

Robert Taylor

Implementation of a Linux Kernel Module to
Stress Test Memory Subsystems in x86
Architecture

Helsinki Metropolia University of Applied Sciences

Bachelor of Engineering
Information Technology
27th February 2011

 Abstract

Author(s)
Title

Number of Pages
Date

Robert Taylor
Implementation of a Linux Kernel Module to Stress Test

Memory Subsystems in x86 Architecture
36 pages
27 February 2011

Degree Bachelor of Engineering

Degree Programme Information Technology

Specialisation option Software Engineering

Instructors

Antti Piironen, Dr (Project Supervisor)
Janne Kilpelainen (Hardware Supervisor, NSN)
Antti Virtaniemi (Software Supervisor, NSN)

The aim of the project was to implement software which would stress test the memory
subsystem of x86 based hardware for Nokia Siemens Networks (NSN). The software was
to be used in the validation process of memory components during hardware develop-
ment. NSN used a number of software tools during this process. However, none met all
their requirements and a custom piece of software was required.

NSN produced a detailed requirements specification which formed the basis of the project.

The requirements left the implementation method open to the developer. After analysing
the requirements document, a feasibility study was undertaken to determine the most
fitting method of implementation. The feasibility study involved detailed discussions with

senior engineers and architects within both the hardware and software fields at NSN. The
study concluded that a Linux kernel module met the criteria best.

The software was successfully implemented as a kernel module and met the majority of
the requirements set by NSN. The software is currently in use at NSN and is being actively
updated and maintained.

Memory testing software within the Linux kernel has not been implemented previously due

to a number of risk factors. However, this implementation demonstrated that it can be
achieved successfully. The software has the possibility to be extended for other memory
testing purposes in the future.

Keywords Linux kernel, memory test, x86, memory allocation, virtual
memory, loadable kernel module, memory pages

 1

Contents

1 Introduction 3

2 Background to Physical Memory and Memory Management 5

2.1 The x86 Architecture 5

2.1.1 History 5

2.1.2 Memory Organisation 6

2.2 Physical Memory 7

2.2.1 Physical Structure and Operation 7

2.2.2 Memory Errors 8

2.3 Memory Management in the Linux Kernel 8

2.3.1 Page Frames and Memory Zones 8

2.3.2 Addressing and Mapping Memory 11

3 Software Requirements Overview and Analysis 13

3.1 Overview of the DIMM Validation Process at NSN 14

3.2 Feasibility Study 16

4 Software Design Methods 19

4.1 Deployment 19

4.2 Operation 19

4.2 Memory Allocation 21

5 Software Implementation Details 22

5.1 Hardware Initialisation 22

5.2 Allocation Amounts 22

5.3 Page Handling 24

6 Discussion 28

6.1 Memory Allocation Methods in Kmemtestd and the Kernel 28

6.2 Using Customised Kernels in Deployment 29

6.3 Memory Allocation and its Danger to System Stability 30

6.3 Memory Test Routines 31

6.4 Software Development 32

 2

7 Conclusion 34

References 35

 3

1 Introduction

The aim of the project was to develop software to be used in the Dual In-Line Memory

Modules (DIMM) validation process for Nokia Siemens Networks (NSN). The software

was required to stress test the memory subsystem of x86-based Central Processing

Unit (CPU) blades which are used in NSN network elements, such as the FlexiPlatform,

a third-generation (3G) telecommunications exchange. For the blades to function

optimally it is essential that the DIMM modules are compatible with the existing

hardware and software and that they are capable of handling heavy loads and high

temperatures whilst maintaining signal integrity (SI).

During the NSN validation process multiple combinations of DIMM modules from

different vendors are tested using a variety of memory stress test software. The key

requirements for the software were automation, simplicity of use, extensive stress on

the memory buses and detailed logging. The software was also to be designed to

thoroughly test SI on the memory buses and generate maximal heat. The software

implementation method was to be decided by the developer after conducting a

feasibility study. The scope of the project did not include testing individual errors in

Dynamic Random Access Memory (DRAM) cells.

Physical memory is an essential component in devices ranging from supercomputers to

embedded devices such as mobile phones. In x86-based systems physical memory

commonly refers to DIMM modules with mounted DRAM cells, which are inserted onto

the systems’ motherboard. The CPU communicates with physical memory via the

Northbridge, or Memory Controller Hub (MCH), to which it passes data over the Front

Side Bus (FSB). Modern CPUs also utilise memory caches when interfacing with

physical memory.

Memory management and optimisation is a key field of study in both hardware and

software development, particularly how an Operating System (OS) manages physical

memory. In x86 systems the CPU uses techniques called segmentation and paging to

manage physical memory implemented by the Memory Management Unit (MMU). Due

to the limiting 32-bit address space (2^32 = ~4GB) Physical Address Extension (PAE)

 4

was introduced which added four more address lines resulting in the ability to access

up to 64GB.

The Linux kernel also employs paging, and to a lesser degree segmentation,

techniques to manage physical memory. The Linux kernel is responsible for managing

every process’ request for memory allocation, whilst simultaneously managing its’ own

data structures. When operating on a x86 32-bit hardware platform the kernel also

utilises a 4GB address space, or 64GB if PAE is enabled. The kernel also employs a

virtual memory model to manage physical memory.

NSN are one the world’s leading communication services providers and operate in

around 150 countries, employing 60,000 people. The company was formed on 19 June

2006 as a joint venture between Nokia Networks and Siemens Communications. NSN

solutions include radio and broadband access, IP transport, mobile backhaul and Long

Term Evolution (LTE). The project was undertaken in the Original Design

Manufacturers (ODM) team within the Research and Development department at NSN.

 5

2 Background to Physical Memory and Memory Management

2.1 The x86 Architecture

2.1.1 History

The x86 architecture is the most ubiquitous and successful instruction set architecture

in the world today. Originally developed by Intel, the x86 architecture has been

implemented by a number of manufacturers including Advanced Micro Devices (AMD)

and VIA Technologies. Intel’s own documentation refers to Intel Architecture 32-bit

(IA-32) and not x86. However, despite the focus of this paper being IA-32 processor

based systems the more generic x86 will be used throughout.

The x86 processor family has been developed by Intel since 1978. The term x86

originates from the ending of the processor’s model number. The first x86 processor

was the Intel 8086 which used 16-bit registers, 20-bit addressing and implemented

segmentation to create a 1MB address space. In 1982 the Intel 286 processor

introduced protected mode which provided a 16MB address space using descriptor

tables, added protection mechanisms including privilege levels and also added support

for virtual memory. [1, 33]

The Intel 386 (i386) was the first 32-bit processor in the x86 family and was

introduced in 1985. The i386 uses 32-bits for addressing providing a 4GB address

space and introduced paging with a page size of 4096KB, which remains in Intel x86

processors today. The i386 also introduced a segmented-memory model and a flat

memory model [1, 34].

The x86 continued to evolve with key features added such as the first-level, or L1, 8KB

write-through cache in the Intel 486 in 1989. In 1993 the Pentium processor doubled

the L1 cache to 16KB split between 8KB data and instruction caches (L1d and L1i

respectively). In addition the caches use the Modified Exclusive Shared Invalid (MESI)

protocol and introduced the write-back method. Support for larger 4MB pages was

included and later the Pentium III would introduce the MMX instruction set which

utilises 64-bit registers. [1, 34-36]

 6

Intel’s x86 processors have now evolved to increase the size and effectiveness of the

L1 caches, added a larger second-level (L2) cache, introduced dual cores and

increased the frequency of the FSB and their own clock speeds The NetBurst

microarchitecture delivered a new cache subsystem including an 8-way associative L2

cache with 64B line size and the capability to deliver 8.5GB/s bandwidth. [1, 35-43]

2.1.2 Memory Organisation

Physical memory is organised by x86 processors into a sequence bytes with each byte

having a physical address associated with it. In a 32-bit processor with Page Address

Extensions enabled 64GB of memory can be addressed in the physical address space.

Processors provide three models dependant on configuration for accessing memory. [1,

76]

The flat memory model provides a linear address space, whereby each byte is

addressed on a one-to-one basis by the processor, providing 2^32 (~4GB) of

addressable memory. The segmented model presents memory as a sequence of

segments which are then accessed using logical addresses. These logical addresses

are then mapped into the linear address space. The segmented model provides the

same amount of addressable memory as the flat model. The final memory model is the

real-address model which also divides memory into logical addresses, however, this

model is tailored for 8086 processors and provides a much smaller address space of

2^20 bytes. [1, 76 – 77]

Paging is employed to address memory when a one-to-one linear mapping does not

exist. When paging is enabled the linear address space is divided into pages, either

4KB, 2MB or 4MB in length, which are then mapped into virtual memory and stored

either to memory or to the disk. Pages mapped into virtual memory are retrieved and

mapped into physical memory as required. The virtual memory simulates a larger linear

address space than the physical memory can provide. Pages are accessed using the

page directory and page tables which translates the requested linear address into a

physical one. [1, 78; 2, 92 – 93; 3]

 7

Therefore, when a programming instruction requires access to the physical memory its

logical address as provided by the CPU must be translated via the segmentation

process into a linear address. The linear address is then translated during through

paging into a physical address which is passed to the CPU’s MCH which interfaces

directly with the physical memory.

2.2 Physical Memory

2.2.1 Physical Structure and Operation

Dynamic Random Access Memory (DRAM) is commonly employed in a wide variety of

computing systems today. DRAM cells consist of a capacitor, which stores the state of

the cell (either 0 or 1) and a transistor which controls access to the state for other

components. A data line is connected to the transistor, which is in turn connected to

the capacitor and also to an access line that governs access for reads and writes.

Writes are achieved by charging the capacitor with current issued along the data line

should access be granted by the transistor. Reading of the cell results in the capacitor

being discharged. As the capacitor is charged and discharged capacity leaks from the

capacitor and the cell must be refreshed. [4, 5 – 6]

DRAM cells are stored in matrices which can range from 128MB to 4GB per DIMM. With

addressable cells reaching such vast numbers it is impossible to address every cell with

its own address line. In order to access the cells a multiplexer and demultiplexer using

a smaller set of address lines are required.

The matrices of cells are accessed with row and column address selection (RAS and

CAS) lines. The RAS line is a demultiplexer which accesses rows of DRAM cells whilst

the CAS line multiplexer accesses the columns in the matrix. The result is delivered to

the data bus via the CAS. [4, 6 - 7]

 8

2.2.2 Memory Errors

There are a wide variety of causes of memory errors in DIMM modules, especially

when in constant use. The process of charging and discharging the capacitors can

result in memory errors. The state of the cell can be difficult to determine as charging

and discharging occurs exponentially in a capacitor rather than a square wave signal.

[4; 6]

The high density of memory cells on DIMM modules increases capacitivity which in turn

contributes to signal degradation due to noise. Intensive use of DRAM cells can also

overheat which results in voltage errors in reading and writing. In fact memory errors

can have a wide range of causes including proximity to magnetic fields and even

cosmic radiation. [4, 105; 5]

In extreme circumstances persistent memory can result in an entire system becoming

unstable or unusable. In the majority of cases memory errors are seen in incorrect

data patterns. When these errors occur in small numbers they can be handled

sufficiently using Error Correcting Code (ECC) DIMM. ECC enables error recognition in

the hardware to identify and rectify errors as they occur. In extreme circumstances

persistent memory can result in an entire system becoming unstable or unusable. [4,

105; 5]

2.3 Memory Management in the Linux Kernel

2.3.1 Page Frames and Memory Zones

The Linux kernel is monolithic in design, consisting of several logically different

components. Linux allows kernel modules to be added dynamically when the system is

running. Linux supports multiple processors, the NUMA memory model and can utilise

numerous file systems. At the core of the Linux kernel is virtual memory management.

[6, 2-3] Due the large number of architectures it supports the Linux kernel must

describe the physical memory in an architecture-independent manner.

 9

As discussed previously in section 2.1.1, in x86 architecture systems the CPU has a

4GB (2 ^ 32) virtual address space. When paging is enabled in the CPU the Linux

kernel splits this 4GB address space into two, a 1GB split for the kernel space and 3GB

for user space. The division is defined by the constant PAGE_OFFSET whose value is

0xC0000000 in hexadecimal, or 3221225472 in decimal (3GB). In virtual memory, the

linear addresses from 0 to PAGE_OFFSET are reserved for user space and from

PAGE_OFFSET to 0xFFFFFFFF, or 4GB, for the kernel space which totals 1GB. It is

important to note that the linear address space above PAGE_OFFSET can only be

addressed by the kernel and not from within a user space process. Therefore the

kernel, or a process in kernel mode, is able to address the whole linear address space

from 0 to 0xFFFFFFFF, whereas in user mode only 0 to 0xC0000000 is addressable.

The physical memory split is reversed with 0 to 1GB allocated to the kernel space and

addresses above 1GB belonging to user space. The PAGE_OFFSET constant is an

important value and is used in the paging and addressing process. [6, 68; 8, 82]

The physical memory is divided into page frames which are the same size as the page

size defined by the architecture (4KB in x86) and as the kernel constant PAGE_SIZE.

Each page frame is represented by the page structure, see Listing 1 below, which itself

is ~40B and is stored in the mem_map array. The page structure for each frame details

the current status of the page frame for the kernel's use but contains no information

about the data it holds. [6, 295]

223 struct page {

224 unsigned long flags;

...

226 atomic_t _count;

227 atomic_t _mapcount;

...

231 union {

232 struct {

233 unsigned long private;

...

240 struct address_space *mapping;

...

247 };

248 #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS

 10

249 spinlock_t ptl;

250 #endif

251 };

252 pgoff_t index;

253 struct list_head lru;

...

266 #if defined(WANT_PAGE_VIRTUAL)

267 void *virtual;

...

269 #endif /* WANT_PAGE_VIRTUAL */

270 };

Listing 1: The Linux kernel page structure

Pages are mapped to memory zones using a bit shift in the flags field of the page

structure. More importantly, the flags field describes the current status of the page

using a number of macros defined by the kernel to retrieve and set bits within the

field, for example PG_highmem which returns true if the page is in high memory [6,

296 - 297]. A further salient member of the page structure is the virtual pointer.

This pointer refers to a kernel virtual address if the page has been mapped or NULL if

the page is in high memory.

The physical memory is divided into nodes depending on the processor memory

configuration, the node or nodes consist of page frames. In both NUMA and UMA

machines memory is arranged into nodes dependent on their access distance from the

processor. Each node is then split into zones representing different regions. In an x86

machine, when UMA is the memory model, there are three zones in one singular node

which is defined and stored to the contig_page_data kernel variable.

In a default x86 UMA configuration the node is divided into three memory zones as

follows ZONE_DMA (0 – 16MB), ZONE_NORMAL (16MB – 896MB) and ZONE_HIGHMEM

(> 896MB). The ZONE_DMA is used for Direct Memory Access (DMA) memory

operations and is limited to 16MB for legacy bus addressing reasons. ZONE_NORMAL,

or low memory, is the most critical memory area as it is where the kernel code and

data structures reside. The remaining physical memory is placed in ZONE_HIGHMEM

 11

and is referred to as high memory. Low memory does not account for the full 1GB

kernel space as a further 128MB are reserved for mapping high memory addresses.

[6, 299; 8, 26]

2.3.2 Addressing and Mapping Memory

Linux is a virtual memory system, therefore addresses which are seen by user

processes do not necessarily correspond to physical addresses in the hardware. Linux

has a number of different address types which each have their own semantics and

related functions. Physical addresses refer to those which are passed between the CPU

and the physical memory, in x86 these addresses are 32-bit values (36 bit if PAE is

enabled). Kernel logical addresses are used in the kernel’s address space and map a

region of physical memory. Logical addresses can be viewed as physical addresses as

they tend to be offset by a constant. A kernel virtual address also maps to physical

address. However it may not be a linear mapping. All logical addresses in the kernel

are virtual addresses but the reverse is not true. [6, 35 -36; 7, 413 - 414]

The kernel provides a number of useful functions to retrieve memory addresses, for

example virt_to_phys(address) returns the physical address from a given virtual

address and its reverse function phys_to_virt(address). Likewise the page frame

number (pfn), which is an offset in mem_map indexing the page structure, is also

used in functions to retrieve the page address and vice versa. However, not all page

frames are assigned virtual addresses and those in high memory must be mapped into

the kernel address space.

As discussed previously in section 2.3.1, the low and high memory model in x86

kernels only provides addresses for the first GB of memory, the watermark for this is

defined by PAGE_OFFSET. Beyond PAGE_OFFSET a number of boundaries are set to

provide address space for mapping high memory. An address space is provided for

memory allocated with vmalloc() begins at VMALLOC_START and ends at

VMALLOC_END. The kernel also requires an address space to map high memory

addresses, the Persistent Kernel Map (PKMAP). The PKMAP space is located at

 12

PKMAP_BASE for a size dependent on the PAGE_SIZE and LAST_PKMAP constants.

The LAST_PKMAP constant depends on whether PAE is enabled, if PAE was configured

then it has a value of 512 otherwise, in a default configuration, the value is 1024;

resulting in mappings of 2MB and 4MB respectively. [8, 53 – 56]

High memory is mapped into the PKMAP using the kmap() function and unmapped

with the kunmap() function. The kmap() function works by accessing the flags field

of the page structure to check whether the page is marked as high memory. If the

page is not marked as high memory then the page’s linear address may be returned

immediately to the caller. However, if the page was marked as high memory it must

first be mapped into the PKMAP space, which results in the page then having an

address to access it. [6, 308 - 309]

 13

3 Software Requirements Overview and Analysis

Prior to commencing the project in NSN premises a software requirements document

was produced by Janne Kilpelainen, a senior HW specialist and supervisor for the

project. The document detailed the minimum set of requirements required by the ODM

team for the DRAM validation software. The document specified that during

implementation improvements and enhancements to the requirements were

encouraged. The document served as the foundation for the project.

The primary requirements for the software were to provide two operational modes: the

SI mode, which would electrically stress test the memory subsystem whilst verifying

signal integrity and a thermal mode, which should generate maximum heat in the

DIMMs. From the user’s perspective the software must be automated, boot-to-test in

nature and easy to use. In further detail the requirements were as follows:

— Minimal user interaction after booting

— Self booting, automated operation

— A simple effective user interface (UI)

— All accesses (reads/writes) at full bus width, 64/128 bits plus ECC

— Ability to change processor speed

— Determine whether errors are in read or write operations

— Disable/enable ECC

— SI mode has a variety of test patterns

— Detailed reporting to both screen and file

— Can be ported to other CPU architectures eg PowerPC and MIPS

— Modular code design for future updates

In addition the UI should allow the user to set the processor speed, set the clock,

select the operational mode, the number of loops and provide clear logging during

operation. The software was to be used in x86 based CPU blades and must

automatically detect the DIMM configuration of these blades and run the tests

accordingly. The CPU blades are in listed in Table 1 below, in addition the software

design should consider future CPUs during implementation

 14

Table 1. Technical specifications overview of CPU blades required in implementation

CPU

Blade

Processor MCH Memory OS BIOS/

USB

CPU-1 Pentium M

(Dothan)

1.8GHz

E7501 DDR 200/266.

4 DIMMsockets

(4GB Max)

Linux

(Wind River)

/NSN OS

No/No

CPU-2 2 x Intel

Xeon LV

1-2GHz

E7520 DDR2 400.

4 DIMM sockets

(16GB Max)

Linux

(Wind River)

/NSN OS

Yes/Yes

CPU-3 Penryn

SP9300

1.6 –2.26GHz

5100 DDR2 533/667.

4 DIMM sockets

(16GB Max)

Linux

(Wind River)

/NSN OS

Yes/Yes

CPU-4 2 x Intel

Xeon LV

2GHz

E7501 DDR 200/266.

4 DIMM sockets

(8GB Max)

Linux (Red

Hat Enterprise

Linux, RHEL)

Yes/Yes

As detailed in Table 1, all the CPU blades run the Linux kernel which would become a

key fact during the feasibility study. Other salient facts derived from the table include

the lack of a BIOS or USB slot in CPU-1 and that overall the maximum required for

DRAM testing would be 16GB.

3.1 Overview of the DIMM Validation Process at NSN

During the development of a new CPU blade, the manufacturers are required to

validate DIMM modules which have been selected by NSN. The purpose of the

manufacturer validation is to ensure signal integrity in the memory interface and that

the CPU and DIMM modules operate under various thermal conditions.

Once this work has been undertaken and reviewed, NSN begins a further DIMM

validation process. This process also examines signal integrity and thermal behaviour

but also acts as validation that NSN software will work in harmony with the CPU and

DIMMs. The manufacturer validation does not guarantee that the DIMMs will function

 15

correctly when the CPU is running with real-world user configurations. Upon successful

completion of NSN's validation process DIMMs are approved for use in the CPU blades.

The NSN DIMM validation process is conducted in a thermal chamber which can

generate a sustained temperature of up to 100°C. The CPU is housed inside the

chamber and serial port connection established to an external PC for operation of the

memory testing software. The CPU is then tested with its minimum and maximum

DIMM configurations installed, and also by using DIMMs with varied capacities, from

different vendors and in combination with previously approved DIMMs.

For all DIMM configurations the memory test software tests are run whilst the

temperature is simultaneously incremented to 80°C. At each 10 degree interval the

temperature is stabilised for between 30 and 60 minutes. The entire test cycle can take

up to 24 hours for 16GB memory when using Memtest86+, for example.

Further requirements in the validation process prior to running the software must also

be configured in the BIOS. The processor must be running at its lowest frequency in

order to ensure there is no throttling which may disturb the validation. ECC correction

should be disabled so that errors can be detected and a normal DRAM refresh rate be

selected rather than an auto refresh rate.

The ODM team use a variety of software currently during the DIMM validation process.

The advantages and disadvantages as detailed in the software requirements document

are summarised in Table 2 below.

Table 2. High Level Assessment of Current Software

Software Advantages Disadvantages

Memtest86

+

Free, open source, some

chipset support, supports large

amounts of memory, ease of

use

Only 32 bit accesses, does not

stress test memory bus

UTE.img NSN internal, source code Max 4GB testing range, complex

 16

available, stresses memory bus,

64/128 bit accesses

usage, only for NSN internal OS

Intel MARSE Intel developed, stresses

memory bus, 64/128 bit modes

Runs on DOS, limited maximum

memory

T3memio NSN internal, source code

available, thermal stress test,

Linux based

Cannot stress test memory bus or

specific DIMM

Table 2 illustrates the need for software which combines the advantages of those

currently used whilst eliminating their disadvantages.

3.2 Feasibility Study

The software requirements document did not suggest how the software would be

implemented in practice. However, after careful analysis of the document, particularly

those sections referring to the software currently used and what OS is running on the

blade (see Table 2 above), it was clear that there were two primary options for

implementation: a standalone binary or a Linux-based implementation. A Linux

implementation itself offered two further options, user space or kernel space (LKM).

These development options would serve as the basis for the feasibility study.

The purpose of the feasibility study was to gain an insight into the advantages and

disadvantages of the potential implementations from more experienced colleagues.

The study consisted of a series of interviews, discussions, meetings and email

exchanges with senior engineers employed by NSN. These findings from the feasibility

study have been summarised in Table 3 below.

 17

Table 3. Advantages and Disadvantages of Differing Software Implementation Options

Software

Implementation

Advantages Disadvantages

Linux Kernel

Space (LKM)

- All CPU blades run Linux

- Can utilise kernel

functionality

- Direct access and ability to

address physical and virtual

memory (kernel and user)

- Can call the kernel directly

- Easily ported to other

architectures

- Kernel crashes easily when working

with memory

- Kernel occupies memory itself

- Memory management is complex

- Abstraction from HW causes SW to

run slower

- Debugging kernel is complex

- LKM cannot be killed if it errors

during operation

Linux User Space - All CPU blades run Linux

- Can utilise standard C library

and Linux system calls

- Debugging is simple

- User space processes can be

killed easily

- Reduces development effort

as memory management is

handled by the kernel

- Cannot access kernel space

memory

- Cannot directly address memory

- Memory allocation is random

- More abstraction before instructions

are executed

- Context switch makes processes

slower

Standalone Binary

(based on

memtest86)

- Improved speed

- Direct access to hardware

- More memory available

- Only for x86 architecture

- CPU-1 has no BIOS

- Increased development effort

The feasibility study results illustrated that all three development approaches met the

software requirements to varying degrees. An extension to memtest86 appeared to be

the most exhaustive in terms of development effort and also would prove difficult to

adapt when new architectures are introduced. Whilst the development of Linux user

space software would have been simpler, its high level of abstraction from the

 18

hardware and the inability to directly access memory or the kernel space was a clear

disadvantage.

Whilst having an increased development load and a steep learning curve, the LKM

approach met the software requirements much more closely. Using an LKM the

software would be able to access all memory and address it precisely. As a developer it

would also provide a useful insight into the internals of the Linux kernel and

particularly its memory management subsystem. It was decided that an LKM would be

the chosen implementation. It was also determined that using a USB bootable Linux

image would be the best way to deploy the software.

 19

4 Software Design Methods

4.1 Deployment

As determined during the feasibility study, Kmemtestd (kernel memory test daemon)

would be developed as a dynamically loadable kernel module, operating in kernel

space, which can be inserted into the kernel on demand via a user interface (UI), or

manually using the insmod Linux command.

Kmemtestd was developed purely in the C programming language and the user

interface and logging functionality were developed with shell scripting. C was chosen

as the development language as it provides low level access to physical memory. Using

C also allowed for simple access and use of existing kernel structures.

The software requirements stipulated that the software be boot-to-test in nature and

as automated as possible. Using a USB bootable image of the Linux kernel would

provide the simplest deployment method for operation as the kernel can be booted

automatically by setting the appropriate BIOS settings prior to powering on the

hardware.

The user interface (UI) for Kmemtestd is a shell script which collates basic system

information and presents it the user, for example, CPU speed and the number of CPUs

present. The UI collects data through a series of prompts and passes it as module

parameters when loading the module, such as the number of loops the test routines

will perform, whether ECC and the cache will be enabled or disabled. The UI is also

used to unload the module itself from the kernel once complete and also produce logs

and write those logs to the mounted USB drive.

4.2 Operation

When Kmemtestd has been loaded into the kernel, it is initialised as a kernel thread.

Kernel threads exist only in the kernel space and provide the module with access to

kernel data structures and the kernel address space. Threads also have direct access

to the kernel symbol table and system call library. Therefore a kernel thread was an

 20

ideal choice for the Kmemtestd module as it must utilise the above kernel features.

Another reason to choose a thread was that it can be killed cleanly by the user.

Once the thread has been started, the hardware is initialised either based on

parameters passed by the UI or its default behaviour. Hardware initialisation

disables/enables the L2 cache and the ECC registers. The default configuration is that

the cache is enabled and ECC is disabled. Both sets of registers are accessed via kernel

structures: MTRR for the cache and the PCI device list for ECC.

If hardware initialisation did not fail the thread is daemonised and begins to calculate

the available memory. Kmemtestd automatically allocates the maximum available

memory without disturbing the kernel and then performs stress tests on the allocated

memory with a variety of data patterns. Upon completion of the test routines the

allocated memory is freed and the software exits cleanly. During execution the user

may send a kill signal to the software which also frees the memory and exits cleanly.

The execution of Kmemtestd is described in pseudocode in Listing 2 below.

Kmemtestd_start() {

 initialise_software_as_kernel_thread();

 initialise_hardware();

 daemonise();

 calculate_available_memory();

 allocate_memory();

 while(USER_DEFINED_LOOPS || INFINITE_LOOPS){

 if(no_kill_signal_received){

 do_stress_tests();

 }

 USER_DEFINED_LOOPS--;

 } else {

 free_memory_then_exit();

 }

 free_memory_then_exit();

}

Listing 2. Kmemtestd execution in pseudocode

 21

4.2 Memory Allocation

Prior to allocation the size of the installed memory should be assessed and stored for

Kmemtestd to handle. Much of the information about the system required by

Kmemtestd is already known to the kernel and will be utilised via kernel interfaces,

structures and macros. The /proc filesystem stores information about the current use

of memory resources. As discussed in 2.4.1 Linux uses three memory zones, only

ZONE_NORMAL and ZONE_HIGHMEM are assessed and a safe allocation total is

calculated. ZONE_DMA is excluded as a future feature is planned whereby the DMA

controller will be driven concurrently as Kmemtestd performs its routines, thereby

increasing stress to the memory subsystem.

The low and high memory zones have kswapd watermarks set by the kernel. Should

the amount of available memory go below these watermarks kswapd will begin

reclaiming memory. In order to prevent this occurring, the watermark amounts are

doubled and subtracted from the to-be allocated memory amount.

The kernel has limited access to the physical memory of the system, as detailed in

section 2.4.2, and as a result memory must be mapped into the kernel map space.

Kmemtestd calls the LAST_PKMAP macro which returns the number of page table

entries available for mapping. This value is then utilised as a variable for iterating

through the memory in Kmemtestd’s mapping functions.

 22

5 Software Implementation Details

5.1 Hardware Initialisation

Hardware initialisation is executed once the module is loaded into the kernel and

accepts parameters passed by the user from the UI or uses its default values.

Kmemtestd utilises the kernel’s PCI device list structures and functions to access ECC

bit stored in the CPU memory controller register. Due to its customised nature

Kmemtestd works on the assumption that the type of CPU board is one of four

variants. The ECC bit value and MCH registers for each CPU board were therefore

required to be pre-defined for hardware initialisation interactions. The specific registers

were noted from the hardware specifications of each CPU. Interfacing with the L2

cache does not require such customisation.

Whilst the kernel PCI device list covers a wide range of CPU manufacturer’s, not all

registers or device ID values are defined in each kernel. Listing 3 below details some of

the PCI device IDs used by Kmemtestd .

72 #define PCI_DEVICE_ID_INTEL_5100_16 0x65f0

 /* PCI dev id for I5100 */

73 #define PCI_E7501_DRC 0x7c

 /* Memory Control Register for e7520 and e7501 */

74 #define I5100_MC 0x40

 /* Memory Control Register for i5100 */

Listing 3. Kmemtestd defines for various hardware elements.

In the Linux kernel version used for development it was necessary to manually define

some PCI device values taken from later kernel versions for use in Kmemtestd.

5.2 Allocation Amounts

Once executed Kmemtestd queries the available high and low memory from the kernel.

This is achieved via two methods. The first uses the sysinfo kernel structure as used

 23

by the proc filesystem for example in /proc/meminfo. The sysinfo structure is then

populated with the kernel si_meminfo() function, as illustrated in Listing 4.

169 struct sysinfo mem;

...

180 si_meminfo(&mem);

Listing 4. Kmemtestd use of the proc filesystem.

The second method is used at various points in the code and simply queries the kernel

for the value of total free pages across the system. This was implemented in a simple

function, shown in Listing 5, the K() wrapper simply converts the returned value to

kilobytes.

1120 /* retrieves current system wide free ram */

1121 static unsigned long curr_free_ram(void)

1122 {

1123 return K(global_page_state(NR_FREE_PAGES));

1124 }

Listing 5. Kmemtestd’s function to retrieve the amount of currently available memory.

The members of the mem structure are then accessed to provide the total available

memory in the low and high memory zones. These totals then have their respective

watermarks doubled and then subtracted from the total in order to avoid kswapd

interference. The available memory is then divided by the size of the PKMAP which

results in a granularity used in the allocation routines, as shown in Lisitng 6 below.

187 init_freeram = curr_free_ram(); /* get initial free RAM

according to kernel */

...

197 /* calculate the amount of memory to reserve based on

free mem and kswap watermarks */

198 /* then divide each amount by the granularity eg how

many pages to be allocated/freed per page pointer */

199 lowmem_alloc_size = mem.freeram - mem.freehigh;

 24

200 lowmem_alloc_size -=(NODE.node_zones[lowmem].pages_high

* 2) + (NODE.node_zones[lowmem].pages_min * 2));

201 lowmem_alloc_size /= CUR_PKMAP_SIZE;

202 highmem_alloc_size = mem.freehigh;

203 highmem_alloc_size -= NODE.node_zones[himem].pages_high

+ NODE.node_zones[himem].pages_min);

204 highmem_alloc_size /= CUR_PKMAP_SIZE;

Listing 6. Memory allocation technique used in Kmemtestd.

The final totals lowmem_alloc_size and highmem_alloc_size are then passed

to the allocation functions. The allocation totals essentially represent the number of

page pointers which will point to allocated page ranges.

5.3 Page Handling

Kmemtestd utilises the kernel’s implementation of the linked list data structure to store

the allocated memory. The linked list was chosen as its size is dynamic and therefore

reduces memory consumption or possible overflows. The kernel’s implementation is

efficient and optimised for use in the kernel. The elements of the list are structures,

see Listing 7, containing a pointer to the memory allocated, a pointer to the memory

address (if the address is in low memory) and the page frame number.

88 /* list for storing allocated page ranges */

89 struct km_allocd_pages_list{

90 struct list_head list;

91 struct page* km_p; /* page pointer to the range of

allocated pages */

92 void* km_vaddr; /* virtual address (only low memory) */

93 unsigned long km_pfn; /* page frame number */

94 };

Listing 7. The allocated page list structure in Kmemtestd.

As discussed previously in 2.4.2 there are a number of memory allocation functions

made available via the kernel API. However, the core of the kernel’s memory allocator

 25

is the __alloc_pages()function which is accessed via the macro alloc_pages()

as defined by the prototype:

struct page *alloc_pages(unsigned int flags, unsigned int

order);

The alloc_pages() parameter flags indicates which area of memory the kernel will

allocate for example GFP_KERNEL. Order is the number of pages to be allocated,

2^order. The function returns a pointer to the page structure at the head of the

contiguous range of pages which were allocated. The returned pointers are then stored

to the linked list. The order at which page ranges are allocated is determined by the

size of the PKMAP area in the address space. As discussed in section 4.2 the

LAST_PKMAP macro returns the number of entries in the page table. This figure is 512

(2^9) if Page Address Extension (PAE) is enabled, the case when more than 4GB of

physical memory is installed, or 1024 (2^10) if PAE is not present. The power of two,

or order, is stored and then used in the allocation function, which in turn passes it as a

parameter to the alloc_pages() function, shown below in Listing 9.

304 /* Allocate memory within gfp_t type only in ranges of order

in a loop based on the */

305 /* calculated maximum in the init function */

306 static void allocate_page_ranges_in_mem_zone(u64

num_page_ranges_to_alloc, gfp_t mem_zone_gfp)

307 {

308 int i;

309

310 for(i = 0;i < num_page_ranges_to_alloc;i++){

311 km_new = kmalloc(sizeof(struct km_allocd_pages_list),

GFP_KERNEL); /* kmalloc each list element */

312 km_new->km_p = alloc_pages(mem_zone_gfp, ORD); /*

returns a page pointer to range of ORDER order pages and add to

list */

313 km_new->km_vaddr = page_address(km_new->km_p); /* try

to retrieve virtual address */

314 km_new->km_pfn = page_to_pfn(km_new->km_p); /* get

the page frame number for sorting */

315 add_sorted_entry(km_new); /* sort and add to list */

 26

316 }

317 }

Listing 9. Kmemtestd alloc_pages() function.

The kernel’s alloc_pages() attempts to allocate 2^(order parameter) contiguous

pages in the memory zone it receives as its’ first parameter. As noted above the order

is based on the number entries in the PKMAP so as not to case any overflows in

allocation and mapping. For example, when PAE is enabled there are 512 entries for

4096B pages totalling 2MB, therefore each allocated page range must be 2MB also.

The allocation routine is called twice, once for low memory and once for high memory.

However, instead of maintaining this assumption the allocation function calls the

kernel’s page_address() function which takes a page pointer as a parameter and

returns a virtual address of the page if in low memory. This address is then stored to

the allocated pages list structure even when null. The virtual address is checked during

the testing algorithms to determine whether the page requires mapping.

As each page range is successfully allocated the pointer to the first memory area is

sorted based on its page frame number and inserted into the list. The page frame

number is a number assigned by the kernel to represent the physical position of the

page in the memory. By sorting based on this number the list structure should closely

resemble physical memory.

The allocated pages list is stored as global variable and is then iterated through during

the memory tests using the list_for_each() kernel iteration function. The page

pointer and virtual address fields from the structure are then accessed. If the there is

no virtual address then the page is in high memory and must be mapped into the

PKMAP, in the case of low memery the virtual address pointer is simply cast to a 64-bit

wide pointer. Mapping high memory pages is achieved via a wrapper function to the

kernel API’s kmap() function, see Listing 10.

 32 static inline void *kmap(struct page *page)

33 {

 27

34 might_sleep();

35 return page_address(page);

36 }

37

38 #define kunmap(page) do { (void) (page); } while (0)

Listing 10. The Linux Kernel kmap function.

Whether the page and its allocated page range required mapping or not the memory

testing function iterates through the pages using pointer arithmetic based on the width

of the test pattern. If the page range was mapped then once is has been iterated it is

unmapped. Again this is achieved via a wrapper function to the kernel’s kunmap()

function. The test function then repeats this process until the full list has been iterated

through.

 28

6 Discussion

6.1 Memory Allocation Methods in Kmemtestd and the Kernel

The Linux kernel's memory management subsystem is a complex and intricately

designed piece of software. Its efficiency provides a stable platform for the Linux

operating system. For the novice kernel developer exploring this subsystem provides a

detailed insight into the inner workings of the Linux kernel and operating system

memory management in general.

The feasibility study identified a Linux kernel module as the optimum deployment

method for the required memory testing software. A kernel module has access to the

kernel space and the kernel API, which in turn provides access to many low level

memory functions. Using a module would also provide a method to return physical

addresses where memory errors occurred and precise access to memory controller

registers. However, working inside the kernel space presented a number of challenges.

In user space memory allocation and manipulation is usually achieved via standard C

library functions like malloc() and memcpy() which are familiar to most developers.

These tools are not available in the kernel space and the kernel API’s own tools

required study. The API function kmalloc() allocates memory in small contiguous

chunks up to approximately 8KB and returns a void pointer to that location. In the case

of Kmemtestd, this would have resulted in an excessive number of pointers requiring

storage for future iterations. Using vmalloc() did not meet the requirements as it

allocates discontiguous chunks of memory. Both functions use the page structure at

their lowest level as the unit of allocation, vmalloc() uses alloc_page() and

kmalloc() uses the page via the bigblock structure and the slob. Therefore, the

alloc_pages() function which returns a page pointer was selected for development

as its use reduces the processing overhead, removed some layers of abstraction and

produced more readable code.

Using page sized granularity proved to be very effective due to the number of

functions in the kernel API providing access to and information about pages. Pages are

 29

the basic unit of memory management in the kernel. The PKMAP also uses pages when

mapping high memory.

By default the Linux kernel splits the available physical memory into zones. The first 36

MB is reserved for DMA, from here to 896 MB is low memory and anything above is

considered high memory. When is use and during memory tests the hardware will have

4-16 GB memory installed. Therefore, approximately 15 GB of physical memory may

require mapping into the kernel space via PKMAP prior to testing. This is achieved by

mapping memory in 2MB chunks, testing and then unmapping. In the instance of 16

GB of physical memory these two procedure must be performed approximately 15300

times. Mapping high memory is an unavoidable overhead but may have had some

impact on Kmemtestd's ability to stress the memory subsystem.

6.2 Using Customised Kernels in Deployment

The Linux kernel which the module was to be deployed with is used is a wide variety of

other applications within NSN. Therefore, modifying the configurations of the kernel

itself was not an option during development and the 1 GB/3 GB default kernel memory

split had to be utilised. For future development the use of a 4 GB/ 4GB kernel split

would result in dramatic reduction in the mapping requirements. In fact with

configuration in a customised kernel all memory could be configured as low memory

for the purposes of memory testing.

A further drawback related to the use of page sized granularity is the size of the page

itself, 4096 B. As discussed previously in section 6.1, mapping high memory has an

associated overhead. When PAE is enabled PKMAP has 512 page entries available. If it

had been possible to configure the kernel to support hugepages or superpages of 4 MB

in size then 20 MB would have been mapped per operation. Again, this feature should

be considered for future development.

 30

6.3 Memory Allocation and its Danger to System Stability

Whilst the page based allocation method works very effectively, Kmemtestd assumes

that the memory is fully contiguous. In general NSN usage this will be the case as the

kernel is loaded only for this purpose and a bare minimum of processes are permitted.

However, if Kmemtestd is executed in an environment which has many running

processes memory fragmentation and lack of available memory will cause kernel

crashes. Future iterations of the software would need to implement a method to assess

how contiguous the system's memory is and take necessary actions to correct it.

The kernel controls and allocates memory to user space processes from within the

kernel space. The kernel’s own processes are also reserving and freeing memory within

the kernel space simultaneously. The kernel swap daemon kswapd is periodically

monitoring the number of free pages and will forcefully begin to free pages if the total

is deemed to low. Implementing software which could safely allocate all available free

memory without disturbing other processes was difficult and perhaps the reason why

no memory testing software has been written in the kernel space before. This was

achieved by allocating safe amounts discovered through repeated testing. An

alternative approach may have been to implement a process, similar to kswapd, to

monitor Kmemtestd memory allocations and usage. However, implementing such a

process was beyond the scope of this project.

In order to address the issue of safe memory allocation amounts, the early stages of

development were spent exploring the balance between maximal allocation and

minimum interference with the kernel. This proved difficult and time-consuming as a

result of frequent, and sometimes spectacular, kernel panics. Through repeated testing

by gradually increasing the amount of memory allocated from the absolute free

memory total a safe and stable amount was determined, which resulted in

approximately 36MB remaining untested from installed memory between 4GB and

16GB. An alternative approach and consideration for the future would be to use the

Linux kexec tool to load another kernel from an executing kernel. By performing a

warm reboot it would be possible to move the kernel’s location in the memory allowing

even more memory to be tested.

 31

As discussed in section 4.2 Kmemtestd tests only low and high memory, ZONE_DMA

was omitted in the initial design. It was planned as a future improvement that a

separate function or driver would be developed to run simultaneously with Kmemtestd

to drive the DMA controller and increase stress to the CPU’s memory management

subsystem.

6.3 Memory Test Routines

Once the initial allocation, storage and iteration issues had been addressed, the

allocated memory required testing. Kmemtestd uses a battery of well-known and

established memory tests patterns to be written and read. It was not necessary nor

possible due to time constraints to create and compare new test patterns to those

commonly used in industry standard applications such as memtest86. Further tests, for

example custom patterns chosen by the user, can be simply added to Kmemtestd due

to its modularity in future iterations.

The software requirements stated that read/write accesses must be both 64/128 bit

wide. Despite extensive research and effort it was not possible to determine how it

would be possible to achieve this. The processor uses 32-bit instructions but it is

difficult to assert how reads/writes are managed by the MCH. Whilst Intel's technical

specifications provide some insight, there remains a level of abstraction. By better

aligning data structures and read/write accesses to the cache line length, it is assumed

that the MCH will operate optimally and drive the memory bus maximally.

Kmemtestd accesses MCH registers via the PCI device structures in the Linux kernel in

order to configure ECC. The PCI device bus has access to many features of the DIMMs

and could been used to add further functionality such as changing the DRAM refresh

rate, determining whether interleaving is enabled and retrieving other details about the

configuration of the DIMMs. These improvements could be added in future revisions.

 32

6.4 Software Development

Kmemtestd was developed using an iterative approach to both its design and

implementation. Like the development of the Linux kernel, much of the design was

responsive to the real-world behaviour of the module when running on hardware.

Although the software requirements and feasibility study served as a solid basis for

design, the complexity of the task resulted in the design and the techniques employed

having to change at various stages.

The software was developed to be modular, so future CPU blades could be added

simply to the existing code. At the time of writing this document maintenance for

Kmemtestd has been transferred to another development team and new CPUs modules

have already been added to the code for its most recent revision. The software code

itself is easy to understand and follows the coding principles laid out in the kernel.

However, code reuse is an area for future improvement. The read/write functions

should be refactored into more generic functions perhaps taking the test patterns as a

parameter. Also, the software has very little error handling whereas all functions which

can fail should return a success or failure value to its caller and inform the user of the

error.

Software testing during development was excessively time consuming. Each code

change required the kernel to be built and then transferred to a USB pen drive, which

was then inserted into the target hardware. The system was then booted and the

module was manually loaded into the kernel and the results observed. This testing

cycle lasted between 10 and 15 minutes. QEMU, a CPU emulator, may have been a

better option but unfortunately as the target hardware was heavily customized, this

was not possible.

Whilst the software was tested directly on the hardware, it proved difficult to verify the

extent to which the memory subsystem was stress tested. Manually generating

controlled memory errors is not trivial. Installing fully faulty DIMMs would result in the

system not booting at all and short circuiting a connector on the DIMM produced

unexpected kernel panics. By applying excessive heat with a thermal-air blower across

the length of the DIMMs produced real memory errors which were successfully caught

 33

by Kmemtestd. The voltage across the CPU was also measured during test runs with

Kmemtestd and the existing UTE software and similar values were recorded,

suggesting that the memory subsystem was stress tested to a similar extent. Ideally

the software verification would have been more thorough and detailed.

The user interface for Kmemtestd was implemented using a shell script. Whilst meeting

the requirements for usability, the UI could be improved in future versions of the

software. Adding a Linux command to the kernel for user interaction with Kmemtestd

would have been a better approach and would have also allowed for documentation

via man pages. Currently user documentation is provided in a Word document and a

help option flag should be added to the script, so the user can see the available

options. Log writing is a further area for improvement as the UI script currently

appends the system log to a file. By implementing a device driver, more detailed and

controlling logging could be achieved. However, this would increase complexity and

impact maintainability.

Due to a lack of software engineering experience during the development process, a

number of software tools which would have increased productivity were not utilised.

Despite there being only one contributor to the code, a subversion system such as SVN

or git, would have helped track the frequent code changes and have served as a useful

reference tool in future debugging. Also, learning to use the kernel debugger would

have helped in tracing the causes of the more obscure kernel panics. Unit testing the

code would have helped in identifying coding errors and added verification for future

additions.

A Linux kernel module has not been used previously to test memory due to the

complexity of memory testing inside the kernel space. However, Kmemtestd proves

that it is both possible and a practical method for implementation. Some discussion has

taken place with the current maintainer of the software regarding releasing it to the

open-source community for analysis and further development. A kernel module

provides a great deal of flexibility as it can be compiled for any architecture supported

by the kernel.

 34

7 Conclusion

The goal of the project was to develop software to stress test the memory subsystem

in x86 based hardware for NSN, which met their software requirements. Due to the

implementation of Kmemtestd the memory subsystem NSN’s CPU blades can be stress

tested effectively and the results stored for further analysis. The software is modular

and can be adapted easily to future processors. Compilation for future CPU

architectures is provided via the kernel. Kmemtestd is relatively boot-to-test in nature

and provides a simple user interface. Kmemtestd has been taken into use by hardware

engineers and is currently being maintained and developed further by an embedded

software team.

The Linux kernel memory management subsystem is vast and complex. In order to

develop the software a considerable effort was placed in exploring this subsystem and

kernel development itself, which consumed more time than was initially anticipated.

Despite the challenges involved in Linux kernel development the project was both a

rewarding and valuable learning experience. Working so closely with the hardware also

provided insight into how memory works and how software utilises it, which in turn

illustrated how to better optimise memory usage in future software projects.

The result of the project was a software implementation, Kmemtestd, which met the

primary criteria defined in the software requirements. The implementation also

delivered a user interface script and extensive documentation. The software has been

taken into use successfully.

In conclusion, the project was successful and met the criteria set out at its inception.

NSN now have a further software tool which can be updated and modified simply. The

project was challenging but provided valuable insights into profession software

development.

 35

References

1 Intel Corporation. Intel® 64 and IA-32 Architectures Software

Developer’s Manual Volume 1: Basic Architecture [online]. Intel

Corporation; November 2008.

URL:http://download.intel.com/design/processor/manuals/253665.pdf.

Accessed 20 January 2009.

2 Intel Corporation. Intel® 64 and IA-32 Architectures Software

Developer’s Manual Volume 3A: System’s Programming Guide, Part 1

[online]. Intel Corporation; November 2008.

URL: http://download.intel.com/design/processor/manuals/253665.pdf.

Accessed 20 January 2009.

3 Duarte G. Memory Translation and Segmentation [online]. August 2008.

URL: http://duartes.org/gustavo/blog/post/memory-translation-and-

segmentation. Accessed 23 February 2009.

4 Drepper U. What Every Programmer Should Know About Memory.

November 2007.

URL: http://www.akkadia.org/drepper/cpumemory.pdf.

Accessed 25 February 2009.

5 Ganssle J. Testing RAM in Embedded Systems. April 2007.

 URL: http://www.ganssle.com/testingram.pdf. Accessed 22 January 2009.

6 Bovet DP, Cesati M. Understanding the Linux Kernel. 3rd ed. United

States of America: O’Reilly, November 2005.

7 Corbet J, Rubini A, Kroah-Hartman G. Linux Device Drivers. 3rd ed.

United States of America: O’Reilly, February 2005.

 36

8 Gorman M. Understanding the Linux Virtual Memory Manager [online].

February 2004.

URL:http://ptgmedia.pearsoncmg.com/images/0131453483/downloads/

gorman_book.pdf. Accessed 20 March 2009.

