaa, eikä tuntunut noudattavan mitään kaavaa linjanopeuden, vastaajan tai tiedostotyypin suhteen.

Siirtojen korkeat tai alhaiset optimointisuhteet eivät suoraan korreloitu neet siirronopeuksiin. Vaikka optimointisuhde joissakin siirroissa, tietyillä vastauksilla, oli huomattavasti heikompi kuin saman linjanopeuden muissa siirroissa, ei tämä näkynyt suoraan poikkeavien siirtojen siirtajoiissa. Tämän pystyi havaitsemaan siitä, että vaikka monissa siirtosarjoissa optimointisuhde vaihteli esimerkiksi 1% ja 50% välillä, eivät siirtoajat vastaanottaa siirroissa seuranneet suoraan optimointisuhdetta, vaan keskimäärin pysyivät trendissä. Toisaalta myös siirroissa, joissa siirtoajassa tapahtui poikkeama suhteessa saman linjanopeuden muihin siirtoihin, ei optimointisuhde välttämättä poikennut saman sarjan muista mitatuista optimointisuhteista.

5.2.3 Vastaajan vaikutus optimointiin

Vasteajalla oli vaikutusta optimoitujen siirtojen siirtoaikoihin, tosin se jää kaiken kaikkei- Aan melko vähäiseksi. Saatujen mittautulosten perusteella oli havaittavissa, että kaikilla kolmella optimoidullalta siirtonopeudelta vastaajan kasvamenen 20ms 200ms:n kasvattaa siir-
toaikoja pääasiallisesti noin 2-3 sekuntia 5Mb tiedostojen siirroissa, mikäli mittausulosten variansseja ei huomioitu.

Pakatun 20Mb kokoisen tiedoston kohdalla vasteajan vaikutus kylmäsiirroissa oli enimmillään noin 10 sekunnin luokkaa, tosin näissä pakatun tiedoston kylmäsiirroissa havaittu suhteellisen suuri varianssin määrä ja jopa nopeutunut tiedonsiirto 200ms vasteajalla verrattuna 20ms siirtoon vaikeuttivat johtopäätösten tekemistä. Lämminsirroissa pakatun tiedoston siirtoajat kasvoivat samoissa määrin kuin muiden tiedostojen lämminsirroissa, noin 2-4 sekuntia, samoin 10%-siirroissa yli 1Mbit/s linjanopeuksilla.

Suhteutettuna kunkin siirtoyypin siirtoaikoihin havaittiin, että vasteajan merkitys siirtoaikoihin oli varsin pientä kylmäsiirroissa. Joillain tiedostotyyypeillä 2-3 sekunnin kasvu siirtoajassa merkitsi noin prosentuaalisesti 12% kasvua. Toisilla vastaava 2-3 sekunnin kasvu merkitsi prosentuaalisesti vain 2-4% kasvua siirtoajoissa. Verrattuna optimoimattomien siirtojen vasteajan vaikutukseen tämä oli pientä, sillä optimoimattomissa siirroissa vasteajan kasvaminen 200 millisekuntiin kasvatti siirtoaikoja noin 20% 1Mbit/s linjanopeudella ja jopa yli 200% 10Mbit/s linjanopeudella.

Lämminsirroissa vasteajalla vaikutuksella ei ollut 5Mb kokoisissa tiedostoissa juurikaan eroa ja kaikissa tapauksissa lämminsirtojen siirtoaikakäyrät ovat hyvin samanlaiset. 10%-siirroissa siirtoajat kasvoivat noin 2-4 sekuntia kaikilla tiedostotyyppillä vasteajaa vaikutuksesta.

5.2.4 Tiedostotyyppin vaikutus optimointiin

Tiedostotyyppien väliset erot optimointumisessa johtuvat tiedostojen sisällöstä, sillä tiedostojen sisältö vaikuttaa siinä miten RiOS:n suorittama pakkaaminen toimii eri tiedostotyyppiin kohdalla, sekä siinä miten Steelheadit pystyvät tekemään siitä viittausmerkintöjä. Excel-taulukko, joka koostui useista sarjoista lukuja ja taulukkoja, optimoitu erittäin tehokkaasti, niin siirtonopeuden kuin optimointisuhteen suhteen, verrattuna muihin tiedostoihin mutta erityisesti valokuvatiedostoon.

Valokuvan kylmän- ja 10%-siirrot olivat erittäin hitaita verrattuna muihin tiedostotyyppiin sekä optimoiituivat huonolla suhteella. Tähän todennäköisesti vaikutti se, miten valokuva oli pakkautunut itsessään ja miten Steelheadit pystyvät pakkaamaan näitä tiedostoja edelleen ja kuinka tehokkaasti muodostamaan tästä tiedosta viitelohkoja käyttöönsä.

Neljä kertaa muita suurempi pakattu tiedosto siirtyi hitaimmin kaikista tiedostotyypistä, mutta suhteutettuna muiden tiedostojen kokoon olivat siirtoajat samaa luokkaa. Myös optimointisuuhde oli samaa tasoa muiden tiedostojen kanssa. Ero siirtoajoissa ja optimointisuhteissa muiden tiedostojen kesken oli vähäisempää.

5.3 Optimoitujen siirtojen tulokset

Optimoiduissa siirroissa mitattiin siirtoajan sekä optimointisuhteen muuttumista linjanopeutta ja vasteaikaa kasvatettaessa kunkin tiedostotyypin osalta kylmä-, lämmin- ja 10%-siirrhoissa. Eroja tiedostotyypien välillä oli havaittavissa sekä siirtoajoissa että optimointisuhteessa. Linjanopeuden vaikutus tuloksiin oli kaikissa tapauksissa lähes olematon. Vasteajan vaikutus oli havaittavissa kaikilla siirto- ja tiedostotyypeillä, suhteellisesti voimakkaammin lämminsiirrhoissa.

- **PDF**: PDF-tiedosto optimoitui hyvin ja vähäisellä varianssilla. Koska linjanopeuden muuttaminen ei vaikuttanut tämänkään tiedostotyypin siirtoihin, eivät tu-
lokset muuttuneet mainittavasti korkeammilla linjanopeuksilla verrattuna 1Mbit/s siirtoihin. Tarkemmat tulokset liitteessä 3.

5.4 Optimoimattomien siirtojen tulokset

Optimoimattomat tiedostonsiirrot tehtiin vertailukohdaksi optimoitujen siirtojen tuloksia varten. Näissä mittauksista havaittiin miten linjanopeus ja vasteaikea vaikuttavat tavaranomaiseen, optimoimattomaan tiedonsiirtoon. Mittausten avulla saatiin myös viitettä siitä miten tavanomainen verkon nopeuttamisen keino, eli linjanopeuden kasvattaminen vaikuttaa käytännössä verkon ja tiedostonsiirron nopeuteen, kun verkossa ei ole Riverbed optimointia käytössä.
Saaduista tuloksista havaittiin, että linjanopeuden kasvattaminen optimoimattomissa siirroissa vaikutti selvästi siirtoaikoihin. Linjanopeuden vaikutus siirtoaikoihin riippui kuitenkin myös verkon vasteajasta eivätä siirtoajat näin ollen muuttuneet samassa suhteessa kuin linjanopeudessa tapahtui kasvua. Alhaisella vasteajalla linjanopeuden kasvattaminen vaikutti huomattavasti enemmän siirtoaikojen nopeutumiseen kuin korkeammilla vasteajoilla. Korkeammilla vasteajoilla linjanopeuden kasvattamisesta saatava ajallinen hyöty tiedostonsiirroissa pieneni prosentuaalisesti varsin merkittävästi.

Siinä missä linjanopeus ja vasteaika vaikuttivat tiedostojen siirtoaikoihin, ei tiedostotyyppillä ollut huomattavaa vaikutusta. Kaikilla tiedostotyyppeillä siirtoajat olivat lähes identtisiä, poikkeuksena pakattu tiedosto, jolla siirtoajat olivat korkeammilla vasteajoilla, korkeammilla vasteajoilla linjanopeuden kasvattamisesta saatava ajallinen hyöty tiedostonsiirroissa pieneni prosentuaalisesti varsin merkittävästi.

Kuva 18. Doc-tiedoston siirtyminen optimoimattomassa verkossa linjanopeuden ja vasteajan kasvaessa
Kuva 19. Zip-tiedoston siirtyminen optimoimattomassa verkossa linjanopeuden ja vastaajan kasvaessa

1Mbit/s ja 20ms siirroissa havaittiin kaikilla tiedostotyyppillä ilmiö, jossa siirtoajat olivat muutamia sekunteja hitaampia kuin korkeamman vastaajan siirroissa samalla linjanopeudella. Vasta 150ms ja korkeammalla vastajoilla 1Mbit/s yhteyksissä siirtoajat olivat kauittaaltaan nopeampia kuin 20ms ajoissa. Sama ilmiö ei toistunut korkeammilla linjanopeuksilla.

Vasteaikojen kasvattaminen edelleen 60, 80, 100, 150 ja 200ms:n vaikutti huomattavasti siirtoaikoihin. Siinä missä 20ms siirroilla 10Mbit/s siirtoajat olivat noin 13% 1Mbit/s siirtoajoista, olivat 100ms siirroilla 10Mbit/s siirtoajat noin 25% 1Mbit/s siirtoajoista. 200ms siirroilla 10Mbit/s siirtoajat olivat noin 30% 1Mbit/s siirtoajoista. Luvut olivat noin 2% marginaalilla samaa luokkaa kaikilla tiedostotyyypeillä.

Saaduista tuloksista voitiin todeta, että optimoimattomissa tiedostonsiirroissa linjanopeus vaikutti tiedostojen siirtonopeuksiin varsin merkittävästi, mutta ei suhteessa linjanopeuden kasvattamiseen. Samoin vasteajan kasvaminen heikensi huomattavasti linjanopeuden lisäämiseen tuomaa etua korkeampien siirtonopeuksien saavuttamisessa.
6 JOHTOPÄÄTÖKSET

6.1 Odotukset ja havainnot

Taustatutkimusta tehdessäni ja mittauksia aloittaessani oli oletuksenani, että optimoitut
iedonsiirto olisi huomattavasti tehokkaampaa verrattuna tavanomaiseen, optimoimattomaan
iedonsiirtoon. Odotuksena oli, että ero siirtoajoissa optimoidun ja optimoimattoman
iirron välillä olisi merkittävä jo kylmäsiirroissa ja erityisesti huomattavaa muilla
iirrtyypeillä.

Oletin, että vasteajalla ja sen kasvulla olisi selvästi vaikutusta optimoitujen siirtojen
opeuteen, sillä vaikka laitteet välittävätkin verkon yli viitetietoja kokonaisten tiedostojen
sijaan, vaikuttaa verkkoviive tähän tiedon välitykseen. Tiedostotyypillä uskoin olevan
vaikutusta optimointiin, sillä RiOS käyttää erityisesti kylmäsiirroissa pakkaamista, jol-
loin myös tiedon sisällön täytyy vaikuttaa pakkaamisen tehokkuuteen. Verkon nopeudel-
la uskoin olevan selvästi vaikutusta optimoituihin siirtoihin.

Saaduista tuloksista havaitsin, että puhdasta tiedostonsiirtoa tarkasteltaessa Steelheadit
voivat olla erittäin tehokkaita nopeuttamaan ja tehostamaan verkkojen välillä tapahtuvaa
tiedonsiirtoa. 1Mbit/s linjanopeudella kylmäsiirrot olivat kaikissa tapauksissa nopeampia
kuin tavalliset tiedostonsiirrot joissa ei ollut käytössä Riverbedin optimointitekniikkaa. Kun
verkon yli siirrettiin jo viitemerkittyä tietoa niin tiedonsiirto tehostui valtavasti, mikä
näkyi lämmin- ja 10%-siirtojen erittäin harpeina siirtoaikoina ja suurina tiedon
optimointisuhtevoina.

Vasteajan vaikutusta optimointiin oli arvioitavissa mitattu tuloksista. Niistä nähtiin, että
vasteajan kasvattaminen 20 millisekunnista 200 millisekunntiin ei millään optimoidulla
iirrtyypillä eikä millään tiedostotyypillä vaikuttanut siirtoaikoihin ja tiedon optimointi-
tuhteen läheskaan yhtä huomattavasti kuin verrattuna vasteajan vaikutusta opti-
moimattomassa tiedostonsiirrossa. Toisaalta vasteajan vaikutuksen vähäisyys optimoi-
tuihin siirtoihin oli jälkikäteen ajateltuna odotettavaa, sillä eräs optimoimintatekniikoiden
tavoite on vähentää vasteajan vaikutusta verkkoliikenteeseen.
Siirtoaikojen muutos oli kaikissa tapauksissa enintään muutamien sekuntien luokkaa vasteajan kasvaessa, tosin mikäli verkossa olisi siirretty huomattavasti suurempia tie-dostoja, olisi myös vasteajan vaikutus ollut näkyvämpää. Silti voidaan todeta, että vasteaika ei vaikuta läheskaan niin merkittävästi optimoituihin siirtoihin kuin optimointitomiin siirtoihin. Tämä on hyvä huomioida Steelhead-ratkaisuun siirtymistä harkittaessa, sillä on merkittävä etu, ettei verkon korkea vasteaika huomattavasti heikennä optimointitehoa.

6.2 Tulosten pätevyys

Tuloksista saatiin viitteitä Steelheadien optimointitehosta, niiden vastatessa tiedostotyyppin sekä vasteajan vaikutukseen verkkojen välillä tapahtuvassa tiedonsiirron optimoinnissa. Laitteisto oli kuitenkin rajoittunut toimimaan enintään 1Mbit/s linjanopeuksilla, joten suurempia linjanopeuksia käsittelevät tulokset eivät kaikilta osin olleet vertailukelpoisia. Näin ollen saamieni tulosten perusteella ei voitu täysin vastata yhteen työn kannalta oleelliseen kysymykseen: miten linjanopeus ja sen kasvattaminen vaikuttaa Riverbed Steelheadien optimointiin.
Saadut tulokset joka tapauksessa tukivat osittain ennakk-odotuksiani. Vasteajalla oli vaikutusta optimoitujen siirtojen nopeuksiin, tosin tämä ei ole lähellekään siinä määrin mitä odotin, eikä sillä tasolla kuin optimoimattomissa siirroissa. Sitä miten vasteaika olisi vaikuttanut huomattavasti suurempien tiedostojen siirtoihin, tai olisiko vasteajan vaikutus voimistunut tai heikentynyt linjanopeuden kasvaessa, ei voitu arvioida varmuudella.

Tulokset todistivat myös, että tiedostotyyppillä on merkitystä CIFS-siirtojen optimoinnissa, mikä oli alun perinkin odotuksena. En kuitenkaan odottanut, että ero eri tiedostojen välillä olisi näin suuri mitä tulosten puolestani oli havaitavissa. Tämä on merkittävä huomioida, sillä erityisesti kylmäsiirroissa ei Steelheadien suorittamasta optimoinnista ole välttämättä erityisen huomattavaa hyötyä. Näin ollen, riippuen ympäristöstä ja verkkoiliikenteen luonteesta, eivät Steelheadit välttämättä tuo toivottua hyötyä verkonliikenteen kiihdyttämisessä, ainakaan kaikelta osin.

Tulosten perusteella ei pystytty arvioimaan miten siirtonopeudet ja siirtojen optimointisuhte olisivat kehityneet korkeammilla linjanopeuksilla. On mahdollista, että optimoidut siirrot olisivat entisestään tehostuneet suhteessa optimoimattomiin siirtoaikoihin, erityisesti kylmäsiirroissa, joissa siirtoajat nyt olivat kaikista lähellä optimoimattomia siirtoaikojen. Tätä ei kuitenkaan voitu näyttää toteen.

6.3 Jatkokehittely

Työn tavoitteena oli saada käyttö- ja vertailukelpoista dataa Steelheadien optimointitehoista. Vaikka saamani tulokset eivät kaikilta osin ole vertailukelpoisia, voidaan tekeä miäni mittauksia ja mittaustapoja käyttää pohjana tuleville mittauksille tutkittaessa Steelheadien tai jonkun muun optimointitekniikan tehoa.

Optimointitehon tutkimusta voidaan laajentaa esimerkiksi lisäämällä verkkoon liikennettä ja tutkimalla miten TCP-yhteyksien määrä ja lisääntynyttä, samanaikainen verkkoliikenne vaikuttavat tiedostonsiirron optimointumiseen. Kattavien tulosten saamiseksi mittauksia voitaisiin laajentaa myös muihin sovelluksiin kuin tiedonsiirtoon ja esimerkiksi tutkia verkkosovellusten toiminnan nopeutumista Steelhead-ypäristössä.
Tarkoituksenani oli tutkia laajaverkon yli tapahtuvaa tiedostonsiirtoa muuttuvissa olosuhteissa ja sen pohjalta kerätä käyttökelpoisia mittaustuloksia. Työstä saamieni tulosten perusteella Steelheadit voivat olla erittäin tehokas teknikka kiihdyttämään verkkoliikennettä tiedonsiirrossa kun kaistanleveys on rajallinen tai kun verkkoiviiveet ovat suuria.

Täysin vertailukelpoisia tuloksia en mittauksista saanut, sillä laitteisto tuki 1Mbit/s linjanopeuksia ja mittauksia suoritin osittain korkeammilla nopeuksilla. Tästä johtuen en voinut todeta missä määrin linjanopeus vaikuttaa laitteiden suorittamaan optimointiin. Toisaalta tuloksista havaitaan, että kun toimitaan laitteiston rajoitusten puitteissa, antavat Steelheadit huomattavan hyödyn alentamalla siirtoaikoja sekä tiedonsiirron käyttämää kaistaa, sekä verkon vasteajat ja liikennetyyppi vaikuttavat optimoinnin tehoon.

Mikäli olisi haluttu arvioida laitteiden käyttöönottamisen hyötyä todellisessa yritysverkossa, olisi aihetta täyttyä tutkia laajemmin. Täytyy huomioida, että tiedonsiirto on vain yksi osa yritysten verkkoliikennettä. Työn laajuuden kannalta työn rajaaminen tiedonsiirtoon oli kuitenkin olennaista, sillä pelkästään tämän osa-alueen tutkiminen tuotti niin runsaasti tutkimustuloksia, että useamman osa-alueen tutkiminen olisi vaatinut huomattavasti laajempaa tutkimusta, mikä ei ollut tämän työn puitteissa mahdollista.

Toivon, että saaduista tuloksista on hyötyä toimeksiantajalle.
LÄHTEET

http://docwiki.cisco.com/wiki/Network_Caching_Technologies

http://gigenn.net/gigEnn/

http://gigenn.net/Manuals/manual.gigEnn-2.0.1.html#Adv

www.focus.com/briefs/networking/what-wan-optimization-and-how-can-it-help-you

Riverbed 1. 2009. Riverbed Steelhead Product Family. Riverbed Technology. USA

Squidoo. 2011. WAN Emulator. Luettu 30.3.2011
http://www.squidoo.com/wan-emulator

Szigeti Tim, Hattingh Christina. 2006. End-to-End QoS Network Design. 3. painos. Cisco Press. USA

WAN Optimization.org 1. WAN Optimization. Luettu 30.3.2011
http://www.wanoptimization.org/index.html

WAN Optimization.org 2. WAN Optimization Technology. Luettu 30.3.2011
http://www.wanoptimization.org/technology.html

WAN Optimization.org 3. Deduplication. Luettu 30.3.2011
http://www.wanoptimization.org/deduplication.html

http://www.wanoptimization.org/compression.html

http://www.wanoptimization.org/web-caching.html

http://www.wanoptimization.org/protocol-spoofing.html

WAN Optimization.org 7. Wide Area File Services (WAFS). Luettu 30.3.2011
http://www.wanoptimization.org/wide-area-file-services.html

WAN Optimization.org 8. WAN Accelerators. Luettu 30.3.2011
http://www.wanoptimization.org/wan-accelerators.html
Dokumentin optimoiduista siirroista havaittiin, että kylmäsiirroissa tiedoston siirtäminen oli 1Mbit/s linjalla nopeampaa kuin optimoimattomissa siirroissa. Optimoimattomissa 1Mbit/s siirroissa tiedosto siirtyi noin 52s:ssa 20ms viiveellä ja noin 1min 17s:ssa 200ms viiveellä. Ero 20ms ja 200ms siirroissa oli noin 25 sekuntia. Vastaavasti optimoidussa kylmäsiirrossa sama tiedosto siirtyi 27-29 sekunnissa, vasteajan vaikutus siirtoaikoihin noin 2 sekuntia, tosin 200ms siirrossa oli havaittavissa piikki, jolloin siirtoaika 34 sekuntia. Kuvasta nähdään miten dokumentin siirtoajat muuttuivat kullakin siirto-tyypillä 1, 2, 4 ja 10 Mbit/s linjanopeuksilla vasteajan kasvaessa (kuva 1).

Kuva 1. DOC siirtoajat 1, 2, 4 ja 10Mbit/s linjanopeudella kullakin siirto-tyypillä
Word-dokumentin 1Mbit/s kylmäsiirroissa siirtoaajat olivat noin 50% verrattuna optimoimattomiin siirtoihin. Vasteajan vaikutus kylmäsiirtoaikoihin oli noin 6 sekuntia 20ms ja 200ms vasteajan välillä. Lämminsiirto oli huomattavasti nopeampaa dokumen-
tin siirrossa verrattuna optimoimattomaan- ja kylmäsiiroon. Siirtoaika kasvoi lämmin-
siirroissa noin 0,5 sekunnista 20 millisekunnin viiveellä ja noin 2,50 sekuntiin 200 mil-
lesskunnin viiveellä. 1Mbit/s lämminsiirtoajat olivat siis noin 1-3% optimoimattomien siirtojen siirtoajoista.

10%-siirtoaajat olivat myös huomattavasti nopeampia 1Mbit/s linjalla verrattuna optimoimattomiin siirtoihin, mutta hitaampia kuin lämminsiirrot. Siirtoajavaat 1Mbit/s 10%-siirroissa olivat 5,5-6,5s luokkaa, tosin siirtoaika ei näissä kasvanut suoraan vasteajan kasvaessa, vaan tässä mittausarjassa tapahtui suhteellisen paljon varianssia suhteessa trendiin. Siirtonopeudet optimoimattomissa 1Mbit/s siirroissa olivat kuitenkin noin kymmenkertaiset verrattuna 10%-siirtoihin.

Korkeamman linjanopeuden mittausarjoissa ei tapahtunut merkittävää nopeutumista verrattuna 1Mbit/s optimoituihin siirtoihin. Tämä ilmioi toistui niin kylmä-, lämmin-
kuin 10%-siirroilla sekä kaikilla tiedostotyyppiellä. 10Mbit/s kylmäsiiroot olivat enintään muutamia sekunteja nopeampia kaikilla vasteajoilla verrattuna 1Mbit/s siirtoihin ja vielä vähemmän 2Mbit/s ja 4Mbit/s linjoilla. Dokumentin eri siirtootyypin sisäiset siirtono-
peudet linjanopeuden muuttuessa on esitetty kuvassa (kuva 2).

(jatkuu)
Kuva 2. DOC kunken siirtoyypin siirtoajat 1, 2, 4 ja 10Mbit/s linjanopeudella

Lämminsiirroissa siirrot nopeutuvat vain joitakin sekunnin kymmenyksiä kasvatettaessa linjanopeuksia ja vasteaikoja. 10%-siirroissa siirrot nopeutuvat enintään kaksi sekuntia, kun linjanopeuksia kasvatettiin. Tästä ilmioi johtuen optimoimattomat siirrot olivat jo 4Mbit/s linjanopeuksilla kaualtaan nopeampia kuin kylmäsiirrot.

(jatkuu)
Kuva 3. DOC optimointisuhde kullakin siirtotyyppillä linjanopeuden kasvaessa

Kuva 4. DOC siirtotyyppien valiset erot optimointisuhteessa 1Mbit/s linjanopeudella

Kylmäsiirroissa optimointisuhde vaihteli 1Mbit/s linjanopeudella keskimäärin 43% ja 60% välillä, mutta muilla linjanopeuksilla hajontaa oli sen verran, että optimointisuhde oli vaihtelija 0% ja 60% välillä. Lämminsiiroissa hajontaa oli vain muutamia poikkeamia lukuun ottamatta enintään 5%, optimointisuhteen ollessa kauttaaltaan 95% - 99% kaikilla linjanopeuksilla ja vasteajoilla. 10%-siirroissa optimointisuhde oli kauttaaltaan erittäin tasainen, ilman merkittäviä poikkeamia. Näissä siirroissa optimointisuhde oli 92% - 94%.
Valokuvan optimoidusta siirroista havaittiin, että Steelheadit eivät pystyneet optimoinaan tiedostoa tehokkaasti kylmä- ja 10%-siirroissa. Siirtoaikojen ero näissä mittauksissa verrattuna optimoimattomiin siirtoihin oli pienin kaikista tiedostotyyppistä, keskimäärin vain 10 sekunnin luokka 40 – 100ms vasteajalla. Lämminsiirrot puolestaan optimoitivat erittäin hyvin. Kuvasta nähdään, miten valokuvan siirtoajat kehittyvät kollakin siirtotyypillä 1, 2, 4 ja 10 Mbit/s siirroissa vasteajan kasvaessa (Kuva 1).

Kuva 1. JPG eri siirtotyyppien siirtoajat kullakin linjanopeudella

Kylmäsiirroissa, 1Mbit/s linjanopeudella, tiedoston siirtoaika kasvoi 42s-sta 20ms vasteajalla 46s:n 200ms vasteajalla. Tämä oli alle 10s nopeampaa kuin optimoimattomissa siirroissa aina 100ms vasteajan siirtoihin saakka. Vasta 150ms ja 200ms siirroissa optimoimattomat siirrot hidastuivat merkittävästi verrattuna kylmäsiirtoihin.

Lämminsirroissa valokuva optimoitui ja siirtyi erittäin tehokkaasti ja näissä siirtoajat olivat 1Mbit/s linjalla 0,5-2,2s luokka, kasvaen vasteajan kasvaessa. Verrattuna vastaa-viin optimoimattomiiin siirtoihin kylmäsiirtojen siirtoajat olivat n. 1-3% näistä. Valokuva (jatkuu)
van 10%-siirroissa havaittiin, että muuttuneen valokuvan siirtäminen ei onnistu tehokkaasti Steelheadieilta, vaan siirtoajat olivat suhteellisen hitaita. Verrattuna kylmäsiirtoihin 10%-siirrot valokuvatiedoston osalta olivat keskimäärin vain noin 2 sekuntia vastaavia kylmäsiirtoja nopeampia.

Kuva 2. JPG eri siirtotyyppien siirtoajat kullakin linjanopeudella

(jatkuu)
Tiedon optimointumista mitattaessa havaittiin sarjojen sisällä vain vähän varianssia. Toisinaan sanoen muutamia poikkeuksia lukuun ottamatta tiedon optimointisuhte oli kaikilla linjanopeuksilla, kaikilla vasteajoilla hyvin sama kullahkin siirtotyypillä. Kuvasta nähdään miten optimointisuhte kehittyi kullakin siirtotyypillä linjanopeuksia kasvatettaessa (kuva 3).

Kuva 3. JPG optimointisuhte kullakin siirtotyypillä linjanopeuden kasvaessa

Kylmäsiirroissa valokuvalin optimointisuhe 1Mbit/s linjanopeudella oli enintään 18%, osassa tapauksissa 0%. Korkeammilla linjanopeuksilla optimointisuhte valokuvan siirroissa oli samaa luokkaa ja poikkeamia ei juuri ollut. Lämminsiirroissa hajontaa oli hyvin vähän ja optimointisuhte oli keskimäärin 98% - 99% kaikilla linjanopeuksilla ja vasteajoilla. 10%-siirroissa optimointisuhte oli kauittaan erittäin tasainen, pois lukien yksi poikkeama. Näissä siirroissa optimointisuhte oli keskimäärin 10%.

(jatkuu)
Varianssia lukuun ottamatta linjanopeus ei muuttanut optimointisuhdetta, joten optimointisuhteiden siirtotyyppin väliset erot on havaittavissa 1Mbit/s siirroista (kuva 4).

Kuva 4. JPG siirtotyyppien väliset erot optimointisuhteessa 1Mbit/s linjanopeudella

Kuva 1. PDF siirtoajat 1, 2, 4 ja 10Mbit/s linjanopeudella kullakin siirtotyypillä

Kylmäsiirroissa 1Mbit/s linjanopeudella tiedosto siirtyi 36-37,5s 20ms ja 200ms vasteajan välillä. Optimoimattomissa siirroissa siirtoajat olivat 15-20s hitaampia, 200ms siirrolla jopa yli kaksi kertaa hitaampia verrattuna kylmäsiirtoihin. Lämminsiiroissa tiedosto optimoitui erittäin tehokkaasti. Siirtoajat olivat 1Mbit/s linjalla 0,5-2s, kasvaen vasteajan mukana. Lämminsiiroja olivat noin 1-2% verrattuna vastaaviin optimoimattomiin siirtoihin. 10%-siirroissa siirtoajat olivat 10-12s. Näihin aikoihin verrattuna optimoimattomien siirtojen siirtoajat olivat noin 5-6-kertaiset. (jatkuu)
Aivan kuten Word-tiedoston ja valokuvan siirroissa, ei linjanopeuden kasvattaminen vaikuttanut merkittävästi optimoitujen siirtojen siirtoaikoihin (kuva 2). Kasvatettaessa linjanopeutta saatiin enintään 2-3s nopeampia kylmä- ja 10%-siirtoja verrattuna 1Mbit/s siirtoihin. Lämminsiirrot nopeutuivat enintään 0,5s. Jo 2Mbit/s linjalla optimoimattomat siirrot olivat nopeampia verrattuna kylmäsiirtoihin alle 80ms siirroissa, 4Mbit/s linjalla kylmäsiirrot olivat jo hitaampia kuin optimoimattomat siirrot. 10Mbit/s linjalla kylmäsiirrot olivat huomattavasti hitaampia verrattuna optimoimattomiin siirtoihin, kylmäsiirtoaiokojen ollessa jopa noin neljä kertaa hitaampia. 10%-siirrot olivat 10Mbit/s linjalla lähes yhtä nopeita 20ms ja 40ms siirroissa verrattuna optimoimattomiin siirtoihin.

![Kuva 2. PDF eri siirtotyyppien siirtoajat kullakin linjanopeudella](image)

Optimointisuhtetta mitattaessa saatiin varsin tasaisia mittaustuloksia, muutamia piikkejä lukuun ottamatta. Optimointisuhde oli kaikilla linjanopeuksilla, kaikilla vasteajoilla hyvin sama kullakin siirtotyyppillä. Kuvasta nähdään, miten laajaverkon yli kulkeutuva liikenne optimoitui PDF-tiedostoa siirrettäessä (kuva 3).

(jatkuu)
Kuva 3. PDF optimointisuhde kullakin siirtotyypillä linjanopeuden kasvaessa

Kylmäsiirroissa optimointisuhde 1Mbit/s linjanopeudella oli keskimäärin 20%. Korkeammilla linjanopeuksilla optimointisuhde oli edelleen noin 20% ja poikkeamia oli vain muutama. Lämminsiirroissa hajontaa ei juuri ollut ja optimointisuhde oli tasaisesti 98%-99% kaikilla linjanopeuksilla ja vasteajoilla. 10%-siirroissa optimointisuhde oli myös erittäin tasainen kaikissa siirtosarjoissa ja optimointisuhde oli noin 80%. Jälleen kerran 1Mbit/s mittaukset antavat varsin tarkan tuloksen siirtotyyppien välisistä eroista optimointisuhteessa (kuva 4).

Kuva 4. PDF siirtotyyppien väliset erot optimointisuhteessa 1Mbit/s linjanopeudella
PowerPoint-tiedoston optimoitujen ajojen tulokset noudattivat muiden tiedostotyypien tulosten linjaa. Kaikki optimoidut siirrot olivat kauddaaltaan nopeampia verrattuna optimoimattomiin siirtoihin 1Mbit/s linjanopeudella. Ero siirtoajoissa optimoimattomiin siirtoihin verrattuna vähensi linjanopeuden kasvaessa. Oheisesta kuvaajasta nähdään, miten PPT-tiedoston siirtoajat kehittyivät eri siirtotyypeillä 1, 2, 4 ja 10Mbit/s linjanopeuksilla (kuva 1).

Kuva 1. PPT siirtoajat 1, 2, 4 ja 10Mbit/s linjanopeudella kullakin siirtotyypillä

Kylmäsiirtoihin meni noin 40-42s, joten eroa optimoimattomiin siirtoihin oli noin 10-13s alle 100ms vasteajan siirroissa. Ero kasvoi suuremmaksi vasteajan kasvaessa yli 100ms. Lämminusiirroissa tiedosto siirtyi erittäin nopeasti kuten muutkin tiedostotyypit. Siirtoajan 1Mbit/s linjalla olivat noin 0,5-2,3s välillä ja ne olivat näin vain noin 1-3% verrattuna optimoimattomien siirtojen siirtoajoihin. Myös 10%-siirroissa Steelheadit pystyivät nopeuttamaan PPT-tiedostojen siirtoaikaa huomattavasti. 20ms sekunnin 4,9s kasvoi tasaisesti – 100ms siirron piikkiä lukuun ottamatta – 7,2:s:n 200ms vasteajalla.

(jatkuu)
Linjanopeuden kasvattaminen ei vaikuttanut merkittävästi PPT-tiedon siirtoaikoihin mil lään siirtotyyppillä. Linjanopeuden kasvattaminen 1Mbit/s 10Mbit/s:n lyhensi kylmäsiir toja keskimäärin 2-3s. 10%-siirrossa linjanopeuden kasvattamisella saatiin siirtoja no peutettua noin 0,2-2s verrattuna 1Mbit/s linjaan, tosin 10Mbit/s 100ms siirrossa tapahtui piikki ja odotetun noin 5s siirron sijaan tiedosto siirtyi jopa 1,4s:ssa. Lämminsirroissa saatiin joidenkin kymmenen millisekuntien etu 1Mbit/s linjan siirtoihin, kun linjanopeuksia kasvatettiin. Kylmäsiirrot olivat jo 2Mbit/s linjalla hitaampia kuin optimoimattomat 2Mbit/s siirrot aina 100ms siirtoihin saakka. Lämmin- ja 10%-siirrot olivat kaikilla mitatuilla linjanopeuksilla nopeampi kuin optimoimattomat siirrot. Kuvaajasta nähdään miten linjanopeuden nostaminen vaikutti eri siirtotyyppien siirtoaikoihin (kuva 2).

Kuva 2. PPT eri siirtotyyppien siirtoajat kullakin linjanopeudella

PPT-tiedoston optimointisuhdetta mitattaessa saatiin tasaisia tulossarjoja, mutamia pikkejä lukuun ottamatta. Optimointisuhde oli kaikilla linjanopeuksilla ja vasteajoilla hyvin sama kullakin siirtotyyppillä. Kuvaajasta nähdään, miten laajaverkon yli kulkeutuva liikenne optimoitui PPT-tiedostoa siirrettäessä kullakin linjanopeudella (kuva 3).

(jatkuu)
Kuva 3. PPT optimointisuhte kullakin siirtotyypillä linjanopeuden kasvaessa

Kylmäsiirroissa PPT-tiedoston optimointisuhte 1Mbit/s linjanopeudella oli keskimäärin 20%, piikkiä lukuun ottamatta. Korkeammissa linjanopeuksilla optimointisuhte oli edelleen noin 20% ja poikkeamia oli vain muutama. Lämminsiirroissa hajonta ei juuri ollut ja optimointisuhte oli tasaisesti 98%-99% kaikilla linjanopeuksilla ja vasteajoilla. 10%siirroissa optimointisuhte oli myös erittäin tasainen kaikissa siirtosarjoissa ja optimointisuhte oli noin 80%. 1Mbit/s siirtojen optimointisuhte kuvaa hyvin eri siirtotyyppien välisiä eroja (kuva 4).

Kuva 4. PPT siirtotyyppien väliset erot optimointisuhteessa 1Mbit/s linjanopeudella

Kuva 1. WMV siirtoajat 1, 2, 4 ja 10Mbit/s linjanopeudella kyllakin siirtotyyppillä

Ero optimoinnettoman mittaus sarjan ja kylmäsiirron välillä oli 1Mbit/s siirroissa selvästi havaittavissa. Tiedoston kylmäsiirtoihin meni 36-44s vasteajan kasvaessa, ja eroa optimoinnettomiin siirtoihin oli noin 14-20s vasteajan ollessa 40-100ms, ja enemmän 20ms ja yli 100ms siirroissa. Lämminsirtoajat olivat erittäin lyhyitä, 1-2s. 10%-siirtoajat kasvoivat 20ms:n noin 5s:sta 200ms:n 7,1s:n.

(jatkuu)

Lämminsiirroissa nopeutumista ei juuri ollut, enintään kahdenkymmenen millisekundia kun linjanopeutta kasvatettiin. 10% -siirroissakaan ei tapahtunut huomattavaa muutosta siirtoajassa linjanopeuden kasvaessa. Näissäkin siirtoaika kasvoi enintään noin puoli sekuntia, joten linjanopeuden vaikutus siirtoaikoihin oli hädintäkin havaittavissa. Oheisesta kuvaajasta nähdään miten siirtotyyppien siirtoajat kehittyivät eri linjanopeuksilla (kuva 2).

Kuva 2. WMV eri siirtotyyppien siirtoajat kullakin linjanopeudella

(jatkuu)
Videotiedoston optimoitumissuhdetta tarkasteltaessa havaittiin, että linjanopeuden kasvattaminen ei vaikuttanut optimointiin käytännössä ollenkaan. Kaikilla linjanopeuksilla optimointisuhde oli käytännössä samaa tasoa kunkin siirtotyypin välillä.

Yhtä vähän vaikutusta optimointisuhteeseen oli myös vasteajalla ja käytännössä ero 20ms ja 200ms välillä oli olematon. Kylmäsiirtojen tuloksissa havaittiin muutamia selkeitä poikkeamia trendistä ja siinä 1Mbit/s optimointikäyrä oli hieman poikkeava verrattuna muihin käyrin ja korkeamman linjanopeuden optimointikäyrissä oli suuria piikkejä. Kuvasta nähdään miten videotiedoston kunkin siirtotyypin optimointisuhde kehittyi eri linjanopeuksilla vasteajan kasvaessa (kuva 3).

Kuva 3. WMV optimointisuhde kunkin siirtotyypillä linjanopeuden kasvaessa

Videotiedoston optimointisuhde 1Mbit/s linjanopeudella oli kylmäsiirroissa alle 10% eikä tuloksista saatu kuvaaja seurannut lineeraisesti vasteajan kasvua vaan optimointisuuhde laski noin 2%:n 150ms vasteajalla.

(jatkuu)
Korkeammilla linjanopeuksilla optimointisuhte oli pääasiassa 2-7%, mutta kaikissa sarjoissa oli poikkeamia, joissa optimointisuhte oli jopa 30-60%. Lämmönsiirroissa ja 10%-siirroissa ei havaittu poikkeamia ja kaikilla linjanopeuksilla ja vasteajoilla optimointisuhte oli 98-99% lämmönsiirroissa ja 88-89% 10%-siirroissa. Kuvasta nähdään, minkälaiset erot optimointisuhteissa siirtoyyppeen välillä oli 1Mbit/s linjanopeudelle (kuva 4).

Kuva 4. WMV siirtoyyppeen väliset erot optimointisuhteessa 1Mbit/s linjanopeudella
Excel-tiedoston siirrot olivat pääasiallisesti tasalaatuisia niin siirtoaikojen kuin optimointisuhteen osalta ja huomattavia poikkeamia piikkien muodossa ei juuri ollut. Näissä siirroissa tulokset noudattivat muista tiedostonsiirroista havaittua kaavaa. Linjanopeuden ja vasteajan kasvattaminen eivät merkittävästi vaikuttaneet siirtoaikoihin tai optimointisuhteeseen, kylmäsiirrot olivat hitaampia ja heikoiten optimoituvia optimoiduista siirroista, lämmint- ja 10%-siirrot taas olivat erittäin nopeita ja tehokkaasti optimoituvia (kuva 1).

Kuva 1. XLS siirtoajat 1, 2, 4 ja 10Mbit/s linjanopeudella kullakin siirtoaikypäällä

(jatkuu)
Excel-tiedoston kylmäsiirrot olivat nopeita verrattuna joihinkin muihin tiedostotyyppiin. Siirtoaika 1Mbit/s linjalla kasvoi noin 13s 20ms vastaajalla 14s:n 200ms vastaajalla. Optimoimattoman tiedostonsiirron siirtoaat olivat noin 50-78s välillä, joten ero kylmäsiirron ja optimoimattoman siirron välillä oli huomattava. Lämmensiirrot veivät 0,6-2,3s. 1Mbit/s 10%-siirrossa oli jonkin verran varianssia. Siirtoaat näissä siirroissa olivat 2,4 – 4,8s välillä, mutta eroa eri vastaikojen välillä oli jopa 1-1,5s, eivätkä nämä kasvaneet lineaarisesti vastaajan mukana, vaan esim. 40ms siirtoaika oli 1s hitaampi kuin 60ms siirto.

Linjanopeuden kasvattaminen ei aiheuttanut merkittävää muutosta siirtoaikoihin. Ero 1Mbit/s ja 10Mbit/s linjoilla oli kylmäsiirroissa enintään 2s siirtoajassa, vielä vähemmän 2 ja 4Mbit/s linjoilla verrattuna 1Mbit/s siirtoihin. Piikkejä siirtoajoissa ei juuri ollut, vain 10Mbit/s linjalla 150ms siirtoaika nopeutui marginalisesti verrattuna 100ms siirtoon ja sen jälkeen erittäin paljon 200ms siirrossa, jolloin siirtoaika tippui 12s:sta noin 5s:n (kuva 2).

![Graph](image)

Kuva 2. XLS eri siirtotyyppien siirtoaat kullakin linjanopeudella

(jatkuu)
Lämminsiirroissa ero siirtoajoissa oli enintään 0.5s linjanopeutta kasvatettaessa aina 10Mbit/s saakka, keskimäärin eron ollessa 0.1-0.3s. Suuria poikkeamia ei ollut. Linjanopeuden kasvattaminen ei vaikuttanut myöskään 10%-siirtoihin merkittävästi. Siirtoajat olivat pääasiallisesti parin sekunnin kymmenesosan sisällä toisistaan 2, 4 ja 10Mbit/s siirroissa, poikkeuksena 2Mbit/s 200ms siirtoaika, jossa tapahtui poikkeama ja siirto kesti lähes 5s.

Kuva 3. XLS Eri optimointisuhde kullakin siirtotyyppillä linjanopeuden kasvaessa (jatkuu)
Kuva 4. XLS siirtotyyppien väliset erot optimointisuhteessa 1Mbit/s linjanopeudella
Pakatun tiedoston siirroissa tapahtui melko paljon varianssia, mutta vain kylmäsiirtojen kohdalla. Varianssia mittautulosissakin esiintyi niin tiedostonsiirtoaikojen kuin tiedonsiirron optimointumisen kohdalla. Linjanopeuden ja vasteajan kasvattaminen ei merkittävästi vaikuttanut siirtoaikoihin tai optimointisuhteeseen, aivan kuten muissakin testimittauksissa, ja suhteellisen suurta varianssinsä määrää huomioimatta tiedostonsiirroista saadut tulokset noudattivat muista testeistä havaittua linjaa.

Kylmäsiirrot olivat selkeästi hitaampia siirtoajoissa ja heikompia optimointisuhteessa verrattuna lämmin- ja 10%-siirtoihin. Verrattuna optimoituihin siirtoihin kylmäsiirrot olivat suhteellisen tehottomia, sillä jo 2Mbit/s linjanopeudella optimoimattomien siirtojen siirtoajat saavuttivat kylmäsiirtoajat yli 100ms vasteajalla. Kuvasta nähdään miten ZIP-tiedoston siirtoajat kehittyivät kullakin siirtotyyppillä linjanopeudella 1, 2, 4 ja 10Mbit/s linjanopeuksilla (kuva 1).

Kuva 1. ZIP siirtoajat 1, 2, 4 ja 10Mbit/s linjanopeudella kullakin siirtotyyppillä (jatkuu)
1Mbit/s linjanopeudella pakatun tiedoston kylymäsiirrot veivät 2min 54s – 2min 59s, poikkeksena 200ms siirto, jossa kesti 2min 34s. Toisin sanoen vasteajan kasvaminen 20ms:sta 150:ms:n ei vaikuttanut tässäkaan mittaussarjassa kuin noin viiden sekuntia siirtoajan kasvuun. Poikkeksena tästä oli 200ms siirto, jossa eroa 150ms siirtoon oli noin 20s. Kaiken kaikkiaan siirtoajat olivat pitempiä kuin muiden tiedostotyyppien siirroissa, sillä ZIP-tiedosto oli noin neljä kertaa muita testitiedostoja suurempi. Ero optimoimattomiin 1Mbit/s siirtoihin oli vähintään puolet minuuttia, mutta vasteajan kasvaessa eroa oli jopa noin 2,5min.

1Mbit/s linjanopeudella mitattaessa lämminsirretty tiedosto siirtyi verkon yli erittäin nopeasti, kuten muutkin tiedostotyyppit. Vasteajan kasvatattavien myötä siirtoajat kasvoivat 1.9 sekunnista 4.8 sekunniin, mikä oli merkittävästi nopeampaa verrattuna niin kylymä- kuin optimoimattomiin siirtoihin. ZIP-tiedoston lämminsirrossa vasteajan kasvattaminen vaikutti selvästi eniten siirtoajan kasvuun ajallisesti, tosin suhteutettuna tiedoston kokoon kasvu oli keskitasoa. 10%-siirroissa siirtoajat kasvoivat vastaavasti 10 sekunnista 23 sekuntiin. Varianssia ei lämmin- ja 10%-siirroissa havaittu.

Kun linjanopeutta kasvatettiin 2, 4 ja 10Mbit/s:n, ei siirtoajoissa havaittu merkittävää muutosta siirtoajoissa. Toisaalta jokaisen linjanopeuden kylymäsiirroissa havaitut varianssit väräistivät tuloksia siten, että oli vaikea sanoa mikä oli keskimääräinen ero 1, 2, 4 ja 10Mbit/s kylymäsiirtoajoissa (kuva 2). Pääasiallisesti kaikilla linjanopeuksilla ja vasteajoilla kylymäsiirtoajat pysyivät noin 2,5-3s välillä. Lämminsirroissa eroa siirtojen välillä oli enimmillään 1 sekunntia tietyn linjanopeuden mittausarjalla ja noin 2,5 sekuntia nopeimman ja hitaimman siirron välillä. 10%-siirroissa eroa siirtoajoissa sarjojen sisällä oli keskimäärin 2-3 sekuntia, tosin 1Mbit/s sarjassa jopa noin 8 sekuntia.

(jatkuu)
Kuva 2. ZIP eri siirtotyyppien siirtoajat kullakin linjanopeudella

Optimoitumissuhde kylmäsiirroissa oli kaikilla linjanopeuksilla hyvin vaihtelevaa, optimointisuhteen vaihdellessa 0% ja 40% välillä. Lämminsiirrot puolestaan optimoitivat jälleen kuten muut tiedostotyyppit, eli hyvin tehokkaasti ja tasaisesti, optimointisuhteen ollessa 98-99%. Myös 10%-siirtojen optimointisuuhde oli korkea, ollen noin 88-90%. Linjanopeus ja vasteaika eivät vaikuttaneet huomattavasti lämmin- ja 10%-siirtojen optimointisuhteen. Oheisista kuvaajista nähdään eri siirtotyyppien optimointisuhdekäyrät kullakin linjanopeudella (kuva 3) sekä siirtotyyppien väliset erot optimointisuhteessa 1Mbit/s linjanopeudella (kuva 4).
Kuva 3. ZIP optimointisuhde kullakin siirtotyypillä linjanopeuden kasvaessa

Kuva 4. ZIP siirtotyyppien väliset erot optimointisuhteessa 1Mbit/s linjanopeudella
Optimoimattomat siirrot käyttäytyivät kauttaaltaan samankaltaisesti. Kaikilla tiedostotyyppillä siirtoaikojen kuvaajat muodostivat lähes identtiset kuvaajat. Linjanopeuden ja vasteajan vaikutus siirtonopeus on selkeästi havaittavissa. Kuvisissa näkyvät kunkin siirtotyyppin siirtoajat eri linjanopeuksilla, vasteajan kasvaessa (kuva 1, 2, 3, 4, 5, 6, 7, 8)

Kuva 1. DOC optimoimattomat siirrot kaikilla linjanopeuksilla

Kuva 2. JPG optimoimattomat siirrot kaikilla linjanopeuksilla

(jatkuu)
Kuva 3. PDF optimoimattomat siirrot kaikilla linjanopeuksilla

Kuva 4. PPT optimoimattomat siirrot kaikilla linjanopeuksilla

Kuva 5. WMV optimoimattomat siirrot kaikilla linjanopeuksilla

(jatkuu)
Kuva 6. XLS optimoimattomat siirrot kaikilla linjanopeuksilla

Kuva 7. ZIP optimoimattomat siirrot kaikilla linjanopeuksilla