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The aim of the project was to implement software which would stress test the memory 
subsystem of x86 based hardware for Nokia Siemens Networks (NSN). The software was 
to be used in the validation process of memory components during hardware develop-
ment. NSN used a number of software tools during this process. However, none met all 
their requirements and a custom piece of software was required.  
 
NSN produced a detailed requirements specification which formed the basis of the project.  

The requirements left the implementation method open to the developer. After analysing 
the requirements document, a feasibility study was undertaken to determine the most 
fitting method of implementation. The feasibility study involved detailed discussions with 

senior engineers and architects within both the hardware and software fields at NSN. The 
study concluded that a Linux kernel module met the criteria best. 
 

The software was successfully implemented as a kernel module and met the majority of 
the requirements set by NSN. The software is currently in use at NSN and is being actively 
updated and maintained.  
 
Memory testing software within the Linux kernel has not been implemented previously due 

to a number of risk factors. However, this implementation demonstrated that it can be 
achieved successfully. The software has the possibility to be extended for other memory 
testing purposes in the future.    
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1 Introduction 

 

The aim of the project was to develop software to be used in the Dual In-Line Memory 

Modules (DIMM) validation process for Nokia Siemens Networks (NSN). The software 

was required to stress test the memory subsystem of x86-based Central Processing 

Unit (CPU) blades which are used in NSN network elements, such as the FlexiPlatform, 

a third-generation (3G) telecommunications exchange. For the blades to function 

optimally it is essential that the DIMM modules are compatible with the existing 

hardware and software and that they are capable of handling heavy loads and high 

temperatures whilst maintaining signal integrity (SI).  

 

During the NSN validation process multiple combinations of DIMM modules from 

different vendors are tested using a variety of memory stress test software. The key 

requirements for the software were automation, simplicity of use, extensive stress on 

the memory buses and detailed logging. The software was also to be designed to 

thoroughly test SI on the memory buses and generate maximal heat. The software 

implementation method was to be decided by the developer after conducting a 

feasibility study. The scope of the project did not include testing individual errors in 

Dynamic Random Access Memory (DRAM) cells. 

 

Physical memory is an essential component in devices ranging from supercomputers to 

embedded devices such as mobile phones. In x86-based systems physical memory 

commonly refers to DIMM modules with mounted DRAM cells, which are inserted onto 

the systems’ motherboard. The CPU communicates with physical memory via the 

Northbridge, or Memory Controller Hub (MCH), to which it passes data over the Front 

Side Bus (FSB). Modern CPUs also utilise memory caches when interfacing with 

physical memory.   

 

Memory management and optimisation is a key field of study in both hardware and 

software development, particularly how an Operating System (OS) manages physical 

memory. In x86 systems the CPU uses techniques called segmentation and paging to 

manage physical memory implemented by the Memory Management Unit (MMU).  Due 

to the limiting 32-bit address space (2^32 = ~4GB) Physical Address Extension (PAE) 
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was introduced which added four more address lines resulting in the ability to access 

up to 64GB. 

 

The Linux kernel also employs paging, and to a lesser degree segmentation, 

techniques to manage physical memory. The Linux kernel is responsible for managing 

every process’ request for memory allocation, whilst simultaneously managing its’ own 

data structures. When operating on a x86 32-bit hardware platform the kernel also 

utilises a 4GB address space, or 64GB if PAE is enabled. The kernel also employs a 

virtual memory model to manage physical memory.  

 

NSN are one the world’s leading communication services providers and operate in 

around 150 countries, employing 60,000 people. The company was formed on 19 June 

2006 as a joint venture between Nokia Networks and Siemens Communications. NSN 

solutions include radio and broadband access, IP transport, mobile backhaul and Long 

Term Evolution (LTE). The project was undertaken in the Original Design 

Manufacturers (ODM) team within the Research and Development department at NSN.  
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2 Background to Physical Memory and Memory Management  

2.1 The x86 Architecture  

2.1.1 History  

 

The x86 architecture is the most ubiquitous and successful instruction set architecture 

in the world today. Originally developed by Intel, the x86 architecture has been 

implemented by a number of manufacturers including Advanced Micro Devices (AMD) 

and VIA Technologies. Intel’s own documentation refers to Intel Architecture 32-bit 

(IA-32) and not x86. However, despite the focus of this paper being IA-32 processor 

based systems the more generic x86 will be used throughout.   

 

The x86 processor family has been developed by Intel since 1978. The term x86 

originates from the ending of the processor’s model number. The first x86 processor 

was the Intel 8086 which used 16-bit registers, 20-bit addressing and implemented 

segmentation to create a 1MB address space. In 1982 the Intel 286 processor 

introduced protected mode which provided a 16MB address space using descriptor 

tables, added protection mechanisms including privilege levels and also added support 

for virtual memory. [1, 33] 

 

The Intel 386 (i386) was the first 32-bit processor in the x86 family and was 

introduced in 1985. The i386 uses 32-bits for addressing providing a 4GB address 

space and introduced paging with a page size of 4096KB, which remains in Intel x86 

processors today. The i386 also introduced a segmented-memory model and a flat 

memory model [1, 34]. 

 

The x86 continued to evolve with key features added such as the first-level, or L1, 8KB 

write-through cache in the Intel 486 in 1989. In 1993 the Pentium processor doubled 

the L1 cache to 16KB split between 8KB data and instruction caches (L1d and L1i 

respectively). In addition the caches use the Modified Exclusive Shared Invalid (MESI) 

protocol and introduced the write-back method. Support for larger 4MB pages was 

included and later the Pentium III would introduce the MMX instruction set which 

utilises 64-bit registers. [1, 34-36] 

 



        6 

Intel’s x86 processors have now evolved to increase the size and effectiveness of the 

L1 caches, added a larger second-level (L2) cache, introduced dual cores and 

increased the frequency of the FSB and their own clock speeds The NetBurst 

microarchitecture delivered a new cache subsystem including an 8-way associative L2 

cache with 64B line size and the capability to deliver 8.5GB/s bandwidth. [1, 35-43]  

 

2.1.2 Memory Organisation  

 

Physical memory is organised by x86 processors into a sequence bytes with each byte 

having a physical address associated with it. In a 32-bit processor with Page Address 

Extensions enabled 64GB of memory can be addressed in the physical address space. 

Processors provide three models dependant on configuration for accessing memory. [1, 

76] 

 

The flat memory model provides a linear address space, whereby each byte is 

addressed on a one-to-one basis by the processor, providing 2^32 (~4GB) of 

addressable memory. The segmented model presents memory as a sequence of 

segments which are then accessed using logical addresses.  These logical addresses 

are then mapped into the linear address space. The segmented model provides the 

same amount of addressable memory as the flat model. The final memory model is the 

real-address model which also divides memory into logical addresses, however, this 

model is tailored for 8086 processors and provides a much smaller address space of 

2^20 bytes. [1, 76 – 77] 

 

Paging is employed to address memory when a one-to-one linear mapping does not 

exist. When paging is enabled the linear address space is divided into pages, either 

4KB, 2MB or 4MB in length, which are then mapped into virtual memory and stored 

either to memory or to the disk. Pages mapped into virtual memory are retrieved and 

mapped into physical memory as required. The virtual memory simulates a larger linear 

address space than the physical memory can provide. Pages are accessed using the 

page directory and page tables which translates the requested linear address into a 

physical one. [1, 78; 2, 92 – 93; 3] 
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Therefore, when a programming instruction requires access to the physical memory its 

logical address as provided by the CPU must be translated via the segmentation 

process into a linear address. The linear address is then translated during through 

paging into a physical address which is passed to the CPU’s MCH which interfaces 

directly with the physical memory.  

 

2.2 Physical Memory 

 

2.2.1 Physical Structure and Operation 

 

Dynamic Random Access Memory (DRAM) is commonly employed in a wide variety of 

computing systems today. DRAM cells consist of a capacitor, which stores the state of 

the cell (either 0 or 1) and a transistor which controls access to the state for other 

components. A data line is connected to the transistor, which is in turn connected to 

the capacitor and also to an access line that governs access for reads and writes. 

Writes are achieved by charging the capacitor with current issued along the data line 

should access be granted by the transistor. Reading of the cell results in the capacitor 

being discharged. As the capacitor is charged and discharged capacity leaks from the 

capacitor and the cell must be refreshed. [4, 5 – 6]  

 

DRAM cells are stored in matrices which can range from 128MB to 4GB per DIMM. With 

addressable cells reaching such vast numbers it is impossible to address every cell with 

its own address line. In order to access the cells a multiplexer and demultiplexer using 

a smaller set of address lines are required. 

 

The matrices of cells are accessed with row and column address selection (RAS and 

CAS) lines. The RAS line is a demultiplexer which accesses rows of DRAM cells whilst 

the CAS line multiplexer accesses the columns in the matrix. The result is delivered to 

the data bus via the CAS. [4, 6 - 7] 
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2.2.2 Memory Errors  

 

There are a wide variety of causes of memory errors in DIMM modules, especially 

when in constant use. The process of charging and discharging the capacitors can 

result in memory errors. The state of the cell can be difficult to determine as charging 

and discharging occurs exponentially in a capacitor rather than a square wave signal. 

[4; 6] 

 

The high density of memory cells on DIMM modules increases capacitivity which in turn 

contributes to signal degradation due to noise. Intensive use of DRAM cells can also 

overheat which results in voltage errors in reading and writing. In fact memory errors 

can have a wide range of causes including proximity to magnetic fields and even 

cosmic radiation. [4, 105; 5] 

 

In extreme circumstances persistent memory can result in an entire system becoming 

unstable or unusable. In the majority of cases memory errors are seen in incorrect 

data patterns. When these errors occur in small numbers they can be handled 

sufficiently using Error Correcting Code (ECC) DIMM. ECC enables error recognition in 

the hardware to identify and rectify errors as they occur. In extreme circumstances 

persistent memory can result in an entire system becoming unstable or unusable. [4, 

105; 5] 

 

 

2.3 Memory Management in the Linux Kernel 

 

2.3.1 Page Frames and Memory Zones 

 

The Linux kernel is monolithic in design, consisting of several logically different 

components. Linux allows kernel modules to be added dynamically when the system is 

running. Linux supports multiple processors, the NUMA memory model and can utilise 

numerous file systems. At the core of the Linux kernel is virtual memory management. 

[6, 2-3] Due the large number of architectures it supports the Linux kernel must 

describe the physical memory in an architecture-independent manner.  
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As discussed previously in section 2.1.1, in x86 architecture systems the CPU has a 

4GB (2 ^ 32) virtual address space. When paging is enabled in the CPU the Linux 

kernel splits this 4GB address space into two, a 1GB split for the kernel space and 3GB 

for user space. The division is defined by the constant PAGE_OFFSET whose value is 

0xC0000000 in hexadecimal, or 3221225472 in decimal (3GB). In virtual memory, the 

linear addresses from 0 to PAGE_OFFSET are reserved for user space and from 

PAGE_OFFSET to 0xFFFFFFFF, or 4GB, for the kernel space which totals 1GB. It is 

important to note that the linear address space above PAGE_OFFSET can only be 

addressed by the kernel and not from within a user space process. Therefore the 

kernel, or a process in kernel mode, is able to address the whole linear address space 

from 0 to 0xFFFFFFFF, whereas in user mode only 0 to 0xC0000000 is addressable. 

The physical memory split is reversed with 0 to 1GB allocated to the kernel space and 

addresses above 1GB belonging to user space. The PAGE_OFFSET constant is an 

important value and is used in the paging and addressing process. [6, 68; 8, 82]  

 

The physical memory is divided into page frames which are the same size as the page 

size defined by the architecture (4KB in x86) and as the kernel constant PAGE_SIZE. 

Each page frame is represented by the page structure, see Listing 1 below, which itself 

is ~40B and is stored in the mem_map array. The page structure for each frame details 

the current status of the page frame for the kernel's use but contains no information 

about the data it holds. [6, 295]  

 

223 struct page { 

224        unsigned long flags;             

... 

226        atomic_t _count;                 

227        atomic_t _mapcount;              

... 

231        union { 

232            struct { 

233                unsigned long private;     

...      

240                struct address_space *mapping;   

... 

247            }; 

248 #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS 
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249            spinlock_t ptl; 

250 #endif 

251        }; 

252        pgoff_t index;                  

253        struct list_head lru;            

... 

266 #if defined(WANT_PAGE_VIRTUAL) 

267        void *virtual;                   

... 

269 #endif /* WANT_PAGE_VIRTUAL */ 

270 }; 

 

Listing 1: The Linux kernel page structure 

 

Pages are mapped to memory zones using a bit shift in the flags field of the page 

structure. More importantly, the flags field describes the current status of the page 

using a number of macros defined by the kernel to retrieve and set bits within the 

field, for example PG_highmem which returns true if the page is in high memory [6, 

296 - 297]. A further salient member of the page structure is the virtual pointer.  

This pointer refers to a kernel virtual address if the page has been mapped or NULL if 

the page is in high memory. 

 

The physical memory is divided into nodes depending on the processor memory 

configuration, the node or nodes consist of page frames. In both NUMA and UMA 

machines memory is arranged into nodes dependent on their access distance from the 

processor. Each node is then split into zones representing different regions. In an x86 

machine, when UMA is the memory model, there are three zones in one singular node 

which is defined and stored to the contig_page_data kernel variable.  

 

In a default x86 UMA configuration the node is divided into three memory zones as 

follows ZONE_DMA (0 – 16MB), ZONE_NORMAL (16MB – 896MB) and ZONE_HIGHMEM  

(> 896MB). The ZONE_DMA is used for Direct Memory Access (DMA) memory 

operations and is limited to 16MB for legacy bus addressing reasons. ZONE_NORMAL, 

or low memory, is the most critical memory area as it is where the kernel code and 

data structures reside. The remaining physical memory is placed in ZONE_HIGHMEM 
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and is referred to as high memory. Low memory does not account for the full 1GB 

kernel space as a further 128MB are reserved for mapping high memory addresses.  

[6, 299; 8, 26]   

 

 

2.3.2 Addressing and Mapping Memory   

 

Linux is a virtual memory system, therefore addresses which are seen by user 

processes do not necessarily correspond to physical addresses in the hardware. Linux 

has a number of different address types which each have their own semantics and 

related functions. Physical addresses refer to those which are passed between the CPU 

and the physical memory, in x86 these addresses are 32-bit values (36 bit if PAE is 

enabled). Kernel logical addresses are used in the kernel’s address space and map a 

region of physical memory. Logical addresses can be viewed as physical addresses as 

they tend to be offset by a constant. A kernel virtual address also maps to physical 

address. However it may not be a linear mapping. All logical addresses in the kernel 

are virtual addresses but the reverse is not true. [6, 35 -36; 7, 413 - 414]  

 

The kernel provides a number of useful functions to retrieve memory addresses, for 

example virt_to_phys(address) returns the physical address from a given virtual 

address and its reverse function phys_to_virt(address). Likewise the page frame 

number (pfn),   which is an offset in mem_map indexing the page structure, is also 

used in functions to retrieve the page address and vice versa. However, not all page 

frames are assigned virtual addresses and those in high memory must be mapped into 

the kernel address space.  

 

As discussed previously in section 2.3.1, the low and high memory model in x86 

kernels only provides addresses for the first GB of memory, the watermark for this is 

defined by PAGE_OFFSET.  Beyond PAGE_OFFSET a number of boundaries are set to 

provide address space for mapping high memory. An address space is provided for 

memory allocated with vmalloc() begins at VMALLOC_START and ends at 

VMALLOC_END. The kernel also requires an address space to map high memory 

addresses, the Persistent Kernel Map (PKMAP). The PKMAP space is located at 
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PKMAP_BASE for a size dependent on the PAGE_SIZE and LAST_PKMAP constants.  

The LAST_PKMAP constant depends on whether PAE is enabled, if PAE was configured 

then it has a value of 512 otherwise, in a default configuration, the value is 1024; 

resulting in mappings of 2MB and 4MB respectively. [8, 53 – 56]  

 

High memory is mapped into the PKMAP using the kmap() function and unmapped 

with the kunmap() function. The kmap() function works by accessing the flags field 

of the page structure to check whether the page is marked as high memory. If the 

page is not marked as high memory then the page’s linear address may be returned 

immediately to the caller. However, if the page was marked as high memory it must 

first be mapped into the PKMAP space, which results in the page then having an 

address to access it. [6, 308 - 309] 
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3 Software Requirements Overview and Analysis 

 

Prior to commencing the project in NSN premises a software requirements document 

was produced by Janne Kilpelainen, a senior HW specialist and supervisor for the 

project. The document detailed the minimum set of requirements required by the ODM 

team for the DRAM validation software. The document specified that during 

implementation improvements and enhancements to the requirements were 

encouraged. The document served as the foundation for the project. 

 

The primary requirements for the software were to provide two operational modes: the 

SI mode, which would electrically stress test the memory subsystem whilst verifying 

signal integrity and a thermal mode, which should generate maximum heat in the 

DIMMs. From the user’s perspective the software must be automated, boot-to-test in 

nature and easy to use. In further detail the requirements were as follows: 

 

—    Minimal user interaction after booting 

—    Self booting, automated operation 

—    A simple effective user interface (UI) 

—    All accesses (reads/writes) at full bus width, 64/128 bits plus ECC 

—    Ability to change processor speed 

—    Determine whether errors are in read or write operations 

—    Disable/enable ECC 

—    SI mode has a variety of test patterns 

—    Detailed reporting to both screen and file 

—    Can be ported to other CPU architectures eg PowerPC and MIPS 

—    Modular code design for future updates 

 

In addition the UI should allow the user to set the processor speed, set the clock, 

select the operational mode, the number of loops and provide clear logging during 

operation. The software was to be used in x86 based CPU blades and must 

automatically detect the DIMM configuration of these blades and run the tests 

accordingly. The CPU blades are in listed in Table 1 below, in addition the software 

design should consider future CPUs during implementation  
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Table 1. Technical specifications overview of CPU blades required in implementation

   

CPU 

Blade 

Processor MCH Memory OS BIOS/ 

USB 

CPU-1 Pentium M 

(Dothan) 

1.8GHz 

E7501 DDR 200/266.  

4 DIMMsockets  

(4GB Max) 

Linux  

(Wind River) 

/NSN OS 

No/No 

CPU-2 2 x Intel 

Xeon LV  

1-2GHz 

E7520 DDR2 400.  

4 DIMM sockets 

(16GB Max) 

Linux  

(Wind River) 

/NSN OS 

Yes/Yes 

CPU-3 Penryn 

SP9300  

1.6 –2.26GHz 

5100 DDR2 533/667.  

4 DIMM sockets 

(16GB Max) 

Linux  

(Wind River) 

/NSN OS 

Yes/Yes 

CPU-4 2 x Intel 

Xeon LV 

2GHz 

E7501 DDR 200/266.  

4 DIMM sockets 

(8GB Max)  

Linux  (Red 

Hat Enterprise 

Linux, RHEL) 

Yes/Yes 

 

As detailed in Table 1, all the CPU blades run the Linux kernel which would become a 

key fact during the feasibility study.  Other salient facts derived from the table include 

the lack of a BIOS or USB slot in CPU-1 and that overall the maximum required for 

DRAM testing would be 16GB.   

 

3.1 Overview of the DIMM Validation Process at NSN  

  

During the development of a new CPU blade, the manufacturers are required to 

validate DIMM modules which have been selected by NSN. The purpose of the 

manufacturer validation is to ensure signal integrity in the memory interface and that 

the CPU and DIMM modules operate under various thermal conditions. 

 

Once this work has been undertaken and reviewed, NSN begins a further DIMM 

validation process. This process also examines signal integrity and thermal behaviour 

but also acts as validation that NSN software will work in harmony with the CPU and 

DIMMs. The manufacturer validation does not guarantee that the DIMMs will function 
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correctly when the CPU is running with real-world user configurations. Upon successful 

completion of NSN's validation process DIMMs are approved for use in the CPU blades.  

 

The NSN DIMM validation process is conducted in a thermal chamber which can 

generate a sustained temperature of up to 100°C. The CPU is housed inside the 

chamber and serial port connection established to an external PC for operation of the 

memory testing software. The CPU is then tested with its minimum and maximum 

DIMM configurations installed, and also by using DIMMs with varied capacities, from 

different vendors and in combination with previously approved DIMMs. 

 

For all DIMM configurations the memory test software tests are run whilst the 

temperature is simultaneously incremented to 80°C. At each 10 degree interval the 

temperature is stabilised for between 30 and 60 minutes. The entire test cycle can take 

up to 24 hours for 16GB memory when using Memtest86+, for example. 

 

Further requirements in the validation process prior to running the software must also 

be configured in the BIOS. The processor must be running at its lowest frequency in 

order to ensure there is no throttling which may disturb the validation. ECC correction 

should be disabled so that errors can be detected and a normal DRAM refresh rate be 

selected rather than an auto refresh rate. 

 

The ODM team use a variety of software currently during the DIMM validation process. 

The advantages and disadvantages as detailed in the software requirements document 

are summarised in Table 2 below. 

 

Table 2. High Level Assessment of Current Software    

 

Software  Advantages Disadvantages 

Memtest86

+ 

Free, open source, some 

chipset support, supports large 

amounts of memory, ease of 

use 

Only 32 bit accesses, does not 

stress test memory bus 

UTE.img NSN internal, source code Max 4GB testing range, complex 
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available, stresses memory bus, 

64/128 bit accesses 

usage, only for NSN internal OS 

Intel MARSE Intel developed, stresses 

memory bus, 64/128 bit modes 

Runs on DOS, limited maximum 

memory 

T3memio NSN internal, source code 

available, thermal stress test, 

Linux based 

Cannot stress test memory bus or 

specific DIMM 

 

Table 2 illustrates the need for software which combines the advantages of those 

currently used whilst eliminating their disadvantages. 

 

3.2 Feasibility Study 

 

The software requirements document did not suggest how the software would be 

implemented in practice. However, after careful analysis of the document, particularly 

those sections referring to the software currently used and what OS is running on the 

blade (see Table 2 above), it was clear that there were two primary options for 

implementation: a standalone binary or a Linux-based implementation. A Linux 

implementation itself offered two further options, user space or kernel space (LKM). 

These development options would serve as the basis for the feasibility study.   

 

The purpose of the feasibility study was to gain an insight into the advantages and 

disadvantages of the potential implementations from more experienced colleagues. 

The study consisted of a series of interviews, discussions, meetings and email 

exchanges with senior engineers employed by NSN. These findings from the feasibility 

study have been summarised in Table 3 below. 
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Table 3. Advantages and Disadvantages of Differing Software Implementation Options 

 

Software 

Implementation 

Advantages Disadvantages 

Linux Kernel  

Space (LKM) 

- All CPU blades run Linux 

- Can utilise kernel 

functionality 

- Direct access and ability to 

address physical and virtual 

memory (kernel and user) 

- Can call the kernel directly  

- Easily ported to other 

architectures  

 

- Kernel crashes easily when working 

with memory 

- Kernel occupies memory itself  

- Memory management is complex 

- Abstraction from HW causes SW to 

run slower 

- Debugging kernel is complex 

- LKM cannot be killed if it errors 

during operation 

Linux User Space - All CPU blades run Linux 

- Can utilise standard C library 

and Linux system calls 

- Debugging is simple 

- User space processes can be 

killed easily 

- Reduces development effort 

as memory management is 

handled by the kernel 

- Cannot access kernel space 

memory 

- Cannot directly address memory 

- Memory allocation is random 

- More abstraction before instructions 

are executed 

- Context switch makes processes 

slower 

 

Standalone Binary 

(based on 

memtest86) 

- Improved speed 

- Direct access to hardware 

- More memory available 

- Only for x86 architecture 

- CPU-1 has no BIOS 

- Increased development effort 

 

The feasibility study results illustrated that all three development approaches met the 

software requirements to varying degrees. An extension to memtest86 appeared to be 

the most exhaustive in terms of development effort and also would prove difficult to 

adapt when new architectures are introduced. Whilst the development of Linux user 

space software would have been simpler, its high level of abstraction from the 
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hardware and the inability to directly access memory or the kernel space was a clear 

disadvantage.  

 

Whilst having an increased development load and a steep learning curve, the LKM 

approach met the software requirements much more closely. Using an LKM the 

software would be able to access all memory and address it precisely. As a developer it 

would also provide a useful insight into the internals of the Linux kernel and 

particularly its memory management subsystem. It was decided that an LKM would be 

the chosen implementation. It was also determined that using a USB bootable Linux 

image would be the best way to deploy the software.  
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4 Software Design Methods  

4.1 Deployment 

 

As determined during the feasibility study, Kmemtestd (kernel memory test daemon) 

would be developed as a dynamically loadable kernel module, operating in kernel 

space, which can be inserted into the kernel on demand via a user interface (UI), or 

manually using the insmod Linux command. 

 

Kmemtestd was developed purely in the C programming language and the user 

interface and logging functionality were developed with shell scripting. C was chosen 

as the development language as it provides low level access to physical memory. Using 

C also allowed for simple access and use of existing kernel structures.   

 

The software requirements stipulated that the software be boot-to-test in nature and 

as automated as possible. Using a USB bootable image of the Linux kernel would 

provide the simplest deployment method for operation as the kernel can be booted 

automatically by setting the appropriate BIOS settings prior to powering on the 

hardware.  

 

The user interface (UI) for Kmemtestd is a shell script which collates basic system 

information and presents it the user, for example, CPU speed and the number of CPUs 

present. The UI collects data through a series of prompts and passes it as module 

parameters when loading the module, such as the number of loops the test routines 

will perform, whether ECC and the cache will be enabled or disabled. The UI is also 

used to unload the module itself from the kernel once complete and also produce logs 

and write those logs to the mounted USB drive.  

 

4.2 Operation 

 

When Kmemtestd has been loaded into the kernel, it is initialised as a kernel thread. 

Kernel threads exist only in the kernel space and provide the module with access to 

kernel data structures and the kernel address space. Threads also have direct access 

to the kernel symbol table and system call library. Therefore a kernel thread was an 
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ideal choice for the Kmemtestd module as it must utilise the above kernel features. 

Another reason to choose a thread was that it can be killed cleanly by the user.   

 

Once the thread has been started, the hardware is initialised either based on 

parameters passed by the UI or its default behaviour. Hardware initialisation 

disables/enables the L2 cache and the ECC registers. The default configuration is that 

the cache is enabled and ECC is disabled. Both sets of registers are accessed via kernel 

structures: MTRR for the cache and the PCI device list for ECC.  

 

If hardware initialisation did not fail the thread is daemonised and begins to calculate 

the available memory. Kmemtestd automatically allocates the maximum available 

memory without disturbing the kernel and then performs stress tests on the allocated 

memory with a variety of data patterns. Upon completion of the test routines the 

allocated memory is freed and the software exits cleanly. During execution the user 

may send a kill signal to the software which also frees the memory and exits cleanly. 

The execution of Kmemtestd is described in pseudocode in Listing 2 below. 

 

Kmemtestd_start() { 

 initialise_software_as_kernel_thread(); 

 initialise_hardware(); 

 daemonise(); 

 calculate_available_memory(); 

 allocate_memory(); 

 while(USER_DEFINED_LOOPS || INFINITE_LOOPS){ 

  if(no_kill_signal_received){ 

   do_stress_tests(); 

  } 

  USER_DEFINED_LOOPS--; 

  } else { 

  free_memory_then_exit(); 

 } 

 free_memory_then_exit(); 

} 

 

Listing 2. Kmemtestd execution in pseudocode 
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4.2 Memory Allocation 

 

Prior to allocation the size of the installed memory should be assessed and stored for 

Kmemtestd to handle. Much of the information about the system required by 

Kmemtestd is already known to the kernel and will be utilised via kernel interfaces, 

structures and macros. The /proc filesystem stores information about the current use 

of memory resources. As discussed in 2.4.1 Linux uses three memory zones, only 

ZONE_NORMAL and ZONE_HIGHMEM are assessed and a safe allocation total is 

calculated. ZONE_DMA is excluded as a future feature is planned whereby the DMA 

controller will be driven concurrently as Kmemtestd performs its routines, thereby 

increasing stress to the memory subsystem.  

 

The low and high memory zones have kswapd watermarks set by the kernel. Should 

the amount of available memory go below these watermarks kswapd will begin 

reclaiming memory. In order to prevent this occurring, the watermark amounts are 

doubled and subtracted from the to-be allocated memory amount.  

 

The kernel has limited access to the physical memory of the system, as detailed in 

section 2.4.2, and as a result memory must be mapped into the kernel map space. 

Kmemtestd calls the LAST_PKMAP macro which returns the number of page table 

entries available for mapping. This value is then utilised as a variable for iterating 

through the memory in Kmemtestd’s mapping functions.  
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5 Software Implementation Details 

5.1 Hardware Initialisation  

 

Hardware initialisation is executed once the module is loaded into the kernel and 

accepts parameters passed by the user from the UI or uses its default values. 

Kmemtestd utilises the kernel’s PCI device list structures and functions to access ECC 

bit stored in the CPU memory controller register. Due to its customised nature 

Kmemtestd works on the assumption that the type of CPU board is one of four 

variants. The ECC bit value and MCH registers for each CPU board were therefore 

required to be pre-defined for hardware initialisation interactions. The specific registers 

were noted from the hardware specifications of each CPU. Interfacing with the L2 

cache does not require such customisation. 

 

Whilst the kernel PCI device list covers a wide range of CPU manufacturer’s, not all 

registers or device ID values are defined in each kernel. Listing 3 below details some of 

the PCI device IDs used by Kmemtestd .   

 

72 #define PCI_DEVICE_ID_INTEL_5100_16      0x65f0   

 /* PCI dev id for I5100 */ 

73 #define PCI_E7501_DRC   0x7c   

 /* Memory Control Register for e7520 and e7501 */ 

74 #define I5100_MC   0x40 

 /* Memory Control Register for i5100 */ 

 

Listing 3. Kmemtestd defines for various hardware elements. 

 

In the Linux kernel version used for development it was necessary to manually define 

some PCI device values taken from later kernel versions for use in Kmemtestd. 

 

5.2 Allocation Amounts 

 

Once executed Kmemtestd queries the available high and low memory from the kernel. 

This is achieved via two methods. The first uses the sysinfo kernel structure as used 



        23 

by the proc filesystem for example in /proc/meminfo. The sysinfo structure is then 

populated with the kernel si_meminfo() function, as illustrated in Listing 4. 

 

169 struct sysinfo mem; 

... 

180 si_meminfo(&mem); 

 

Listing 4. Kmemtestd use of the proc filesystem. 

 

The second method is used at various points in the code and simply queries the kernel 

for the value of total free pages across the system. This was implemented in a simple 

function, shown in Listing 5, the K() wrapper simply converts the returned value to 

kilobytes.  

 

1120 /* retrieves current system wide free ram */ 

1121 static unsigned long curr_free_ram(void) 

1122 { 

1123     return K(global_page_state(NR_FREE_PAGES)); 

1124 } 

 

Listing 5. Kmemtestd’s function to retrieve the amount of currently available memory. 

 

The members of the mem structure are then accessed to provide the total available 

memory in the low and high memory zones. These totals then have their respective 

watermarks doubled and then subtracted from the total in order to avoid kswapd 

interference. The available memory is then divided by the size of the PKMAP which 

results in a granularity used in the allocation routines, as shown in Lisitng 6 below.  

 

187  init_freeram = curr_free_ram(); /* get initial free RAM 

according to kernel */ 

...  

197  /* calculate the amount of memory to reserve based on 

free mem and kswap watermarks */ 

198  /* then divide each amount by the granularity eg how 

many pages to be allocated/freed per page pointer */ 

199  lowmem_alloc_size = mem.freeram - mem.freehigh;  
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200  lowmem_alloc_size -=(NODE.node_zones[lowmem].pages_high 

* 2) + (NODE.node_zones[lowmem].pages_min * 2)); 

201  lowmem_alloc_size /= CUR_PKMAP_SIZE;   

202  highmem_alloc_size = mem.freehigh;  

203  highmem_alloc_size -= NODE.node_zones[himem].pages_high 

+ NODE.node_zones[himem].pages_min); 

204  highmem_alloc_size /= CUR_PKMAP_SIZE; 

 

Listing 6. Memory allocation technique used in Kmemtestd. 

 

The final totals lowmem_alloc_size and highmem_alloc_size are then passed 

to the allocation functions. The allocation totals essentially represent the number of 

page pointers which will point to allocated page ranges. 

 

5.3 Page Handling 

 

Kmemtestd utilises the kernel’s implementation of the linked list data structure to store 

the allocated memory. The linked list was chosen as its size is dynamic and therefore 

reduces memory consumption or possible overflows. The kernel’s implementation is 

efficient and optimised for use in the kernel. The elements of the list are structures, 

see Listing 7, containing a pointer to the memory allocated, a pointer to the memory 

address (if the address is in low memory) and the page frame number.  

 

88 /* list for storing allocated page ranges */ 

89 struct km_allocd_pages_list{ 

90         struct list_head list; 

91      struct page* km_p; /* page pointer to the range of 

allocated pages */ 

92         void* km_vaddr; /* virtual address (only low memory) */ 

93         unsigned long km_pfn; /* page frame number */ 

94 }; 

 

Listing 7. The allocated page list structure in Kmemtestd. 

 

As discussed previously in 2.4.2 there are a number of memory allocation functions 

made available via the kernel API. However, the core of the kernel’s memory allocator 
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is the __alloc_pages()function which is accessed via the macro alloc_pages() 

as defined by the prototype: 

 

struct page *alloc_pages(unsigned int flags, unsigned int 

order);   

 

The alloc_pages() parameter flags indicates which area of memory the kernel will 

allocate for example GFP_KERNEL. Order is the number of pages to be allocated, 

2^order. The function returns a pointer to the page structure at the head of the 

contiguous range of pages which were allocated. The returned pointers are then stored 

to the linked list. The order at which page ranges are allocated is determined by the 

size of the PKMAP area in the address space.  As discussed in section 4.2 the 

LAST_PKMAP macro returns the number of entries in the page table. This figure is 512 

(2^9) if Page Address Extension (PAE) is enabled, the case when more than 4GB of 

physical memory is installed, or 1024 (2^10) if PAE is not present.  The power of two, 

or order, is stored and then used in the allocation function, which in turn passes it as a 

parameter to the alloc_pages() function, shown below in Listing 9.  

 

304 /* Allocate memory within gfp_t type only in ranges of order 

in a loop based on the */ 

305 /* calculated maximum in the init function */ 

306 static void allocate_page_ranges_in_mem_zone(u64 

num_page_ranges_to_alloc, gfp_t mem_zone_gfp) 

307 { 

308     int i; 

309  

310     for(i = 0;i < num_page_ranges_to_alloc;i++){ 

311         km_new = kmalloc(sizeof(struct km_allocd_pages_list), 

GFP_KERNEL); /* kmalloc each list element */ 

312          km_new->km_p = alloc_pages(mem_zone_gfp, ORD); /* 

returns a page pointer to range of ORDER order pages and add to 

list */ 

313         km_new->km_vaddr = page_address(km_new->km_p); /* try 

to retrieve virtual address */ 

314          km_new->km_pfn = page_to_pfn(km_new->km_p); /* get 

the page frame number for sorting */ 

315          add_sorted_entry(km_new); /* sort and add to list */ 
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316     } 

317 } 

 

Listing 9. Kmemtestd alloc_pages() function. 

 

The kernel’s alloc_pages() attempts to allocate 2^(order parameter) contiguous 

pages in the memory zone it receives as its’ first parameter. As noted above the order 

is based on the number entries in the PKMAP so as not to case any overflows in 

allocation and mapping. For example, when PAE is enabled there are 512 entries for 

4096B pages totalling 2MB, therefore each allocated page range must be 2MB also. 

 

The allocation routine is called twice, once for low memory and once for high memory. 

However, instead of maintaining this assumption the allocation function calls the 

kernel’s page_address() function which takes a page pointer as a parameter and 

returns a virtual address of the page if in low memory. This address is then stored to 

the allocated pages list structure even when null. The virtual address is checked during 

the testing algorithms to determine whether the page requires mapping.  

 

As each page range is successfully allocated the pointer to the first memory area is 

sorted based on its page frame number and inserted into the list. The page frame 

number is a number assigned by the kernel to represent the physical position of the 

page in the memory. By sorting based on this number the list structure should closely 

resemble physical memory.  

 

The allocated pages list is stored as global variable and is then iterated through during 

the memory tests using the list_for_each() kernel iteration function. The page 

pointer and virtual address fields from the structure are then accessed. If the there is 

no virtual address then the page is in high memory and must be mapped into the 

PKMAP, in the case of low memery the virtual address pointer is simply cast to a 64-bit 

wide pointer. Mapping high memory pages is achieved via a wrapper function to the 

kernel API’s kmap() function, see Listing 10.  

 

 32 static inline void *kmap(struct page *page) 

33 { 
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34  might_sleep(); 

35       return page_address(page); 

36 } 

37 

38 #define kunmap(page) do { (void) (page); } while (0) 

 

Listing 10. The Linux Kernel kmap function. 

 

Whether the page and its allocated page range required mapping or not the memory 

testing function iterates through the pages using pointer arithmetic based on the width 

of the test pattern. If the page range was mapped then once is has been iterated it is 

unmapped. Again this is achieved via a wrapper function to the kernel’s kunmap() 

function. The test function then repeats this process until the full list has been iterated 

through.   
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6 Discussion 

6.1 Memory Allocation Methods in Kmemtestd and the Kernel  

 

The Linux kernel's memory management subsystem is a complex and intricately 

designed piece of software. Its efficiency provides a stable platform for the Linux 

operating system. For the novice kernel developer exploring this subsystem provides a 

detailed insight into the inner workings of the Linux kernel and operating system 

memory management in general.  

 

The feasibility study identified a Linux kernel module as the optimum deployment 

method for the required memory testing software. A kernel module has access to the 

kernel space and the kernel API, which in turn provides access to many low level 

memory functions. Using a module would also provide a method to return physical 

addresses where memory errors occurred and precise access to memory controller 

registers. However, working inside the kernel space presented a number of challenges.  

 

In user space memory allocation and manipulation is usually achieved via standard C 

library functions like malloc() and memcpy() which are familiar to most developers. 

These tools are not available in the kernel space and the kernel API’s own tools 

required study. The API function kmalloc() allocates memory in small contiguous 

chunks up to approximately 8KB and returns a void pointer to that location. In the case 

of Kmemtestd, this would have resulted in an excessive number of pointers requiring 

storage for future iterations. Using vmalloc() did not meet the requirements as it 

allocates discontiguous chunks of memory. Both functions use the page structure at 

their lowest level as the unit of allocation, vmalloc() uses alloc_page() and 

kmalloc() uses the page via the bigblock structure and the slob. Therefore, the 

alloc_pages() function which returns a page pointer was selected for development 

as its use reduces the processing overhead, removed some layers of abstraction and 

produced more readable code. 

 

Using page sized granularity proved to be very effective due to the number of 

functions in the kernel API providing access to and information about pages. Pages are 
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the basic unit of memory management in the kernel. The PKMAP also uses pages when 

mapping high memory.  

 

By default the Linux kernel splits the available physical memory into zones. The first 36 

MB is reserved for DMA, from here to 896 MB is low memory and anything above is 

considered high memory. When is use and during memory tests the hardware will have 

4-16 GB memory installed. Therefore, approximately 15 GB of physical memory may 

require mapping into the kernel space via PKMAP prior to testing. This is achieved by 

mapping memory in 2MB chunks, testing and then unmapping. In the instance of 16 

GB of physical memory these two procedure must be performed approximately 15300 

times. Mapping high memory is an unavoidable overhead but may have had some 

impact on Kmemtestd's ability to stress the memory subsystem. 

 

6.2 Using Customised Kernels in Deployment 

 

The Linux kernel which the module was to be deployed with is used is a wide variety of 

other applications within NSN. Therefore, modifying the configurations of the kernel 

itself was not an option during development and the 1 GB/3 GB default kernel memory 

split had to be utilised. For future development the use of a 4 GB/ 4GB kernel split 

would result in dramatic reduction in the mapping requirements. In fact with 

configuration in a customised kernel all memory could be configured as low memory 

for the purposes of memory testing. 

 

A further drawback related to the use of page sized granularity is the size of the page 

itself, 4096 B. As discussed previously in section 6.1, mapping high memory has an 

associated overhead. When PAE is enabled PKMAP has 512 page entries available. If it 

had been possible to configure the kernel to support hugepages or superpages of 4 MB 

in size then 20 MB would have been mapped per operation. Again, this feature should 

be considered for future development.  
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6.3 Memory Allocation and its Danger to System Stability 

 

Whilst the page based allocation method works very effectively, Kmemtestd assumes 

that the memory is fully contiguous. In general NSN usage this will be the case as the 

kernel is loaded only for this purpose and a bare minimum of processes are permitted. 

However, if Kmemtestd is executed in an environment which has many running 

processes memory fragmentation and lack of available memory will cause kernel 

crashes. Future iterations of the software would need to implement a method to assess 

how contiguous the system's memory is and take necessary actions to correct it. 

 

The kernel controls and allocates memory to user space processes from within the 

kernel space. The kernel’s own processes are also reserving and freeing memory within 

the kernel space simultaneously. The kernel swap daemon kswapd is periodically 

monitoring the number of free pages and will forcefully begin to free pages if the total 

is deemed to low. Implementing software which could safely allocate all available free 

memory without disturbing other processes was difficult and perhaps the reason why 

no memory testing software has been written in the kernel space before. This was 

achieved by allocating safe amounts discovered through repeated testing. An 

alternative approach may have been to implement a process, similar to kswapd, to 

monitor Kmemtestd memory allocations and usage. However, implementing such a 

process was beyond the scope of this project. 

 

In order to address the issue of safe memory allocation amounts, the early stages of 

development were spent exploring the balance between maximal allocation and 

minimum interference with the kernel. This proved difficult and time-consuming as a 

result of frequent, and sometimes spectacular, kernel panics. Through repeated testing 

by gradually increasing the amount of memory allocated from the absolute free 

memory total a safe and stable amount was determined, which resulted in 

approximately 36MB remaining untested from installed memory between 4GB and 

16GB. An alternative approach and consideration for the future would be to use the 

Linux kexec tool to load another kernel from an executing kernel. By performing a 

warm reboot it would be possible to move the kernel’s location in the memory allowing 

even more memory to be tested.  
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As discussed in section 4.2 Kmemtestd tests only low and high memory, ZONE_DMA 

was omitted in the initial design. It was planned as a future improvement that a 

separate function or driver would be developed to run simultaneously with Kmemtestd 

to drive the DMA controller and increase stress to the CPU’s memory management 

subsystem.   

 

6.3 Memory Test Routines 

 

Once the initial allocation, storage and iteration issues had been addressed, the 

allocated memory required testing. Kmemtestd uses a battery of well-known and 

established memory tests patterns to be written and read. It was not necessary nor 

possible due to time constraints to create and compare new test patterns to those 

commonly used in industry standard applications such as memtest86. Further tests, for 

example custom patterns chosen by the user, can be simply added to Kmemtestd due 

to its modularity in future iterations. 

 

The software requirements stated that read/write accesses must be both 64/128 bit 

wide. Despite extensive research and effort it was not possible to determine how it 

would be possible to achieve this. The processor uses 32-bit instructions but it is 

difficult to assert how reads/writes are managed by the MCH. Whilst Intel's technical 

specifications provide some insight, there remains a level of abstraction. By better 

aligning data structures and read/write accesses to the cache line length, it is assumed 

that the MCH will operate optimally and drive the memory bus maximally.  

 

Kmemtestd accesses MCH registers via the PCI device structures in the Linux kernel in 

order to configure ECC. The PCI device bus has access to many features of the DIMMs 

and could been used to add further functionality such as changing the DRAM refresh 

rate, determining whether interleaving is enabled and retrieving other details about the 

configuration of the DIMMs. These improvements could be added in future revisions.   
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6.4 Software Development 

 

Kmemtestd was developed using an iterative approach to both its design and 

implementation. Like the development of the Linux kernel, much of the design was 

responsive to the real-world behaviour of the module when running on hardware. 

Although the software requirements and feasibility study served as a solid basis for 

design, the complexity of the task resulted in the design and the techniques employed 

having to change at various stages.  

 

The software was developed to be modular, so future CPU blades could be added 

simply to the existing code. At the time of writing this document maintenance for 

Kmemtestd has been transferred to another development team and new CPUs modules 

have already been added to the code for its most recent revision. The software code 

itself is easy to understand and follows the coding principles laid out in the kernel.  

However, code reuse is an area for future improvement. The read/write functions 

should be refactored into more generic functions perhaps taking the test patterns as a 

parameter. Also, the software has very little error handling whereas all functions which 

can fail should return a success or failure value to its caller and inform the user of the 

error.  

 

Software testing during development was excessively time consuming. Each code 

change required the kernel to be built and then transferred to a USB pen drive, which 

was then inserted into the target hardware. The system was then booted and the 

module was manually loaded into the kernel and the results observed. This testing 

cycle lasted between 10 and 15 minutes. QEMU, a CPU emulator, may have been a 

better option but unfortunately as the target hardware was heavily customized, this 

was not possible.  

 

Whilst the software was tested directly on the hardware, it proved difficult to verify the 

extent to which the memory subsystem was stress tested. Manually generating 

controlled memory errors is not trivial. Installing fully faulty DIMMs would result in the 

system not booting at all and short circuiting a connector on the DIMM produced 

unexpected kernel panics. By applying excessive heat with a thermal-air blower across 

the length of the DIMMs produced real memory errors which were successfully caught 
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by Kmemtestd. The voltage across the CPU was also measured during test runs with 

Kmemtestd and the existing UTE software and similar values were recorded, 

suggesting that the memory subsystem was stress tested to a similar extent. Ideally 

the software verification would have been more thorough and detailed.  

 

The user interface for Kmemtestd was implemented using a shell script. Whilst meeting 

the requirements for usability, the UI could be improved in future versions of the 

software. Adding a Linux command to the kernel for user interaction with Kmemtestd 

would have been a better approach and would have also allowed for documentation 

via man pages. Currently user documentation is provided in a Word document and a 

help option flag should be added to the script, so the user can see the available 

options. Log writing is a further area for improvement as the UI script currently 

appends the system log to a file. By implementing a device driver, more detailed and 

controlling logging could be achieved. However, this would increase complexity and 

impact maintainability.  

 

Due to a lack of software engineering experience during the development process, a 

number of software tools which would have increased productivity were not utilised. 

Despite there being only one contributor to the code, a subversion system such as SVN 

or git, would have helped track the frequent code changes and have served as a useful 

reference tool in future debugging. Also, learning to use the kernel debugger would 

have helped in tracing the causes of the more obscure kernel panics. Unit testing the 

code would have helped in identifying coding errors and added verification for future 

additions.  

 

A Linux kernel module has not been used previously to test memory due to the 

complexity of memory testing inside the kernel space. However, Kmemtestd proves 

that it is both possible and a practical method for implementation. Some discussion has 

taken place with the current maintainer of the software regarding releasing it to the 

open-source community for analysis and further development. A kernel module 

provides a great deal of flexibility as it can be compiled for any architecture supported 

by the kernel. 
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7 Conclusion 

 

The goal of the project was to develop software to stress test the memory subsystem 

in x86 based hardware for NSN, which met their software requirements. Due to the 

implementation of Kmemtestd the memory subsystem NSN’s CPU blades can be stress 

tested effectively and the results stored for further analysis. The software is modular 

and can be adapted easily to future processors. Compilation for future CPU 

architectures is provided via the kernel. Kmemtestd is relatively boot-to-test in nature 

and provides a simple user interface. Kmemtestd has been taken into use by hardware 

engineers and is currently being maintained and developed further by an embedded 

software team.   

 

The Linux kernel memory management subsystem is vast and complex. In order to 

develop the software a considerable effort was placed in exploring this subsystem and 

kernel development itself, which consumed more time than was initially anticipated. 

Despite the challenges involved in Linux kernel development the project was both a 

rewarding and valuable learning experience. Working so closely with the hardware also 

provided insight into how memory works and how software utilises it, which in turn 

illustrated how to better optimise memory usage in future software projects.  

 

The result of the project was a software implementation, Kmemtestd, which met the 

primary criteria defined in the software requirements. The implementation also 

delivered a user interface script and extensive documentation. The software has been 

taken into use successfully.  

  

In conclusion, the project was successful and met the criteria set out at its inception. 

NSN now have a further software tool which can be updated and modified simply. The 

project was challenging but provided valuable insights into profession software 

development. 
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