

OPTIMAL MIXING OF NATIVE FUNCTIONALITY

AND WEB TECHNOLOGIES: CASE QT

Anna Szewczyk

Bachelor’s Thesis

April 2011

Degree Programme in Information Technology

School of Technology

Author(s)

SZEWCZYK, Anna

Type of publication

Bachelor´s Thesis

Date

02.04.2011

Pages

45

Language

English

Confidential

() Until

Permission for web

publication

GRANTED

Title

OPTIMAL MIXING OF NATIVE FUNCTIONALITY AND WEB TECHNOLOGIES: CASE QT

Degree Programme

Information Technology

Tutor(s)

PELTOMÄKI, Juha

Assigned by

Digia Finland Oyj

Abstract

The main goal of the thesis assigned by Digia Finland Oyj was to explain what hybrid applications are,

present the way of creating them and define the most optimal choices of their development. All these

aspects are presented based on Qt, which provides an excellent set of tools for building hybrid

applications.

With the internet and mobile industry development, end users’ demands started to increase. Accessing

the internet with common mobile browsers was not enough anymore. Following the customer’s needs,

developers all over the world had to investigate the problem of creating mobile applications, offering

access to the most popular web services. This is how the idea of a hybrid application was raised. The

assumption was to create availability to the service both for connected and disconnected users. The goal

was to create a native application with no feature access restrictions, which is fast because demanding

customers do not accept any delays and to attract as many potential users as possible the application had

to be versatile.

The thesis describes the basic aspects of a hybrid application’s idea. It presents to the readers simple

examples of hybrid application building, how they look and what should be taken into account during the

whole process of application development. In the thesis a way of combining the best parts of both native

functionality and web technology are illustrated, which as a result gives a hybrid application - an

application which can reign on the future mobile phones and tablets.

Keywords

Qt, QtWebKit, JavaScript, hybrid application, web application, native application.

Miscellaneous

1

CONTENTS

ABBREVIATIONS ... 3

DEFINITIONS... 5

1 INTRODUCTION .. 6

2 QT FRAMEWORK .. 7

3 Qt WEBKIT .. 13

3.1 WebKit .. 13

3.2 JavaScript .. 14

3.3 Qt WebKit ... 15

3.4 Qt WebKit classes .. 17

3.5 Qt WebKit simple example .. 19

4 HYBRID APPLICATION .. 21

4.1 Brief definition of hybrid application ... 21

4.2 Benefits of hybrid, native and web technologies ... 23

5 Qt WEBKIT INTEGRATION ... 27

5.1 Hybrid application – basic problems .. 28

5.2 Interaction between native application and rendered content 28

5.3 Embedded Qt Objects .. 29

5.4 Client-side storage ... 30

5.5 Web data processing .. 34

6 QML ... 35

7 EXAMPLE OF HYBRID APPLICATION ... 39

8 CONCLUSION ... 41

9 REFERENCES ... 43

2

FIGURES

FIGURE 1. Availability of Qt framework on different platforms (Nokia, 2011) 8

FIGURE 2. Graphic and pre-compilation tools available on Qt (Nokia, 2011) 9

FIGURE 3. Qt Creator in edit mode (Nokia, 2011) ... 10

FIGURE 4. Qt Designer in edit mode (Nokia, 2011) .. 11

FIGURE 5. Digia @Web Qt browser (Digia Plc, 2011) .. 13

FIGURE 6. Qt WebKit main features (Nokia, 2009) (Kosonen, 2009) 16

FIGURE 7. Qt WebKit rendering features (Nokia, 2009) ... 17

FIGURE 8. Qt WebKit architecture (Nokia, 2011) ... 18

FIGURE 9. Example of project file containing webkit .. 19

FIGURE 10. Example of Simple Qt WebKit application .. 20

FIGURE 11. Application performance and its limitations: examples 21

FIGURE 12. Hybrid application as combinations of native and web technologies 22

FIGURE 13. Hybrid application in relation with Web and Native applications (Nokia,

2010) ... 23

FIGURE 14. Image showing when each type of application should be used (Nokia,

2010) ... 24

FIGURE 15. Comparison of attributes taken from Native and Web applications

(Nokia, 2010) ... 26

FIGURE 16. The ways of interactions of native and web functionalities (Nokia, 2009)

 .. 29

FIGURE 17. Client-side storage methodologies (Dhandhania, 2011)........................ 31

FIGURE 18. Network Access (Johnson, 2008) ... 34

FIGURE 19. RSS News Reader QML demo (Nokia, 2011) 36

FIGURE 20. Flickr QML demo (Nokia, 2011) ... 36

FIGURE 21. Web server main folder ... 39

FIGURE 22. Web Server thumbnails folder ... 40

FIGURE 23. Transition between two images in the imageviewer application run on

Microsoft Vista .. 40

FIGURE 24. ImageViewer application run in the Qt Simulator 41

3

ABBREVIATIONS

AJAX Asynchronous JavaScript and XML

API Application Programming Interface

BSD Berkeley Software Distribution license

CDB Microsoft Console Debugger

CSS Cascading Style Sheets

DRM Digital Rights Management

GDB GNU Symbolic Debugger

XHTML eXtensible HyperText Markup Language

XML Extensible Markup Language

XPath XML Path Language

HTML HyperText Markup Language

IDE Integrated Development Environment

IP Internet Protocol

LGPL GNU Library General Public License

NPAPI Netscape Plugin Application Programming Interface

QML Qt Meta-Object Language

RDF Resource Description Framework

SQL Structured Query Language

SSL Secure Socket Layer

SVG Scalable Vector Graphics

TCP Transmission Control Protocol

UI User interface

4

URL Uniform Resource Locator

XAML eXtensible Application Markup Language

XUL XML User Interface Language

5

DEFINITIONS

Hybrid application – it is a combination of native and web application. The outer

shell of the application is a native one and it contains web parts in form of primary

user interface implemented in HTML, CSS and JavaScript and running inside of the

platform’s web control.

(Mills, 2009; Pavley, 2010)

Native application – it is an application designed to run on a device’s operating

system and machine firmware. Typically it needs to be adapted in order to be used on

different devices.

(dotMobi, 2010)

Web application – it is an application which is accessed via network. It uses a web

browser as a client, which means that browser is used as a program the person uses for

running the application.

(Chaffee, 2000)

6

1 INTRODUCTION

Nowadays computer and internet are essential factors of our daily life. The power and

range of the Internet has become so huge that almost no one imagines living without

it. It is basic mass-media and people use it in all aspects of their life, starting from

gaining new information from multimedia libraries, watching programs, finding

places through online maps, striking up the acquaintances, sharing their photos etc.

Simultaneously with the development of the Internet, the demand for more and better

applications supporting internet services has increased. Desktop applications were no

more sufficient and that is how hybrid applications started to be developed.

With the development of ever fancier, faster and newer technologies meeting

customer’s expectations, the boundary between desktop applications and the web

became very thin. Eventually these two distinct programming models were combined

within one single application program creating hybrid application, which in the

nearest future can reign the whole portable devices market.

Objectives of the thesis

The main goal of this Bachelor’s thesis is to show what hybrid applications are, how

they were formed and how they can be built. In order to do that firstly basic

information about tools and technologies required for creating hybrid applications is

presented and explained. There are many different technologies that can be used for

creating a hybrid application, inter alia:

• OSGi + Java EE

• Flex + HTML

• Microsoft Silverlight + JavaScript

• Adobe AIR + HTML, JavaScript

• Appcelerator Titanium

• Phone Gap

7

• Oracle’s Java Platform integrated with Gecko

• Qt + WebKit.

However, due to the fact that currently Qt has become a more and more popular

framework, it will be used in this document to show examples of hybrid application

creation. That is why firstly the reader is familiarized with Qt and the possibilities and

tools that it provides. Next the notion of WebKit and Qt WebKit are explained and

their basic usage is shown. An inseparable part of hybrid applications is also

JavaScript which will be described in one of the following chapters (3.2).

After characterizing essential technologies and tools needed for hybrid applications

creation, the advantages and disadvantages of such an application are described. The

basic aspect of creating hybrid application is presented - among other things, which

parts of native functionality and web technologies should be used in order to create the

best hybrid application are explained. Additionally, the author explains when it is

worth to take the hybrid approach, and when it is better to choose a purely native or

web application.

Finally, the problems that each hybrid application developer can face are

demonstrated. The reader is also familiarized with the basic ways of solving such

problems with the usage of Qt and the tools it provides as well as JavaScript. In the

last paragraphs the author acquaints the reader with the basics of a QML language and

presents an example of hybrid application.

2 QT FRAMEWORK

Qt is a set of cross-platform framework dedicated to C++. It was produced by the

Norwegian company Trolltech and since 2008 it is owned by Nokia. The latest stable

version 4.7.2 was released on the first of March 2011.

FIGURE 1. Availab

Qt libraries were writte

they can be also used,

languages, including: J

purpose is to create com

contain classes respons

level operations. Qt giv

files, sockets, signals a

It also offers modules h

cross-compiling.

(Nokia, 2011)

Qt contains a number o

graphic and pre-compil

Qt is ava

Embedded Lin

Mac Os X

lability of Qt framew ork on different platforms

itten in C++ and have fully object-oriented architec

 via language bindings, in applications written in

: Java, C#, Ada, Pascal, Perl, PHP, Ruby and Pyth

complex desktop applications with graphic interfac

onsible for graphic elements and the ones responsib

gives possibility of building multithread programs

s and slots mechanism or hierarchical system for h

s handling OpenGL, databases (SQL), XML local

of specialized tools which can be divided into tw

pilation tools and they are presented below.

ailaible for below platf

nux Windows

Linux / X11

Sy

M

8

s (Nokia, 2011)

itecture. However,

 in several other

ython. Their main

face. Qt libraries

sible for lower

ms, working with

handling events.

calization and

two groups:

forms:

ymbian

eeGo

FIGURE 2. Graphi

The most important Qt

Qt Creator IDE

Qt Creator is freely ava

creating applications fo

stable version 2.1.0 wa

Windows, Linux/X11 a

Qt Creator provides a s

It supports different ve

• CSV

GRAP

TOO

Qt Creator –

development e

Qt Designer – tool f

building GUIs (Gr

Interfaces) from Q

Qt Assistant – appli

advantage help

develo

Qt Linguist – applica

program translati

langua

phic and pre-compilation tools available on Qt (

 Qt Graphic tools are presented below as follows.

available for download, cross-platform IDE, which

s for multiple desktop and mobile device platforms

was released on the first of March 2011. It can be r

1 and Mac OS X operating systems.

 a set of very useful features, like C++ and JavaScr

 version control systems:

PHIC

OLS

integrated

environment

 for designing and

(Graphical User

 Qt components

lication containing

elp system for

pers

cation supporting

ion for different

ages

PRE-

COMPILA

TOOL

qmake – it manages

compilation; its main ta

and updating of Makef

simple description a

project definition

MOC (Meta Object C

preprocessor, which

header files (*.h) gener

files (*.cpp

UIC (User Interface Com

files compile

Resource comp

9

(Nokia, 2011)

ich enables

ms. The latest

e run on

cript code editor.

-

ATION

LS

 process of

ask is creation

file based on

vailable in

 (*.pro)

Compiler) –

h based on

erates source

)

mpiler) – *.ui

ler

piler

10

• Git

• Mercurial

• Perforce

• Subversion

It also provides GDB, CDB and internal JavaScript debuggers, project and build

management tools, simulator for mobile UIs and support for mobile and desktop

targets. Qt Creator has also an integrated UI designer allowing modifying the UI files,

which are XML files encoding the user interface in a machine-readable way.

(Nokia, 2011)

FIGURE 3. Qt Creator in edit mode (Nokia, 2011)

Qt Designer

Qt Designer is an application for creating instantly previewed graphical interfaces

with drag and drop functionality. It contains a library of standard widgets but enables

also creating customized ones. Moreover it generates C++ or Java code directly from

created interface. Qt Designer can be used with Visual Studio and Eclipse IDEs.

11

FIGURE 4. Qt Designer in edit mode (Nokia, 2011)

Currently Qt is very popular and it is used, inter alia, to develop the following apps:

• Adobe Photoshop Album

• Gadu-Gadu (v8)

• Google Earth

• Mathematica

• Opera

• Opie

• Picasa

• Skype

• VLC media player

• VirtualBox

(Ovisoftware, 2010)

It is also used as development tool, inter alia, by following companies:

• Autodesk

• European Space Agency

• KDE

12

• Panasonic

• Philips

• Samsung

• Siemens

• Volvo

• Walt Disney Animation Studios

(Panayara, 2011)

The constantly growing popularity of Qt, its versatility in terms of its possible use on

various platforms and also whole bunch of tools provided by it, decided on its choice

as an exemplary framework for showing hybrid application creation. Furthermore, Qt

has a rich selection of features for hybrid apps development: Qt WebKit,

QtScriptModule, QtXMLPatterns and QNetworkAccessManager.

(Nokia, 2011)

Qt & Digia company

Digia Plc as one of the world’s largest independent provider of OS based software

integration services and solutions for smartphones with a unique expertise in, inter

alia, mobile devices and web application design, has been involved in Qt development

for a long time. It has not only employed many Qt developers, prepared Qt trainings,

taken part in different Qt events, for which it has always prepared varied showcases

but it has also developed a many QT applications. One of them was released in the

year 2009: Digia @Web, which is fully finger touch controllable, web browser

specifically designed application to run on Maemo (FIGURE 5).

13

FIGURE 5. Digia @Web Qt browser (Digia Plc, 2011)

Currently Digia has approached even closer to the Qt, due to the fact that on the

seventh of March 2011 it has signed the agreement with Nokia to acquire the Qt

commercial licensing and service business. It is expected that Digia will be involved

in further Qt growth even more than up to present time. With hundreds of Qt experts it

will contribute to Qt innovations and support further Qt growth.

(Digia Plc, 2011)

3 Qt WEBKIT

3.1 WebKit

WebKit is a browser engine developed as open source software. It allows rendering

internet pages, HTML and executing JavaScript. Originally it was authored in C++

and used in Apple’s web browser – Safari. Later it has been ported to many

frameworks. Currently WebKit is used in many applications: browsers, E-Mail

Clients, Instant Messenger Clients, Web Development Applications etc. It is a

technology which not only web developers but also end users are familiar with and it

has been also widely used on mobile devices.

14

WebKit contains two of the most important libraries: WebCore and JavaScriptCore,

which are available as system frameworks. WebCore and JavaScriptCore are

developed on LGPL license and the other WebKit components are available on BSD

license.

WebCore is a layout allowing processing and rendering web pages. It is Document

Object Model library for HTML and SVG that is a way of presenting complex XML

and HTML documents as an object model. This model is programming language and

platform independent.

JavaScript Core is a framework implementing usage of JavaScript language, which is

described more precisely in the next subsection.

(The WebKit Open Source Project, 2011)

3.2 JavaScript

JavaScript was originated in Netscape company as LiveScript –scripting language

expanding HTML. In 1995, based on the agreement between Netscape and Sun

Microsystems companies a new language – JavaScript – was created.

It is an implementation of the ECMAScript language standard, which is widely used

for client-side scripting on the web. JavaScript is scripting, object-oriented, interpreted

language, which allows creating short programs directly embedded in HTML code.

These short JavaScript parts can recognize and properly react on different events

caused by end user.

JavaScript is a multiplatform language, which means that the code written in

JavaScript, in most cases, can be used on different operating systems (like Windows,

Linux, MacOS). What is more, on all of these systems the scripts should give the same

results. It is very important because currently computers and other devices - used for

Internet, browsing, are created on various operating systems. Without the cross-

platform nature of JavaScript and its wide range of properties, developing scripts

improving WWW pages for users working on different kind of systems, would be

much more difficult. Moreover, the cross-platform property of JavaScript -

15

contributed to its increasing popularity, because architects of web pages noticed a

chance in this language to reach the widest group of end users.

JavaScript’s main application is to improve web pages. It is done by introducing

dynamic and interactive effects to static pages, which is impossible to be obtained

only with usage of HTML. It can be used for implementing error handling for data

entered to HTML forms. JavaScript can also be used to work with XML data as well

as with XML based languages such as XHTML, SVG, XAML, RDF, XUL etc.

The main JavaScript features are:

• cross-platform, lightweight, object-oriented, scripting, interpreted language

• it is based on predefined objects but it does not allow to use all of the object-

oriented programming mechanisms like inheritance

• it can react to different kind of end user’s events, like mouse clicking,

navigating between pages etc.

• it is embedded in HTML code

• it introduces dynamic and interactive effects to the static web pages

• it can handle errors caused for example by data entered to HTML forms

• it can create cookies on browser side.

(Watt, Watt, Simon, & ODonnell, 2003, 21-29)

3.3 Qt WebKit

Qt WebKit is a Web browser engine, based on the Open Source WebKit engine,

integrated with Qt. As it is a web contents rendering engine, it is also one of the most

important components required for creating hybrid applications. With this module it is

much easier to integrate Open Source WebKit into desktop applications. It is fully

featured and standard compliant. It supports JavaScript, HTML / XHTML, CSS, SVG,

XPath and AJAX technologies. This is a very useful module and there are already

many applications using it, for example:

16

• Arora

• Konqueror

• Rekonq

• Light

• Orange Mobile Browser

• Google Earth

• Spotify for Linux

• grr

• Crochik Macuco

• qreddit

• Qt WRT.

(Nokia, 2011)

FIGURE 6. Qt WebKit main features (Nokia, 2009) (Kosonen, 2009)

QtWebKit

main

features

Supports:
JavaScript, HTML /
XHTML, CSS, SVG,
XPath and AJAX

Supports cookies,
settings, history,
both native and

non-native plugins,
Java

Allows to intuitive
use of network

resources

Provides simple
way for

embedding web
content into
application

Allows enhancing
content with

native controls

Enables calling
both Qt from
JavaScript and

JavaScript from Qt

Qt WebKit has native a

can be merged. It is a b

because it provides com

also varied set of tools

also has modern render

FIGURE

3.4 Qt WebKit cla

Qt WebKit module pro

XHTML and SVG doc

• QWebFrame –

• QWebHistory –

this class it is p

• QWebHistoryIn

link history

QtWeb

Web test page ACID3

ensures about proper
standards-compliant

rendering

Thanks to usage of

Phonon multimedia
framework, Qt provides

easy way for

embedding video
contents

e application integration which means that local an

basic module used for creating hybrid applicatio

components which allow integration of web techno

ls and features, some of which are described in FI

dering features presented in FIGURE 7.

RE 7. Qt WebKit rendering features (Nokia, 200

classes

provides a great number of classes which allow ren

ocuments. The following classes can be found in

 it is responsible for frame inside a web page

– it is directly related to the history of visited pag

s possible to navigate history

yInterface – this class gives an interface, which is

bKit rendering fea

Animations based on

CSS allow to make
smooth transitions
between different

states

Transformation based

on CSS allows to rotate,
scale, skew and
translate page

elements through CSS

Whole pages including

images can be scaled

thanks to full page
zooming support

QtWebKit has NPAPI

plugin support, which
enables third patry

media and more

Ve

o

17

l and web content

tion, mainly

nologies. It has

FIGURE 6 and it

2009)

rendering HTML,

in Qt WebKit:

pages. Thanks to

is used to create

atures

Very fast SquirrelFish

JavaScript engine

offers high efficiency

18

• QWebHistoryItem – as the name suggests, this class is simply responsible for

one single item in the history. QWebHistoryItem stores such as properties of

the web page like: title, URL, date and time of the last visit on the page and an

icon of the page

• QWebHitTestResult – this class returns web page content’s information after

hit test

• QWebPage – it allows viewing and editing web page. It also holds a main

frame which is directly related to web content, its whole history and settings

• QWebPluginFactory – it is responsible for creating plugins

• QWebSettings – this class keeps all settings configured for the page

• QWebView – it allows rendering web page content. It consists of the objects

of the other Qt WebKit classes like QWebFrame and QWebPage.

(Nokia, 2011)

FIGURE 8. Qt WebKit architecture (Nokia, 2011)

The list above presents all classes incorporated into the Qt WebKit module. There are,

however, also other TCP / IP protocol based classes related to this module that were

introduced in the Qt to provide a complete browser framework.

• QNetworkAccessManager – providing functionality for sending network

requests and receiving replies

19

• QNetworkRequest and QNetworkReply- they hold data related to request sent

and reply received with QNetworkAccessManager

• QNetworkCookie – it stores one network cookie

• QNetworkCookieJar – it stores all cookies (QNetworkCookie) from previous

request

• QAuthenticator – when accessing service requires authentication, this class

allows to give authentication information to the socket

• QTcpSocket and QSslSocket – they provide TCP and SSL sockets

(Nokia, 2011)

3.5 Qt WebKit simple example

The simplest Qt WebKit example is an application based on QWebView class, which

provides a widget for viewing and editing web documents. To start using Qt WebKit

we need to add it to the project file (.pro file) of our application, as shown in FIGURE

9 in seventh line.

FIGURE 9. Example of project file containing webkit

20

After that we can start creating the first program. Firstly we need to create a new

QWebView widget (FIGURE 10 line 7). With the load() function (FIGURE 10 line 9)

an exemplary web page will be loaded ("http://www.maps.google.com/"). onto

QWebView widget. To display QWebView widget, show() function has to be invoked

(FIGURE 10 line 10).

FIGURE 10. Example of Simple Qt WebKit application

After building and running this example we will be able to use

http://www.maps.google.com/ web page – search different places, zoom in and zoom

out the map, pan the map etc. But there will be no possibility of using more advanced

functionality that is normally provided by each browser, like going back or forward,

changing web page etc. FIGURE 11 shows examples of how this application works

and what its limitations are.

21

FIGURE 11. Application performance and its limitations: examples

4 HYBRID APPLICATION

4.1 Brief definition of hybrid application

22

FIGURE 12. Hybrid application as combinations of native and web technologies

Hybrid application is more of a program than a web site, because it has the ability to

work in offline mode. It uses both features of native and web technologies as well as it

has some of their properties. In general, a hybrid application is somewhere between

web and native applications trying to get as much from both of them as possible - it

tries to be as reachable as a web app and as rich as a native app.

Qt

HTML,

CSS,

JavaScript

Hybrid

applications

23

FIGURE 13. Hybrid application in relation with Web and Native applications
(Nokia, 2010)

4.2 Benefits of hybrid, native and web technologies

As already mentioned, hybrid applications are a combination of native and web

technologies and they mix the best features of both of them. However, hybrid

applications cannot completely replace native or web applications. There are still

situations when it is more beneficial to use original technologies instead of their

combination, that is, the hybrid application. The figure below shows when each type

of application should be chosen, in order to create the program that will meet all

expectations of both developers and end users.

FIGURE 14. Imag

From the figure above

features of the two othe

needs to be chosen to m

suitable for different pu

Native app is definitely

which has enhanced fu

examples of such appli

wants to share their con

program.

Web applications shou

on servers. These kind

make some money on t

for example on differen

also very popular becau

age showing when each type of application sho
(Nokia, 2010)

ve it is clearly noticeable that again the hybrid app

ther technologies. But in a situation when the type

o meet some predefined criteria each of the applica

t purposes.

tely used when a developer wants to make money o

 functionality, premium content and is secure and p

plications are different kind of unique games wher

content for free or in a way that are used as part of

ould be used whenever the content is heavy and re

nds of apps are usually free services and most ofte

n these kinds of applications, it is not done directl

rent kind of advertisements located in apps. Web a

cause they use web browser as a client, which is n

24

hould be used

pplication has

pe of technology

lication will be

y on the product

d private. Good

here no developer

 of some other

 requires storing

ften if their owners

ctly on them but

b applications are

s not only

25

ubiquitous but also in most cases simple to use. Exemplary web apps can be Social

Networks or bank applications.

In turn, hybrid applications - the same as native ones - are easy to be monetized but

also the same as web ones they have wider potential market and can have big content..

This group may include, for example, some maps or a specialized medical application.

It is more clear now that each type of application is more suitable depending on

situation and its purpose. FIGURE 14 shows also some common features for native

and hybrid apps or web and hybrid ones. This is, however, only a small part of the

large number of properties which connect these technologies. FIGURE 15 shows a

better comparison between all of them and indicates which features of hybrid apps

were taken from native and web technologies.

(Nokia, 2010)

26

FIGURE 15. Comparison of attributes taken from Native and Web applications
(Nokia, 2010)

As presented in the FIGURE 15 hybrid applications mix the best attributes of native

and web apps. First of all, the same as a native app, the hybrid one does not require

constant internet access to be used. Of course it utilizes web services but it should be

created in a way allowing for offline usage. A significant benefit from native

ISSUES

INTERNET

ACCESS

DEVELOPMET
COSTS

SIZE

INSTALLATION

UPDATE

DRM

MONETIZATION

MARKET

CONTENT

FUNCTIONALITY

NATIVE

NOT REQUIRED

HIGH COSTS

LIMITED

HAS TO BE
DEPLOYED /

DOWNLOADED

DIFFICULT

CAN HAVE IT

EASY

LIMITED

PAID

BETTER

HYBRID

NOT REQUIRED

LOWER COSTS

BIGGER

BOTH

BOTH

CAN HAVE IT

EASY

WIDER

BOTH

BETTER

WEB

REQUIRED

LOWER COSTS

BIGGER

JUST "REFRESH"

WEB CONTENT

"JUST REFRESH"

NO

DIFFICULT

WIDER

FREE

LIMITED

27

technology is also better functionality which allows creating richer application if only

because it helps to improve the web part of the hybrid application. Hybrid applications

have also better security comparing to web ones (for example they can have DRM)

and they are easy to be monetized.

There are, however, also many benefits that hybrid applications “inherit” from web

technologies. First of all, they can be larger than normal native apps. This is because

the web part of the hybrid app is not stored on the potential device but on different

servers. Directly related to that are lower costs of application development since part

of it is still web service. Hybrid applications the same as web ones have a wider

market. As mentioned previously usually they use a common web service as a part of

the program and they are created to be used not only by a limited group of customers

but all of the device’s users.

FIGURE 15 shows also that there are attributes taken partly from native and partly

from web functionalities. This group includes installation and update which of course

needs to be done like for normal desktop applications, that is the whole program needs

to be deployed and downloaded, on the other hand, the web section is regularly

updated through the internet. The same situation is with its content – potential

customer needs to pay for the application, however, the whole web content is free.

(Nokia, 2010)

5 Qt WEBKIT INTEGRATION

Due to the fact that hybrid applications are simply a mix of both native and web

functionalities, it is worth understanding exactly which features of these technologies

form a hybrid application.

If we consider Qt as native part, it is easy to extract elements that can be used from

this framework, first of all, C++ as development language, but also a large set of

reusable libraries, a rich set of widgets and what is very important, easy access to

device API. On the other hand, the web part supplies the hybrid application in:

JavaScript (and also JavaScript libraries), HTML and CSS but also more rapid

development.

28

It is clearly visible that both native and web technologies give a varied set of useful

tools that can be used to create very strong application. Of course with all these tools

come not only their advantages but also disadvantages.

(Lal, 2009)

5.1 Hybrid application – basic problems

While creating different kinds of applications, the developer faces various problems.

They depend on the type of applications, tools and technologies that are used etc.. The

same situation takes place when hybrid applications are implemented. Of course some

of the issues are directly related to the application content but there are also some that

are quite common for all hybrid applications. Such problems can include, inter alia:

• interaction between native and web content

• access to data

• sudden network lost and offline mode

• web data processing

There are different kinds of solutions that can be used to handle each of these

problems. Everything depends on specific technologies that are used. The next

subsections show what kind of methods can be used to handle the above issues in the

case of the use of Qt as native functionality.

5.2 Interaction between native application and rendered content

Hybrid application is a combination of both native and web technologies. In order to

be used together, however, there needs to be some interaction between both of these

functionalities. For this purpose Qt WebKit was introduced, which provides a set of

features allowing collaboration between native application and rendered content, as it

is shown in FIGURE 16 and described in the following subsections.

29

FIGURE 16. The ways of interactions of native and web functionalities (Nokia,
2009)

5.3 Embedded Qt Objects

The Qt WebKit provides functionality for efficient integration of native C++ and

JavaScript. Two different ways of embedding Qt objects into a web page are described

below:

• Writing browser plug-ins which enables embedding Qt objects into a web page

using object-tag. An exemplary way of writing such a simple plug-in and its

usage are shown below:

QObject * MainWindow::createPlugin(const QString &classid)

{

 QWidget *widget = 0;

 if (classid == "MyContacts")

 {

 widget = new MyContacts;

 return widget;

 }

}

Usage of object-tag allows to

embed Qt widgets into a web

page. Thus it is possible for web
page to containg Qt widgets and

use them as visual elements of

the page.

Qt objects can be accessed from

JavaScript (C++ objects are

inserted into JavaScript context),
which enables web page's script

for direct interaction with data

structures.

JavaScript functions in their web

page context can be directly

called from C++ code. It provides
a way for triggering events in the

web page.

Client-side storage - gives access

to database, with large amounts

of data, from both C++ and
JavaScript even if there is no

network connection.

30

The fragment of code above shows the native functionality which can be used

with object-tag:

<OBJECT type ="application/x-qt-plugin" classid ="MyContacts" />

• Adding Qt objects directly to the JavaScript context of the page can be done

using the method:

QWebFrame::addToJavaScriptWindowObject

The above function does not ensure that after loading a new URL Qt object

remains accessible. To do that Qt object needs to be added to the slot

connected to the signal below:

QWebFrame::javaScriptWindowObjectCleared

(Nokia, 2009)

5.4 Client-side storage

If the software application has to be useful, its data have to be stored in a persistent

way. Hybrid application has the same issue to be solved but with the HTML5 advent,

the new way of storing data appears, namely client-side database storage or “offline

storage”. Client-side storage is divided into three methodologies, which are described

in FIGURE 17.

FIGURE 17. C

Based on FIGURE 17,

when the device is offl

allows to reduce traffic

connection. Of course,

way, however, each de

needed and should be s

The database can be ac

SQL module using Qt W

The first way consists o

results generating HTM

database is omitted) sh

• openDatabase

opened

• it lasts as lon

• its space is li

• its data is rel

• session data

of each requ

Session st

• it lasts acros

storage

• its data is acc

Local stora

• it is directly r

• it is real SQL

• it allows to s

when device

Database

Client-side storage methodologies (Dhandhani

, client-side storage enables storing at least some

ffline. This is very important for hybrid technolog

fic and also to use the application even when there

, it can be used for storing large quantities of dat

 developer should figure out themselves what data

e stored in “offline database”.

 accessed in two ways: either from JavaScript or th

t WebKit.

ts of searching database from JavaScript code and

TML. Below there is an exemplary code, (the part

 showing the main idea of this method. It uses two

e – it opens a database if it exists, if not a new on

ng as the current window is open

imited but usually it runs into megabytes

lated to the single browser window that it was c

 is not sent automatically to the server to reduc

est

torage

ss the browser sessions so it can be used for long

cessible across all browser windows

rage

y related to local storage

 database

store temporary data, which can be accessed for

e is in offline mode

 storage

31

ania, 2011)

me temporary data

ogy because it

ere is no network

data in a structured

ta are really

r through Qt’s

nd based on the

art about creating

o main functions

 one is created and

created in

ce payload

ng term

r example

32

• transaction(function(tx)}{}); - it runs a database transaction and what is

important it has the ability to roll back changes.

The example below opens an already existing database “CS_db” and runs its

transaction. It selects the content of “userId” and “userText” from “cs” database,

process text of returned results and in case of any errors it displays a proper error

message.(Nokia, 2009)

<html>

 <head>

 <script language ="javascript">

 ...

 ...

 db = openDatabase("CS_db", "1.0", "Client-side sto rage

database", 200000);

 db.transaction(function(tx)

 {

 tx.executeSql("SELECT userId, userText FROM cs",[],

function(tx, result)

 {

 var len = result.rows.length, i;

 for (i = 0; i < len; i++)

 {

 var row = result.rows.item(i);

 processText(row['userId'], row['userText']

);

 }

 },

 function(tx, error)

 {

 alert('Error processing SQL - ' + error.message) ;

 return;

 });

 });

 </script>

 </head>

 <body onload="onBodyLoad()">

 <h1>Client-side storage database example</h1>

 </body>

</html>

(Sharp, 2010)

33

The second method, using Qt WebKit, allows to access database through Qt’s SQL

module. From hybrid application point of view it is a very valuable feature. One of the

reasons is that for example the web part of the application can use the same

mechanism for storing data as when sharing them with the native part of the

application. What is very important is that the client side database can be accessed

only through JavaScript from the right security origin. It has to be done in this way to

avoid any kind of security breaches. To access all security origins from C++ code

there are two methods which can be used: QWebSecurityOrigin ::allOrigins()

and QWebFrame::securityOrigin().

The code below shows how to access HTML5 database created with JavaScript. It can

be done using QWebSecurityOrigin ::databases() function, which returns the

database defined by security origin. Then a new object of QSqlDatabase class –

sqldb is created, which allows access to the database through connection. Using

QSqlDatabase ::addDatabase() function a database connection with driver type

"QSQLITE" and the connection name "webconnection" is added to the previously

created QSqlDatabase object. Afterwards using fileName() method, the name of

the web database is returned and assigned to sqldb database with the usage of

setDatabaseName() function. To have an effect, the connection’s database name

needs to be assigned before the connection is open, which is done in the last part of

the code.

QWebDatabase webdb = mySecurityOrigin.databases()[index];

QSqlDatabase sqldb = QSqlDatabase ::addDatabase("QSQLITE" ,

"webconnection");

sqldb.setDatabaseName(webdb.fileName());

if (sqldb.open())

{

 QStringList tables = sqldb.tables();

 ...

}

(Nokia, 2009)

5.5 Web data proc

When creating hybrid a

through the web. Some

be directly presented in

Qt’s networking modul

processing can be hand

XML or it should be di

the QtXmlPatterns mod

FIG

Downloading the data

and this is presented in

QNetworkRequest, wh

reply which is encapsu

how it is done in practi

obtain the reply to the s

finished(QNetwork

of request by listening

QNetworkAccessM

rocessing

id applications, there is still a problem of presentin

me of the specific data formats (geo data, news fee

 in the program, but Qt has also solved this proble

dule allowing to download data in an easy way. Fu

ndled either by custom code or for example if the

 displayed in the web page XHTML, and then it ca

odule.

IGURE 18. Network Access (Johnson, 2008)

ta from the web server using Qt’s networking mod

 in FIGURE 18. QNetworkAccessManager creates

which is sent to http web server. The web server re

sulated in QNetworkReply object. The example be

ctice. QNetworkAccessManager ::get() meth

e sent request. The result is received through signa

kReply *) and there is also a possibility to moni

ng to the signal: downloadProgress(qint64,

QNetworkRequest

QNetworkReply

anager

34

ting data available

feeds etc.) cannot

blem by preparing

 Further data

he output format is

t can be done by

odule is simple

tes

r returns a network

below shows

ethod is called to

gnal:

onitor the progress

 qint64).

httpd

35

QNetworkAccessManager *manager = new QNetworkAccessManager (this);

connect(manager, SIGNAL(finished(QNetworkReply *)),

 this , SLOT(replyFinished(QNetworkReply *)));

connect(manager, SIGNAL(finished(QNetworkReply *)),

 m_progressBar, SLOT(hide()));

QNetworkReply *reply = manager->get(QNetworkRequest (QUrl (Url)));

connect(reply, SIGNAL(downloadProgress(qint64, qint64)),

this , SLOT(updateProgress(qint64,qint64)));

When data downloading is finished, it still has to be processed before displaying the

data in the application. One of the possible options is to use QXmlQuery class

allowing to convert unformatted XML to the data than can be displayed in

QWebView as it is shown below:

QXmlQuery query(QXmlQuery ::XSLT20);

query.setFocus(&reply)

query.setQuery(&queryFile);

query.evaluateTo(&result);

QWebView *view = new QWebView;

view -> setHtml(QString (result))

(Nokia, 2009)

6 QML

Qt WebKit is a powerful engine, which allows to develop high standard hybrid

applications. However, following the market demand, as a part of Qt framework, a

new language – QML was created, that provides functionality for creating different

kind of applications.

36

FIGURE 19. RSS News Reader QML demo (Nokia, 2011)

FIGURE 20. Flickr QML demo (Nokia, 2011)

QML is a JavaScript based, declarative language. The latest stable version 4.7.2 was

released on the first of March 2011. Its purpose is to design user interfaces mainly for

37

applications where user experience is crucial. QML in the first place focuses on how a

UI looks like and behaves. As it is based on JavaScript, it is enough to know it in

some degree and maybe some basics of other web technologies, such as HTML and

CSS to be able to use QML without any problems. It is also very beneficial, however,

to extend QML in C++, which enables, inter alia:

• using functionality defined in C++ source

• accessing functionality in the Qt Declarative module

• writing own QML elements.

(Nokia, 2011)

QML defines the user interface as a tree of objects with properties. The objects are

declared with their name and two curly brackets, which contain the object’s

properties. The QML code example below shows that two objects are created: a

Rectangle and its child Text . The parent- child relationship is a characteristic

feature of QML, since it is very common that one object can be nested in the other

one. Both of the elements, from the example below, possess a set of properties which

defines them. For example an object Rectangle has the properties width and

height both with values equal 200 .

Rectangle {

 width : 200

 height : 200

 Text {

 x : 66

 y : 93

 text : "Hello World"

 }

}

The code fragment above shows only two QML elements, when in practice there are

various groups of elements. The basic division of QML elements is presented below:

• Basic QML Elements (Item, Component, QtObject)

• Graphics (Rectangle, Image, Gradient, etc.)

• Text Handling (Text, TextInput, TextEdit, etc.)

38

• Mouse and Interaction Area (MouseArea, Keys, etc.)

• Positioners and Repeater (Column, Row, etc.)

• Transformations (Scale, Rotation, Translate)

• States (State, PropertyChanges, etc.)

• Animation and Transitions (Transition, Behavior, SequentialAnimation, etc.)

• Models and Data Handling (ListModel, XmlListModel, Package, etc.)

• Views (ListView, GridView, PathView)

• Path Definition (Path, PathLine, etc.)

• Utility (Connections, Qt, etc.)

• Graphical Effects (Particles, ParticleMotionLinear, etc.)

• Add-On Elements (WebView, Mobility QML Plugin).

(Nokia, 2011)

QML provides also direct access to some concepts from Qt, which are listed below:

• QAction

• QObject signals and slots

• QObject properties

• QWidget

• Qt models (e.g. QAbstractModel).

(Nokia, 2011)

QML is also therefore a good solution for creating hybrid applications. However,

despite the fact that it allows to design nice UI and JavaScript takes care of the

application’s logic, sometimes it still beneficial to use C++. It can extend the

application and enrich it with additional functionality, which is very crucial when

developing applications that should meet the end user’s expectations.

(Nokia, 2011)

39

7 EXAMPLE OF HYBRID APPLICATION

Hybrid applications can be less or more complicated – everything depends on many

factors, like: an application’s purpose and how far expanded, efficient, fast and secure

it is. Below is an example that presents a very simple hybrid application – image

gallery.

The main precondition that had to be met before developing the program was setting

up a web server. It was created based on the freeware program WebServ (Geeknet,

2003). In the main folder of the web server images and a folder with image’s

thumbnails were placed, as it is presented in FIGURE 21 and in FIGURE 22.

FIGURE 21. Web server main folder

40

FIGURE 22. Web Server thumbnails folder

The main purpose of the application is to show how web content is retrieved from the

server and displayed in a native application. It is done mainly using QWebView and

JavaScript. JavaScript is responsible for basic functionality, such as displaying images

and thumbnails, transition and user interaction with thumbnails. Native core is

responsible for creating QWebView and loading a page from demo.htm.

FIGURE 23. Transition between two images in the imageviewer application run
on Microsoft Vista

41

FIGURE 24. ImageViewer application run in the Qt Simulator

8 CONCLUSION

The main goal of this Bachelor’s thesis was the explication of the hybrid application

concept and basic aspects helping in its optimal development. I wanted to present both

the advantages and problems that each developer needs to face while creating such as

application. All presented information aims at highlighting how powerful hybrid

applications can be but only when they are used in a proper way and for creating an

application that uses all benefits of hybridization.

Nowadays Internet is one of the most powerful and the biggest source providing a

very large amount of both information and services. Among the offered services there

are the biggest and the most popular ones, like: Facebook, Flickr, Twitter, MySpace,

Google Maps, Picasa, Ebay, Amazon etc. All of these kinds of services provide a huge

amount of content that is not so easily accessible from mobile devices, mainly due to

lack of a mouse, a keyboard and large enough display, which for example a common

computer has. Limitations of mobile devices are very often a reason for which an

average user has problems with using such services through mobile phones’ web

browsers. This is, however, the opportunity for hybrid applications which allow

creating an application containing native functionality that is used for building user-

friendly interface and providing an easier access to a chosen service. Therefore a very

42

popular, common service can be still used on mobile devices but in a much easier way

than when it would have to be accessed through a browser.

The other benefit from creating hybrid applications is that a major part of the

application is stored on the web servers. This approach brings many advantages, like

lighter application and hence faster installation and also less complex updates.

The next thing worth mentioning is the possibility of reduction of demand for

computing power. Applications installed on the device can contain most of the

functionality, however, all very complex calculations can be executed on the

powerful, fast servers and only the final result can be resent to the actual application.

On the other hand, developing hybrid applications can entail various problems. The

largest problem is a network connection lost, which causes that the applications’

functionality cannot be fully used. The applications, however, can show for example

the last active state, or a part of the functionality can be used. For example if Twitter

is used as web content, the solution can be that the user can still write some posts

which are kept on hold and they are sent only when the connection is restored.

There are many other problems that have to be taken into account when designing a

hybrid application, like security of the application, which is limited due to the web

content used in the application or speed of the internet connection. These issues,

however, can be solved or bypassed and they depend a lot on the type of the

application’s content. What is worth considering is the reliability of the web services’

providers. Hybrid applications rely on web services, which in the extreme situations

can be malfunctioned, down, hacked or even shut down and then the application

related to this service becomes useless.

The examples above show that hybrid applications can be the future of mobile

devices, because they can bypass the limitations of such devices by putting most of

the functionality on the web servers. On the other hand there are still many problems

that have to be considered when designing and developing hybrid applications. Pure

native or web applications are still very good solutions in many situations, that is why

the key for using all benefits of hybridization is to take into account all aspects of

using and maintaining such applications and then they can became a strong competitor

amongst other applications on mobile devices’ market.

43

9 REFERENCES

Chaffee, A. (2000, August 18). jGuru. Referenced March 14, 2011, from What is a

web application (or "webapp")?: http://www.jguru.com/faq/view.jsp?EID=129328

Dhandhania, A. (2011). HTML 5: Client-side Storage. Referenced March 9, 2011,

from http://www.webreference.com/authoring/languages/html/HTML5-Client-Side/

Digia Plc. (2011). digia. Referenced March 12, 2011, from http://www.digia.com/

dotMobi. (2010). mobiThinking. Referenced March 12, 2011, from Mobile

applications: native v Web apps – what are the pros and cons?:

http://mobithinking.com/native-or-web-app

Geeknet. (2003). WebServ. Referenced March 14, 2011, from

http://webserv.sourceforge.net/

Johnson, D. (2008). ICS Network. Referenced March 11, 2011, from Wt WebKit:

http://www.ics.com/learning/icsnetwork_flash/cd4497f03840f43841a5e5917bb2ef26

Kosonen, P. (2009). Next Generation Hybrid Applications with Qt. Referenced March

2, 2011, from http://www.slideshare.net/pkosonen/next-generation-hybrid-

applications-with-qt-presentation-for-see-2009

Lal, R. (2009). Referenced March 5, 2011, from Hybrid Application Development for

Maemo N900 Device using Qt Webkit: http://www.slideshare.net/rajeshlal/hybrid-

application-development-for-maemo-n900-device

Mills, E. (2009). AVAI Mobile Solutions Blog. Referenced March 12, 2011, from

iPhone App Decisions - Native App, Web App, or Hybrid App:

http://avaimobile.com/blog/bid/17266/iPhone-App-Decisions-Native-App-Web-App-

or-Hybrid-App

Nokia. (2009). Referenced March 11, 2011, from Qt Features for Hybrid Web / Native

Application Development: http://qt.nokia.com/qt-in-use/files/pdf/qt-features-for-

hybrid-web-native-application-development

Nokia. (2009). Referenced March 7, 2011, from Developments in Qt WebKit

Integration:

44

http://get.qt.nokia.com/videos/DevDays2009/Technical%20Sessions/DevDays2009%

20-%20Developments%20in%20the%20Qt%20WebKit%20Integration.pdf

Nokia. (n.d.). Applications using QtWebKit. Referenced March 12, 2011, from

http://developer.qt.nokia.com/wiki/Applications_Using_QtWebKit

Nokia. (2010). Build Amazing Mobile Apps using HTML5, CSS3 and JavaScript.

Referenced March 1, 2011, from

http://conference2010.meego.com/sites/all/files/sessions/amazingmobileappswithhtml

5css3javascript.pdf

Nokia. (2011). Qt. Referenced March 12, 2011, from http://qt.nokia.com/

Nokia. (2011). Qt 4.7: Using QML in C++. Referenced March 20, 2011, from Qt 4.7:

http://doc.qt.nokia.com/4.7-snapshot/qtbinding.html

Nokia. (2011). Qt Creator Whitepaper. Referenced March 12, 2011, from

http://developer.qt.nokia.com/wiki/QtCreatorWhitepaper#5ec21dff0f0166c5a8c09d19

630488d9

Nokia. (2011). Qt Reference Documentation. Referenced March 12, 2011, from QML

Examples and Demos: http://doc.qt.nokia.com/4.7-

snapshot/qdeclarativeexamples.html

Ovisoftware. (2010). Ovi Software. Pobrano March 12, 2011 z lokalizacji Qt

Development - MeeGo: http://www.ovisoftware.com/meego-qt-development.html

Panayara. (2011, March 1). Linux and Microcontroller Tips. Referenced March 14,

2011, from Qt: http://shibuvarkala.blogspot.com/2011/03/download-free-qt-training-

course.html

Pavley, J. (2010). TechNewsWorld. Referenced March 12, 2011, from Hybrid Apps:

The Art of Being in Two Places at Once:

http://www.technewsworld.com/story/70716.html

Sharp, R. (2010). <html>5doctor. Referenced March 11, 2011, from Introducing Web

SQL Databases: http://html5doctor.com/introducing-web-sql-databases/

The WebKit Open Source Project. (2011). Referenced March 3, 2011, from

http://www.webkit.org/

45

Watt, A., Watt, J., Simon, J., & ODonnell, J. (2003). JavaScript dla każdego. Helion.

