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TIIVISTELMÄ 
 
Tämä opinnäytetyö tehtiin osana PlasmaNice-projektia. Projektin päämääränä on 
funktionaalisten nano-pinnoitteiden plasmadepostiotekniikoiden kehittäminen useille 
kuitu- ja polymeeripohjaisille substraateille. Projektin tarkoitus on parantaa perinteisten 
fossiiliöljyn käyttöön perustuvien muovituotteiden kierrätettävyyttä ja/tai korvata ne 
uusilla bio-pohjaisilla sekä biohajoavilla materiaaleilla. 
  
Opinnäytetyö koostuu kirjallisuuskatsauksesta, jossa perehdytään sooli-geeli tekniikan 
kemialliseen pinnoitamismenetelmään ja pinnoitteen UV-kovettamiseen; 
radikaalipolymeroitumiseen. Sooli -geelien ja hybridipinnoitteiden kemiallinen 
koostumus ja näiden yleiset kemialliset muodostumisreaktiot UV-kovettamistekniikan 
sovellusten näkökulmasta olivat kirjallisuuskatsauksen pääkohteena. 
 
Hybridipinnoitteiden UV-kovettamisen reaktiokinetiikka oli käytännön tutkimuksen 
aiheena. Käytännön osuus koostui esimerkiksi spektroskoopisesta ja mikroskooppisesta 
pinnoitteiden karakterisoimisesta.  
 
Sekä kirjallisuusosuus, että käytännön työ tehtiin työsuhteen aikana. Opinnäytetyön 
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projektin ulkopuolisille jäsenille.  
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ABSTRACT  
 
This thesis was made as part of the PlasmaNice project which main objective is to 
develop equipment for in-line atmospheric plasma deposition of functional 
nanocoatings on various fibre- and polymer-based substrates. The project aims at the 
improvement of recyclability of conventional fossil fuel based plastics and/or the 
replacement by renewable bio-based (and biodegradable) materials.  
 
Thesis consist on general literature overview about sol-gel chemical deposition method 
and UV curing; photoinitiated polymerization for hybrid coatings. Chemical 
composition of sol -gels and hybrid coatings and their common chemical reactions were 
researched from scientific literature from UV curable applications point of view. 
 
UV curing reactions for hybrid coatings were studied in practice and experimental part 
consist of development work and for instance performing spectroscopical and 
microscopical characterization of hybrid coatings to support project aims.  
 
Both literature and experimental work was conducted under employment relationship 
with VTT Technical Research Centre of Finland in Tampere. Experimental part of the 
thesis is confidential and therefore is not published for five years outside confidentiality 
agreement members or PlasmaNice project members.  
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Abbreviations and symbols 

 
BASF German chemical company 
cm-1  Wave number 
ESCA Electron spectroscopy for chemical analysis 
FTIR Fourier transform infrared spectroscopy 
GC-MS Gas cromatograpy -Mass spectrometer 
HAP Hazardous air pollutant 
IPN Interpenetrating polymer network 
ITX Isopropylthioxanthone 
LED Light emitting diode 
M Metal/metalloid 
M0  Consentration at time=0 
Nano 10-9 

NMR Nuclear magnetic resonance -spectrosopy 
OH Hydroxyl -group 
ORMOSIL Organically modified silicate 
pbb Parts per billion  
PDMS Polydimethylsiloxane 
PE  Polyethylene 
PET Polyethylene terephthalate 
PP Polypropylene 
R Chemical (funtional)group; rest 
Rp Rate of polymerization 
Si Silicon 
TEOS  Tetraethoxysilane 
UV Ultraviolet (light) 
UVC Ultraviolet (light) wavelength 100-280 nm 
VOC   Volatile organic compound 
XPS X-Ray photoelectron spectroscopy  
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Introduction 
 

Growing interest in the use of variable sol-gel and UV curable coating techniques has 

raised need for facilitated introduction of new materials, improvements in 

manufacturing processes and developments of new analytical and testing methods. 

Unfortunately, information on these topics is scattered in journal articles, in conference 

and symposium proceedings, in workshop notes, and in government and company 

reports. This proliferation of the source material, coupled with the fact that some of the 

relevant publications are hard to find or are restricted, makes it difficult to identify and 

obtain the up-to-date knowledge needed to utilize UV curable coating techniques to 

their full advantage.  

 

 

 

THEORY 
 

1 Processing of sol-gel coatings 
 

Most of the commercial applications utilizing the sol-gel processing takes place off-line 

batch processes. In industrial processes the finishing is made manually or with 

automated stage where parts of a final product are treated. The trend towards on-line 

processing with new products, methods and materials gives new opportunities and 

target areas for sol-gel applications. Especially, continuous sol-gel processing could be 

advanced in packaging applications where roll-to-roll processing is currently used. 

Figure 1 describes the typical coating application methods suitable for low-viscosity 

coatings, e.g. sol-gel coatings. 
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Figure 1. Coating application methods [Brabec, Dyakonov & Scherf ] 

 

 

 

 

The basics and advances in roll to roll processing lies in the possibility to combine 

different stages of manufacturing. It is cost effective to consolidate actions within 

production; instead of producing two different items with certain desired properties and 

combining them elsewhere, new impregnated materials could be developed and after 

development produced simultaneously on-line.   

 

 

1.1 Sol-gels 
 
The technology of sol-gel thin films has been around for over 40 years. The process is 

quite simple. A solution containing the desired oxide or non-oxide precursor is 

prepared. It is applied to a substrate by spinning, dipping, or draining, or spraying. The 

process is able to apply a coating to the inside and the outside of complex shapes 

simultaneously. The films are typically 200 nm -10 µm thick, uniform over large areas, 

and adherent. The sol-gel coating process is inexpensive, especially in comparison to 

any deposition techniques that involve vacuum. Coatings can be applied to metals, 

plastics, woods, papers and ceramics. Typically, the coatings are applied at room 
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temperature, though most need to be calcined and densified by heating. Both amorphous 

and crystalline coatings can be obtained. [Vossen, Kern ] 

 

The basis for the sol-gel coating process is the hydrolysis of metal alkoxide compounds 

in alcoholic solutions. Alkoxide molecules exist as low molecular weight species, 

usually monomers or small oligomers, depending on the particular alkoxides used, the 

solvent and other factors. In principle, any precursors of a suitable compound which can 

be hydrolyzed could be used. The sol-gel reaction of these species occurs via hydrolysis 

of the M-OR moiety and polycondensation reactions involving the resulting M-OH 

group. Water acts as the “initiator” and is usually externally added. Water can also be 

generated in situ by condensation reactions such as the formation of esters by the 

condensation of carboxylic acids and alcohols. Acids or bases are used as catalysts for 

these reactions. The initial viscosity of the sol derived from polymeric precursors is 

rather low and in many cases is similar to that of water (- 1mPas). If the 

polycondensation reactions are allowed to occur to a significant extent, the original sol 

can transform into a gel. The reaction of metal alkoxides with water is known 

as the hydrolysis reaction. [Buschow et al. ] 

After the convertion into depositable colloidal sol by hydrolysis and polycondensation 

reaction, the sol can be applied on the substrates and cured during and after contact of 

the substrate with the coating solution. From a practical view, the reaction rate for the 

hydrolysis and condensation for the gel formation should be higher than the 

crystallization rate from the solution, in order to obtain uniform, transparent coatings. 

For this reason alkoxides are preferred. 

[Klein 1988] 

 
 
The formation of clusters of particles or monomers by random aggregation processes is 

a popular topic in modern physics. Fractal geometry is a concept which can give 

mathematic models to chaos –like forms in nature and it is based on self-replication; 

iteration.  
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Figures 1 and 2: Fractal dimension of the percolation  
[http://blogs.nature.com/andrewsun/2008/09/17/percolation-fractal-and-physical-
gelation]  
and a model colloidal aerogel [http://www.solgel.com/articles/jan01/aerogels.htm] 
 
 
Hybrid coatings 
 
ORMOSILS (organically modified silicates) are organic-inorganic hybrid solids in 

which the organic component may be chemically bonded to a silica matrix. Somewhat 

similar to inorganic silicate glasses, the structure of the silica network can be modified 

by the presence of organic groups.[MacKenzie, BESCHER 1998] 

 

In practically every published article in the field of sol-gel science and technology there 

is mention of potential applications for the materials under investigation. 

This is also the case for Ormosils. 

 

Sol–gel techniques have been widely used for the preparation of organic–inorganic 

hybrid materials. The inorganic network is obtained from metal-alkoxysilanes via 

hydrolysis and condensation reactions. The chemical reactions can be described 

schematically as follows: 

  

 

 

Si–OR + H2O   Si–OH + ROH  (1) 

Si –OR + HO–Si   Si –O–Si + ROH (2) 

Si–OH + HO–Si   Si –O–Si + H2O (3) 
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The silanol group (Si–OH) produced by the hydrolysis reaction, (1), is converted into 

siloxane (Si–O–Si) crosslinks by either reaction (2) or reaction (3). Some silanol groups 

will remain after the chemical reactions have taken place because of incomplete 

condensation.  [Han, Taylor & Mantle, M.D. and Knowles K. 2007] 

 

Next figure shows the relation between physical properties and chemical composition as 

the most common system in this class of hybrids is that of PDMS 

(polydimethylsiloxane) and TEOS (Tetraethoxysilane). TEOS has been widely used as a 

precursor for silica in the sol–gel process to create the Si–O–Si bonds which are the 

backbone of silica-based organic–inorganic hybrid materials.  

 

 

 
Figure 3.  Proposed structures of SiO2-PDMS hybrids for low (A) and high (B) PDMS 

content. [MacKenzie, BESCHER 1998] 

 

Different mechanical properties become as an outgrowth from variation of the ratio of 

polydimethylsiloxane (PDMS) to tetraethoxysilane (TEOS) contents and processing 

conditions. With a low PDMS concentration, the ormosils are harder, stiffer and 

stronger than those with higher concentration of PDMS. 
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Commercial applications 
 
 
Surface engineering will remain a growth industry well into the next decade because 

surface engineered products increase and improve performance, add functionality, 

reduce costs, improve materials usage efficiency, and provide performance not possible 

with bulk materials. Thin films thus offer enormous potential due to the following: 

 Creation of entirely new and revolutionary products 

 Solution of previously unsolved engineering problems 

 Improved functionality of existing products; engineering, medical, and 

decorative 

 Production of nanostructured coatings and nanocomposites 

 Conservation of scarce materials 

 Ecological considerations 

 Reduction of effluent output and power consumption. 

[Martin ] 
 

 

Nanoscale 

There are various commercial applications for nanoscale sol-gel coatings. Coating types 

in nanoscale are usually for specialized products, not for on-line production. The range 

within these nanoscale sol-gel coatings, one of the more mature areas of 

nanotechnology, is wide starting from basic and applied research stage up to scaled up 

manufacturing and selling in the market. 

Some examples: 

 Anti-reflective, self-cleaning surfaces and barrier coatings 

 Photocatalytic coatings 

 Corrosion-protection systems 

 Coatings for medical implants and non-fouling surfaces 

[nanopost.com 2009] 
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1.2   Sol-gel application 
 
The spraying method is based on the deposition of the sol from a sprayed aerosol, 

generated for example, by ultrasonic vibration. In order to achieve homogeneous films 

the solution and the processing parameters have to be adjusted carefully. The small 

droplets should not dry and gel before reaching the substrate. However, they should be 

able to coalesce on the substrate until a uniform layer is formed. Thus, the viscosity and 

the polymerization rate must not be too high; otherwise the coalescence process will 

stop and give rise to roughness or local thickness in homogeneities. 

[Buschow et al. ] 

  

The thickness of sol-gel coatings is determined by the thickness of the parent liquid film 

when it abruptly increases its viscosity during the sol-to-gel transformation. It depends 

on the characteristics of the sol (chemical composition, concentration), on the 

deposition technique (dip-coating, spin-coating, spraying, etc.), and on the processing 

parameters (deposition speed, temperature, humidity, partial pressure of the solvent, 

etc.). [Buschow et al. ] 

 

 

 

1.3  Substrate surface pre-treatment  
 
Adhesion and Bonding any type of compounds requires understanding of the 

mechanisms necessary for a good bond: surface energy and a chemical reactivity. 

Surface energy is the thermodynamic effect related to a material’s intramolecular forces 

and is a determine factor on how an adhesive spreads across a surface. [Rhodes, 

Valencia & Bruner 2007] Surface tension energy is measured in dyne/cm =mN/m. 

Surface tension energy is the deciding factor on how well a liquid adheres to a polymer 

surface. For a proper bond to exist between a liquid and a substrate surface, the 

substrate's surface tension energy must exceed the liquid's surface tension energy by 

about 2-10 dyne/cm. [3DT LLC ]  

It is commonly accepted that the substrate’s surface energy must exceed that of the 

adhesive for adequate contact. The better an adhesive spreads, the more intimate contact 

between molecules, thus allowing more reactive groups to bond.  
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1.3.1 Corona treatment as surface pre-treatment 
 

Corona treatment is the modification of surface’s surface energy and bonding ability 

through the excitation of molecules due to a corona or electrical discharge. When 

atmospheric air is exposed to different voltage potentials, electric discharge can 

develop; witch can then trigger a collision of neutral molecules, causing the electrically 

loaded molecules to form a cloud of ionized air. The electrons generated in the corona 

discharge impact on the treatment with energies two to three times what is needed to 

break molecular bonds on certain plastics, or non-metallic surfaces. [Rhodes, Valencia 

& Bruner 2007] 

 

1.3.2 Plasmas in continuous coatings processes 
 
Plasmas can be used for surface activation and deposition. For example, glow discharge 

plasma used in deposition processes is a low-pressure gas which is partially ionized and 

contains approximately equal numbers of positive and negative particles. The character 

of such plasma is a consequence of the mass difference between the electrons and the 

ions. When an electric field is applied to an ionized gas, energy is transferred more 

rapidly to the electrons than to the ions. Furthermore, the transfer of kinetic energy from 

an electron to a heavy particle (atom, molecule, or ion) in an elastic collision is 

proportional to the mass ratio of electrons and heavy particles and therefore very small 

(~10-5 m). Consequently, at low pressures (low collision frequencies), the electrons can 

accumulate sufficient kinetic energy to have a high probability of producing excitation 

or ionization during collisions with heavy particles. The production of these excited 

species, and their interactions with surfaces and growing films, is one of the reasons that 

low pressure glow discharge plasmas are assuming an ever-increasing role in materials 

processing. Examples of application areas include the following.  

 

 

 

 Sputter deposition  

 Activated reactive evaporation 

 Ion plating  

 Plasma-assisted chemical vapor deposition 
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 Plasma-assisted etching 

 Plasma polymerization 

[Bunshah 1994] 

 

Surfaces in contact with plasmas are bombarded by electrons, ions, and photons. The 

electron and ion bombardment is important and is used in materials processing, 

particularly during deposition and etching. Less is known about the influences of the 

plasma radiation. The relative number of ions and electrons which are incident on a 

surface depends on whether it is biased as a cathode, an anode, or is electrically isolated.  

[Bunshah 1994] 

 

2 Fundamentals of UV curing processes  
As told earlier in most cases of using UV curing treatment, it is focused on an individual 

part of a final product as batch production. For example panels for furniture 

manufacturing are varnished with UV -curable resins. Since production speed and 

consistency, storage facilities and specialised products are currently more in to focus 

there is demand for on line coating in effective speed. It is known that curing with UV 

leads to high quality finishing and beneficial use of energy directly and indirectly.  

 
Typically, the radiant energy produced by the UV lamp is focused by a reflector onto 

the coating. The UV energy striking the surface causes the photoinitiator to trigger the 

polymerization reaction. The material is usually solidified or dried when it exits the UV 

cure zone. The time, and consequently the space, required for cure is significantly less 

than thermal drying methods. Because the process relies on UV light to initiate the 

crosslinking of molecules, it does not evaporate any solvents nor significantly heat the 

substrate. 

 

 

A UV curing process can provide finishers a number of advantages, including reduced 

floor space required, increased productivity and a high-quality finish. The UV curing 

market is growing rapidly because it is a "clean" technology that increases productivity 

compared to other traditional methods of curing. The UV curing process has a number 

of key attributes:  
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 no solvents -because cure is done by polymerization rather than by evaporation; 
VOC and HAP emissions are virtually eliminated 

 low temperature -heat is not required 
 high speed -cure is nearly instantaneous 
 energy efficient -energy is invested only in the curing reaction, not in heating 
 easily controlled -since inks and coatings do not "dry," they don't set up in 

printing/ coating equipment or change viscosity  
 quality finishes -superior resistance to scratches and chemicals.  

 

The use of UV curing presents a number of economic benefits over alternative methods. 

An economic benefit analysis for any one application may be substantially different 

from another. While they will vary with each application, cost savings may result from 

such factors as higher yield from 100% solids inks and coatings, reduced setup time, 

reduced waste and scrap, better use of space, reduction of work-in-process, increased 

productivity, energy savings, increased yield, reduction or elimination of VOC 

processing and improved product quality and performance. [Stowe 2001] Curing of 

polymer matrices by ultraviolet (UV) irradiation can be applied to a variety of processes 

in the production of composite components, as long as the component can be directly 

irradiated. The radiation can be generated by a variety of sources suitable for various 

specific applications and different curing strategies. The most frequently used radiation 

sources are mercury arc lamps. Because of the absorption of radiation passing through 

matter, the thickness of laminates for efficient application of UV curing is limited. Wet 

lay-up techniques, vacuum infusion type processes with UV-transparent membranes, 

filament winding, and prepreg processes have been adapted to UV curing. Unlike in 

thermal curing, the curing time is in the order of magnitude of minutes rather than 

hours, which means a significant reduction in cycle time [Amerio et al. 2009] 

 

The market for ultraviolet curing technology has been growing at double-digit rates in 

the last 10 years. The main reason for such a rapid technological growth of UV curing is 

its unique process characteristic, which allow UV-coating to be applied on virtually 

any substrates, including plastic, metal, composite, wood, paper, leather, vinyl, glass, 

magnetic recording tape and even human teeth. The original driving forces behind the 

commercialisation of UV-technology were energy saving and freedom from solvents. 
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These benefits are complemented by high productivity and subsequently higher profits 

that can be achieved with the increased line speed, just-in-time benefits and immediate 

“pack and ship” capabilities. [Shukla et al. 2004] 

 

It has been reported that radiation curing systems have performance advantages of 

scratch, abrasion, solvent, and chemical resistance over thermally cured coatings. Some 

UV-curable systems have been reported to have higher gloss than its thermally cured 

counter parts. Moreover, the UV-curable system has the advantage of a rapid cure. 

 

UV curing equipment can be made with LED (light emitting diode) –technology.  

UV LED Curing Advantages are lower operating costs with no bulbs or other 

consumables, energy-efficient with low electricity consumption and no air extraction, 

safer operation with very low heat generation and no UVC wavelengths, instantaneous 

and constant output with no warm-up time, environmentally friendly with no ozone 

emissions or dangerous mercury, compact and scalable design for ease of integration, 

and much longer service life with LED chips lasting 10,000 plus operating hours. 

 

2.1 UV curing in the food packaging industry 
 

UV-curing is used extensively on the exterior of paper and paperboard food packaging, 

when package construction offers an effective functional barrier between the cured 

surface and the food contents. UV curing has not reached its full commercial potential 

in plastic and film food packaging applications. It is due to missing approval for usage 

of these materials creating the food package applications. Monomers, oligomers and 

initiators typically used are not necessarily suitable for food packing applications. The 

unfamiliarity of the end users with these materials also has an affect for the demand.  

Migration of the photoinitiator through material layers to food is a major concern. 

Finding and creating photoinitiators that does not posses any toxicity might be the 

solution instead of trying to bind or vapour out the initiator chemicals that are not 

proven suitable for food packaging.   

For example in 2005  there was an incident with photoinitiator isopropylthioxanthone 

(ITX). ITX is used in the curing process during ultraviolet printing processes.  Nestlé 
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has been using the same container from Tetra Pak for the milk for the past 10 years and 

it was the first time the problem had been noticed.  

The problem occurred during what he called a "routine" test for other substances by an 

Italian laboratory. The laboratory found the traces of ITX in the milk products and 

regulators told Nestlé about the problem. In November 2004 patent application in the 

US, Sun Chemical noted: "In recent years, thioxanthone derivatives, particularly 

isopropylthioxanthone (ITX) and diethylthioxanthone, have been extensively used in 

UV curable printing ink applications. However, these are not entirely satisfactory 

because, following curing, unreacted thioxanthone derivatives of this type have a 

tendency to migrate from printing inks into, for example, packaged foodstuffs."  

EU legislation1 due to come into force setting migration limits of substances for multi-

layer food packaging led it to conduct the studies. The new directive sets migration 

limits of 10 pbb for non-evaluated substances and 50 pbb for substances for which tests 

had been conducted and were shown to be safe. [Ahmed 2005] 

1(Commission Regulation [EC]. 2006. No 2023/2006 of 22 December 2006 “on good 

manufacturing practice for materials and articles intended to come into contact 

with food.” Off J Eur Union L384/75.) 

 

2.1.1 UV initiators suitable around food –the search continues 

The question about food contact suitable and totally secure photoinitiators is still open. 

The focus is more on to new low migration photoinitiators: Type I initiators e.g. -

hydroxyketones and type II initiators e.g. benzophenones can be adjusted to be a low 

migrating initiators by adding their molecular weigh.  Also Sulfonium salts for cationic 

UV curing with high molecular weigh won’t release harmful compounds like benzene 

or toluene.  

Various studies about migration of photoinitiators from packaging to food exist. Lesser 

to that is found articles about efficient initiators that are suitable for food packaging not 

just concerning initiators migration characteristics, as well initiator as a safe chemical 

compound.  Low migration properties can be achieved by photoinitiator selection (high 

reactivity, new high molecular weigh photoinitiators), by optimization of the 

formulation (avoid excess of photoinitiators, formulation to be fine-tuned including 

oligomers and monomers) and by proper working conditions during production (ensure 
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high cure efficiency: UV bulb & reflector control, process control - light dose intensity 

and printing speed, favouring working under oxygen reduced atmosphere). 

 

Migration usually describes a diffusion process, which may be strongly influenced by 

an interaction of components of the food with the packaging material.  Food 

components, particularly fat, that migrate into plastics, like PE or PP, will considerably 

increase the mobility of plastic components, thus, enhancing the migration into the 

contained food. Migration is a health issue and is a legal problem in most countries. In 

an attempt to harmonize legislation, the EU (European Union) and the FDA (Food and 

Drugs Administration) initiated global control through positive lists of substances that 

can be used, while restricting substances with toxic potential. The general purpose of 

the legislation is to ensure consumer safety.[Arvanitoyannis, Bosnea 2004] 

 

Generally, the migration is considered to be a process where polymerization residues or 

stabilizers can diffuse through the polymer matrix to the surface. Diffusion is 

considered to be one of the main mechanisms for the transfer and migration of chemical 

compounds from packaging materials to food. The migration of ingredients from 

packaging material into food is undesirable. However, a certain transfer is unavoidable, 

because most foodstuffs are packed prior to their purchase by the consumer. The 

contamination is usually due to the dissolution in the food that comes in contact with the 

migrated stabilizers on the polymer surface. The term “migration” is used to describe 

the process of mass transfer from a food packaging material to its contents. During this 

process, a packaging material comes in contact with food, and though its mechanical or 

diffusion properties are not altered, it may adversely affect the organoleptic properties 

of the packaged food. 

[Arvanitoyannis, Bosnea 2004] 
 

 

2.2 Migration studies 
 

Study by Pastorelli et al. investigates the migration of benzophenone. Benzophenone is 

one of the two component composing the commercial application descript earlier; 

IrgaCure500® . Benzophenone is also one of the most commonly used photoinitiators, 

which are mostly used in UV-cured inks for which drying times are much shorter than 
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for conventional solvent or water-based coatings. In study the benzophenone levels 

were determined in different packaging materials used for cakes, to evaluate the safety 

of printed paperboard intended for food contact. Plastic sleeves commercially used for 

this specific food application are normally made of PP. In the study barrier properties of 

a commercial available PP of 38 µm and two multilayer Films: PET-SiOx/PE and 

PP/EVOH/PP were compared. The properties were tested under two different time and 

temperature conditions ( 70°C for 2 days and 40°C for 10 days). The multilayer 

containing PET-SiOx/PE turned out to be perfect barrier for no migration was detected 

on target cake after 2 or 10 days. For other multilayer PP/EVOH/PP there were 45µg/g 

after 10 days in 40°C and 1 800 µg/g after 2 days in 70°C. Migration level for 

conventional PP was high: 1 400 µg/g at 40°C and 3 800 µg/g at 70°C.  [Pastorelli et al. 

2008] 

 

 

 
Figure 5 : Diffusion of benzophenone into cakes, at 70 °C for 48 h [Pastorelli et al. 
2008] 
 

Although the boiling point of benzophenone is high (305.4 °C) and its vapour pressure 

(0.56 Pa at 40 °C) very low, benzophenone migrates easily in the vapour phase from the 

additivated source to the cake through the PP film.  Suitable multilayer packaging 

materials could represent a good way of guaranteeing better functional barrier properties 

for more effective reduction of potential diffusion of benzophenone (or molecules that 

behave similarly) from printed paperboard boxes to foodstuffs, especially relatively dry 

foodstuffs that may be particularly sensitive to such diffusion. 

[Pastorelli et al. 2008] 
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Other case study for Benzophenone as a curing of inks with ultra-violet (UV) light 

points out the migration of photoinitiators. UV-cure inks contain typically 5–10 per cent 

photoinitiator. Only a small portion of the initiator is used up during the curing process. 

Benzophenone can therefore remain in the printed material. The use of UV-cure inks for 

printing cartonboard has become widespread because the fast cure permits online 

cutting and folding, enabling rapid production of finished packaging. In a UK survey 

reported in 2000, 350 samples of food packaged in printed cartonboard were purchased 

from retail outlets. The packaging was analysed for residues of benzophenone, using 

solvent extraction and GC-MS analysis. One hundred and forty three packaging samples 

contained measurable benzophenone. Seven of the 143 samples were in the 

concentration range 0.05 to 0.2 mg/100 cm2, 60 of the 143 were in the range from 0.2 to 

0.8 mg/100 cm2 and the remaining 76 packaging samples contained benzophenone in 

the range from 0.8 to 3.3 mg/100 cm2. Seventy-one samples were then selected at 

random from the 143 packaging samples that contained benzophenone, and the food 

contained in these 71 packages was analysed for benzophenone. Benzophenone was 

detected in 51 of the 71 food samples. Twenty-nine samples contained benzophenone at 

0.05 to 0.5 mg/kg, 17 samples were in the range of 0.5 to 5 mg/ kg and three exceeded 5 

mg/kg. The highest level was 7.3 mg/kg. Two samples contained levels that were 

detectable but not quantifiable. 

 

When there was no benzophenone in the packaging there was none detected in the food. 

However, there was not a clear numerical correlation between levels of benzophenone 

in cartonboard and food. Differences in the composition of the foods tested may have 

been important in this respect, along with other factors such as the storage time, the 

storage temperature, the extent of any direct contact made between the food and the 

package, and the presence or absence of any barrier material between the printed 

cartonboard and the food. The results confirmed that benzophenone can migrate from 

printed cartonboard to food. Research has shown that benzophenone can be present in 

printed cartonboard packages at up to 0.7 mg/100 cm2 and can migrate to foods 

packaged in this material even during frozen storage, up to 0.4 mg/kg. For frozen foods 

in microwavable packaging, the extent of migration into the food during storage and 

subsequent heating was shown to increase further, with levels of benzophenone after 

heating ranging up to 1.0 mg/kg. 
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At the end the study emphasises that the potential for migration to dry and frozen foods 

cannot be ignored. It also illustrates that barrier layers may be ineffective in preventing 

migration. Although the inks were applied to the outside of the cartonboard, the board 

itself presented little if any barrier to migration and even some thin plastic films were  

inadequate barriers if made from high permeability plastics like polyethylene. [Watson 

2001] 

 

3 Photoinitiation with UV light  
 
The term photopolymerization means the initiation by light of a chain polymerization 

process. In the more general sense, photopolymerization implies the increase of 

molecular weight caused by light and includes the photocrosslinking of pre-existing 

macromolecules. Vinyl polymerization can be initiated by ionic species as well as by 

free radicals, but almost all examples of photopolymerization are of a free-radical 

character. Photochemical production of primary radicals needs low temperature (10–40 

°C), unlike thermal free-radical initiators which generally occur above 40 °C. 

Consequently, photopolymerization can be carried out at very low temperatures. Hence 

chain transfer processes leading to branched macromolecules will be absent. 

Photopolymerization at low temperature yields the low-energy stereospecific polymeric 

species. 

Photopolymerization, the utilization of electromagnetic radiation (or light) as the energy 

source for polymerization of functional monomers, oligomers, and polymers, is the basis 

of important commercial processes with broad applicability, including photoimaging 

and ultraviolet (UV) curing of coatings and inks. These processes require light that is 

absorbed by the system and utilized to effect the formation of new chemical bonds: 

Photoinitiators, photocrosslinking agents, and photocrosslinkable polymers. 

Photoinitiators absorb light in the UV–visible spectral range (250–450 nm) and convert 

this light energy into chemical energy in the form of reactive intermediates, such as free 

radicals and reactive cations, which subsequently initiate polymerization of functional 

monomers to form linear polymers, whereas the multifunctional monomers give three-

dimensional  crosslinked networks.  

[Manmeet, Srivastava 2002] 
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Figure 6: General Presentation of Photoinitiated Polymerization [Yusuf, Steffen, 

Jockusch and Nicholas J. Turro 2010] 

 

 

3.1 Curing rate in UV curing processes  
 

The rate of the curing process depends on the following:  

Monomer compounds in the UV resin - Each monomer cures at a different rate, 

depending on the amounts and compositions of sensitizer, pigment, and chemical 

additives. Coating Thickness - The thickness of UV coating is not directly proportional 

to exposure time. The amount of UV energy inside a layer of coating decreases 

exponentially with depth. A two-fold increase in the thickness requires a ten-fold 

increase in UV intensity. For example, for a 50 micron thick UV coating, if 70%  

of the UV energy is absorbed in the top 25 micron of coating, then 7% of the initial 

amount will be absorbed  in the second 25 micron of coating 

Amount of UV per unit area - Normally, the curing speed will increase with the amount 

of UV energy per  unit area at the non-linear rate. If a 100 watt per cm2 mercury lamp is 

increased to 200 watt per cm2, the curing speed would increase by tenfold. Furthermore, 

special metal halide lamps can trigger the receptor at an  even faster rate with a standard 

200 watt per inch lamp 

Photo-crosslinkable acrylate or methacrylate oligomeric resins are used as based coats. 

By choosing a resin with the appropriate chemical structure, the mechanical properties 

of the UV cross linked resin can be modi ed. This includes brittleness and hardness. 

When optical properties are important, resins can be formulated to give speci c 

refractive indices in the range of 1.44 to 1.6 (measured at 633nm). The UV resin is 

cured in a nitrogen atmosphere if oxygen inhibits the cross linking process. Mercury 
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UV source with an output power of 50-100 W/cm2 is used to cure the resin. However 

UV power depends on type of resin used. 

[Ahmed ] 

 

 

A typical composition of a UV –curable coating: 

 

Resins (oligomers)    30-60 % 

Reactive diluents (monomers) 5-50 % 

Pigments, fillers, matting agents 0-40 % 

Photoinitiators, synergist  2-15 % 

Additives   1-5% 

 

[Adhesives & Sealants Industry 2007]  

 

3.1.1 Oligomers (radiation curable binders) 
  

Customary used resins in UV-curing include the following classes: 

(1) unsaturated polyester/acrylated polyester, 

(2) acrylated epoxy resin, 

(3) acrylated urethanes (both aliphatic and aromatic),  

(4) acrylated silicone resins, 

(5) acrylated polyether,  

(6) acrylated melamines,  

(7) acrylated oils, 

(8) N-vinyl urethanes and  

(9) thiolene system 

 

Acrylated polyesters 

Polyester acrylates can be produced in a wide range of viscosities and reactivities to 

adapt to end uses in printing inks, wood and paper coatings. One of the major 

advantages offered by polyester acrylates over the other prepolymers is their low 

viscosity. As the molecular weight of the polyester decreases, its acrylated counterpart 

becomes more monomer like. One of the major problems associated with the use of the 
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low molecular weight polyester acrylates is the reduction in reactivity and the increased 

surface inhibition observed.  

 

Acrylated urethanes 

Reaction between hydroxyl and isocyanate groups proceeds efficiently at low 

temperature without the evolution of volatile by-products. The well known properties of 

urethanes, such as hardness, chemical resistance, toughness and light stability can be 

built into the acrylated, radiation curable prepolymers. The product is highly viscous 

and produces cured films which are very hard and inflexible but also highly chemical 

resistant. The poor colour properties are seen in the prepolymer as supplied, as well as 

in the relevant coatings (poor light and heat stability). 

 

Arcylated silicones  

Incorporation of silicone into radiation curable prepolymers is of interest in number of 

areas. Silicones are well known for their release properties, heat and water resistance. 

The advantages of silicone acrylates in the protection of optical fibres are afforded by 

their excellent flexibility and extensibility properties, particularly at low operating 

temperatures. At present state of development, silicone acrylates appear to be far more 

sensitive to air inhibition than other UV curable systems. Therefore curing under inert 

gas is often recommended.  

[Shukla et al. 2004] 
 

 

3.1.2 Diluents/monomers 

 
 As all the currently available oligomers (e.g. acrylated epoxy, acrylated urethane, etc.) 

are too viscous to be applied through conventional coating equipment, most formulators 

dilute the oligomer down to application viscosity. The diluents used to give system a 

workable viscosity have to be crosslinkable. A high level of monomer has to be added 

to obtain a low viscosity. However, earlier literatures indicated that to retain good 

reactivity in the mixture, as little monomer as possible should be used. As little 

monomer as possible should be added to a system, also for toxicological reason, to 

avoid skin irritation which is caused by a high level of monomer. It is obvious that, with 

a higher functionality monomer, the cure rate of the formulation will increase.  
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A monomer is selected for a system based upon its: photoresponse, contribution to the 

properties of the photopolymerised film properties, relative volatility, odour and 

toxicity, solvation efficiency and cost. 

 

Vinyl based diluents styrene and its derivative such as methyl styrene and vinyl toluene: 

Styrene and its derivatives are of low cost, give good hardness and slow cure rate, are 

relatively volatile, but have good copolymerisation characteristics with many resins and 

other monomers. Vinyl acetates: Vinyl acetates are excellent reducers but are relatively 

volatile and flammable and also have poor weatherability and water resistance. [Shukla 

et al. 2004] 

 
 

3.1. 3 Photoinitiators 
 

The choice of photopolymerization initiator depends mainly on two factors: The 

solubility and its decomposition temperature. If the polymerization is performed in an 

organic solvent, then the initiator should be soluble in it and the decomposition 

temperature of the initiator must be at the boiling point or below of the boiling point of 

the solvent.  

 
 
Photopolymerization initiators can be divided roughly into three groups with the 

generated active species; radicals, cations and anions.  The conventional 

photopolymerization initiators generate free radicals upon light irradiation, and the 

resulting radical starts the polymerization process. Typical initiators are represented by 

benzoin derivatives. Photo-acid generators which produce cations (acid) by light 

irradiation were put to practical use in the late 1990s. Photo-base generators, which 

produce anions (base) by light irradiation, are of current interest in research. For a 

photopolymerization initiator to be an excellent initiator the following properties must 

be considered; 
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 High quantum yields in the generation of radicals, cations and anions  

 Overlap in absorption wavelength of the photopolymerization initiators and 

emission wavelength of the light source 

 High thermal stability and high stability in darkness 

 Highly soluble in monomers and oligomers 

 

[TCI America ] 

 

Initiating substances 
 

Acrylic monomers do not absorb UV-light in a very efficient way and will not initiate 

radical polymerisation fast enough. As such, a photopolymerisable coating formulation 

essentially consists of a polymerisable vehicle (oligomer) and a light sensitive 

compound that is able to convert the absorbed light energy into a more useful form 

capable of causing the binder to polymerise into a hard solid mass. Such a light 

sensitive compound is known as a photoinitiator/ sensitizer. Thus, a photoinitiator is 

added which produces initiator radicals either directly by the fragmentation of the 

photo-excited state, or in two steps, by hydrogen transfer from a suitable substrate to the 

photo-excited state [Shukla et al. 2004] 

 

Photoinitiators for radical polymerization are classified as cleavage (type I) and H-

abstraction type (type II) initiators. The majority of type I photoinitiators are aromatic 

carbonyl compounds with appropriate substitution. For example, upon absorption of 

light, benzoin and derivatives, benzil ketals, acetophenones, aminoalkyl phenones, O-

acyl-R-oximino ketones, R-hydroxyalkyl ketones, and acyphosphine oxides all 

spontaneously undergo “R-cleavage”, generating free radicals.  

 

Because the initiation is based on a bimolecular reaction, the generation of free radicals 

from type II photoinitiators and curing rates is generally slower than the generation of 

free radicals from type I photoinitiators, which are based on unimolecular formation 

of radicals. These systems are, therefore, more sensitive to quenching of excited triplet 

states of the photoinitiators, which are the reactive precursors of light-induced chemical 

changes for carbonyl compounds. Indeed, quenching by monomers with low 
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triplet energy (e.g., styrene or N-vinylcarbazole) or by oxygen is often observed and 

may lead to relatively low curing rates when type I photoinitiators are employed. 

[Yusuf, Steffen, Jockusch and Nicholas J. Turro 2010] 

 

 
 

 

Figure 7: Type II Photoinitiation Mechanism with Benzophenone and 
Hydrogen Donors [Yusuf, Steffen, Jockusch and Nicholas J. Turro 2010] 

 

 

Some common type of photoinitiators falls into the class of: 

 aromatic ketones and synergistic amines 

 alkyl benzoin ethers 

 thioxathones and derivatives 

 benzil ketals 

 acylphosphine oxide 

 ketoxime ester or acyloxime esters 

 cationic curing quaternary ammonium salts  

 acetophenone derivatives  

[Shukla et al. 2004] 

 

Although photoinitiators give the name to the whole process, the role that light plays in 

photopolymerization is restricted to the very first step, namely the absorption and 

generation of initiating species. Thus, in spite of its lowest volume in a polymerizable 

formulation, a photoinitiator plays a major role in the polymerization. A photoinitiator 

or photoinitiator system is defined as a molecule or combinations of molecules that, 

upon absorption of light, initiate the polymerization. [Bruce M. Monroe, Gregory C. 

Weed 1993] 
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 In photocurable systems, photoinitiators affect mainly cure speed, yellowing, and cost. 

However, other factors such as commercial availability (or easy preparation), solubility 

particularly in a wide range of monomers, storage stability, and low migration, low 

odor, and nonyellowing properties in the cured films should also be taken into 

consideration. In addition, the light absorption properties of the selected photoinitiator 

need to match the emission wavelength of the light source. [Yusuf, Steffen, Jockusch 

and Nicholas J. Turro 2010] 

 

Similar type II photoinitiator as a commercial application is manufactured by BASF.  

Formerly known as Ciba specialty chemicals, nowadays part of Company called BASF 

prepares series of photoinitiator chemicals with the name of IRGACURE®. 

 

IRGACURE 500 is a liquid mixture of two photoinitiators. It is used to initiate the 

photopolymerisation of chemically unsaturated prepolymers - e.g. acrylates - in 

combination with mono- or multifunctional monomers. IRGACURE 500 may be used 

after adequate testing alone or in combination with suitable co-initiators, such as amines 

for applications such as UV curable clear coatings for paper, metal and plastic materials. 

 

 
Figure 8: Chemical composition of IGRACURE 500 
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Figure 9: Absorption Spectrum of IRGACURE 500 (% in Acetonitrile) 

[Ciba Specialty Chemicals Inc 2001] 

 
 

 

4 Characterization of the UV-curing process 
 
Determination of monomer reactivity is not always obvious or straightforward. 

Researchers rely on their experience and published data on individual monomers. In 

general, extent of conjugation in the molecular structure can be viewed as indicative of 

its tendency to form the initial free radical required for propagating a free radical 

polymerization. Usually, a more conjugated system is more likely to undergo the free 

radical polymerization. Beneath there is a scheme presenting the large variety of 

polymer networks having different architectures obtained by photoinitiated  radical (R) 

or cationic systems (C). 
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Figure 10: Synthesis of different types of polymer networks by photopolymerization of 

multifunctional monomers 

 

 

IPN stands for interpenetrating polymer network. This kind of polymer network can 

lock one polymer network within another.  [Decker 2001] This provides reinforcement, 

acoustic damping, impact resistance and restrains swelling in solvents. [Holme 2005] 

 

 

4.1 Spectroscopic characterisation of the reaction kinetics 
 
 
Radical chain polymerization usually includes highly reactive intermediates present at 

very low consentrations. Typical polymerization achieve a ready-state after a period that 

can be most a few seconds. That causes the inspection in real-time to be challenging.  

 
The kinetics of the photopolymerization process has been evaluated by Fourier 

Transform Infrared Spectroscopy (FT-IR) simply by analysing sample before and after 

UV-irritation and combining other variables with such UV irritation time, quantity of 

the curable coating materials and surrounding processing conditions. 

 

The curing mechanism is either radical polymerization for acrylate-based resins or 

cationic polymerization for epoxies and vinyl ethers. The properties of the UV-cured 

polymer matrix are determined by the cross-linking density. This depends on the type 
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and concentration of the photoinitiator and of the (optional) diluents, the intensity and 

the duration of the irradiation, and the temperature at which the curing process takes 

place. [Amerio et al. 2009] Such ultrafast reactions are easily followed in situ by real-

time infrared spectroscopy, a technique that records directly conversion versus time 

curves. 

4.1.1 Polymerization by NMR spectroscopy  
 

 In earlier study the degree of alkoxysilane condensation was monitored by solid-state 

29Si-NMR spectroscopy. Different structures are revealed by this technique. In this 

study investigation for hybrid organic-inorganic coatings was obtained by combining 

photopolymerization together with a sol-gel process (dual-curing process). Real-time 

FT-IR spectroscopy indicated that in all the systems a complete conversion of the 

photocurable reactive groups was achieved. Moreover the structure of the inorganic 

domains was studied by using 29Si-NMR spectroscopy. These measurements indicated 

that both in methacrylic- and in epoxy-based systems indicating that for each Si atom, 

two or more alkoxysilane groups take part to the condensation reaction. [Amerio et al. 

2009] 

 

4.1.2 Polymerization by real-time FT-IR  
 
FT-IR is in general use when investigating polymerization or other reaction kinetics. 

For example: Earlier study investigates the photochemical reactions of the modified 

polyols (compounds with multiple hydroxyl functional groups) by real time FTIR.  By 

concentrating on certain bands, comparison of the spectrum before and after UV –

irradiation tells about the reaction kinetics. For example, the hydrolysis of  

Si-OCH2CH3  groups to form Si-OH occur at  961 cm-1, while other important reaction: 

the condensation of Si-OH groups to form Si-O-Si groups at 791 cm-1.  Band at  961 

cm-1 is measured to overlap with Si-O stretching mode of Si-OH groups at 953 cm-1, 

therefore the C-C-O in phase deformation band occurs at 791 cm-1 was used by J. Chen 

et al. to characterize the UV-reactivity the siloxane modified polyols. Consumption of 

Si-OCH2CH3 group at any time was calculated by studying the band at 791 cm-1. 

Formula no.4. was used for calculating the conversion for the Si-OH groups to form Si-

O-Si as time proceeds.  

http://en.wikipedia.org/wiki/Hydroxyl
http://en.wikipedia.org/wiki/Functional_group
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where [A(791 cm-1 )] 0  and [A(791 cm-1 )] t  represent the peak area under the 791 cm-1 

band at the beginning of the reaction (t = 0) and at time t, respectively. The rate of 
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where [M]0 is the concentration of Si-OCH2CH3 groups at t =0. t1 and t2 represent 

reaction time at t1 and t2, respectively. [Chen, Soucek 2003] 

 
 
 
 
Another study evaluated the kinetics of photopolymerization process focusing on the 

methacrylic conversion.  The methacrylic group conversion was evaluated by real time 

FT-IR The methacrylic groups conversion was followed by monitoring the decrease in 

the absorbance of the band centred at 1640 cm-1 normalized with respect to the C=O 

band located at 1730 cm-1. (As far as cationic systems are concerned, the epoxy groups 

absorption at 970 cm 1 was considered and normalized to the ester band at 1670 cm 1.) 

[Amerio et al. 2009] 

 

4.1.3 Polymerization by RAMAN spectroscopy  
 
Raman spectroscopy is able to reveal the molecular composition of a sample at the 

micrometer scale in a non-destructive way. The information provided by the Raman 

spectrum of an oriented polymer differs from its infrared counterpart because of the 

fundamentally different processes involved in the generation of the spectra. In the 



                                                                                                                  33(39)
  
  
infrared absorption process, as already noted, the absorption intensity is dependent on 

the angle between the electric vector and the direction of the dipole moment change. 

The Raman spectrum results from inelastic photon scattering, details of which are 

determined by changes in the polarizability of the chemical bonds involved. 

Polarizability is a tensor quantity, which results in complications but, in principle, 

provides additional information. As we have seen, infrared spectroscopy involves only 

one beam of polarized radiation, and the fraction of the radiation absorbed by a 

molecule depends only on the orientation of the molecule with respect to the 

polarisation vector of the radiation. However, Raman scattering involves two beams of 

radiation, those of illumination and collection, and the scattered intensity depends on 

the orientation of the molecule with respect to the polarisation vectors of both beams, 

which may, of course, be different. This necessitates more detailed measurements in 

order to obtain the relevant information.  [Fawcett 1996] 

 

Literature offers good information about deformation and orientation measurements of 

polymers, less about the rate of polymerization measurements using Raman 

Spectroscopy 

 

Raman spectroscopy is very effective in investigation of sol–gel precursors and 

materials derived from them. The technique is highly versatile with respect to 

excitation, detection and sampling possibilities. In addition, the presence of water does 

not hamper the measurement as it is the case of IR spectroscopy. When a Raman 

spectrometer is coupled to a confocal optical microscope, by means of which the laser is 

focused on the sample, Raman spectra can be obtained with a spatial depth resolution in 

the micrometer range. In many applications, micro-Raman spectroscopy has been 

shown to be a useful tool in the study of microprobe samples and films with thicknesses 

in the range of a few micrometers.  

4.1.4 By X-Ray photoelectron spectroscopy (XPS) 
  

XPS is also known as electron spectroscopy for chemical analysis (ESCA), is used to 

determine quantitative atomic composition and chemistry. XPS uses an X-ray beam to 

cause the emission of electrons from the surface of the sample. The electrons analysed 

do not have enough energy to escape from a depth of more than ~3-5 nm, so the XPS 

technique is inherently surface sensitive. The binding energy of the emitted electrons is 
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measured and used to identify the elements present. The thickness of surface layers and 

the depth distributions in the extreme surface region can be measured using angle-

dependent XPS. By simply changing the angle of the sample to the detector, the 

effective depth of analysis can be varied in the range 1–10 nm.[Crompton ] 

 

XPS is a good technique for elemental analysis of solids and low vapour pressure 

liquids, with a detection limit to most elements of ~1000 ppm. It can be directly 

quantified; showing not only what is present, but also how much. This technique can 

be used to analyse polymers to a surface depth of 1–10 nm. 

[Crompton ] 

 

 Surface analysis of organic and inorganic materials, stains, or residues  

 Determining composition and chemical state information from surfaces 

 Depth profiling for thin film composition  

 Silicon oxynitride thickness and dose measurements  

 Thin film oxide thickness measurements (SiO2, Al2O3 etc.) 
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